@nahisaho/satori 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (38) hide show
  1. package/LICENCE +0 -0
  2. package/README.md +191 -0
  3. package/bin/satori.js +95 -0
  4. package/package.json +29 -0
  5. package/src/.github/skills/scientific-academic-writing/SKILL.md +361 -0
  6. package/src/.github/skills/scientific-academic-writing/assets/acs_article.md +199 -0
  7. package/src/.github/skills/scientific-academic-writing/assets/elsevier_article.md +244 -0
  8. package/src/.github/skills/scientific-academic-writing/assets/ieee_transactions.md +212 -0
  9. package/src/.github/skills/scientific-academic-writing/assets/imrad_standard.md +181 -0
  10. package/src/.github/skills/scientific-academic-writing/assets/nature_article.md +179 -0
  11. package/src/.github/skills/scientific-academic-writing/assets/qiita_technical_article.md +385 -0
  12. package/src/.github/skills/scientific-academic-writing/assets/science_research_article.md +169 -0
  13. package/src/.github/skills/scientific-bioinformatics/SKILL.md +220 -0
  14. package/src/.github/skills/scientific-biosignal-processing/SKILL.md +357 -0
  15. package/src/.github/skills/scientific-causal-inference/SKILL.md +347 -0
  16. package/src/.github/skills/scientific-cheminformatics/SKILL.md +196 -0
  17. package/src/.github/skills/scientific-data-preprocessing/SKILL.md +413 -0
  18. package/src/.github/skills/scientific-data-simulation/SKILL.md +244 -0
  19. package/src/.github/skills/scientific-doe/SKILL.md +360 -0
  20. package/src/.github/skills/scientific-eda-correlation/SKILL.md +141 -0
  21. package/src/.github/skills/scientific-feature-importance/SKILL.md +208 -0
  22. package/src/.github/skills/scientific-image-analysis/SKILL.md +310 -0
  23. package/src/.github/skills/scientific-materials-characterization/SKILL.md +368 -0
  24. package/src/.github/skills/scientific-meta-analysis/SKILL.md +352 -0
  25. package/src/.github/skills/scientific-metabolomics/SKILL.md +326 -0
  26. package/src/.github/skills/scientific-ml-classification/SKILL.md +265 -0
  27. package/src/.github/skills/scientific-ml-regression/SKILL.md +215 -0
  28. package/src/.github/skills/scientific-multi-omics/SKILL.md +303 -0
  29. package/src/.github/skills/scientific-network-analysis/SKILL.md +257 -0
  30. package/src/.github/skills/scientific-pca-tsne/SKILL.md +235 -0
  31. package/src/.github/skills/scientific-pipeline-scaffold/SKILL.md +331 -0
  32. package/src/.github/skills/scientific-process-optimization/SKILL.md +215 -0
