cui-llama.rn 1.3.6 → 1.4.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (101) hide show
  1. package/README.md +22 -1
  2. package/android/src/main/CMakeLists.txt +25 -26
  3. package/android/src/main/java/com/rnllama/LlamaContext.java +31 -9
  4. package/android/src/main/java/com/rnllama/RNLlama.java +98 -0
  5. package/android/src/main/jni-utils.h +94 -0
  6. package/android/src/main/jni.cpp +133 -63
  7. package/android/src/newarch/java/com/rnllama/RNLlamaModule.java +15 -0
  8. package/android/src/oldarch/java/com/rnllama/RNLlamaModule.java +15 -0
  9. package/cpp/common.cpp +2085 -1982
  10. package/cpp/common.h +696 -664
  11. package/cpp/ggml-alloc.c +1042 -1037
  12. package/cpp/ggml-backend-impl.h +255 -256
  13. package/cpp/ggml-backend-reg.cpp +582 -582
  14. package/cpp/ggml-backend.cpp +2002 -2002
  15. package/cpp/ggml-backend.h +354 -352
  16. package/cpp/ggml-common.h +1853 -1853
  17. package/cpp/ggml-cpp.h +39 -39
  18. package/cpp/ggml-cpu-aarch64.cpp +4247 -4247
  19. package/cpp/ggml-cpu-aarch64.h +8 -8
  20. package/cpp/ggml-cpu-impl.h +386 -386
  21. package/cpp/ggml-cpu-quants.c +10920 -10839
  22. package/cpp/ggml-cpu-traits.cpp +36 -36
  23. package/cpp/ggml-cpu-traits.h +38 -38
  24. package/cpp/ggml-cpu.c +14391 -14122
  25. package/cpp/ggml-cpu.cpp +635 -627
  26. package/cpp/ggml-cpu.h +135 -135
  27. package/cpp/ggml-impl.h +567 -567
  28. package/cpp/ggml-metal-impl.h +288 -0
  29. package/cpp/ggml-metal.m +4884 -4884
  30. package/cpp/ggml-opt.cpp +854 -0
  31. package/cpp/ggml-opt.h +216 -0
  32. package/cpp/ggml-quants.c +5238 -5238
  33. package/cpp/ggml-threading.h +14 -14
  34. package/cpp/ggml.c +6514 -6448
  35. package/cpp/ggml.h +2194 -2163
  36. package/cpp/gguf.cpp +1329 -1325
  37. package/cpp/gguf.h +202 -202
  38. package/cpp/json-schema-to-grammar.cpp +1045 -1045
  39. package/cpp/json-schema-to-grammar.h +8 -8
  40. package/cpp/json.hpp +24766 -24766
  41. package/cpp/llama-adapter.cpp +347 -346
  42. package/cpp/llama-adapter.h +74 -73
  43. package/cpp/llama-arch.cpp +1487 -1434
  44. package/cpp/llama-arch.h +400 -395
  45. package/cpp/llama-batch.cpp +368 -368
  46. package/cpp/llama-batch.h +88 -88
  47. package/cpp/llama-chat.cpp +578 -567
  48. package/cpp/llama-chat.h +52 -51
  49. package/cpp/llama-context.cpp +1775 -1771
  50. package/cpp/llama-context.h +128 -128
  51. package/cpp/llama-cparams.cpp +1 -1
  52. package/cpp/llama-cparams.h +37 -37
  53. package/cpp/llama-cpp.h +30 -30
  54. package/cpp/llama-grammar.cpp +1139 -1139
  55. package/cpp/llama-grammar.h +143 -143
  56. package/cpp/llama-hparams.cpp +71 -71
  57. package/cpp/llama-hparams.h +139 -140
  58. package/cpp/llama-impl.cpp +167 -167
  59. package/cpp/llama-impl.h +61 -61
  60. package/cpp/llama-kv-cache.cpp +718 -718
  61. package/cpp/llama-kv-cache.h +218 -218
  62. package/cpp/llama-mmap.cpp +590 -589
  63. package/cpp/llama-mmap.h +67 -67
  64. package/cpp/llama-model-loader.cpp +1124 -1011
  65. package/cpp/llama-model-loader.h +167 -158
  66. package/cpp/llama-model.cpp +3997 -2202
  67. package/cpp/llama-model.h +370 -391
  68. package/cpp/llama-sampling.cpp +2408 -2406
  69. package/cpp/llama-sampling.h +32 -48
  70. package/cpp/llama-vocab.cpp +3247 -1982
  71. package/cpp/llama-vocab.h +125 -182
  72. package/cpp/llama.cpp +10077 -12544
  73. package/cpp/llama.h +1323 -1285
  74. package/cpp/log.cpp +401 -401
  75. package/cpp/log.h +121 -121
  76. package/cpp/rn-llama.hpp +123 -116
  77. package/cpp/sampling.cpp +505 -500
  78. package/cpp/sgemm.cpp +2597 -2597
  79. package/cpp/sgemm.h +14 -14
  80. package/cpp/speculative.cpp +277 -274
  81. package/cpp/speculative.h +28 -28
  82. package/cpp/unicode.cpp +2 -3
  83. package/ios/RNLlama.mm +47 -0
  84. package/ios/RNLlamaContext.h +3 -1
