cui-llama.rn 1.3.6 → 1.4.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (101) hide show
  1. package/README.md +22 -1
  2. package/android/src/main/CMakeLists.txt +25 -26
  3. package/android/src/main/java/com/rnllama/LlamaContext.java +31 -9
  4. package/android/src/main/java/com/rnllama/RNLlama.java +98 -0
  5. package/android/src/main/jni-utils.h +94 -0
  6. package/android/src/main/jni.cpp +133 -63
  7. package/android/src/newarch/java/com/rnllama/RNLlamaModule.java +15 -0
  8. package/android/src/oldarch/java/com/rnllama/RNLlamaModule.java +15 -0
  9. package/cpp/common.cpp +2085 -1982
  10. package/cpp/common.h +696 -664
  11. package/cpp/ggml-alloc.c +1042 -1037
  12. package/cpp/ggml-backend-impl.h +255 -256
  13. package/cpp/ggml-backend-reg.cpp +582 -582
  14. package/cpp/ggml-backend.cpp +2002 -2002
  15. package/cpp/ggml-backend.h +354 -352
  16. package/cpp/ggml-common.h +1853 -1853
  17. package/cpp/ggml-cpp.h +39 -39
  18. package/cpp/ggml-cpu-aarch64.cpp +4247 -4247
  19. package/cpp/ggml-cpu-aarch64.h +8 -8
  20. package/cpp/ggml-cpu-impl.h +386 -386
  21. package/cpp/ggml-cpu-quants.c +10920 -10839
  22. package/cpp/ggml-cpu-traits.cpp +36 -36
  23. package/cpp/ggml-cpu-traits.h +38 -38
  24. package/cpp/ggml-cpu.c +14391 -14122
  25. package/cpp/ggml-cpu.cpp +635 -627
  26. package/cpp/ggml-cpu.h +135 -135
  27. package/cpp/ggml-impl.h +567 -567
  28. package/cpp/ggml-metal-impl.h +288 -0
  29. package/cpp/ggml-metal.m +4884 -4884
  30. package/cpp/ggml-opt.cpp +854 -0
  31. package/cpp/ggml-opt.h +216 -0
  32. package/cpp/ggml-quants.c +5238 -5238
  33. package/cpp/ggml-threading.h +14 -14
  34. package/cpp/ggml.c +6514 -6448
  35. package/cpp/ggml.h +2194 -2163
  36. package/cpp/gguf.cpp +1329 -1325
  37. package/cpp/gguf.h +202 -202
  38. package/cpp/json-schema-to-grammar.cpp +1045 -1045
  39. package/cpp/json-schema-to-grammar.h +8 -8
  40. package/cpp/json.hpp +24766 -24766
  41. package/cpp/llama-adapter.cpp +347 -346
  42. package/cpp/llama-adapter.h +74 -73
  43. package/cpp/llama-arch.cpp +1487 -1434
  44. package/cpp/llama-arch.h +400 -395
  45. package/cpp/llama-batch.cpp +368 -368
  46. package/cpp/llama-batch.h +88 -88
  47. package/cpp/llama-chat.cpp +578 -567
  48. package/cpp/llama-chat.h +52 -51
  49. package/cpp/llama-context.cpp +1775 -1771
  50. package/cpp/llama-context.h +128 -128
  51. package/cpp/llama-cparams.cpp +1 -1
  52. package/cpp/llama-cparams.h +37 -37
  53. package/cpp/llama-cpp.h +30 -30
  54. package/cpp/llama-grammar.cpp +1139 -1139
  55. package/cpp/llama-grammar.h +143 -143
  56. package/cpp/llama-hparams.cpp +71 -71
  57. package/cpp/llama-hparams.h +139 -140
  58. package/cpp/llama-impl.cpp +167 -167
  59. package/cpp/llama-impl.h +61 -61
  60. package/cpp/llama-kv-cache.cpp +718 -718
  61. package/cpp/llama-kv-cache.h +218 -218
  62. package/cpp/llama-mmap.cpp +590 -589
  63. package/cpp/llama-mmap.h +67 -67
  64. package/cpp/llama-model-loader.cpp +1124 -1011
  65. package/cpp/llama-model-loader.h +167 -158
  66. package/cpp/llama-model.cpp +3997 -2202
  67. package/cpp/llama-model.h +370 -391
  68. package/cpp/llama-sampling.cpp +2408 -2406
  69. package/cpp/llama-sampling.h +32 -48
  70. package/cpp/llama-vocab.cpp +3247 -1982
  71. package/cpp/llama-vocab.h +125 -182
  72. package/cpp/llama.cpp +10077 -12544
  73. package/cpp/llama.h +1323 -1285
  74. package/cpp/log.cpp +401 -401
  75. package/cpp/log.h +121 -121
  76. package/cpp/rn-llama.hpp +123 -116
  77. package/cpp/sampling.cpp +505 -500
  78. package/cpp/sgemm.cpp +2597 -2597
  79. package/cpp/sgemm.h +14 -14
  80. package/cpp/speculative.cpp +277 -274
  81. package/cpp/speculative.h +28 -28
  82. package/cpp/unicode.cpp +2 -3
  83. package/ios/RNLlama.mm +47 -0
  84. package/ios/RNLlamaContext.h +3 -1
  85. package/ios/RNLlamaContext.mm +71 -14
  86. package/jest/mock.js +15 -3
  87. package/lib/commonjs/NativeRNLlama.js.map +1 -1
  88. package/lib/commonjs/index.js +33 -37
  89. package/lib/commonjs/index.js.map +1 -1
  90. package/lib/module/NativeRNLlama.js.map +1 -1
  91. package/lib/module/index.js +31 -35
  92. package/lib/module/index.js.map +1 -1
  93. package/lib/typescript/NativeRNLlama.d.ts +26 -6
  94. package/lib/typescript/NativeRNLlama.d.ts.map +1 -1
  95. package/lib/typescript/index.d.ts +21 -36
  96. package/lib/typescript/index.d.ts.map +1 -1
  97. package/llama-rn.podspec +4 -18
  98. package/package.json +2 -3
  99. package/src/NativeRNLlama.ts +32 -13
  100. package/src/index.ts +52 -47
  101. package/cpp/llama.cpp.rej +0 -23
@@ -1,352 +1,354 @@
1
- #pragma once
2
-
3
- #include "ggml.h"
4
- #include "ggml-alloc.h"
5
-
6
- #ifdef LM_GGML_BACKEND_SHARED
7
- # if defined(_WIN32) && !defined(__MINGW32__)
8
- # ifdef LM_GGML_BACKEND_BUILD
9
- # define LM_GGML_BACKEND_API __declspec(dllexport) extern
10
- # else
11
- # define LM_GGML_BACKEND_API __declspec(dllimport) extern
12
- # endif
13
- # else
14
- # define LM_GGML_BACKEND_API __attribute__ ((visibility ("default"))) extern
15
- # endif
16
- #else
17
- # define LM_GGML_BACKEND_API extern
18
- #endif
19
-
20
- #ifdef __cplusplus
21
- extern "C" {
22
- #endif
23
-
24
- typedef struct lm_ggml_backend_buffer_type * lm_ggml_backend_buffer_type_t;
25
- typedef struct lm_ggml_backend_buffer * lm_ggml_backend_buffer_t;
26
- typedef struct lm_ggml_backend_event * lm_ggml_backend_event_t;
27
- typedef struct lm_ggml_backend * lm_ggml_backend_t;
28
- typedef void * lm_ggml_backend_graph_plan_t;
29
- typedef struct lm_ggml_backend_reg * lm_ggml_backend_reg_t;
30
- typedef struct lm_ggml_backend_device * lm_ggml_backend_dev_t;
31
-
32
-
33
- //
34
- // Backend buffer type
35
- //
36
-
37
- LM_GGML_API const char * lm_ggml_backend_buft_name (lm_ggml_backend_buffer_type_t buft);