  33. package/src/.github/skills/scientific-publication-figures/SKILL.md +208 -0
  34. package/src/.github/skills/scientific-sequence-analysis/SKILL.md +389 -0
  35. package/src/.github/skills/scientific-spectral-signal/SKILL.md +227 -0
  36. package/src/.github/skills/scientific-statistical-testing/SKILL.md +240 -0
  37. package/src/.github/skills/scientific-survival-clinical/SKILL.md +239 -0
  38. package/src/.github/skills/scientific-time-series/SKILL.md +291 -0
package/LICENCE ADDED
File without changes
package/README.md ADDED
@@ -0,0 +1,191 @@
1
+ # SATORI(悟り)— Agent Skills for Science
2
+
3
+ **SATORI** は、科学データ解析のための **GitHub Copilot Agent Skills** コレクションです。
4
+
5
+ ## Overview
6
+
7
+ このディレクトリには、Exp-01〜13 で蓄積した科学データ解析技法を Agent Skills として体系化した **27 個**のスキルを格納しています。Copilot がプロンプトの文脈に応じて適切なスキルを自動ロードし、各実験で確立した解析パターンを再利用します。
8
+
9
+ スキルは **8 つの中区分**に分類されています。
10
+
11
+ | 中区分 | スキル数 | 概要 |
12
+ |---|:---:|---|
13
+ | A. 基盤・ワークフロー | 5 | パイプライン構築・前処理・データ生成・論文図表・学術論文執筆 |
14
+ | B. 統計・探索的解析 | 3 | EDA・仮説検定・次元削減 |
15
+ | C. 機械学習・モデリング | 3 | 回帰・分類・特徴量重要度 |
16
+ | D. 実験計画・プロセス最適化 | 2 | DOE・応答曲面法・ベイズ最適化 |
17
+ | E. 信号・スペクトル・時系列 | 3 | スペクトル解析・生体信号・時系列分解 |
18
+ | F. 生命科学・オミクス | 5 | バイオインフォ・メタボロ・ゲノム配列・マルチオミクス・ネットワーク |
19
+ | G. 化学・材料・イメージング | 3 | ケモインフォ・材料特性評価・画像解析 |
20
+ | H. 臨床・疫学・メタ科学 | 3 | 生存解析・因果推論・メタアナリシス |
21
+
22
+ ---
23
+
24
+ ## Skills 一覧
25
+
26
+ ### A. 基盤・ワークフロー(5 種)
27
+
28
+ 全 Exp に共通する横断的な基盤スキル。
29
+
30
+ | # | Skill | 説明 | 参照 Exp |
31
+ |---|---|---|---|
32
+ | 1 | [scientific-pipeline-scaffold](scientific-pipeline-scaffold/SKILL.md) | パイプライン雛形・ディレクトリ構造・StepLogger・JSON 要約 | 全 Exp |
33
+ | 2 | [scientific-data-preprocessing](scientific-data-preprocessing/SKILL.md) | 欠損値補完・エンコーディング・スケーリング・外れ値処理 | 全 Exp |
34
+ | 3 | [scientific-data-simulation](scientific-data-simulation/SKILL.md) | 物理/化学/生物ベースの合成データ生成 | 06-09, 12, 13 |
35
+ | 4 | [scientific-publication-figures](scientific-publication-figures/SKILL.md) | 論文品質図表・rcParams・カラーパレット・マルチパネル | 10, 11-13 |
36
+ | 5 | [scientific-academic-writing](scientific-academic-writing/SKILL.md) | 学術論文執筆・ジャーナル別テンプレート・Cover Letter・査読対応 | 汎用 |
37
+
38
+ ### B. 統計・探索的解析(3 種)
39
+
40
+ データの理解・検定・次元削減を担うスキル群。
41
+
42
+ | # | Skill | 説明 | 参照 Exp |
43
+ |---|---|---|---|
44
+ | 6 | [scientific-eda-correlation](scientific-eda-correlation/SKILL.md) | 探索的データ解析・相関ヒートマップ・分布可視化 | 02, 12, 13 |
45
+ | 7 | [scientific-statistical-testing](scientific-statistical-testing/SKILL.md) | 仮説検定・多重比較・エンリッチメント・ベイズ推論 | 03, 04, 06, 07 |
46