  85. package/ios/RNLlamaContext.mm +71 -14
  86. package/jest/mock.js +15 -3
  87. package/lib/commonjs/NativeRNLlama.js.map +1 -1
  88. package/lib/commonjs/index.js +33 -37
  89. package/lib/commonjs/index.js.map +1 -1
  90. package/lib/module/NativeRNLlama.js.map +1 -1
  91. package/lib/module/index.js +31 -35
  92. package/lib/module/index.js.map +1 -1
  93. package/lib/typescript/NativeRNLlama.d.ts +26 -6
  94. package/lib/typescript/NativeRNLlama.d.ts.map +1 -1
  95. package/lib/typescript/index.d.ts +21 -36
  96. package/lib/typescript/index.d.ts.map +1 -1
  97. package/llama-rn.podspec +4 -18
  98. package/package.json +2 -3
  99. package/src/NativeRNLlama.ts +32 -13
  100. package/src/index.ts +52 -47
  101. package/cpp/llama.cpp.rej +0 -23
package/cpp/llama-model.h CHANGED
@@ -1,391 +1,370 @@
1
- #pragma once
2
-
3
- #include "llama.h"
4
- #include "llama-arch.h"
5
- #include "llama-hparams.h"
6
- #include "llama-vocab.h"
7
- #include "llama-mmap.h"
8
-
9
- #include "ggml-cpp.h"
10
-
11
- #include <vector>
12
-
13
- // available models
14
- // TODO: this enum does not follow the enum naming convention
15
- enum llm_type {
16
- MODEL_UNKNOWN,
17
- MODEL_14M,
18
- MODEL_17M,
19
- MODEL_22M,
20
- MODEL_33M,
21
- MODEL_60M,
22
- MODEL_70M,
23
- MODEL_80M,
24
- MODEL_109M,
25
- MODEL_137M,
26
- MODEL_160M,
27
- MODEL_220M,
28
- MODEL_250M,
29
- MODEL_270M,
30
- MODEL_335M,
31
- MODEL_410M,
32
- MODEL_450M,
33
- MODEL_770M,
34
- MODEL_780M,
35
- MODEL_0_5B,
36
- MODEL_1B,
37
- MODEL_1_3B,
38
- MODEL_1_4B,
39
- MODEL_1_5B,
40
- MODEL_1_6B,
41
- MODEL_2B,
42
- MODEL_2_8B,
43
- MODEL_3B,
44
- MODEL_4B,
45
- MODEL_6B,
46
- MODEL_6_9B,
47
- MODEL_7B,
48
- MODEL_8B,
49
- MODEL_9B,
50
- MODEL_11B,
51
- MODEL_12B,
52
- MODEL_13B,
53
- MODEL_14B,
54
- MODEL_15B,
55
- MODEL_16B,
56
- MODEL_20B,
57
- MODEL_30B,
58
- MODEL_32B,
59
- MODEL_34B,
60
- MODEL_35B,
61
- MODEL_40B,
62
- MODEL_65B,
63
- MODEL_70B,
64
- MODEL_236B,
65
- MODEL_314B,
66
- MODEL_671B,
67
- MODEL_SMALL,
68
- MODEL_MEDIUM,
69
- MODEL_LARGE,
70
- MODEL_XL,
71
- MODEL_A1_7B,
72
- MODEL_A2_7B,
73
- MODEL_8x7B,
74
- MODEL_8x22B,
75
- MODEL_16x12B,
76
- MODEL_10B_128x3_66B,
77
- MODEL_57B_A14B,
78
- MODEL_27B,
79
- };
80
-
81
- struct llama_layer_posnet {
82
- // resnet
83
- struct lm_ggml_tensor * norm1 = nullptr;
84
- struct lm_ggml_tensor * norm1_b = nullptr;
85
-
86
- struct lm_ggml_tensor * conv1 = nullptr;
87
- struct lm_ggml_tensor * conv1_b = nullptr;
88
-
89
- struct lm_ggml_tensor * norm2 = nullptr;
90
- struct lm_ggml_tensor * norm2_b = nullptr;
91
-
92
- struct lm_ggml_tensor * conv2 = nullptr;
93
- struct lm_ggml_tensor * conv2_b = nullptr;
94
-
95
- // attention
96
- struct lm_ggml_tensor * attn_norm = nullptr;
97
- struct lm_ggml_tensor * attn_norm_b = nullptr;
98
-
99
- struct lm_ggml_tensor * attn_q = nullptr;
100
- struct lm_ggml_tensor * attn_q_b = nullptr;
101
-
102
- struct lm_ggml_tensor * attn_k = nullptr;
103
- struct lm_ggml_tensor * attn_k_b = nullptr;
104
-
105
- struct lm_ggml_tensor * attn_v = nullptr;
106
- struct lm_ggml_tensor * attn_v_b = nullptr;
107
-
108
- struct lm_ggml_tensor * attn_o = nullptr;
109
- struct lm_ggml_tensor * attn_o_b = nullptr;
110
-
111
- // normalize
112
- struct lm_ggml_tensor * norm = nullptr;
113
- struct lm_ggml_tensor * norm_b = nullptr;
114
- };
115
-
116
- struct llama_layer_convnext {
117
- struct lm_ggml_tensor * dw = nullptr;
118
- struct lm_ggml_tensor * dw_b = nullptr;
119
-
120
- struct lm_ggml_tensor * norm = nullptr;
121
- struct lm_ggml_tensor * norm_b = nullptr;
122
-
123
- struct lm_ggml_tensor * pw1 = nullptr;
124
- struct lm_ggml_tensor * pw1_b = nullptr;
125
-
126
- struct lm_ggml_tensor * pw2 = nullptr;
127
- struct lm_ggml_tensor * pw2_b = nullptr;
128
-
129
- struct lm_ggml_tensor * gamma = nullptr;
130
- };
