cui-llama.rn 1.3.6 → 1.4.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (101) hide show
  1. package/README.md +22 -1
  2. package/android/src/main/CMakeLists.txt +25 -26
  3. package/android/src/main/java/com/rnllama/LlamaContext.java +31 -9
  4. package/android/src/main/java/com/rnllama/RNLlama.java +98 -0
  5. package/android/src/main/jni-utils.h +94 -0
  6. package/android/src/main/jni.cpp +133 -63
  7. package/android/src/newarch/java/com/rnllama/RNLlamaModule.java +15 -0
  8. package/android/src/oldarch/java/com/rnllama/RNLlamaModule.java +15 -0
  9. package/cpp/common.cpp +2085 -1982
  10. package/cpp/common.h +696 -664
  11. package/cpp/ggml-alloc.c +1042 -1037
  12. package/cpp/ggml-backend-impl.h +255 -256
  13. package/cpp/ggml-backend-reg.cpp +582 -582
  14. package/cpp/ggml-backend.cpp +2002 -2002
  15. package/cpp/ggml-backend.h +354 -352
  16. package/cpp/ggml-common.h +1853 -1853
  17. package/cpp/ggml-cpp.h +39 -39
  18. package/cpp/ggml-cpu-aarch64.cpp +4247 -4247
  19. package/cpp/ggml-cpu-aarch64.h +8 -8
  20. package/cpp/ggml-cpu-impl.h +386 -386
  21. package/cpp/ggml-cpu-quants.c +10920 -10839
  22. package/cpp/ggml-cpu-traits.cpp +36 -36
  23. package/cpp/ggml-cpu-traits.h +38 -38
  24. package/cpp/ggml-cpu.c +14391 -14122
  25. package/cpp/ggml-cpu.cpp +635 -627
  26. package/cpp/ggml-cpu.h +135 -135
  27. package/cpp/ggml-impl.h +567 -567
  28. package/cpp/ggml-metal-impl.h +288 -0
  29. package/cpp/ggml-metal.m +4884 -4884
  30. package/cpp/ggml-opt.cpp +854 -0
  31. package/cpp/ggml-opt.h +216 -0
  32. package/cpp/ggml-quants.c +5238 -5238
  33. package/cpp/ggml-threading.h +14 -14
  34. package/cpp/ggml.c +6514 -6448
  35. package/cpp/ggml.h +2194 -2163
  36. package/cpp/gguf.cpp +1329 -1325
  37. package/cpp/gguf.h +202 -202
  38. package/cpp/json-schema-to-grammar.cpp +1045 -1045
  39. package/cpp/json-schema-to-grammar.h +8 -8
  40. package/cpp/json.hpp +24766 -24766
  41. package/cpp/llama-adapter.cpp +347 -346
  42. package/cpp/llama-adapter.h +74 -73
  43. package/cpp/llama-arch.cpp +1487 -1434
  44. package/cpp/llama-arch.h +400 -395
  45. package/cpp/llama-batch.cpp +368 -368
  46. package/cpp/llama-batch.h +88 -88
  47. package/cpp/llama-chat.cpp +578 -567
  48. package/cpp/llama-chat.h +52 -51
  49. package/cpp/llama-context.cpp +1775 -1771
  50. package/cpp/llama-context.h +128 -128
  51. package/cpp/llama-cparams.cpp +1 -1
  52. package/cpp/llama-cparams.h +37 -37
  53. package/cpp/llama-cpp.h +30 -30
  54. package/cpp/llama-grammar.cpp +1139 -1139
  55. package/cpp/llama-grammar.h +143 -143
  56. package/cpp/llama-hparams.cpp +71 -71
  57. package/cpp/llama-hparams.h +139 -140
  58. package/cpp/llama-impl.cpp +167 -167
  59. package/cpp/llama-impl.h +61 -61
  60. package/cpp/llama-kv-cache.cpp +718 -718
  61. package/cpp/llama-kv-cache.h +218 -218
  62. package/cpp/llama-mmap.cpp +590 -589
  63. package/cpp/llama-mmap.h +67 -67
  64. package/cpp/llama-model-loader.cpp +1124 -1011
  65. package/cpp/llama-model-loader.h +167 -158
  66. package/cpp/llama-model.cpp +3997 -2202
  67. package/cpp/llama-model.h +370 -391
  68. package/cpp/llama-sampling.cpp +2408 -2406
  69. package/cpp/llama-sampling.h +32 -48
  70. package/cpp/llama-vocab.cpp +3247 -1982
  71. package/cpp/llama-vocab.h +125 -182
  72. package/cpp/llama.cpp +10077 -12544
  73. package/cpp/llama.h +1323 -1285
  74. package/cpp/log.cpp +401 -401
  75. package/cpp/log.h +121 -121
  76. package/cpp/rn-llama.hpp +123 -116
  77. package/cpp/sampling.cpp +505 -500