38
- LM_GGML_API lm_ggml_backend_buffer_t lm_ggml_backend_buft_alloc_buffer (lm_ggml_backend_buffer_type_t buft, size_t size);
39
- LM_GGML_API size_t lm_ggml_backend_buft_get_alignment (lm_ggml_backend_buffer_type_t buft);
40
- LM_GGML_API size_t lm_ggml_backend_buft_get_max_size (lm_ggml_backend_buffer_type_t buft);
41
- LM_GGML_API size_t lm_ggml_backend_buft_get_alloc_size(lm_ggml_backend_buffer_type_t buft, struct lm_ggml_tensor * tensor);
42
- LM_GGML_API bool lm_ggml_backend_buft_is_host (lm_ggml_backend_buffer_type_t buft);
43
- LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_buft_get_device (lm_ggml_backend_buffer_type_t buft);
44
-
45
- //
46
- // Backend buffer
47
- //
48
-
49
- enum lm_ggml_backend_buffer_usage {
50
- LM_GGML_BACKEND_BUFFER_USAGE_ANY = 0,
51
- LM_GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1,
52
- LM_GGML_BACKEND_BUFFER_USAGE_COMPUTE = 2,
53
- };
54
-
55
- LM_GGML_API const char * lm_ggml_backend_buffer_name (lm_ggml_backend_buffer_t buffer);
56
- LM_GGML_API void lm_ggml_backend_buffer_free (lm_ggml_backend_buffer_t buffer);
57
- LM_GGML_API void * lm_ggml_backend_buffer_get_base (lm_ggml_backend_buffer_t buffer);
58
- LM_GGML_API size_t lm_ggml_backend_buffer_get_size (lm_ggml_backend_buffer_t buffer);
59
- LM_GGML_API void lm_ggml_backend_buffer_init_tensor (lm_ggml_backend_buffer_t buffer, struct lm_ggml_tensor * tensor);
60
- LM_GGML_API size_t lm_ggml_backend_buffer_get_alignment (lm_ggml_backend_buffer_t buffer);
61
- LM_GGML_API size_t lm_ggml_backend_buffer_get_max_size (lm_ggml_backend_buffer_t buffer);
62
- LM_GGML_API size_t lm_ggml_backend_buffer_get_alloc_size(lm_ggml_backend_buffer_t buffer, struct lm_ggml_tensor * tensor);
63
- LM_GGML_API void lm_ggml_backend_buffer_clear (lm_ggml_backend_buffer_t buffer, uint8_t value);
64
- LM_GGML_API bool lm_ggml_backend_buffer_is_host (lm_ggml_backend_buffer_t buffer);
65
- LM_GGML_API void lm_ggml_backend_buffer_set_usage (lm_ggml_backend_buffer_t buffer, enum lm_ggml_backend_buffer_usage usage);
66
- LM_GGML_API enum lm_ggml_backend_buffer_usage lm_ggml_backend_buffer_get_usage (lm_ggml_backend_buffer_t buffer);
67
- LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_buffer_get_type (lm_ggml_backend_buffer_t buffer);
68
- LM_GGML_API void lm_ggml_backend_buffer_reset (lm_ggml_backend_buffer_t buffer);
69
-
70
- // tensor copy between different backends
71
- LM_GGML_API void lm_ggml_backend_tensor_copy(struct lm_ggml_tensor * src, struct lm_ggml_tensor * dst);
72
-
73
- //
74
- // Backend (stream)
75
- //
76
-
77
- LM_GGML_API lm_ggml_guid_t lm_ggml_backend_guid(lm_ggml_backend_t backend);
78
- LM_GGML_API const char * lm_ggml_backend_name(lm_ggml_backend_t backend);
79
- LM_GGML_API void lm_ggml_backend_free(lm_ggml_backend_t backend);
80
-
81
- LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_get_default_buffer_type(lm_ggml_backend_t backend);
82
- LM_GGML_API lm_ggml_backend_buffer_t lm_ggml_backend_alloc_buffer(lm_ggml_backend_t backend, size_t size);
83
- LM_GGML_API size_t lm_ggml_backend_get_alignment(lm_ggml_backend_t backend);
84
- LM_GGML_API size_t lm_ggml_backend_get_max_size(lm_ggml_backend_t backend);
85
-
86
- LM_GGML_API void lm_ggml_backend_tensor_set_async(lm_ggml_backend_t backend, struct lm_ggml_tensor * tensor, const void * data, size_t offset, size_t size);
87
- LM_GGML_API void lm_ggml_backend_tensor_get_async(lm_ggml_backend_t backend, const struct lm_ggml_tensor * tensor, void * data, size_t offset, size_t size);
88
-
89
- // "offset" refers to the offset in tensor->data for setting/getting data
90
- LM_GGML_API void lm_ggml_backend_tensor_set( struct lm_ggml_tensor * tensor, const void * data, size_t offset, size_t size);
91
- LM_GGML_API void lm_ggml_backend_tensor_get(const struct lm_ggml_tensor * tensor, void * data, size_t offset, size_t size);
92
- LM_GGML_API void lm_ggml_backend_tensor_memset( struct lm_ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
93
-
94
- LM_GGML_API void lm_ggml_backend_synchronize(lm_ggml_backend_t backend);
95
-
96
- LM_GGML_API lm_ggml_backend_graph_plan_t lm_ggml_backend_graph_plan_create(lm_ggml_backend_t backend, struct lm_ggml_cgraph * cgraph);
97
- LM_GGML_API void lm_ggml_backend_graph_plan_free (lm_ggml_backend_t backend, lm_ggml_backend_graph_plan_t plan);
98
-
99
- LM_GGML_API enum lm_ggml_status lm_ggml_backend_graph_plan_compute (lm_ggml_backend_t backend, lm_ggml_backend_graph_plan_t plan);
100
- LM_GGML_API enum lm_ggml_status lm_ggml_backend_graph_compute (lm_ggml_backend_t backend, struct lm_ggml_cgraph * cgraph);
101
- LM_GGML_API enum lm_ggml_status lm_ggml_backend_graph_compute_async(lm_ggml_backend_t backend, struct lm_ggml_cgraph * cgraph);
102
-
103
- // NOTE: will be removed, use device version instead
104
- LM_GGML_API bool lm_ggml_backend_supports_op(lm_ggml_backend_t backend, const struct lm_ggml_tensor * op);
105
- LM_GGML_API bool lm_ggml_backend_supports_buft(lm_ggml_backend_t backend, lm_ggml_backend_buffer_type_t buft);
106
- LM_GGML_API bool lm_ggml_backend_offload_op(lm_ggml_backend_t backend, const struct lm_ggml_tensor * op);
107
-
108
- // asynchronous copy
109
- // the copy is performed after all the currently queued operations in backend_src
110
- // backend_dst will wait for the copy to complete before performing other operations
111
- // automatic fallback to sync copy if async is not supported
112
- LM_GGML_API void lm_ggml_backend_tensor_copy_async(lm_ggml_backend_t backend_src, lm_ggml_backend_t backend_dst, struct lm_ggml_tensor * src, struct lm_ggml_tensor * dst);
113
-
114
- LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_get_device(lm_ggml_backend_t backend);
115
-
116
- //
117
- // Events
118
- //
119
-
120