131
-
132
- struct llama_layer {
133
- // normalization
134
- struct lm_ggml_tensor * attn_norm = nullptr;
135
- struct lm_ggml_tensor * attn_norm_b = nullptr;
136
- struct lm_ggml_tensor * attn_norm_2 = nullptr;
137
- struct lm_ggml_tensor * attn_norm_2_b = nullptr;
138
- struct lm_ggml_tensor * attn_q_norm = nullptr;
139
- struct lm_ggml_tensor * attn_q_norm_b = nullptr;
140
- struct lm_ggml_tensor * attn_k_norm = nullptr;
141
- struct lm_ggml_tensor * attn_k_norm_b = nullptr;
142
- struct lm_ggml_tensor * attn_out_norm = nullptr;
143
- struct lm_ggml_tensor * attn_out_norm_b = nullptr;
144
- struct lm_ggml_tensor * attn_q_a_norm = nullptr;
145
- struct lm_ggml_tensor * attn_kv_a_norm = nullptr;
146
- struct lm_ggml_tensor * attn_sub_norm = nullptr;
147
- struct lm_ggml_tensor * attn_post_norm = nullptr;
148
- struct lm_ggml_tensor * ffn_sub_norm = nullptr;
149
- struct lm_ggml_tensor * attn_norm_cross = nullptr;
150
- struct lm_ggml_tensor * attn_norm_enc = nullptr;
151
-
152
- // attention
153
- struct lm_ggml_tensor * wq = nullptr;
154
- struct lm_ggml_tensor * wk = nullptr;
155
- struct lm_ggml_tensor * wv = nullptr;
156
- struct lm_ggml_tensor * wo = nullptr;
157
- struct lm_ggml_tensor * wqkv = nullptr;
158
- struct lm_ggml_tensor * wq_a = nullptr;
159
- struct lm_ggml_tensor * wq_b = nullptr;
160
- struct lm_ggml_tensor * wkv_a_mqa = nullptr;
161
- struct lm_ggml_tensor * wkv_b = nullptr;
162
- struct lm_ggml_tensor * wq_cross = nullptr;
163
- struct lm_ggml_tensor * wk_cross = nullptr;
164
- struct lm_ggml_tensor * wv_cross = nullptr;
165
- struct lm_ggml_tensor * wo_cross = nullptr;
166
- struct lm_ggml_tensor * wq_enc = nullptr;
167
- struct lm_ggml_tensor * wk_enc = nullptr;
168
- struct lm_ggml_tensor * wv_enc = nullptr;
169
- struct lm_ggml_tensor * wo_enc = nullptr;
170
-
171
- // attention bias
172
- struct lm_ggml_tensor * bq = nullptr;
173
- struct lm_ggml_tensor * bk = nullptr;
174
- struct lm_ggml_tensor * bv = nullptr;
175
- struct lm_ggml_tensor * bo = nullptr;
176
- struct lm_ggml_tensor * bqkv = nullptr;
177
-
178
- // relative position bias
179
- struct lm_ggml_tensor * attn_rel_b = nullptr;
180
- struct lm_ggml_tensor * attn_rel_b_enc = nullptr;
181
- struct lm_ggml_tensor * attn_rel_b_cross = nullptr;
182
-
183
- // normalization
184
- struct lm_ggml_tensor * ffn_norm = nullptr;
185
- struct lm_ggml_tensor * ffn_norm_b = nullptr;
186
- struct lm_ggml_tensor * ffn_post_norm = nullptr;
187
- struct lm_ggml_tensor * layer_out_norm = nullptr;
188
- struct lm_ggml_tensor * layer_out_norm_b = nullptr;
189
- struct lm_ggml_tensor * ffn_norm_exps = nullptr;
190
- struct lm_ggml_tensor * ffn_norm_enc = nullptr;
191
-
192
- // ff
193
- struct lm_ggml_tensor * ffn_gate = nullptr; // w1
194
- struct lm_ggml_tensor * ffn_down = nullptr; // w2
195
- struct lm_ggml_tensor * ffn_up = nullptr; // w3
196
- struct lm_ggml_tensor * ffn_gate_enc = nullptr;
197
- struct lm_ggml_tensor * ffn_down_enc = nullptr;
198
- struct lm_ggml_tensor * ffn_up_enc = nullptr;
199
-
200
- // ff MoE
201
- struct lm_ggml_tensor * ffn_gate_inp = nullptr;
202
- struct lm_ggml_tensor * ffn_gate_exps = nullptr;
203
- struct lm_ggml_tensor * ffn_down_exps = nullptr;
204
- struct lm_ggml_tensor * ffn_up_exps = nullptr;
205
-
206
- // ff shared expert (shexp)
207
- struct lm_ggml_tensor * ffn_gate_inp_shexp = nullptr;
208
- struct lm_ggml_tensor * ffn_gate_shexp = nullptr;
209
- struct lm_ggml_tensor * ffn_down_shexp = nullptr;
210
- struct lm_ggml_tensor * ffn_up_shexp = nullptr;
211
-
212
- // ff bias
213
- struct lm_ggml_tensor * ffn_gate_b = nullptr;
214
- struct lm_ggml_tensor * ffn_down_b = nullptr; // b2
215
- struct lm_ggml_tensor * ffn_up_b = nullptr; // b3
216
- struct lm_ggml_tensor * ffn_act = nullptr;
217
- struct lm_ggml_tensor * ffn_exp_probs_b = nullptr;