  78. package/cpp/sgemm.cpp +2597 -2597
  79. package/cpp/sgemm.h +14 -14
  80. package/cpp/speculative.cpp +277 -274
  81. package/cpp/speculative.h +28 -28
  82. package/cpp/unicode.cpp +2 -3
  83. package/ios/RNLlama.mm +47 -0
  84. package/ios/RNLlamaContext.h +3 -1
  85. package/ios/RNLlamaContext.mm +71 -14
  86. package/jest/mock.js +15 -3
  87. package/lib/commonjs/NativeRNLlama.js.map +1 -1
  88. package/lib/commonjs/index.js +33 -37
  89. package/lib/commonjs/index.js.map +1 -1
  90. package/lib/module/NativeRNLlama.js.map +1 -1
  91. package/lib/module/index.js +31 -35
  92. package/lib/module/index.js.map +1 -1
  93. package/lib/typescript/NativeRNLlama.d.ts +26 -6
  94. package/lib/typescript/NativeRNLlama.d.ts.map +1 -1
  95. package/lib/typescript/index.d.ts +21 -36
  96. package/lib/typescript/index.d.ts.map +1 -1
  97. package/llama-rn.podspec +4 -18
  98. package/package.json +2 -3
  99. package/src/NativeRNLlama.ts +32 -13
  100. package/src/index.ts +52 -47
  101. package/cpp/llama.cpp.rej +0 -23
@@ -1,346 +1,347 @@
1
- #include "llama-adapter.h"
2
-
3
- #include "llama-model.h"
4
-
5
- #include <algorithm>
6
- #include <map>
7
- #include <cassert>
8
- #include <stdexcept>
9
-
10
- // vec
11
-
12
- struct lm_ggml_tensor * llama_control_vector::tensor_for(int il) const {
13
- if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
14
- return nullptr;
15
- }
16
-
17
- return tensors[il];
18
- }
19
-
20
- struct lm_ggml_tensor * llama_control_vector::apply_to(struct lm_ggml_context * ctx, struct lm_ggml_tensor * cur, int il) const {
21
- lm_ggml_tensor * layer_dir = tensor_for(il);
22
- if (layer_dir != nullptr) {
23
- cur = lm_ggml_add(ctx, cur, layer_dir);
24
- }
25
-
26
- return cur;
27
- }
28
-
29
- static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
30
- const auto & hparams = model.hparams;
31
-
32
- LM_GGML_ASSERT(cvec.tensors.empty());
33
- LM_GGML_ASSERT(cvec.ctxs.empty());
34
- LM_GGML_ASSERT(cvec.bufs.empty());
35
-
36
- // create a context for each buffer type
37
- std::map<lm_ggml_backend_buffer_type_t, lm_ggml_context *> ctx_map;
38
- auto ctx_for_buft = [&](lm_ggml_backend_buffer_type_t buft) -> lm_ggml_context * {
39
- auto it = ctx_map.find(buft);
40
- if (it == ctx_map.end()) {
41
- struct lm_ggml_init_params params = {
42
- /*.mem_size =*/ hparams.n_layer*lm_ggml_tensor_overhead(),
43
- /*.mem_buffer =*/ NULL,
44
- /*.no_alloc =*/ true,
45
- };
46
-
47
- lm_ggml_context * ctx = lm_ggml_init(params);
48
- if (!ctx) {
49
- return nullptr;
50
- }
51
-
52
- ctx_map[buft] = ctx;
53
- cvec.ctxs.emplace_back(ctx);
54
-
55
- return ctx;
56
- }
57
-
58
- return it->second;
59
- };
60
-
61
- // make tensors
62
- cvec.tensors.reserve(hparams.n_layer);
63
- cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
64
- for (size_t il = 1; il < hparams.n_layer; il++) {
65
- lm_ggml_backend_buffer_type_t buft = llama_model_select_buft(model, il);
66
- lm_ggml_context * ctx = ctx_for_buft(buft);
67
- if (!ctx) {
68
- LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
69
- return false;
70
- }
71
- lm_ggml_tensor * tensor = lm_ggml_new_tensor_1d(ctx, LM_GGML_TYPE_F32, hparams.n_embd);
72
- cvec.tensors.push_back(tensor);
73
- }
74
-
75
- // allocate tensors / buffers and zero
76
- cvec.bufs.reserve(ctx_map.size());
77
- for (auto it : ctx_map) {
78
- lm_ggml_backend_buffer_type_t buft = it.first;
79
- lm_ggml_context * ctx = it.second;
80
- lm_ggml_backend_buffer_t buf = lm_ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
81
- if (!buf) {
82
- LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
83
- return false;
84
- }
85
- lm_ggml_backend_buffer_clear(buf, 0);
86
- cvec.bufs.emplace_back(buf);
87
- }
88
-
89
- return true;
90
- }
91
-
92
- int32_t llama_control_vector_apply(
93
- struct llama_control_vector & cvec,
94
- const llama_model & model,
95
- const float * data,
96
- size_t len,
97
- int32_t n_embd,
98
- int32_t il_start,
99
- int32_t il_end) {
100
- const auto & hparams = model.hparams;
101
-
102
- if (data == nullptr) {
103
- // disable the current control vector (but leave allocated for later)
104
- cvec.layer_start = -1;
105
- cvec.layer_end = -1;
106
- return 0;
107
- }
108
-
109
- if (n_embd != (int) hparams.n_embd) {
110
- LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
111
- return 1;
112
- }
113
-
114
- if (cvec.tensors.empty()) {
115
- if (!llama_control_vector_init(cvec, model)) {
116
- return 1;
117
- }
118
- }
119
-
120
- cvec.layer_start = il_start;
121
- cvec.layer_end = il_end;
122
-
123
- for (size_t il = 1; il < hparams.n_layer; il++) {
124
- assert(cvec.tensors[il] != nullptr);
125
-
126
- const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
127
- if (off + n_embd <= len) {
128
- lm_ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * lm_ggml_element_size(cvec.tensors[il]));
129
- }
130
- }
131
-
132
- return 0;
133
- }
134
-
135
- // lora
136
-
137
- llama_lora_weight * llama_lora_adapter::get_weight(struct lm_ggml_tensor * w) {
138
- const std::string name(w->name);
139
-
140
- const auto pos = ab_map.find(name);
141
- if (pos != ab_map.end()) {
142
- return &pos->second;
143
- }
144
-
145
- return nullptr;
146
- }
147
-
148
- void llama_lora_adapter_free(struct llama_lora_adapter * adapter) {
149
- delete adapter;
150
- }
151
-
152
- static void llama_lora_adapter_init_impl(struct llama_model & model, const char * path_lora, struct llama_lora_adapter & adapter) {
153
- LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);
154
-
155
- lm_ggml_context * ctx_init;
156
- struct lm_gguf_init_params meta_lm_gguf_params = {
157
- /* .no_alloc = */ true,
158
- /* .ctx = */ &ctx_init,
159
- };
160
-
161
- lm_gguf_context_ptr ctx_gguf { lm_gguf_init_from_file(path_lora, meta_lm_gguf_params) };
162
- if (!ctx_gguf) {
163
- throw std::runtime_error("failed to load lora adapter file from " + std::string(path_lora));
164
- }
165
-
166
- lm_ggml_context_ptr ctx { ctx_init };
167
-
168
- // check metadata
169
- {
170
- auto get_kv_str = [&](const std::string & key) -> std::string {
171
- int id = lm_gguf_find_key(ctx_gguf.get(), key.c_str());
172
- return id < 0 ? "" : std::string(lm_gguf_get_val_str(ctx_gguf.get(), id));
173
- };
174
- auto get_kv_f32 = [&](const std::string & key) -> float {
175
- int id = lm_gguf_find_key(ctx_gguf.get(), key.c_str());
176
- return id < 0 ? 0.0f : lm_gguf_get_val_f32(ctx_gguf.get(), id);
177
- };
178
- LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
179
-
180
- auto general_type = get_kv_str(llm_kv(LLM_KV_GENERAL_TYPE));
181
- if (general_type != "adapter") {
182
- throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
183
- }
184
-
185
- auto general_arch_str = get_kv_str(llm_kv(LLM_KV_GENERAL_ARCHITECTURE));
186
- auto general_arch = llm_arch_from_string(general_arch_str);
187
- if (general_arch != model.arch) {
188
- throw std::runtime_error("model arch and LoRA arch mismatch");
189
- }
190
-
191
- auto adapter_type = get_kv_str(llm_kv(LLM_KV_ADAPTER_TYPE));
192
- if (adapter_type != "lora") {
193
- throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
194