- LM_GGML_API lm_ggml_backend_event_t lm_ggml_backend_event_new(lm_ggml_backend_dev_t device);
121
- LM_GGML_API void lm_ggml_backend_event_free(lm_ggml_backend_event_t event);
122
- LM_GGML_API void lm_ggml_backend_event_record(lm_ggml_backend_event_t event, lm_ggml_backend_t backend);
123
- LM_GGML_API void lm_ggml_backend_event_synchronize(lm_ggml_backend_event_t event);
124
- LM_GGML_API void lm_ggml_backend_event_wait(lm_ggml_backend_t backend, lm_ggml_backend_event_t event);
125
-
126
- //
127
- // Backend device
128
- //
129
-
130
- enum lm_ggml_backend_dev_type {
131
- // CPU device using system memory
132
- LM_GGML_BACKEND_DEVICE_TYPE_CPU,
133
- // GPU device using dedicated memory
134
- LM_GGML_BACKEND_DEVICE_TYPE_GPU,
135
- // accelerator devices intended to be used together with the CPU backend (e.g. BLAS or AMX)
136
- LM_GGML_BACKEND_DEVICE_TYPE_ACCEL
137
- };
138
-
139
- // functionality supported by the device
140
- struct lm_ggml_backend_dev_caps {
141
- // asynchronous operations
142
- bool async;
143
- // pinned host buffer
144
- bool host_buffer;
145
- // creating buffers from host ptr
146
- bool buffer_from_host_ptr;
147
- // event synchronization
148
- bool events;
149
- };
150
-
151
- // all the device properties
152
- struct lm_ggml_backend_dev_props {
153
- const char * name;
154
- const char * description;
155
- size_t memory_free;
156
- size_t memory_total;
157
- enum lm_ggml_backend_dev_type type;
158
- struct lm_ggml_backend_dev_caps caps;
159
- };
160
-
161
- LM_GGML_API const char * lm_ggml_backend_dev_name(lm_ggml_backend_dev_t device);
162
- LM_GGML_API const char * lm_ggml_backend_dev_description(lm_ggml_backend_dev_t device);
163
- LM_GGML_API void lm_ggml_backend_dev_memory(lm_ggml_backend_dev_t device, size_t * free, size_t * total);
164
- LM_GGML_API enum lm_ggml_backend_dev_type lm_ggml_backend_dev_type(lm_ggml_backend_dev_t device);
165
- LM_GGML_API void lm_ggml_backend_dev_get_props(lm_ggml_backend_dev_t device, struct lm_ggml_backend_dev_props * props);
166
- LM_GGML_API lm_ggml_backend_reg_t lm_ggml_backend_dev_backend_reg(lm_ggml_backend_dev_t device);
167
- LM_GGML_API lm_ggml_backend_t lm_ggml_backend_dev_init(lm_ggml_backend_dev_t device, const char * params);
168
- LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_dev_buffer_type(lm_ggml_backend_dev_t device);
169
- LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_dev_host_buffer_type(lm_ggml_backend_dev_t device);
170
- LM_GGML_API lm_ggml_backend_buffer_t lm_ggml_backend_dev_buffer_from_host_ptr(lm_ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size);
171
-
172
- LM_GGML_API bool lm_ggml_backend_dev_supports_op(lm_ggml_backend_dev_t device, const struct lm_ggml_tensor * op);
173
- LM_GGML_API bool lm_ggml_backend_dev_supports_buft(lm_ggml_backend_dev_t device, lm_ggml_backend_buffer_type_t buft);
174
- LM_GGML_API bool lm_ggml_backend_dev_offload_op(lm_ggml_backend_dev_t device, const struct lm_ggml_tensor * op);
175
-
176
- //
177
- // Backend (reg)
178
- //
179
-
180
- LM_GGML_API const char * lm_ggml_backend_reg_name(lm_ggml_backend_reg_t reg);
181
- LM_GGML_API size_t lm_ggml_backend_reg_dev_count(lm_ggml_backend_reg_t reg);
182
- LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_reg_dev_get(lm_ggml_backend_reg_t reg, size_t index);
183
- LM_GGML_API void * lm_ggml_backend_reg_get_proc_address(lm_ggml_backend_reg_t reg, const char * name);
184
-
185
- // Common functions that may be obtained using lm_ggml_backend_reg_get_proc_address
186
-
187
- // Split buffer type for tensor parallelism
188
- typedef lm_ggml_backend_buffer_type_t (*lm_ggml_backend_split_buffer_type_t)(int main_device, const float * tensor_split);
189
- // Set the number of threads for the backend
190
- typedef void (*lm_ggml_backend_set_n_threads_t)(lm_ggml_backend_t backend, int n_threads);
191
- // Get additional buffer types provided by the device (returns a NULL-terminated array)
192
- typedef lm_ggml_backend_buffer_type_t * (*lm_ggml_backend_dev_get_extra_bufts_t)(lm_ggml_backend_dev_t device);
193
- // Set the abort callback for the backend
194
- typedef void (*lm_ggml_backend_set_abort_callback_t)(lm_ggml_backend_t backend, lm_ggml_abort_callback abort_callback, void * abort_callback_data);
195
- // Get a list of feature flags supported by the backend (returns a NULL-terminated array)
196
- struct lm_ggml_backend_feature {
197
- const char * name;
198
- const char * value;
199
- };
200
- typedef struct lm_ggml_backend_feature * (*lm_ggml_backend_get_features_t)(lm_ggml_backend_reg_t reg);
201
-
202
- //
203
- // Backend registry
204
- //
205
-
206
- // Backend (reg) enumeration
207
- LM_GGML_API size_t lm_ggml_backend_reg_count(void);
208
- LM_GGML_API lm_ggml_backend_reg_t lm_ggml_backend_reg_get(size_t index);
209
- LM_GGML_API lm_ggml_backend_reg_t lm_ggml_backend_reg_by_name(const char * name);
210
-
211
- // Device enumeration
212
- LM_GGML_API size_t lm_ggml_backend_dev_count(void);
213
- LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_dev_get(size_t index);
214
- LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_dev_by_name(const char * name);
215
- LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_dev_by_type(enum lm_ggml_backend_dev_type type);
216
-
217
- // Direct backend (stream) initialization
218
- // = lm_ggml_backend_dev_init(lm_ggml_backend_dev_by_name(name), params)
219
- LM_GGML_API lm_ggml_backend_t lm_ggml_backend_init_by_name(const char * name, const char * params);
220
- // = lm_ggml_backend_dev_init(lm_ggml_backend_dev_by_type(type), params)
221
- LM_GGML_API lm_ggml_backend_t lm_ggml_backend_init_by_type(enum lm_ggml_backend_dev_type type, const char * params);
222