+ | 8 | [scientific-pca-tsne](scientific-pca-tsne/SKILL.md) | PCA / t-SNE / UMAP 次元削減・クラスタリング | 02, 03, 07, 11, 13 |
47
+
48
+ ### C. 機械学習・モデリング(3 種)
49
+
50
+ 教師あり学習と特徴量解釈を担うスキル群。
51
+
52
+ | # | Skill | 説明 | 参照 Exp |
53
+ |---|---|---|---|
54
+ | 9 | [scientific-ml-regression](scientific-ml-regression/SKILL.md) | マルチターゲット回帰・モデル比較・レーダーチャート | 05, 12, 13 |
55
+ | 10 | [scientific-ml-classification](scientific-ml-classification/SKILL.md) | 分類 ML・ROC・PR 曲線・混同行列・PDP・Volcano | 03, 05 |
56
+ | 11 | [scientific-feature-importance](scientific-feature-importance/SKILL.md) | Tree-based & Permutation 特徴量重要度・PDP | 05, 12, 13 |
57
+
58
+ ### D. 実験計画・プロセス最適化(2 種)
59
+
60
+ 実験設計と応答曲面最適化を担うスキル群。
61
+
62
+ | # | Skill | 説明 | 参照 Exp |
63
+ |---|---|---|---|
64
+ | 12 | [scientific-doe](scientific-doe/SKILL.md) | 田口直交表・CCD/Box-Behnken・ANOVA 因子効果・ベイズ最適化 | 汎用 |
65
+ | 13 | [scientific-process-optimization](scientific-process-optimization/SKILL.md) | 応答曲面法 (ML-RSM)・パレート最適化・プロセスウィンドウ | 12, 13 |
66
+
67
+ ### E. 信号・スペクトル・時系列(3 種)
68
+
69
+ 波形・周波数領域の解析を担うスキル群。
70
+
71
+ | # | Skill | 説明 | 参照 Exp |
72
+ |---|---|---|---|
73
+ | 14 | [scientific-spectral-signal](scientific-spectral-signal/SKILL.md) | スペクトル前処理・フィルタリング・ピーク検出 | 11 |
74
+ | 15 | [scientific-biosignal-processing](scientific-biosignal-processing/SKILL.md) | ECG R波/HRV・EEG バンドパワー/ERP・EMG バースト・Poincaré | 08 |
75
+ | 16 | [scientific-time-series](scientific-time-series/SKILL.md) | STL 分解・SARIMA 予測・変化点検出・FFT 周期解析・Granger 因果 | 汎用 |
76
+
77
+ ### F. 生命科学・オミクス(5 種)
78
+
79
+ バイオ・オミクス・ネットワーク解析を担うスキル群。
80
+
81
+ | # | Skill | 説明 | 参照 Exp |
82
+ |---|---|---|---|
83
+ | 17 | [scientific-bioinformatics](scientific-bioinformatics/SKILL.md) | scRNA-seq・PPI ネットワーク・バルク RNA-seq | 01, 04 |
84
+ | 18 | [scientific-metabolomics](scientific-metabolomics/SKILL.md) | PLS-DA/VIP スコア・Pareto スケーリング・パスウェイ濃縮 | 07 |
85
+ | 19 | [scientific-sequence-analysis](scientific-sequence-analysis/SKILL.md) | RSCU/CAI コドン解析・アラインメント・系統樹・ORF/CpG 島 | 09 |
86
+ | 20 | [scientific-multi-omics](scientific-multi-omics/SKILL.md) | CCA 正準相関・SNF ネットワーク融合・パスウェイ統合・マルチオミクスクラスタ | 汎用 |
87
+ | 21 | [scientific-network-analysis](scientific-network-analysis/SKILL.md) | ネットワーク構築・中心性・コミュニティ・PSP パス図 | 04, 07, 13 |
88
+
89
+ ### G. 化学・材料・イメージング(3 種)
90
+
91
+ 化学構造・材料特性評価・画像形態解析を担うスキル群。
92
+
93
+ | # | Skill | 説明 | 参照 Exp |
94
+ |---|---|---|---|
95
+ | 22 | [scientific-cheminformatics](scientific-cheminformatics/SKILL.md) | RDKit 分子記述子・Tanimoto・構造アラート・Lipinski | 02, 05 |
96