- }
195
-
196
- adapter.alpha = get_kv_f32(llm_kv(LLM_KV_ADAPTER_LORA_ALPHA));
197
- }
198
-
199
- int n_tensors = lm_gguf_get_n_tensors(ctx_gguf.get());
200
-
201
- // contexts for each buffer type
202
- std::map<lm_ggml_backend_buffer_type_t, lm_ggml_context *> ctx_map;
203
- auto ctx_for_buft = [&](lm_ggml_backend_buffer_type_t buft) -> lm_ggml_context * {
204
- auto it = ctx_map.find(buft);
205
- if (it == ctx_map.end()) {
206
- // add a new context
207
- struct lm_ggml_init_params params = {
208
- /*.mem_size =*/ n_tensors*lm_ggml_tensor_overhead(),
209
- /*.mem_buffer =*/ NULL,
210
- /*.no_alloc =*/ true,
211
- };
212
- lm_ggml_context * buft_ctx = lm_ggml_init(params);
213
- if (!buft_ctx) {
214
- return nullptr;
215
- }
216
- ctx_map[buft] = buft_ctx;
217
- adapter.ctxs.emplace_back(buft_ctx);
218
- return buft_ctx;
219
- };
220
- return it->second;
221
- };
222
-
223
- // bundle lora_a and lora_b into pairs
224
- std::map<std::string, llama_lora_weight> ab_map;
225
- auto str_endswith = [](const std::string & str, const std::string & suffix) {
226
- return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
227
- };
228
-
229
- for (lm_ggml_tensor * cur = lm_ggml_get_first_tensor(ctx.get()); cur; cur = lm_ggml_get_next_tensor(ctx.get(), cur)) {
230
- std::string name(cur->name);
231
- if (str_endswith(name, ".lora_a")) {
232
- replace_all(name, ".lora_a", "");
233
- if (ab_map.find(name) == ab_map.end()) {
234
- ab_map[name] = llama_lora_weight(cur, nullptr);
235
- } else {
236
- ab_map[name].a = cur;
237
- }
238
- } else if (str_endswith(name, ".lora_b")) {
239
- replace_all(name, ".lora_b", "");
240
- if (ab_map.find(name) == ab_map.end()) {
241
- ab_map[name] = llama_lora_weight(nullptr, cur);
242
- } else {
243
- ab_map[name].b = cur;
244
- }
245
- } else if (str_endswith(name, "_norm.weight")) {
246
- // TODO: add support for norm vector
247
- // for now, we don't really care because most adapters still work fine without it
248
- continue;
249
- } else {
250
- throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix");
251
- }
252
- }
253
-
254
- // add tensors
255
- for (auto & it : ab_map) {
256
- const std::string & name = it.first;
257
- llama_lora_weight & w = it.second;
258
- bool is_token_embd = str_endswith(name, "token_embd.weight");
259
-
260
- if (!w.a || !w.b) {
261
- throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component");
262
- }
263
-
264
- // device buft and device ctx
265
- auto * model_tensor = llama_model_get_tensor(model, name.c_str());
266
- if (!model_tensor) {
267
- throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model (hint: maybe wrong base model?)");
268
- }
269
-
270
- struct lm_ggml_context * dev_ctx = ctx_for_buft(lm_ggml_backend_buffer_get_type(model_tensor->buffer));
271
- // validate tensor shape
272
- if (is_token_embd) {
273
- // expect B to be non-transposed, A and B are flipped; see llm_build_inp_embd()
274
- if (model_tensor->ne[0] != w.b->ne[1] || model_tensor->ne[1] != w.a->ne[1]) {
275
- throw std::runtime_error("tensor '" + name + "' has incorrect shape (hint: maybe wrong base model?)");
276
- }
277
- } else {
278
- if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
279
- throw std::runtime_error("tensor '" + name + "' has incorrect shape (hint: maybe wrong base model?)");
280
- }
281
- if (w.a->ne[1] != w.b->ne[0]) {
282
- throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
283
- }
284
- }
285
-
286
- // save tensor to adapter
287
- struct lm_ggml_tensor * tensor_a = lm_ggml_dup_tensor(dev_ctx, w.a);