- // = lm_ggml_backend_dev_init(lm_ggml_backend_dev_by_type(GPU) OR lm_ggml_backend_dev_by_type(CPU), NULL)
223
- LM_GGML_API lm_ggml_backend_t lm_ggml_backend_init_best(void);
224
-
225
- // Load a backend from a dynamic library and register it
226
- LM_GGML_API lm_ggml_backend_reg_t lm_ggml_backend_load(const char * path);
227
- // Unload a backend if loaded dynamically and unregister it
228
- LM_GGML_API void lm_ggml_backend_unload(lm_ggml_backend_reg_t reg);
229
- // Load all known backends from dynamic libraries
230
- LM_GGML_API void lm_ggml_backend_load_all(void);
231
- LM_GGML_API void lm_ggml_backend_load_all_from_path(const char * dir_path);
232
-
233
- //
234
- // Backend scheduler
235
- //
236
-
237
- // The backend scheduler allows for multiple backend devices to be used together
238
- // Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends
239
- // The backends are selected based on:
240
- // - the backend that supports the operation
241
- // - the location of the pre-allocated tensors (e.g. the weights)
242
- /*
243
- Example usage:
244
-
245
- // operations that use tensors allocated in a buffer with USAGE_WEIGHTS will be assigned
246
- // preferrably to run on the same backend as the buffer
247
- lm_ggml_backend_buffer_set_usage(buf_weights, LM_GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
248
-
249
- sched = lm_ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, LM_GGML_DEFAULT_GRAPH_SIZE, false);
250
-
251
- // initialize buffers from a max size graph (optional)
252
- reserve_graph = build_graph(sched, max_batch_size);
253
-
254
- // manually assign nodes to a backend (optional, should not be needed in most cases)
255
- struct lm_ggml_tensor * node = lm_ggml_mul_mat(ctx, ...);
256
- lm_ggml_backend_sched_set_tensor_backend(sched, node, backend_gpu);
257
-
258
- lm_ggml_backend_sched_reserve(sched, reserve_graph);
259
-
260
- // compute
261
- graph = build_graph(sched); // the graph and its tensors are single-use in terms of allocation, multi-use in terms of computation
262
- for (int i = 0; i < 10; ++i) {
263
- lm_ggml_backend_sched_graph_compute(sched, graph); // on the first iteration the graph is allocated automatically
264
- }
265
-
266
- // if there are graph inputs:
267
- graph = build_graph(sched); // get a new graph that is not allocated (the metadata for the old graph is freed once lm_ggml_free is called)
268
- lm_ggml_backend_sched_reset(sched); // clear the allocation of the previous graph
269
- lm_ggml_backend_sched_alloc_graph(sched, graph); // explicitly allocate the new graph but do not execute it
270
- lm_ggml_backend_tensor_set(input_tensor, ...); // copy data to the newly allocated graph tensors
271
- lm_ggml_backend_sched_graph_compute(sched, graph); // execute the graph
272
-
273
- // as an alternative to the above it is also possible to assign the inputs to a dedicated context and
274
- // allocate them statically via lm_ggml_backend_alloc_ctx_tensors
275
- }
276
- */
277
-
278
- typedef struct lm_ggml_backend_sched * lm_ggml_backend_sched_t;
279
-
280
- // Evaluation callback for each node in the graph (set with lm_ggml_backend_sched_set_eval_callback)
281
- // when ask == true, the scheduler wants to know if the user wants to observe this node
282
- // this allows the scheduler to batch nodes together in order to evaluate them in a single call
283
- //
284
- // when ask == false, the scheduler is passing the node tensor to the user for observation
285
- // if the user returns false, the scheduler will cancel the graph compute
286
- //
287
- typedef bool (*lm_ggml_backend_sched_eval_callback)(struct lm_ggml_tensor * t, bool ask, void * user_data);
288
-
289
- // Initialize a backend scheduler, backends with low index are given priority over backends with high index
290
- LM_GGML_API lm_ggml_backend_sched_t lm_ggml_backend_sched_new(lm_ggml_backend_t * backends, lm_ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel);
291
- LM_GGML_API void lm_ggml_backend_sched_free(lm_ggml_backend_sched_t sched);
292
-
293
- // Initialize backend buffers from a measure graph
294
- LM_GGML_API bool lm_ggml_backend_sched_reserve(lm_ggml_backend_sched_t sched, struct lm_ggml_cgraph * measure_graph); // returns success
295
-
296
- LM_GGML_API int lm_ggml_backend_sched_get_n_backends(lm_ggml_backend_sched_t sched);
297
- LM_GGML_API lm_ggml_backend_t lm_ggml_backend_sched_get_backend(lm_ggml_backend_sched_t sched, int i);
298
-
299
- // Get the number of splits of the last graph
300
- LM_GGML_API int lm_ggml_backend_sched_get_n_splits(lm_ggml_backend_sched_t sched);
301
- LM_GGML_API int lm_ggml_backend_sched_get_n_copies(lm_ggml_backend_sched_t sched);
302
-
303
- LM_GGML_API size_t lm_ggml_backend_sched_get_buffer_size(lm_ggml_backend_sched_t sched, lm_ggml_backend_t backend);
304
-
305
- LM_GGML_API void lm_ggml_backend_sched_set_tensor_backend(lm_ggml_backend_sched_t sched, struct lm_ggml_tensor * node, lm_ggml_backend_t backend);
306
- LM_GGML_API lm_ggml_backend_t lm_ggml_backend_sched_get_tensor_backend(lm_ggml_backend_sched_t sched, struct lm_ggml_tensor * node);
307
-
308
- // Allocate and compute graph on the backend scheduler
309
- LM_GGML_API bool lm_ggml_backend_sched_alloc_graph(lm_ggml_backend_sched_t sched, struct lm_ggml_cgraph * graph); // returns success
310
- LM_GGML_API enum lm_ggml_status lm_ggml_backend_sched_graph_compute(lm_ggml_backend_sched_t sched, struct lm_ggml_cgraph * graph);
311
- LM_GGML_API enum lm_ggml_status lm_ggml_backend_sched_graph_compute_async(lm_ggml_backend_sched_t sched, struct lm_ggml_cgraph * graph);
312
- LM_GGML_API void lm_ggml_backend_sched_synchronize(lm_ggml_backend_sched_t sched);
313
-
314
- // Reset all assignments and allocators - must be called before changing the node backends or allocating a new graph.