218
-
219
- // mamba proj
220
- struct lm_ggml_tensor * ssm_in = nullptr;
221
- struct lm_ggml_tensor * ssm_x = nullptr;
222
- struct lm_ggml_tensor * ssm_dt = nullptr;
223
- struct lm_ggml_tensor * ssm_out = nullptr;
224
-
225
- // mamba
226
- struct lm_ggml_tensor * ssm_conv1d = nullptr;
227
- struct lm_ggml_tensor * ssm_a = nullptr;
228
- struct lm_ggml_tensor * ssm_d = nullptr;
229
-
230
- // mamba bias
231
- struct lm_ggml_tensor * ssm_conv1d_b = nullptr;
232
- struct lm_ggml_tensor * ssm_dt_b = nullptr;
233
-
234
- // rwkv
235
- struct lm_ggml_tensor * time_mix_w1 = nullptr;
236
- struct lm_ggml_tensor * time_mix_w2 = nullptr;
237
- struct lm_ggml_tensor * time_mix_lerp_x = nullptr;
238
- struct lm_ggml_tensor * time_mix_lerp_w = nullptr;
239
- struct lm_ggml_tensor * time_mix_lerp_k = nullptr;
240
- struct lm_ggml_tensor * time_mix_lerp_v = nullptr;
241
- struct lm_ggml_tensor * time_mix_lerp_r = nullptr;
242
- struct lm_ggml_tensor * time_mix_lerp_g = nullptr;
243
-
244
- struct lm_ggml_tensor * time_mix_first = nullptr;
245
- struct lm_ggml_tensor * time_mix_decay = nullptr;
246
- struct lm_ggml_tensor * time_mix_decay_w1 = nullptr;
247
- struct lm_ggml_tensor * time_mix_decay_w2 = nullptr;
248
- struct lm_ggml_tensor * time_mix_key = nullptr;
249
- struct lm_ggml_tensor * time_mix_value = nullptr;
250
- struct lm_ggml_tensor * time_mix_receptance = nullptr;
251
- struct lm_ggml_tensor * time_mix_gate = nullptr;
252
-
253
- struct lm_ggml_tensor * time_mix_ln = nullptr;
254
- struct lm_ggml_tensor * time_mix_ln_b = nullptr;
255
- struct lm_ggml_tensor * time_mix_output = nullptr;
256
-
257
- struct lm_ggml_tensor * channel_mix_lerp_k = nullptr;
258
- struct lm_ggml_tensor * channel_mix_lerp_r = nullptr;
259
-
260
- struct lm_ggml_tensor * channel_mix_key = nullptr;
261
- struct lm_ggml_tensor * channel_mix_receptance = nullptr;
262
- struct lm_ggml_tensor * channel_mix_value = nullptr;
263
-
264
- // long rope factors
265
- struct lm_ggml_tensor * rope_long = nullptr;
266
- struct lm_ggml_tensor * rope_short = nullptr;
267
- struct lm_ggml_tensor * rope_freqs = nullptr;
268
-
269
- // bitnet scale
270
- struct lm_ggml_tensor * wq_scale = nullptr;
271
- struct lm_ggml_tensor * wk_scale = nullptr;
272
- struct lm_ggml_tensor * wv_scale = nullptr;
273
- struct lm_ggml_tensor * wo_scale = nullptr;
274
- struct lm_ggml_tensor * ffn_gate_scale = nullptr;
275
- struct lm_ggml_tensor * ffn_up_scale = nullptr;
276
- struct lm_ggml_tensor * ffn_down_scale = nullptr;
277
-
278
- struct llama_layer_posnet posnet;
279
-
280
- struct llama_layer_convnext convnext;
281
- };
282
-
283
- struct llama_model {
284
- llm_type type = MODEL_UNKNOWN;
285
- llm_arch arch = LLM_ARCH_UNKNOWN;
286
-
287
- llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
288
-
289
- std::string name = "n/a";
290
-
291
- llama_hparams hparams = {};
292
- llama_vocab vocab;
293
-
294
- struct lm_ggml_tensor * tok_embd = nullptr;
295
- struct lm_ggml_tensor * type_embd = nullptr;
296
- struct lm_ggml_tensor * pos_embd = nullptr;
297
- struct lm_ggml_tensor * tok_norm = nullptr;
298
- struct lm_ggml_tensor * tok_norm_b = nullptr;
299
-
300
- struct lm_ggml_tensor * output_norm = nullptr;
301
- struct lm_ggml_tensor * output_norm_b = nullptr;
302
- struct lm_ggml_tensor * output = nullptr;
303
- struct lm_ggml_tensor * output_b = nullptr;
304
- struct lm_ggml_tensor * output_norm_enc = nullptr;
305
-
306
- // classifier
307
- struct lm_ggml_tensor * cls = nullptr;
308
- struct lm_ggml_tensor * cls_b = nullptr;
309
- struct lm_ggml_tensor * cls_out = nullptr;
310
- struct lm_ggml_tensor * cls_out_b = nullptr;
311
-
312
- struct lm_ggml_tensor * conv1d = nullptr;
313
- struct lm_ggml_tensor * conv1d_b = nullptr;
314
-
315
- std::vector<llama_layer> layers;
316
-