288
- struct lm_ggml_tensor * tensor_b = lm_ggml_dup_tensor(dev_ctx, w.b);
289
- lm_ggml_set_name(tensor_a, w.a->name);
290
- lm_ggml_set_name(tensor_b, w.b->name);
291
- adapter.ab_map[name] = llama_lora_weight(tensor_a, tensor_b);
292
- }
293
-
294
- // allocate tensors / buffers and zero
295
- {
296
- adapter.ctxs.reserve(ctx_map.size());
297
- adapter.bufs.reserve(ctx_map.size());
298
- for (auto & it : ctx_map) {
299
- lm_ggml_backend_buffer_type_t buft = it.first;
300
- lm_ggml_context * ctx_dev = it.second;
301
- lm_ggml_backend_buffer_ptr buf { lm_ggml_backend_alloc_ctx_tensors_from_buft(ctx_dev, buft) };
302
- if (!buf) {
303
- throw std::runtime_error("failed to allocate buffer for lora adapter\n");
304
- }
305
- LLAMA_LOG_INFO("%s: %10s LoRA buffer size = %8.2f MiB\n", __func__, lm_ggml_backend_buffer_name(buf.get()), lm_ggml_backend_buffer_get_size(buf.get())/1024.0/1024.0);
306
- adapter.bufs.emplace_back(std::move(buf));
307
- }
308
- }
309
-
310
- // set tensor data
311
- {
312
- llama_file lm_gguf_file(path_lora, "rb");
313
- std::vector<uint8_t> read_buf;
314
- auto set_tensor = [&](struct lm_ggml_tensor * orig, struct lm_ggml_tensor * dev) {
315
- size_t offs = lm_gguf_get_data_offset(ctx_gguf.get()) + lm_gguf_get_tensor_offset(ctx_gguf.get(), lm_gguf_find_tensor(ctx_gguf.get(), orig->name));
316
- size_t size = lm_ggml_nbytes(orig);
317
- read_buf.resize(size);
318
- lm_gguf_file.seek(offs, SEEK_SET);
319
- lm_gguf_file.read_raw(read_buf.data(), size);
320
- lm_ggml_backend_tensor_set(dev, read_buf.data(), 0, size);
321
- };
322
- for (auto & it : adapter.ab_map) {
323
- auto orig = ab_map[it.first];
324
- auto dev = it.second;
325
- set_tensor(orig.a, dev.a);
326
- set_tensor(orig.b, dev.b);
327
- }
328
- }
329
-
330
- LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2);
331
- }
332
-
333
- struct llama_lora_adapter * llama_lora_adapter_init(struct llama_model * model, const char * path_lora) {
334
- struct llama_lora_adapter * adapter = new llama_lora_adapter();
335
-
336
- try {
337
- llama_lora_adapter_init_impl(*model, path_lora, *adapter);
338
- return adapter;
339
- } catch (const std::exception & err) {
340
- LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
341
-
342
- delete adapter;
343
- }
344
-
345
- return nullptr;
346
- }
1
+ #include "llama-adapter.h"
2
+
3
+ #include "llama-impl.h"
4
+ #include "llama-mmap.h"
5
+ #include "llama-model.h"
6
+
7
+ #include <algorithm>
8
+ #include <map>
9
+ #include <cassert>
10
+ #include <stdexcept>
11
+
12
+ // vec
13
+
14
+ struct lm_ggml_tensor * llama_adapter_cvec::tensor_for(int il) const {
15
+ if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
16
+ return nullptr;
17
+ }
18
+
19
+ return tensors[il];
20
+ }
21
+
22
+ struct lm_ggml_tensor * llama_adapter_cvec::apply_to(struct lm_ggml_context * ctx, struct lm_ggml_tensor * cur, int il) const {
23
+ lm_ggml_tensor * layer_dir = tensor_for(il);
24
+ if (layer_dir != nullptr) {
25
+ cur = lm_ggml_add(ctx, cur, layer_dir);
26
+ }
27
+
28
+ return cur;
29
+ }
30
+
31
+ bool llama_adapter_cvec::init(const llama_model & model) {
32
+ const auto & hparams = model.hparams;
33
+
34
+ LM_GGML_ASSERT(tensors.empty());
35
+ LM_GGML_ASSERT(ctxs.empty());
36
+ LM_GGML_ASSERT(bufs.empty());
37
+
38
+ // create a context for each buffer type
39
+ std::map<lm_ggml_backend_buffer_type_t, lm_ggml_context *> ctx_map;
40
+ auto ctx_for_buft = [&](lm_ggml_backend_buffer_type_t buft) -> lm_ggml_context * {
41
+ auto it = ctx_map.find(buft);
42
+ if (it == ctx_map.end()) {