+ | 23 | [scientific-materials-characterization](scientific-materials-characterization/SKILL.md) | Thornton-Anders SZM・XRD Scherrer・Tauc プロット | 11, 12, 13 |
97
+ | 24 | [scientific-image-analysis](scientific-image-analysis/SKILL.md) | Otsu/Watershed セグメンテーション・粒径分布・GLCM テクスチャ・蛍光合成 | 汎用 |
98
+
99
+ ### H. 臨床・疫学・メタ科学(3 種)
100
+
101
+ 臨床試験・因果推論・メタアナリシスを担うスキル群。
102
+
103
+ | # | Skill | 説明 | 参照 Exp |
104
+ |---|---|---|---|
105
+ | 25 | [scientific-survival-clinical](scientific-survival-clinical/SKILL.md) | Kaplan-Meier・Cox PH・検出力分析・安全性解析 | 03, 06 |
106
+ | 26 | [scientific-causal-inference](scientific-causal-inference/SKILL.md) | PSM 傾向スコア・IPW・DID・RDD・DAG 共変量選択・Rosenbaum 感度分析 | 汎用 |
107
+ | 27 | [scientific-meta-analysis](scientific-meta-analysis/SKILL.md) | 固定/ランダム効果モデル・Forest/Funnel プロット・Egger 検定・サブグループ | 汎用 |
108
+
109
+ ---
110
+
111
+ ## 使い方
112
+
113
+ ### GitHub Copilot Agent Mode / Copilot CLI での利用
114
+
115
+ Skills は `.github/skills/` に配置されているため、Copilot が自動的に検出します。
116
+ プロンプトの文脈に応じて、関連する Skill の `SKILL.md` がエージェントに注入されます。
117
+
118
+ ```
119
+ # 例:相関解析を依頼すると scientific-eda-correlation が自動ロードされる
120
+ > ZnO 薄膜のプロセスパラメータと膜物性の相関ヒートマップを作成して
121
+
122
+ # 例:分類モデルを依頼すると scientific-ml-classification が自動ロードされる
123
+ > がん遺伝子発現データで Random Forest と SVM の ROC 比較をして
124
+
125
+ # 例:実験計画法を依頼すると scientific-doe が自動ロードされる
126
+ > 3因子の田口L9直交表を作成して主効果プロットを描画して
127
+
128
+ # 例:メタアナリシスを依頼すると scientific-meta-analysis が自動ロードされる
129
+ > 5本のRCT論文からランダム効果モデルでForestプロットを作成して
130
+ ```
131
+
132
+ ### ディレクトリ構造
133
+
134
+ ```
135
+ .github/skills/
136
+ ├── README.md
137
+
138
+ │── [A] 基盤・ワークフロー
139
+ │ ├── scientific-pipeline-scaffold/
140
+ │ ├── scientific-data-preprocessing/
141
+ │ ├── scientific-data-simulation/
142
+ │ ├── scientific-publication-figures/
143
+ │ └── scientific-academic-writing/
144
+ │ └── assets/ ← ジャーナル別テンプレート 7 種
145
+
146
+ │── [B] 統計・探索的解析
147
+ │ ├── scientific-eda-correlation/
148
+ │ ├── scientific-statistical-testing/
149
+ │ └── scientific-pca-tsne/
150
+
151
+ │── [C] 機械学習・モデリング
152
+ │ ├── scientific-ml-regression/
153
+ │ ├── scientific-ml-classification/
154
+ │ └── scientific-feature-importance/
155
+
156
+ │── [D] 実験計画・プロセス最適化
157
+ │ ├── scientific-doe/
158
+ │ └── scientific-process-optimization/
159
+
160
+ │── [E] 信号・スペクトル・時系列
161
+ │ ├── scientific-spectral-signal/
162
+ │ ├── scientific-biosignal-processing/
163
+ │ └── scientific-time-series/
164
+
165
+ │── [F] 生命科学・オミクス
166
+ │ ├── scientific-bioinformatics/
167
+ │ ├── scientific-metabolomics/
168
+ │ ├── scientific-sequence-analysis/