317
- // gguf metadata
318
- std::unordered_map<std::string, std::string> lm_gguf_kv;
319
-
320
- llama_split_mode split_mode;
321
- int main_gpu;
322
- int n_gpu_layers;
323
-
324
- std::vector<std::string> rpc_servers;
325
-
326
- // list of devices used in this model
327
- std::vector<lm_ggml_backend_dev_t> devices;
328
-
329
-
330
- // lists of buffer types used for each layer
331
- using buft_list_t = std::vector<std::pair<lm_ggml_backend_dev_t, lm_ggml_backend_buffer_type_t>>;
332
- buft_list_t cpu_buft_list;
333
- std::map<lm_ggml_backend_dev_t, buft_list_t> gpu_buft_list;
334
-
335
- struct layer_dev {
336
- lm_ggml_backend_dev_t dev;
337
- buft_list_t * buft_list;
338
- };
339
-
340
- layer_dev dev_input = {};
341
- layer_dev dev_output = {};
342
- std::vector<layer_dev> dev_layer;
343
-
344
- // contexts where the model tensors metadata is stored
345
- std::vector<lm_ggml_context_ptr> ctxs;
346
-
347
- // the model memory buffers for the tensor data
348
- std::vector<lm_ggml_backend_buffer_ptr> bufs;
349
-
350
- // model memory mapped files
351
- llama_mmaps mappings;
352
-
353
- // objects representing data potentially being locked in memory
354
- llama_mlocks mlock_bufs;
355
- llama_mlocks mlock_mmaps;
356
-
357
- // for quantize-stats only
358
- std::vector<std::pair<std::string, struct lm_ggml_tensor *>> tensors_by_name;
359
-
360
- int64_t t_load_us = 0;
361
- int64_t t_start_us = 0;
362
-
363
- // total number of parameters in the model
364
- uint64_t n_elements = 0;
365
-
366
- // total size of all the tensors in the model in bytes
367
- size_t n_bytes = 0;
368
- };
369
-
370
- const char * llm_type_name(llm_type type);
371
-
372
- std::string llama_model_arch_name (const llama_model & model);
373
- std::string llama_model_type_name (const llama_model & model);
374
- std::string llama_model_ftype_name(const llama_model & model);
375
-
376
- // used by llama_adapter_cvec
377
- lm_ggml_backend_buffer_type_t llama_model_select_buft(const llama_model & model, int il);
378
-
379
- // used by llama_adapter_lora
380
- struct lm_ggml_tensor * llama_model_get_tensor(const struct llama_model & model, const char * name);
381
-
382
- size_t llama_model_max_nodes(const llama_model & model);
383
-
384
- struct llama_model_loader;
385
-
386
- // TODO: become llama_model methods
387
- void llm_load_stats (llama_model_loader & ml, llama_model & model);
388
- void llm_load_arch (llama_model_loader & ml, llama_model & model);
389
- void llm_load_hparams (llama_model_loader & ml, llama_model & model);
390
- void llm_load_vocab (llama_model_loader & ml, llama_model & model);
391
- void llm_load_print_meta(llama_model_loader & ml, llama_model & model);
1
+ #pragma once
2
+
3
+ #include "llama.h"
4
+ #include "llama-arch.h"
5
+ #include "llama-hparams.h"
6
+ #include "llama-vocab.h"
7
+
8
+ #include <memory>
9
+ #include <string>
10
+ #include <unordered_map>
11
+ #include <vector>
12
+
13
+ struct llama_model_loader;
14
+
15
+ // available models
16
+ enum llm_type {
17
+ LLM_TYPE_UNKNOWN,
18
+ LLM_TYPE_14M,
19
+ LLM_TYPE_17M,
20
+ LLM_TYPE_22M,
21
+ LLM_TYPE_33M,
22
+ LLM_TYPE_60M,
23
+ LLM_TYPE_70M,
24
+ LLM_TYPE_80M,
25
+ LLM_TYPE_109M,
26
+ LLM_TYPE_137M,
27
+ LLM_TYPE_160M,
28
+ LLM_TYPE_220M,
29
+ LLM_TYPE_250M,
30
+ LLM_TYPE_270M,
31
+ LLM_TYPE_335M,
32
+ LLM_TYPE_410M,
33
+ LLM_TYPE_450M,
34
+ LLM_TYPE_770M,
35
+ LLM_TYPE_780M,
36
+ LLM_TYPE_0_5B,
37
+ LLM_TYPE_1B,
38
+ LLM_TYPE_1_3B,
39
+ LLM_TYPE_1_4B,
40
+ LLM_TYPE_1_5B,
41
+ LLM_TYPE_1_6B,
42
+ LLM_TYPE_2B,
43
+ LLM_TYPE_2_8B,
44
+ LLM_TYPE_3B,
45
+ LLM_TYPE_4B,
46
+ LLM_TYPE_6B,
47
+ LLM_TYPE_6_9B,
48
+ LLM_TYPE_7B,
49
+ LLM_TYPE_8B,
50
+ LLM_TYPE_9B,
51
+ LLM_TYPE_11B,
52
+ LLM_TYPE_12B,
53
+ LLM_TYPE_13B,
54
+ LLM_TYPE_14B,
55
+ LLM_TYPE_15B,
56
+ LLM_TYPE_16B,
57
+ LLM_TYPE_20B,