315
- // This in effect deallocates all tensors that were previously allocated and leaves them with dangling pointers.
316
- // The correct way to use this API is to discard the deallocated tensors and create new ones.
317
- LM_GGML_API void lm_ggml_backend_sched_reset(lm_ggml_backend_sched_t sched);
318
-
319
- // Set a callback to be called for each resulting node during graph compute
320
- LM_GGML_API void lm_ggml_backend_sched_set_eval_callback(lm_ggml_backend_sched_t sched, lm_ggml_backend_sched_eval_callback callback, void * user_data);
321
-
322
- //
323
- // Utils
324
- //
325
-
326
- struct lm_ggml_backend_graph_copy {
327
- lm_ggml_backend_buffer_t buffer;
328
- struct lm_ggml_context * ctx_allocated;
329
- struct lm_ggml_context * ctx_unallocated;
330
- struct lm_ggml_cgraph * graph;
331
- };
332
-
333
- // Copy a graph to a different backend
334
- LM_GGML_API struct lm_ggml_backend_graph_copy lm_ggml_backend_graph_copy(lm_ggml_backend_t backend, struct lm_ggml_cgraph * graph);
335
- LM_GGML_API void lm_ggml_backend_graph_copy_free(struct lm_ggml_backend_graph_copy copy);
336
-
337
- typedef bool (*lm_ggml_backend_eval_callback)(int node_index, struct lm_ggml_tensor * t1, struct lm_ggml_tensor * t2, void * user_data);
338
-
339
- // Compare the output of two backends
340
- LM_GGML_API bool lm_ggml_backend_compare_graph_backend(lm_ggml_backend_t backend1, lm_ggml_backend_t backend2, struct lm_ggml_cgraph * graph, lm_ggml_backend_eval_callback callback, void * user_data);
341
-
342
- // Tensor initialization
343
- LM_GGML_API void lm_ggml_backend_tensor_alloc(lm_ggml_backend_buffer_t buffer, struct lm_ggml_tensor * tensor, void * addr);
344
- LM_GGML_API void lm_ggml_backend_view_init(struct lm_ggml_tensor * tensor);
345
-
346
- // CPU buffer types are always available
347
- LM_GGML_API lm_ggml_backend_buffer_t lm_ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
348
- LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_cpu_buffer_type(void);
349
-
350
- #ifdef __cplusplus
351
- }
352
- #endif
1
+ #pragma once
2
+
3
+ #include "ggml.h"
4
+ #include "ggml-alloc.h"
5
+
6
+ #ifdef LM_GGML_BACKEND_SHARED
7
+ # if defined(_WIN32) && !defined(__MINGW32__)
8
+ # ifdef LM_GGML_BACKEND_BUILD
9
+ # define LM_GGML_BACKEND_API __declspec(dllexport) extern
10
+ # else
11
+ # define LM_GGML_BACKEND_API __declspec(dllimport) extern
12
+ # endif
13
+ # else
14
+ # define LM_GGML_BACKEND_API __attribute__ ((visibility ("default"))) extern
15
+ # endif
16
+ #else
17
+ # define LM_GGML_BACKEND_API extern
18
+ #endif
19
+
20
+ #ifdef __cplusplus
21
+ extern "C" {
22
+ #endif
23
+
24
+ typedef struct lm_ggml_backend_buffer_type * lm_ggml_backend_buffer_type_t;
25
+ typedef struct lm_ggml_backend_buffer * lm_ggml_backend_buffer_t;
26
+ typedef struct lm_ggml_backend_event * lm_ggml_backend_event_t;
27
+ typedef struct lm_ggml_backend * lm_ggml_backend_t;
28
+ typedef void * lm_ggml_backend_graph_plan_t;
29
+ typedef struct lm_ggml_backend_reg * lm_ggml_backend_reg_t;
30
+ typedef struct lm_ggml_backend_device * lm_ggml_backend_dev_t;
31
+
32
+
33
+ //
34
+ // Backend buffer type
35
+ //
36
+
37
+ LM_GGML_API const char * lm_ggml_backend_buft_name (lm_ggml_backend_buffer_type_t buft);
38
+ LM_GGML_API lm_ggml_backend_buffer_t lm_ggml_backend_buft_alloc_buffer (lm_ggml_backend_buffer_type_t buft, size_t size);
39
+ LM_GGML_API size_t lm_ggml_backend_buft_get_alignment (lm_ggml_backend_buffer_type_t buft);
40
+ LM_GGML_API size_t lm_ggml_backend_buft_get_max_size (lm_ggml_backend_buffer_type_t buft);
41
+ LM_GGML_API size_t lm_ggml_backend_buft_get_alloc_size(lm_ggml_backend_buffer_type_t buft, struct lm_ggml_tensor * tensor);
42
+ LM_GGML_API bool lm_ggml_backend_buft_is_host (lm_ggml_backend_buffer_type_t buft);
43
+ LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_buft_get_device (lm_ggml_backend_buffer_type_t buft);
44
+
45
+ //
46
+ // Backend buffer
47
+ //
48
+
49
+ enum lm_ggml_backend_buffer_usage {
50
+ LM_GGML_BACKEND_BUFFER_USAGE_ANY = 0,
51
+ LM_GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1,
52
+ LM_GGML_BACKEND_BUFFER_USAGE_COMPUTE = 2,
53
+ };
54
+
55
+ LM_GGML_API const char * lm_ggml_backend_buffer_name (lm_ggml_backend_buffer_t buffer);
56
+ LM_GGML_API void lm_ggml_backend_buffer_free (lm_ggml_backend_buffer_t buffer);
57
+ LM_GGML_API void * lm_ggml_backend_buffer_get_base (lm_ggml_backend_buffer_t buffer);
58
+ LM_GGML_API size_t lm_ggml_backend_buffer_get_size (lm_ggml_backend_buffer_t buffer);
59
+ LM_GGML_API void lm_ggml_backend_buffer_init_tensor (lm_ggml_backend_buffer_t buffer, struct lm_ggml_tensor * tensor);
60
+ LM_GGML_API size_t lm_ggml_backend_buffer_get_alignment (lm_ggml_backend_buffer_t buffer);
61
+ LM_GGML_API size_t lm_ggml_backend_buffer_get_max_size (lm_ggml_backend_buffer_t buffer);
62
+ LM_GGML_API size_t lm_ggml_backend_buffer_get_alloc_size(lm_ggml_backend_buffer_t buffer, struct lm_ggml_tensor * tensor);
63
+ LM_GGML_API void lm_ggml_backend_buffer_clear (lm_ggml_backend_buffer_t buffer, uint8_t value);
64
+ LM_GGML_API bool lm_ggml_backend_buffer_is_host (lm_ggml_backend_buffer_t buffer);
65
+ LM_GGML_API void lm_ggml_backend_buffer_set_usage (lm_ggml_backend_buffer_t buffer, enum lm_ggml_backend_buffer_usage usage);
66
+ LM_GGML_API enum lm_ggml_backend_buffer_usage lm_ggml_backend_buffer_get_usage (lm_ggml_backend_buffer_t buffer);
67
+ LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_buffer_get_type (lm_ggml_backend_buffer_t buffer);
68
+ LM_GGML_API void lm_ggml_backend_buffer_reset (lm_ggml_backend_buffer_t buffer);
69
+
70
+ // tensor copy between different backends
71