169
+ │ ├── scientific-multi-omics/
170
+ │ └── scientific-network-analysis/
171
+
172
+ │── [G] 化学・材料・イメージング
173
+ │ ├── scientific-cheminformatics/
174
+ │ ├── scientific-materials-characterization/
175
+ │ └── scientific-image-analysis/
176
+
177
+ └── [H] 臨床・疫学・メタ科学
178
+ ├── scientific-survival-clinical/
179
+ ├── scientific-causal-inference/
180
+ └── scientific-meta-analysis/
181
+ ```
182
+
183
+ > 注: 実際のファイルシステム上ではすべてのスキルディレクトリは `.github/skills/` 直下にフラットに配置されています。上記の中区分グルーピングは論理的な分類です。
184
+
185
+ ---
186
+
187
+ ## 参考
188
+
189
+ - [SATORI 使い方ガイド](../../docs/qiita-satori-guide.md)
190
+ - [GitHub Copilot Agent Skills ドキュメント](https://docs.github.com/en/copilot/concepts/agents/about-agent-skills)
191
+ - [Agent Skills オープン標準](https://github.com/agentskills/agentskills)
package/bin/satori.js ADDED
@@ -0,0 +1,95 @@
1
+ #!/usr/bin/env node
2
+
3
+ const fs = require('fs');
4
+ const path = require('path');
5
+
6
+ const COMMAND = process.argv[2];
7
+ const FLAGS = process.argv.slice(3);
8
+
9
+ const PACKAGE_ROOT = path.resolve(__dirname, '..');
10
+ const SOURCE_DIR = path.join(PACKAGE_ROOT, 'src', '.github');
11
+
12
+ function copyDirSync(src, dest) {
13
+ fs.mkdirSync(dest, { recursive: true });
14
+ for (const entry of fs.readdirSync(src, { withFileTypes: true })) {
15
+ const srcPath = path.join(src, entry.name);
16
+ const destPath = path.join(dest, entry.name);
17
+ if (entry.isDirectory()) {
18
+ copyDirSync(srcPath, destPath);
19
+ } else {
20
+ fs.copyFileSync(srcPath, destPath);
21
+ }
22
+ }
23
+ }
24
+
25
+ function countFiles(dir) {
26
+ let count = 0;
27
+ for (const entry of fs.readdirSync(dir, { withFileTypes: true })) {
28
+ if (entry.isDirectory()) {
29
+ count += countFiles(path.join(dir, entry.name));
30
+ } else {
31
+ count++;
32
+ }
33
+ }
34
+ return count;
35
+ }
36
+
37
+ function init() {
38
+ const dryRun = FLAGS.includes('--dry-run');
39
+ const force = FLAGS.includes('--force');
40
+ const targetDir = path.join(process.cwd(), '.github');
41
+
42
+ if (!fs.existsSync(SOURCE_DIR)) {
43
+ console.error('Error: source directory not found:', SOURCE_DIR);
44
+ process.exit(1);
45
+ }
46
+
47
+ const fileCount = countFiles(SOURCE_DIR);
48
+
49
+ if (fs.existsSync(targetDir) && !force) {
50
+ console.error(`Error: ${targetDir} already exists.`);
51
+ console.error('Use --force to overwrite.');
52
+ process.exit(1);
53
+ }
54
+
55
+ if (dryRun) {
56
+ console.log('[dry-run] Would copy:');
57
+ console.log(` ${SOURCE_DIR}`);