58
+ LLM_TYPE_30B,
59
+ LLM_TYPE_32B,
60
+ LLM_TYPE_34B,
61
+ LLM_TYPE_35B,
62
+ LLM_TYPE_40B,
63
+ LLM_TYPE_65B,
64
+ LLM_TYPE_70B,
65
+ LLM_TYPE_236B,
66
+ LLM_TYPE_314B,
67
+ LLM_TYPE_671B,
68
+ LLM_TYPE_SMALL,
69
+ LLM_TYPE_MEDIUM,
70
+ LLM_TYPE_LARGE,
71
+ LLM_TYPE_XL,
72
+ LLM_TYPE_A1_7B,
73
+ LLM_TYPE_A2_7B,
74
+ LLM_TYPE_8x7B,
75
+ LLM_TYPE_8x22B,
76
+ LLM_TYPE_16x12B,
77
+ LLM_TYPE_16x3_8B,
78
+ LLM_TYPE_10B_128x3_66B,
79
+ LLM_TYPE_57B_A14B,
80
+ LLM_TYPE_27B,
81
+ };
82
+
83
+ struct llama_layer_posnet {
84
+ // resnet
85
+ struct lm_ggml_tensor * norm1 = nullptr;
86
+ struct lm_ggml_tensor * norm1_b = nullptr;
87
+
88
+ struct lm_ggml_tensor * conv1 = nullptr;
89
+ struct lm_ggml_tensor * conv1_b = nullptr;
90
+
91
+ struct lm_ggml_tensor * norm2 = nullptr;
92
+ struct lm_ggml_tensor * norm2_b = nullptr;
93
+
94
+ struct lm_ggml_tensor * conv2 = nullptr;
95
+ struct lm_ggml_tensor * conv2_b = nullptr;
96
+
97
+ // attention
98
+ struct lm_ggml_tensor * attn_norm = nullptr;
99
+ struct lm_ggml_tensor * attn_norm_b = nullptr;
100
+
101
+ struct lm_ggml_tensor * attn_q = nullptr;
102
+ struct lm_ggml_tensor * attn_q_b = nullptr;
103
+
104
+ struct lm_ggml_tensor * attn_k = nullptr;
105
+ struct lm_ggml_tensor * attn_k_b = nullptr;
106
+
107
+ struct lm_ggml_tensor * attn_v = nullptr;
108
+ struct lm_ggml_tensor * attn_v_b = nullptr;
109
+
110
+ struct lm_ggml_tensor * attn_o = nullptr;
111
+ struct lm_ggml_tensor * attn_o_b = nullptr;
112
+
113
+ // normalize
114
+ struct lm_ggml_tensor * norm = nullptr;
115
+ struct lm_ggml_tensor * norm_b = nullptr;
116
+ };
117
+
118
+ struct llama_layer_convnext {
119
+ struct lm_ggml_tensor * dw = nullptr;
120
+ struct lm_ggml_tensor * dw_b = nullptr;
121
+
122
+ struct lm_ggml_tensor * norm = nullptr;
123
+ struct lm_ggml_tensor * norm_b = nullptr;
124
+
125
+ struct lm_ggml_tensor * pw1 = nullptr;
126
+ struct lm_ggml_tensor * pw1_b = nullptr;
127
+
128
+ struct lm_ggml_tensor * pw2 = nullptr;
129
+ struct lm_ggml_tensor * pw2_b = nullptr;
130
+
131
+ struct lm_ggml_tensor * gamma = nullptr;
132
+ };
133
+
134
+ struct llama_layer {
135
+ // normalization
136
+ struct lm_ggml_tensor * attn_norm = nullptr;
137
+ struct lm_ggml_tensor * attn_norm_b = nullptr;
138
+ struct lm_ggml_tensor * attn_norm_2 = nullptr;
139
+ struct lm_ggml_tensor * attn_norm_2_b = nullptr;
140
+ struct lm_ggml_tensor * attn_q_norm = nullptr;
141
+ struct lm_ggml_tensor * attn_q_norm_b = nullptr;
142
+ struct lm_ggml_tensor * attn_k_norm = nullptr;
143
+ struct lm_ggml_tensor * attn_k_norm_b = nullptr;
144
+ struct lm_ggml_tensor * attn_out_norm = nullptr;
145
+ struct lm_ggml_tensor * attn_out_norm_b = nullptr;
146
+ struct lm_ggml_tensor * attn_q_a_norm = nullptr;
147
+ struct lm_ggml_tensor * attn_kv_a_norm = nullptr;
148
+ struct lm_ggml_tensor * attn_sub_norm = nullptr;
149
+ struct lm_ggml_tensor * attn_post_norm = nullptr;
150
+ struct lm_ggml_tensor * ffn_sub_norm = nullptr;
151
+ struct lm_ggml_tensor * attn_norm_cross = nullptr;
152
+ struct lm_ggml_tensor * attn_norm_enc = nullptr;
153
+
154
+ // attention
155
+ struct lm_ggml_tensor * wq = nullptr;
156
+ struct lm_ggml_tensor * wk = nullptr;
157
+ struct lm_ggml_tensor * wv = nullptr;
158
+ struct lm_ggml_tensor * wo = nullptr;
159
+ struct lm_ggml_tensor * wqkv = nullptr;
160
+ struct lm_ggml_tensor * wq_a = nullptr;
161
+ struct lm_ggml_tensor * wq_b = nullptr;
162
+ struct lm_ggml_tensor * wkv_a_mqa = nullptr;
163
+ struct lm_ggml_tensor * wkv_b = nullptr;
164
+ struct lm_ggml_tensor * wq_cross = nullptr;
165
+ struct lm_ggml_tensor * wk_cross = nullptr;
166
+ struct lm_ggml_tensor * wv_cross = nullptr;
167
+ struct lm_ggml_tensor * wo_cross = nullptr;
168
+ struct lm_ggml_tensor * wq_enc = nullptr;
169
+ struct lm_ggml_tensor * wk_enc = nullptr;
170