+ LM_GGML_API void lm_ggml_backend_tensor_copy(struct lm_ggml_tensor * src, struct lm_ggml_tensor * dst);
72
+
73
+ //
74
+ // Backend (stream)
75
+ //
76
+
77
+ LM_GGML_API lm_ggml_guid_t lm_ggml_backend_guid(lm_ggml_backend_t backend);
78
+ LM_GGML_API const char * lm_ggml_backend_name(lm_ggml_backend_t backend);
79
+ LM_GGML_API void lm_ggml_backend_free(lm_ggml_backend_t backend);
80
+
81
+ LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_get_default_buffer_type(lm_ggml_backend_t backend);
82
+ LM_GGML_API lm_ggml_backend_buffer_t lm_ggml_backend_alloc_buffer(lm_ggml_backend_t backend, size_t size);
83
+ LM_GGML_API size_t lm_ggml_backend_get_alignment(lm_ggml_backend_t backend);
84
+ LM_GGML_API size_t lm_ggml_backend_get_max_size(lm_ggml_backend_t backend);
85
+
86
+ LM_GGML_API void lm_ggml_backend_tensor_set_async(lm_ggml_backend_t backend, struct lm_ggml_tensor * tensor, const void * data, size_t offset, size_t size);
87
+ LM_GGML_API void lm_ggml_backend_tensor_get_async(lm_ggml_backend_t backend, const struct lm_ggml_tensor * tensor, void * data, size_t offset, size_t size);
88
+
89
+ // "offset" refers to the offset in tensor->data for setting/getting data
90
+ LM_GGML_API void lm_ggml_backend_tensor_set( struct lm_ggml_tensor * tensor, const void * data, size_t offset, size_t size);
91
+ LM_GGML_API void lm_ggml_backend_tensor_get(const struct lm_ggml_tensor * tensor, void * data, size_t offset, size_t size);
92
+ LM_GGML_API void lm_ggml_backend_tensor_memset( struct lm_ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
93
+
94
+ LM_GGML_API void lm_ggml_backend_synchronize(lm_ggml_backend_t backend);
95
+
96
+ LM_GGML_API lm_ggml_backend_graph_plan_t lm_ggml_backend_graph_plan_create(lm_ggml_backend_t backend, struct lm_ggml_cgraph * cgraph);
97
+ LM_GGML_API void lm_ggml_backend_graph_plan_free (lm_ggml_backend_t backend, lm_ggml_backend_graph_plan_t plan);
98
+
99
+ LM_GGML_API enum lm_ggml_status lm_ggml_backend_graph_plan_compute (lm_ggml_backend_t backend, lm_ggml_backend_graph_plan_t plan);
100
+ LM_GGML_API enum lm_ggml_status lm_ggml_backend_graph_compute (lm_ggml_backend_t backend, struct lm_ggml_cgraph * cgraph);
101
+ LM_GGML_API enum lm_ggml_status lm_ggml_backend_graph_compute_async(lm_ggml_backend_t backend, struct lm_ggml_cgraph * cgraph);
102
+
103
+ // NOTE: will be removed, use device version instead
104
+ LM_GGML_API bool lm_ggml_backend_supports_op(lm_ggml_backend_t backend, const struct lm_ggml_tensor * op);
105
+ LM_GGML_API bool lm_ggml_backend_supports_buft(lm_ggml_backend_t backend, lm_ggml_backend_buffer_type_t buft);
106
+ LM_GGML_API bool lm_ggml_backend_offload_op(lm_ggml_backend_t backend, const struct lm_ggml_tensor * op);
107
+
108
+ // asynchronous copy
109
+ // the copy is performed after all the currently queued operations in backend_src
110
+ // backend_dst will wait for the copy to complete before performing other operations
111
+ // automatic fallback to sync copy if async is not supported
112
+ LM_GGML_API void lm_ggml_backend_tensor_copy_async(lm_ggml_backend_t backend_src, lm_ggml_backend_t backend_dst, struct lm_ggml_tensor * src, struct lm_ggml_tensor * dst);
113
+
114
+ LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_get_device(lm_ggml_backend_t backend);
115
+
116
+ //
117
+ // Events
118
+ //
119
+
120
+ LM_GGML_API lm_ggml_backend_event_t lm_ggml_backend_event_new(lm_ggml_backend_dev_t device);
121
+ LM_GGML_API void lm_ggml_backend_event_free(lm_ggml_backend_event_t event);
122
+ LM_GGML_API void lm_ggml_backend_event_record(lm_ggml_backend_event_t event, lm_ggml_backend_t backend);
123
+ LM_GGML_API void lm_ggml_backend_event_synchronize(lm_ggml_backend_event_t event);
124
+ LM_GGML_API void lm_ggml_backend_event_wait(lm_ggml_backend_t backend, lm_ggml_backend_event_t event);
125
+
126
+ //
127
+ // Backend device
128
+ //
129
+
130
+ enum lm_ggml_backend_dev_type {
131
+ // CPU device using system memory
132
+ LM_GGML_BACKEND_DEVICE_TYPE_CPU,
133
+ // GPU device using dedicated memory
134
+ LM_GGML_BACKEND_DEVICE_TYPE_GPU,
135
+ // accelerator devices intended to be used together with the CPU backend (e.g. BLAS or AMX)
136
+ LM_GGML_BACKEND_DEVICE_TYPE_ACCEL
137
+ };
138
+
139
+ // functionality supported by the device
140
+ struct lm_ggml_backend_dev_caps {
141
+ // asynchronous operations
142
+ bool async;
143
+ // pinned host buffer
144
+ bool host_buffer;
145
+ // creating buffers from host ptr
146
+ bool buffer_from_host_ptr;
147
+ // event synchronization
148
+ bool events;
149
+ };
150
+
151
+ // all the device properties
152
+ struct lm_ggml_backend_dev_props {
153
+ const char * name;
154
+ const char * description;
155
+ size_t memory_free;
156
+ size_t memory_total;
157
+ enum lm_ggml_backend_dev_type type;
158
+ struct lm_ggml_backend_dev_caps caps;
159
+ };
160
+
161
+ LM_GGML_API const char * lm_ggml_backend_dev_name(lm_ggml_backend_dev_t device);
162
+ LM_GGML_API const char * lm_ggml_backend_dev_description(lm_ggml_backend_dev_t device);
163
+ LM_GGML_API void lm_ggml_backend_dev_memory(lm_ggml_backend_dev_t device, size_t * free, size_t * total);
164
+ LM_GGML_API enum lm_ggml_backend_dev_type lm_ggml_backend_dev_type(lm_ggml_backend_dev_t device);
165
+ LM_GGML_API void lm_ggml_backend_dev_get_props(lm_ggml_backend_dev_t device, struct lm_ggml_backend_dev_props * props);
166
+ LM_GGML_API lm_ggml_backend_reg_t lm_ggml_backend_dev_backend_reg(lm_ggml_backend_dev_t device);
167
+ LM_GGML_API lm_ggml_backend_t lm_ggml_backend_dev_init(lm_ggml_backend_dev_t device, const char * params);
168
+ LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_dev_buffer_type(lm_ggml_backend_dev_t device);