43
+ struct lm_ggml_init_params params = {
44
+ /*.mem_size =*/ hparams.n_layer*lm_ggml_tensor_overhead(),
45
+ /*.mem_buffer =*/ NULL,
46
+ /*.no_alloc =*/ true,
47
+ };
48
+
49
+ lm_ggml_context * ctx = lm_ggml_init(params);
50
+ if (!ctx) {
51
+ return nullptr;
52
+ }
53
+
54
+ ctx_map[buft] = ctx;
55
+ ctxs.emplace_back(ctx);
56
+
57
+ return ctx;
58
+ }
59
+
60
+ return it->second;
61
+ };
62
+
63
+ // make tensors
64
+ tensors.reserve(hparams.n_layer);
65
+ tensors.push_back(nullptr); // there's never a tensor for layer 0
66
+ for (size_t il = 1; il < hparams.n_layer; il++) {
67
+ lm_ggml_backend_buffer_type_t buft = model.select_buft(il);
68
+ lm_ggml_context * ctx = ctx_for_buft(buft);
69
+ if (!ctx) {
70
+ LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
71
+ return false;
72
+ }
73
+ lm_ggml_tensor * tensor = lm_ggml_new_tensor_1d(ctx, LM_GGML_TYPE_F32, hparams.n_embd);
74
+ tensors.push_back(tensor);
75
+ }
76
+
77
+ // allocate tensors / buffers and zero
78
+ bufs.reserve(ctx_map.size());
79
+ for (auto it : ctx_map) {
80
+ lm_ggml_backend_buffer_type_t buft = it.first;
81
+ lm_ggml_context * ctx = it.second;
82
+ lm_ggml_backend_buffer_t buf = lm_ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
83
+ if (!buf) {
84
+ LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
85
+ return false;
86
+ }
87
+ lm_ggml_backend_buffer_clear(buf, 0);
88
+ bufs.emplace_back(buf);
89
+ }
90
+
91
+ return true;
92
+ }
93
+
94
+ int32_t llama_adapter_cvec::apply(
95
+ const llama_model & model,
96
+ const float * data,
97
+ size_t len,
98
+ int32_t n_embd,
99
+ int32_t il_start,
100
+ int32_t il_end) {
101
+ const auto & hparams = model.hparams;
102
+
103
+ if (data == nullptr) {
104
+ // disable the current control vector (but leave allocated for later)
105
+ layer_start = -1;
106
+ layer_end = -1;
107
+ return 0;
108
+ }
109
+
110
+ if (n_embd != (int) hparams.n_embd) {
111
+ LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
112
+ return 1;
113
+ }
114
+
115
+ if (tensors.empty()) {
116
+ if (!init(model)) {
117
+ return 1;
118
+ }
119
+ }
120
+
121
+ layer_start = il_start;
122
+ layer_end = il_end;
123
+
124
+ for (size_t il = 1; il < hparams.n_layer; il++) {
125
+ assert(tensors[il] != nullptr);
126
+
127
+ const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
128
+ if (off + n_embd <= len) {
129
+ lm_ggml_backend_tensor_set(tensors[il], data + off, 0, n_embd * lm_ggml_element_size(tensors[il]));
130
+ }
131
+ }
132
+
133
+ return 0;
134
+ }
135
+
136
+ // lora
137
+
138
+ llama_adapter_lora_weight * llama_adapter_lora::get_weight(struct lm_ggml_tensor * w) {
139
+ const std::string name(w->name);
140
+
141
+ const auto pos = ab_map.find(name);
142
+ if (pos != ab_map.end()) {
143
+ return &pos->second;
144
+ }
145
+
146
+ return nullptr;
147
+ }
148
+
149
+ static void llama_adapter_lora_init_impl(struct llama_model & model, const char * path_lora, struct llama_adapter_lora & adapter) {
150
+ LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);
151
+
152
+ lm_ggml_context * ctx_init;
153
+ struct lm_gguf_init_params meta_lm_gguf_params = {
154
+ /* .no_alloc = */ true,
155
+ /* .ctx = */ &ctx_init,
156
+ };
157
+
158
+ lm_gguf_context_ptr ctx_gguf { lm_gguf_init_from_file(path_lora, meta_lm_gguf_params) };
159
+ if (!ctx_gguf) {
160
+ throw std::runtime_error("failed to load lora adapter file from " + std::string(path_lora));
161
+ }
162
+
163
+ lm_ggml_context_ptr ctx { ctx_init };
164
+
165
+ // check metadata
166
+ {
167