+ struct lm_ggml_tensor * wv_enc = nullptr;
171
+ struct lm_ggml_tensor * wo_enc = nullptr;
172
+
173
+ // attention bias
174
+ struct lm_ggml_tensor * bq = nullptr;
175
+ struct lm_ggml_tensor * bk = nullptr;
176
+ struct lm_ggml_tensor * bv = nullptr;
177
+ struct lm_ggml_tensor * bo = nullptr;
178
+ struct lm_ggml_tensor * bqkv = nullptr;
179
+
180
+ // relative position bias
181
+ struct lm_ggml_tensor * attn_rel_b = nullptr;
182
+ struct lm_ggml_tensor * attn_rel_b_enc = nullptr;
183
+ struct lm_ggml_tensor * attn_rel_b_cross = nullptr;
184
+
185
+ // normalization
186
+ struct lm_ggml_tensor * ffn_norm = nullptr;
187
+ struct lm_ggml_tensor * ffn_norm_b = nullptr;
188
+ struct lm_ggml_tensor * ffn_post_norm = nullptr;
189
+ struct lm_ggml_tensor * layer_out_norm = nullptr;
190
+ struct lm_ggml_tensor * layer_out_norm_b = nullptr;
191
+ struct lm_ggml_tensor * ffn_norm_exps = nullptr;
192
+ struct lm_ggml_tensor * ffn_norm_enc = nullptr;
193
+
194
+ // ff
195
+ struct lm_ggml_tensor * ffn_gate = nullptr; // w1
196
+ struct lm_ggml_tensor * ffn_down = nullptr; // w2
197
+ struct lm_ggml_tensor * ffn_up = nullptr; // w3
198
+ struct lm_ggml_tensor * ffn_gate_enc = nullptr;
199
+ struct lm_ggml_tensor * ffn_down_enc = nullptr;
200
+ struct lm_ggml_tensor * ffn_up_enc = nullptr;
201
+
202
+ // ff MoE
203
+ struct lm_ggml_tensor * ffn_gate_inp = nullptr;
204
+ struct lm_ggml_tensor * ffn_gate_exps = nullptr;
205
+ struct lm_ggml_tensor * ffn_down_exps = nullptr;
206
+ struct lm_ggml_tensor * ffn_up_exps = nullptr;
207
+
208
+ // ff shared expert (shexp)
209
+ struct lm_ggml_tensor * ffn_gate_inp_shexp = nullptr;
210
+ struct lm_ggml_tensor * ffn_gate_shexp = nullptr;
211
+ struct lm_ggml_tensor * ffn_down_shexp = nullptr;
212
+ struct lm_ggml_tensor * ffn_up_shexp = nullptr;
213
+
214
+ // ff bias
215
+ struct lm_ggml_tensor * ffn_gate_b = nullptr;
216
+ struct lm_ggml_tensor * ffn_down_b = nullptr; // b2
217
+ struct lm_ggml_tensor * ffn_up_b = nullptr; // b3
218
+ struct lm_ggml_tensor * ffn_act = nullptr;
219
+ struct lm_ggml_tensor * ffn_exp_probs_b = nullptr;
220
+
221
+ // mamba proj
222
+ struct lm_ggml_tensor * ssm_in = nullptr;
223
+ struct lm_ggml_tensor * ssm_x = nullptr;
224
+ struct lm_ggml_tensor * ssm_dt = nullptr;
225
+ struct lm_ggml_tensor * ssm_out = nullptr;
226
+
227
+ // mamba
228
+ struct lm_ggml_tensor * ssm_conv1d = nullptr;
229
+ struct lm_ggml_tensor * ssm_a = nullptr;
230
+ struct lm_ggml_tensor * ssm_d = nullptr;
231
+
232
+ // mamba bias
233
+ struct lm_ggml_tensor * ssm_conv1d_b = nullptr;
234
+ struct lm_ggml_tensor * ssm_dt_b = nullptr;
235
+
236
+ // rwkv
237
+ struct lm_ggml_tensor * time_mix_w1 = nullptr;
238
+ struct lm_ggml_tensor * time_mix_w2 = nullptr;
239
+ struct lm_ggml_tensor * time_mix_lerp_x = nullptr;
240
+ struct lm_ggml_tensor * time_mix_lerp_w = nullptr;
241
+ struct lm_ggml_tensor * time_mix_lerp_k = nullptr;
242
+ struct lm_ggml_tensor * time_mix_lerp_v = nullptr;
243
+ struct lm_ggml_tensor * time_mix_lerp_r = nullptr;
244
+ struct lm_ggml_tensor * time_mix_lerp_g = nullptr;
245
+ struct lm_ggml_tensor * time_mix_lerp_fused = nullptr;
246
+
247
+ struct lm_ggml_tensor * time_mix_first = nullptr;
248
+ struct lm_ggml_tensor * time_mix_decay = nullptr;
249
+ struct lm_ggml_tensor * time_mix_decay_w1 = nullptr;
250
+ struct lm_ggml_tensor * time_mix_decay_w2 = nullptr;
251
+ struct lm_ggml_tensor * time_mix_key = nullptr;
252
+ struct lm_ggml_tensor * time_mix_key_b = nullptr;
253
+ struct lm_ggml_tensor * time_mix_value = nullptr;
254
+ struct lm_ggml_tensor * time_mix_value_b = nullptr;
255
+ struct lm_ggml_tensor * time_mix_receptance = nullptr;
256
+ struct lm_ggml_tensor * time_mix_receptance_b = nullptr;
257
+ struct lm_ggml_tensor * time_mix_gate = nullptr;
258
+
259