58
+ console.log(` -> ${targetDir}`);
59
+ console.log(` (${fileCount} files)`);
60
+ return;
61
+ }
62
+
63
+ copyDirSync(SOURCE_DIR, targetDir);
64
+ console.log(`✔ Installed .github/ (${fileCount} files) into ${targetDir}`);
65
+ }
66
+
67
+ function showHelp() {
68
+ console.log(`
69
+ SATORI — Agent Skills for Science
70
+
71
+ Usage:
72
+ satori init [--force] [--dry-run] Install .github/ skills into current directory
73
+ satori help Show this help message
74
+
75
+ Options:
76
+ --force Overwrite existing .github/ directory
77
+ --dry-run Preview what would be installed without making changes
78
+ `);
79
+ }
80
+
81
+ switch (COMMAND) {
82
+ case 'init':
83
+ init();
84
+ break;
85
+ case 'help':
86
+ case '--help':
87
+ case '-h':
88
+ case undefined:
89
+ showHelp();
90
+ break;
91
+ default:
92
+ console.error(`Unknown command: ${COMMAND}`);
93
+ showHelp();
94
+ process.exit(1);
95
+ }
package/package.json ADDED
@@ -0,0 +1,29 @@
1
+ {
2
+ "name": "@nahisaho/satori",
3
+ "version": "0.1.0",
4
+ "description": "SATORI — Agent Skills for Science. GitHub Copilot Agent Skills collection for scientific data analysis.",
5
+ "main": "index.js",
6
+ "bin": {
7
+ "satori": "./bin/satori.js"
8
+ },
9
+ "files": [
10
+ "bin/",
11
+ "src/.github/"
12
+ ],
13
+ "scripts": {
14
+ "test": "node bin/satori.js init --dry-run"
15
+ },
16
+ "keywords": [
17
+ "copilot",
18
+ "agent-skills",
19
+ "science",
20
+ "data-analysis",
21
+ "github-copilot"
22
+ ],
23
+ "author": "",
24
+ "license": "MIT",
25
+ "repository": {
26
+ "type": "git",
27
+ "url": "https://github.com/nahisaho/satori.git"
28
+ }
29
+ }
@@ -0,0 +1,361 @@
1
+ ---
2
+ name: scientific-academic-writing
3
+ description: |
4
+ 科学技術・学術論文の執筆スキル。IMRaD 標準、Nature/Science 系、ACS 系、IEEE 系、
5
+ Elsevier 系のジャーナル形式に対応した論文構成・セクション設計・文章パターンを提供。
6
+ 「論文を書いて」「Abstract を作成して」「Methods セクションを書いて」で発火。
7
+ assets/ に主要ジャーナル形式の Markdown テンプレートを同梱。
8
+ ---
9
+
10
+ # Scientific Academic Writing
11
+
12
+ 科学技術・学術論文の執筆を支援するスキル。ジャーナル形式に応じた構成テンプレート、
13
+ セクション別の文章パターン、引用・図表参照の規約を提供する。
14
+
15
+ ## When to Use
16
+
17
+ - 学術論文の草稿を作成するとき
18
+ - Abstract / Introduction / Methods / Results / Discussion を執筆するとき
19
+ - 特定ジャーナル形式に合わせた論文構成が必要なとき
20
+ - Cover Letter / Response to Reviewers を作成するとき
21
+ - 既存原稿のセクション構成を見直すとき
22
+
23
+ ## Quick Start
24
+
25
+ ### 1. テンプレート選択ガイド
26
+
27
+ ```
28
+ ジャーナル形式の選択フロー:
29
+
30
+ Q1: 投稿先は?
31
+ ├── Nature / Nature Communications / Nature Materials → nature_article.md
32
+ ├── Science / Science Advances → science_research_article.md