+ auto get_kv_str = [&](const std::string & key) -> std::string {
168
+ int id = lm_gguf_find_key(ctx_gguf.get(), key.c_str());
169
+ return id < 0 ? "" : std::string(lm_gguf_get_val_str(ctx_gguf.get(), id));
170
+ };
171
+ auto get_kv_f32 = [&](const std::string & key) -> float {
172
+ int id = lm_gguf_find_key(ctx_gguf.get(), key.c_str());
173
+ return id < 0 ? 0.0f : lm_gguf_get_val_f32(ctx_gguf.get(), id);
174
+ };
175
+ LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
176
+
177
+ auto general_type = get_kv_str(llm_kv(LLM_KV_GENERAL_TYPE));
178
+ if (general_type != "adapter") {
179
+ throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
180
+ }
181
+
182
+ auto general_arch_str = get_kv_str(llm_kv(LLM_KV_GENERAL_ARCHITECTURE));
183
+ auto general_arch = llm_arch_from_string(general_arch_str);
184
+ if (general_arch != model.arch) {
185
+ throw std::runtime_error("model arch and LoRA arch mismatch");
186
+ }
187
+
188
+ auto adapter_type = get_kv_str(llm_kv(LLM_KV_ADAPTER_TYPE));
189
+ if (adapter_type != "lora") {
190
+ throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
191
+ }
192
+
193
+ adapter.alpha = get_kv_f32(llm_kv(LLM_KV_ADAPTER_LORA_ALPHA));
194
+ }
195
+
196
+ int n_tensors = lm_gguf_get_n_tensors(ctx_gguf.get());
197
+
198
+ // contexts for each buffer type
199
+ std::map<lm_ggml_backend_buffer_type_t, lm_ggml_context *> ctx_map;
200
+ auto ctx_for_buft = [&](lm_ggml_backend_buffer_type_t buft) -> lm_ggml_context * {
201
+ auto it = ctx_map.find(buft);
202
+ if (it == ctx_map.end()) {
203
+ // add a new context
204
+ struct lm_ggml_init_params params = {
205
+ /*.mem_size =*/ n_tensors*lm_ggml_tensor_overhead(),
206
+ /*.mem_buffer =*/ NULL,
207
+ /*.no_alloc =*/ true,
208
+ };
209
+ lm_ggml_context * buft_ctx = lm_ggml_init(params);
210
+ if (!buft_ctx) {
211
+ return nullptr;
212
+ }
213
+ ctx_map[buft] = buft_ctx;
214
+ adapter.ctxs.emplace_back(buft_ctx);
215
+ return buft_ctx;
216
+ };
217
+ return it->second;
218
+ };
219
+
220
+ // bundle lora_a and lora_b into pairs
221
+ std::map<std::string, llama_adapter_lora_weight> ab_map;
222
+ auto str_endswith = [](const std::string & str, const std::string & suffix) {
223
+ return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
224
+ };
225
+
226
+ for (lm_ggml_tensor * cur = lm_ggml_get_first_tensor(ctx.get()); cur; cur = lm_ggml_get_next_tensor(ctx.get(), cur)) {
227
+ std::string name(cur->name);
228
+ if (str_endswith(name, ".lora_a")) {
229
+ replace_all(name, ".lora_a", "");
230
+ if (ab_map.find(name) == ab_map.end()) {
231
+ ab_map[name] = llama_adapter_lora_weight(cur, nullptr);
232
+ } else {
233
+ ab_map[name].a = cur;
234
+ }
235
+ } else if (str_endswith(name, ".lora_b")) {
236
+ replace_all(name, ".lora_b", "");
237
+ if (ab_map.find(name) == ab_map.end()) {
238
+ ab_map[name] = llama_adapter_lora_weight(nullptr, cur);
239
+ } else {
240
+ ab_map[name].b = cur;
241
+ }
242
+ } else if (str_endswith(name, "_norm.weight")) {
243
+ // TODO: add support for norm vector
244
+ // for now, we don't really care because most adapters still work fine without it
245
+ continue;
246
+ } else {
247
+ throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix");
248
+ }
249
+ }
250
+
251
+ // add tensors
252
+ for (auto & it : ab_map) {
253
+ const std::string & name = it.first;
254
+ llama_adapter_lora_weight & w = it.second;
255
+ bool is_token_embd = str_endswith(name, "token_embd.weight");
256
+
257
+ if (!w.a || !w.b) {
258
+ throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component");
259
+ }
260
+