+ struct lm_ggml_tensor * time_mix_ln = nullptr;
260
+ struct lm_ggml_tensor * time_mix_ln_b = nullptr;
261
+ struct lm_ggml_tensor * time_mix_output = nullptr;
262
+
263
+ struct lm_ggml_tensor * channel_mix_lerp_k = nullptr;
264
+ struct lm_ggml_tensor * channel_mix_lerp_r = nullptr;
265
+
266
+ struct lm_ggml_tensor * channel_mix_key = nullptr;
267
+ struct lm_ggml_tensor * channel_mix_receptance = nullptr;
268
+ struct lm_ggml_tensor * channel_mix_value = nullptr;
269
+
270
+ // long rope factors
271
+ struct lm_ggml_tensor * rope_long = nullptr;
272
+ struct lm_ggml_tensor * rope_short = nullptr;
273
+ struct lm_ggml_tensor * rope_freqs = nullptr;
274
+
275
+ // bitnet scale
276
+ struct lm_ggml_tensor * wq_scale = nullptr;
277
+ struct lm_ggml_tensor * wk_scale = nullptr;
278
+ struct lm_ggml_tensor * wv_scale = nullptr;
279
+ struct lm_ggml_tensor * wo_scale = nullptr;
280
+ struct lm_ggml_tensor * ffn_gate_scale = nullptr;
281
+ struct lm_ggml_tensor * ffn_up_scale = nullptr;
282
+ struct lm_ggml_tensor * ffn_down_scale = nullptr;
283
+
284
+ struct llama_layer_posnet posnet;
285
+
286
+ struct llama_layer_convnext convnext;
287
+ };
288
+
289
+ struct llama_model {
290
+ llm_type type = LLM_TYPE_UNKNOWN;
291
+ llm_arch arch = LLM_ARCH_UNKNOWN;
292
+
293
+ std::string name = "n/a";
294
+
295
+ llama_hparams hparams = {};
296
+ llama_vocab vocab;
297
+
298
+ struct lm_ggml_tensor * tok_embd = nullptr;
299
+ struct lm_ggml_tensor * type_embd = nullptr;
300
+ struct lm_ggml_tensor * pos_embd = nullptr;
301
+ struct lm_ggml_tensor * tok_norm = nullptr;
302
+ struct lm_ggml_tensor * tok_norm_b = nullptr;
303
+
304
+ struct lm_ggml_tensor * output_norm = nullptr;
305
+ struct lm_ggml_tensor * output_norm_b = nullptr;
306
+ struct lm_ggml_tensor * output = nullptr;
307
+ struct lm_ggml_tensor * output_b = nullptr;
308
+ struct lm_ggml_tensor * output_norm_enc = nullptr;
309
+
310
+ // classifier
311
+ struct lm_ggml_tensor * cls = nullptr;
312
+ struct lm_ggml_tensor * cls_b = nullptr;
313
+ struct lm_ggml_tensor * cls_out = nullptr;
314
+ struct lm_ggml_tensor * cls_out_b = nullptr;
315
+
316
+ struct lm_ggml_tensor * conv1d = nullptr;
317
+ struct lm_ggml_tensor * conv1d_b = nullptr;
318
+
319
+ std::vector<llama_layer> layers;
320
+
321
+ llama_model_params params;
322
+
323
+ // gguf metadata
324
+ std::unordered_map<std::string, std::string> lm_gguf_kv;
325
+
326
+ // list of devices used in this model
327
+ std::vector<lm_ggml_backend_dev_t> devices;
328
+
329
+ // for quantize-stats only
330
+ std::vector<std::pair<std::string, struct lm_ggml_tensor *>> tensors_by_name;
331
+
332
+ int64_t t_load_us = 0;
333
+ int64_t t_start_us = 0;
334
+
335
+ explicit llama_model(const struct llama_model_params & params);
336
+ ~llama_model();
337
+
338
+ void load_stats (llama_model_loader & ml);
339
+ void load_arch (llama_model_loader & ml);
340
+ void load_hparams(llama_model_loader & ml);
341
+ void load_vocab (llama_model_loader & ml);
342
+ bool load_tensors(llama_model_loader & ml); // returns false if cancelled by progress_callback
343
+
344
+ std::string arch_name() const;
345
+ std::string type_name() const;
346
+
347
+ std::string desc() const;
348
+
349
+ size_t size() const;
350
+ size_t max_nodes() const;
351
+ size_t n_devices() const;
352
+
353
+ // total number of parameters in the model
354
+ uint64_t n_elements() const;
355
+
356
+ void print_info() const;
357
+
358
+ lm_ggml_backend_dev_t dev_layer(int il) const;
359
+ lm_ggml_backend_dev_t dev_output() const;
360
+
361
+ lm_ggml_backend_buffer_type_t select_buft(int il) const;
362
+
363
+ const struct lm_ggml_tensor * get_tensor(const char * name) const;
364
+
365
+ private:
366
+ struct impl;
367
+ std::unique_ptr<impl> pimpl;
368
+ };
369
+
370
+ const char * llm_type_name(llm_type type);