33
+ ├── ACS Nano / JACS / Chem. Mater. → acs_article.md
34
+ ├── IEEE Trans. / IEEE Access → ieee_transactions.md
35
+ ├── Elsevier 系 (Acta Mater., etc.) → elsevier_article.md
36
+ ├── Qiita 技術記事 → qiita_technical_article.md
37
+ └── その他 / 不明 → imrad_standard.md (最も汎用的)
38
+ ```
39
+
40
+ ### 2. 論文構成の基本原則
41
+
42
+ ```markdown
43
+ ## 論文構成の CARS モデル (Create A Research Space)
44
+
45
+ ### Introduction の 3 ステップ:
46
+ 1. **Establishing a territory** — 研究分野の重要性・先行研究の概観
47
+ 2. **Establishing a niche** — 先行研究のギャップ・未解決の問題
48
+ 3. **Occupying the niche** — 本研究の目的・アプローチ・主要な発見
49
+
50
+ ### Discussion の構成:
51
+ 1. 主要な発見の要約(Results の再述ではなく解釈)
52
+ 2. 先行研究との比較・位置づけ
53
+ 3. メカニズムの考察・理論的意味
54
+ 4. 研究の限界 (Limitations)
55
+ 5. 将来の展望 (Future perspectives)
56
+ 6. 結論 (Conclusion) — 一部ジャーナルでは独立セクション
57
+ ```
58
+
59
+ ### 3. セクション別ライティングパターン
60
+
61
+ #### Abstract(構造化抄録)
62
+
63
+ ```markdown
64
+ ## Abstract テンプレート(250 words 以内が一般的)
65
+
66
+ **Background/Context**: [研究分野] において [課題/問題] は依然として [重要な課題] である。
67
+
68
+ **Objective/Purpose**: 本研究では、[手法/アプローチ] を用いて [研究目的] を達成することを
69
+ 目的とした。
70
+
71
+ **Methods**: [材料/データ] に対して [実験手法/解析手法] を適用した。
72
+ [主要なパラメータ/条件] は [値] とした。
73
+
74
+ **Results**: [主要な定量的結果を 2-3 文で記述]。
75
+ [統計的有意性: p < 0.05, 効果量, 信頼区間などを含む]。
76
+
77
+ **Conclusions**: これらの結果は [解釈/意義] を示唆しており、
78
+ [応用/今後の展望] に有用である。
79
+
80
+ **Keywords**: keyword1, keyword2, keyword3, keyword4, keyword5
81
+ ```
82
+
83
+ #### Introduction
84
+
85
+ ```markdown
86
+ ## Introduction テンプレート(800-1500 words)
87
+
88
+ ### 第 1 段落: 研究分野の重要性
89
+ [研究分野] は [産業/科学的意義] において重要な役割を果たしている [ref1, ref2]。
90
+ 特に [特定のトピック] は [理由] から注目を集めている。
91
+
92
+ ### 第 2 段落: 先行研究の概観
93
+ これまでに [研究グループ A] は [手法/発見] を報告しており [ref3]、
94
+ [研究グループ B] は [別の手法/発見] を示した [ref4]。
95
+ さらに [研究グループ C] による [成果] は [意義] を明らかにした [ref5, ref6]。
96
+
97
+ ### 第 3 段落: ギャップの特定
98
+ しかしながら、[未解決の課題 1] や [未解決の課題 2] は依然として明らかにされていない。
99
+ 特に [具体的なギャップ] については [理由] から十分な検討がなされていない。
100
+
101
+ ### 第 4 段落: 本研究の目的
102
+ 本研究では、[アプローチ/手法] を用いて [目的] を明らかにすることを目指した。
103
+ 具体的には、(1) [サブ目的 1]、(2) [サブ目的 2]、(3) [サブ目的 3] を検討した。
104
+ ```
105
+
106
+ #### Methods / Experimental
107
+
108
+ ```markdown
109
+ ## Methods テンプレート
110
+
111
+ ### 2.1 Materials / Datasets
112
+ [材料名] (純度 XX%, [メーカー名], [国]) を使用した。
113
+ [データセット名] は [出典/生成方法] から取得した (n = XXX)。
114
+
115
+ ### 2.2 Experimental Procedure / Data Processing
116
+ [装置名] ([型番], [メーカー名]) を用いて [条件] で [操作] を行った。
117
+ [パラメータ 1] は [範囲/値]、[パラメータ 2] は [範囲/値] とした。
118
+