169
+ LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_dev_host_buffer_type(lm_ggml_backend_dev_t device);
170
+ LM_GGML_API lm_ggml_backend_buffer_t lm_ggml_backend_dev_buffer_from_host_ptr(lm_ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size);
171
+
172
+ LM_GGML_API bool lm_ggml_backend_dev_supports_op(lm_ggml_backend_dev_t device, const struct lm_ggml_tensor * op);
173
+ LM_GGML_API bool lm_ggml_backend_dev_supports_buft(lm_ggml_backend_dev_t device, lm_ggml_backend_buffer_type_t buft);
174
+ LM_GGML_API bool lm_ggml_backend_dev_offload_op(lm_ggml_backend_dev_t device, const struct lm_ggml_tensor * op);
175
+
176
+ //
177
+ // Backend (reg)
178
+ //
179
+
180
+ LM_GGML_API const char * lm_ggml_backend_reg_name(lm_ggml_backend_reg_t reg);
181
+ LM_GGML_API size_t lm_ggml_backend_reg_dev_count(lm_ggml_backend_reg_t reg);
182
+ LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_reg_dev_get(lm_ggml_backend_reg_t reg, size_t index);
183
+ LM_GGML_API void * lm_ggml_backend_reg_get_proc_address(lm_ggml_backend_reg_t reg, const char * name);
184
+
185
+ // Common functions that may be obtained using lm_ggml_backend_reg_get_proc_address
186
+
187
+ // Split buffer type for tensor parallelism
188
+ typedef lm_ggml_backend_buffer_type_t (*lm_ggml_backend_split_buffer_type_t)(int main_device, const float * tensor_split);
189
+ // Set the number of threads for the backend
190
+ typedef void (*lm_ggml_backend_set_n_threads_t)(lm_ggml_backend_t backend, int n_threads);
191
+ // Get additional buffer types provided by the device (returns a NULL-terminated array)
192
+ typedef lm_ggml_backend_buffer_type_t * (*lm_ggml_backend_dev_get_extra_bufts_t)(lm_ggml_backend_dev_t device);
193
+ // Set the abort callback for the backend
194
+ typedef void (*lm_ggml_backend_set_abort_callback_t)(lm_ggml_backend_t backend, lm_ggml_abort_callback abort_callback, void * abort_callback_data);
195
+ // Get a list of feature flags supported by the backend (returns a NULL-terminated array)
196
+ struct lm_ggml_backend_feature {
197
+ const char * name;
198
+ const char * value;
199
+ };
200
+ typedef struct lm_ggml_backend_feature * (*lm_ggml_backend_get_features_t)(lm_ggml_backend_reg_t reg);
201
+
202
+ //
203
+ // Backend registry
204
+ //
205
+
206
+ LM_GGML_API void lm_ggml_backend_device_register(lm_ggml_backend_dev_t device);
207
+
208
+ // Backend (reg) enumeration
209
+ LM_GGML_API size_t lm_ggml_backend_reg_count(void);
210
+ LM_GGML_API lm_ggml_backend_reg_t lm_ggml_backend_reg_get(size_t index);
211
+ LM_GGML_API lm_ggml_backend_reg_t lm_ggml_backend_reg_by_name(const char * name);
212
+
213
+ // Device enumeration
214
+ LM_GGML_API size_t lm_ggml_backend_dev_count(void);
215
+ LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_dev_get(size_t index);
216
+ LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_dev_by_name(const char * name);
217
+ LM_GGML_API lm_ggml_backend_dev_t lm_ggml_backend_dev_by_type(enum lm_ggml_backend_dev_type type);
218
+
219
+ // Direct backend (stream) initialization
220
+ // = lm_ggml_backend_dev_init(lm_ggml_backend_dev_by_name(name), params)
221
+ LM_GGML_API lm_ggml_backend_t lm_ggml_backend_init_by_name(const char * name, const char * params);
222
+ // = lm_ggml_backend_dev_init(lm_ggml_backend_dev_by_type(type), params)
223
+ LM_GGML_API lm_ggml_backend_t lm_ggml_backend_init_by_type(enum lm_ggml_backend_dev_type type, const char * params);
224
+ // = lm_ggml_backend_dev_init(lm_ggml_backend_dev_by_type(GPU) OR lm_ggml_backend_dev_by_type(CPU), NULL)
225
+ LM_GGML_API lm_ggml_backend_t lm_ggml_backend_init_best(void);
226
+
227
+ // Load a backend from a dynamic library and register it
228
+ LM_GGML_API lm_ggml_backend_reg_t lm_ggml_backend_load(const char * path);
229
+ // Unload a backend if loaded dynamically and unregister it
230
+ LM_GGML_API void lm_ggml_backend_unload(lm_ggml_backend_reg_t reg);
231
+ // Load all known backends from dynamic libraries
232
+ LM_GGML_API void lm_ggml_backend_load_all(void);
233
+ LM_GGML_API void lm_ggml_backend_load_all_from_path(const char * dir_path);
234
+
235
+ //
236
+ // Backend scheduler
237
+ //
238
+
239
+ // The backend scheduler allows for multiple backend devices to be used together
240
+ // Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends
241
+ // The backends are selected based on:
242
+ // - the backend that supports the operation
243
+ // - the location of the pre-allocated tensors (e.g. the weights)
244
+ /*
245
+ Example usage:
246
+
247
+ // operations that use tensors allocated in a buffer with USAGE_WEIGHTS will be assigned
248
+ // preferrably to run on the same backend as the buffer
249
+ lm_ggml_backend_buffer_set_usage(buf_weights, LM_GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
250
+
251
+ sched = lm_ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, LM_GGML_DEFAULT_GRAPH_SIZE, false);
252
+
253
+ // initialize buffers from a max size graph (optional)
254
+ reserve_graph = build_graph(sched, max_batch_size);
255
+
256
+ // manually assign nodes to a backend (optional, should not be needed in most cases)
257
+ struct lm_ggml_tensor * node = lm_ggml_mul_mat(ctx, ...);
258
+ lm_ggml_backend_sched_set_tensor_backend(sched, node, backend_gpu);
259
+
260
+ lm_ggml_backend_sched_reserve(sched, reserve_graph);
261
+
262
+ // compute
263
+ graph = build_graph(sched); // the graph and its tensors are single-use in terms of allocation, multi-use in terms of computation
264
+ for (int i = 0; i < 10; ++i) {
265
+ lm_ggml_backend_sched_graph_compute(sched, graph); // on the first iteration the graph is allocated automatically
266