261
+ // device buft and device ctx
262
+ const auto * model_tensor = model.get_tensor(name.c_str());
263
+ if (!model_tensor) {
264
+ throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model (hint: maybe wrong base model?)");
265
+ }
266
+
267
+ struct lm_ggml_context * dev_ctx = ctx_for_buft(lm_ggml_backend_buffer_get_type(model_tensor->buffer));
268
+ // validate tensor shape
269
+ if (is_token_embd) {
270
+ // expect B to be non-transposed, A and B are flipped; see llm_build_inp_embd()
271
+ if (model_tensor->ne[0] != w.b->ne[1] || model_tensor->ne[1] != w.a->ne[1]) {
272
+ throw std::runtime_error("tensor '" + name + "' has incorrect shape (hint: maybe wrong base model?)");
273
+ }
274
+ } else {
275
+ if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
276
+ throw std::runtime_error("tensor '" + name + "' has incorrect shape (hint: maybe wrong base model?)");
277
+ }
278
+ if (w.a->ne[1] != w.b->ne[0]) {
279
+ throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
280
+ }
281
+ }
282
+
283
+ // save tensor to adapter
284
+ struct lm_ggml_tensor * tensor_a = lm_ggml_dup_tensor(dev_ctx, w.a);
285
+ struct lm_ggml_tensor * tensor_b = lm_ggml_dup_tensor(dev_ctx, w.b);
286
+ lm_ggml_set_name(tensor_a, w.a->name);
287
+ lm_ggml_set_name(tensor_b, w.b->name);
288
+ adapter.ab_map[name] = llama_adapter_lora_weight(tensor_a, tensor_b);
289
+ }
290
+
291
+ // allocate tensors / buffers and zero
292
+ {
293
+ adapter.ctxs.reserve(ctx_map.size());
294
+ adapter.bufs.reserve(ctx_map.size());
295
+ for (auto & it : ctx_map) {
296
+ lm_ggml_backend_buffer_type_t buft = it.first;
297
+ lm_ggml_context * ctx_dev = it.second;
298
+ lm_ggml_backend_buffer_ptr buf { lm_ggml_backend_alloc_ctx_tensors_from_buft(ctx_dev, buft) };
299
+ if (!buf) {
300
+ throw std::runtime_error("failed to allocate buffer for lora adapter\n");
301
+ }
302
+ LLAMA_LOG_INFO("%s: %10s LoRA buffer size = %8.2f MiB\n", __func__, lm_ggml_backend_buffer_name(buf.get()), lm_ggml_backend_buffer_get_size(buf.get())/1024.0/1024.0);
303
+ adapter.bufs.emplace_back(std::move(buf));
304
+ }
305
+ }
306
+
307
+ // set tensor data
308
+ {
309
+ llama_file lm_gguf_file(path_lora, "rb");
310
+ std::vector<uint8_t> read_buf;
311
+ auto set_tensor = [&](struct lm_ggml_tensor * orig, struct lm_ggml_tensor * dev) {
312
+ size_t offs = lm_gguf_get_data_offset(ctx_gguf.get()) + lm_gguf_get_tensor_offset(ctx_gguf.get(), lm_gguf_find_tensor(ctx_gguf.get(), orig->name));
313
+ size_t size = lm_ggml_nbytes(orig);
314
+ read_buf.resize(size);
315
+ lm_gguf_file.seek(offs, SEEK_SET);
316
+ lm_gguf_file.read_raw(read_buf.data(), size);
317
+ lm_ggml_backend_tensor_set(dev, read_buf.data(), 0, size);
318
+ };
319
+ for (auto & it : adapter.ab_map) {
320
+ auto orig = ab_map[it.first];
321
+ auto dev = it.second;
322
+ set_tensor(orig.a, dev.a);
323
+ set_tensor(orig.b, dev.b);
324
+ }
325
+ }
326
+
327
+ LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2);
328
+ }
329
+
330
+ struct llama_adapter_lora * llama_adapter_lora_init(struct llama_model * model, const char * path_lora) {
331
+ struct llama_adapter_lora * adapter = new llama_adapter_lora();
332
+
333
+ try {
334
+ llama_adapter_lora_init_impl(*model, path_lora, *adapter);
335
+ return adapter;
336
+ } catch (const std::exception & err) {
337
+ LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
338
+
339
+ delete adapter;
340
+ }
341
+
342
+ return nullptr;
343
+ }
344
+
345
+ void llama_adapter_lora_free(struct llama_adapter_lora * adapter) {
346
+ delete adapter;
347
+ }