+ }
267
+
268
+ // if there are graph inputs:
269
+ graph = build_graph(sched); // get a new graph that is not allocated (the metadata for the old graph is freed once lm_ggml_free is called)
270
+ lm_ggml_backend_sched_reset(sched); // clear the allocation of the previous graph
271
+ lm_ggml_backend_sched_alloc_graph(sched, graph); // explicitly allocate the new graph but do not execute it
272
+ lm_ggml_backend_tensor_set(input_tensor, ...); // copy data to the newly allocated graph tensors
273
+ lm_ggml_backend_sched_graph_compute(sched, graph); // execute the graph
274
+
275
+ // as an alternative to the above it is also possible to assign the inputs to a dedicated context and
276
+ // allocate them statically via lm_ggml_backend_alloc_ctx_tensors
277
+ }
278
+ */
279
+
280
+ typedef struct lm_ggml_backend_sched * lm_ggml_backend_sched_t;
281
+
282
+ // Evaluation callback for each node in the graph (set with lm_ggml_backend_sched_set_eval_callback)
283
+ // when ask == true, the scheduler wants to know if the user wants to observe this node
284
+ // this allows the scheduler to batch nodes together in order to evaluate them in a single call
285
+ //
286
+ // when ask == false, the scheduler is passing the node tensor to the user for observation
287
+ // if the user returns false, the scheduler will cancel the graph compute
288
+ //
289
+ typedef bool (*lm_ggml_backend_sched_eval_callback)(struct lm_ggml_tensor * t, bool ask, void * user_data);
290
+
291
+ // Initialize a backend scheduler, backends with low index are given priority over backends with high index
292
+ LM_GGML_API lm_ggml_backend_sched_t lm_ggml_backend_sched_new(lm_ggml_backend_t * backends, lm_ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel);
293
+ LM_GGML_API void lm_ggml_backend_sched_free(lm_ggml_backend_sched_t sched);
294
+
295
+ // Initialize backend buffers from a measure graph
296
+ LM_GGML_API bool lm_ggml_backend_sched_reserve(lm_ggml_backend_sched_t sched, struct lm_ggml_cgraph * measure_graph); // returns success
297
+
298
+ LM_GGML_API int lm_ggml_backend_sched_get_n_backends(lm_ggml_backend_sched_t sched);
299
+ LM_GGML_API lm_ggml_backend_t lm_ggml_backend_sched_get_backend(lm_ggml_backend_sched_t sched, int i);
300
+
301
+ // Get the number of splits of the last graph
302
+ LM_GGML_API int lm_ggml_backend_sched_get_n_splits(lm_ggml_backend_sched_t sched);
303
+ LM_GGML_API int lm_ggml_backend_sched_get_n_copies(lm_ggml_backend_sched_t sched);
304
+
305
+ LM_GGML_API size_t lm_ggml_backend_sched_get_buffer_size(lm_ggml_backend_sched_t sched, lm_ggml_backend_t backend);
306
+
307
+ LM_GGML_API void lm_ggml_backend_sched_set_tensor_backend(lm_ggml_backend_sched_t sched, struct lm_ggml_tensor * node, lm_ggml_backend_t backend);
308
+ LM_GGML_API lm_ggml_backend_t lm_ggml_backend_sched_get_tensor_backend(lm_ggml_backend_sched_t sched, struct lm_ggml_tensor * node);
309
+
310
+ // Allocate and compute graph on the backend scheduler
311
+ LM_GGML_API bool lm_ggml_backend_sched_alloc_graph(lm_ggml_backend_sched_t sched, struct lm_ggml_cgraph * graph); // returns success
312
+ LM_GGML_API enum lm_ggml_status lm_ggml_backend_sched_graph_compute(lm_ggml_backend_sched_t sched, struct lm_ggml_cgraph * graph);
313
+ LM_GGML_API enum lm_ggml_status lm_ggml_backend_sched_graph_compute_async(lm_ggml_backend_sched_t sched, struct lm_ggml_cgraph * graph);
314
+ LM_GGML_API void lm_ggml_backend_sched_synchronize(lm_ggml_backend_sched_t sched);
315
+
316
+ // Reset all assignments and allocators - must be called before changing the node backends or allocating a new graph.
317
+ // This in effect deallocates all tensors that were previously allocated and leaves them with dangling pointers.
318
+ // The correct way to use this API is to discard the deallocated tensors and create new ones.
319
+ LM_GGML_API void lm_ggml_backend_sched_reset(lm_ggml_backend_sched_t sched);
320
+
321
+ // Set a callback to be called for each resulting node during graph compute
322
+ LM_GGML_API void lm_ggml_backend_sched_set_eval_callback(lm_ggml_backend_sched_t sched, lm_ggml_backend_sched_eval_callback callback, void * user_data);
323
+
324
+ //
325
+ // Utils
326
+ //
327
+
328
+ struct lm_ggml_backend_graph_copy {
329
+ lm_ggml_backend_buffer_t buffer;
330
+ struct lm_ggml_context * ctx_allocated;
331
+ struct lm_ggml_context * ctx_unallocated;
332
+ struct lm_ggml_cgraph * graph;
333
+ };
334
+
335
+ // Copy a graph to a different backend
336
+ LM_GGML_API struct lm_ggml_backend_graph_copy lm_ggml_backend_graph_copy(lm_ggml_backend_t backend, struct lm_ggml_cgraph * graph);
337
+ LM_GGML_API void lm_ggml_backend_graph_copy_free(struct lm_ggml_backend_graph_copy copy);
338
+
339
+ typedef bool (*lm_ggml_backend_eval_callback)(int node_index, struct lm_ggml_tensor * t1, struct lm_ggml_tensor * t2, void * user_data);
340
+
341
+ // Compare the output of two backends
342
+ LM_GGML_API bool lm_ggml_backend_compare_graph_backend(lm_ggml_backend_t backend1, lm_ggml_backend_t backend2, struct lm_ggml_cgraph * graph, lm_ggml_backend_eval_callback callback, void * user_data);
343
+
344
+ // Tensor initialization
345
+ LM_GGML_API void lm_ggml_backend_tensor_alloc(lm_ggml_backend_buffer_t buffer, struct lm_ggml_tensor * tensor, void * addr);
346
+ LM_GGML_API void lm_ggml_backend_view_init(struct lm_ggml_tensor * tensor);
347
+
348
+ // CPU buffer types are always available
349
+ LM_GGML_API lm_ggml_backend_buffer_t lm_ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
350
+ LM_GGML_API lm_ggml_backend_buffer_type_t lm_ggml_backend_cpu_buffer_type(void);
351
+
352
+ #ifdef __cplusplus
353
+ }
354
+ #endif