119
+ ### 2.3 Characterization / Analysis
120
+ [分析手法] ([装置型番]) を用いて [測定対象] を評価した。
121
+ 測定条件は [条件の詳細] とした。
122
+
123
+ ### 2.4 Statistical Analysis
124
+ 統計解析には [ソフトウェア名] (ver. X.X) を使用した。
125
+ 群間比較には [検定名] を用い、有意水準は p < 0.05 とした。
126
+ 多重比較には [補正法] を適用した。
127
+ ```
128
+
129
+ #### Results
130
+
131
+ ```markdown
132
+ ## Results テンプレート
133
+
134
+ ### 3.1 [実験/解析 1 の結果]
135
+ **図表の導入**: Figure 1a に [測定対象] の [可視化内容] を示す。
136
+ **定量的記述**: [パラメータ] は [値 ± SD] (n = XX) であった。
137
+ **比較・傾向**: [条件 A] と比較して [条件 B] では [XX]% の [増加/減少] が
138
+ 観察された (p = X.XXX, [検定名])。
139
+ **図表の参照**: この傾向は Figure 1b の [内容] からも確認される。
140
+
141
+ ### 注意: Results での禁止事項
142
+ - ❌ データの解釈・推測(→ Discussion で記述)
143
+ - ❌ 先行研究との比較(→ Discussion で記述)
144
+ - ❌ 方法の説明(→ Methods で記述)
145
+ - ✅ 客観的な事実と数値のみ記述
146
+ ```
147
+
148
+ #### Discussion
149
+
150
+ ```markdown
151
+ ## Discussion テンプレート
152
+
153
+ ### 第 1 段落: 主要な発見の要約
154
+ 本研究の主要な発見は以下の 3 点である:
155
+ (1) [発見 1 — 最も重要な結果]、
156
+ (2) [発見 2]、(3) [発見 3]。
157
+
158
+ ### 第 2 段落: 先行研究との比較
159
+ [発見 1] は [先行研究の結果] と一致しており [refX]、
160
+ [メカニズム/理論] を支持する結果である。
161
+ 一方、[発見 2] については [先行研究 Y] の報告 ([refY]) と
162
+ 異なる結果が得られた。この差異は [考えられる理由] に
163
+ 起因すると考えられる。
164
+
165
+ ### 第 3 段落: メカニズムの考察
166
+ [観察された現象] のメカニズムとして、
167
+ [仮説/モデル] が考えられる (Figure X)。
168
+ [根拠 1] および [根拠 2] がこの解釈を支持している。
169
+
170
+ ### 第 4 段落: 限界と展望
171
+ 本研究にはいくつかの限界がある。
172
+ 第一に [限界 1]、第二に [限界 2] である。
173
+ 今後 [将来の研究方向] を検討することで、
174
+ [期待される成果] が得られると考える。
175
+
176
+ ### 第 5 段落: 結論
177
+ 以上の結果から、[主要な結論] が示された。
178
+ 本研究は [分野] における [貢献/意義] を提供するものである。
179
+ ```
180
+
181
+ ### 4. 図表の参照規約
182
+
183
+ ```markdown
184
+ ## 図表参照のジャーナル別書式
185
+
186
+ | ジャーナル | 図の参照 | 表の参照 | 補足図 |
187
+ |---|---|---|---|
188
+ | Nature 系 | Fig. 1a | Table 1 | Extended Data Fig. 1 |
189
+ | Science 系 | Fig. 1A | Table 1 | fig. S1 |
190
+ | ACS 系 | Figure 1a | Table 1 | Figure S1 |
191
+ | IEEE 系 | Fig. 1(a) | TABLE I | — |
192
+ | Elsevier 系 | Fig. 1(a) | Table 1 | Fig. S1 |
193
+ | IMRaD 標準 | Figure 1 | Table 1 | Supplementary Figure S1 |
194
+
195
+ ## 図表キャプションの書き方
196
+ **Figure キャプション**: 一文目は図全体の説明(太字)。
197
+ 二文目以降でパネルごとの説明 (a) ..., (b) ..., (c) ...
198
+
199
+ **Table キャプション**: 表の上に配置。内容を一文で要約。
200
+ 略語は表の下部に脚注として記載。
201
+ ```
202
+
203
+ ### 5. 引用・参考文献の書式
204
+
205
+ ```markdown
206
+ ## 引用スタイル一覧
207
+
208
+ ### Nature 系(番号順)
209
+ 本文: "... has been reported¹."
210
+ 文献: 1. Author, A. B., Author, C. D. & Author, E. F.
211
+ Title of article. *Journal* **vol**, pages (year).
212
+
213
+ ### Science 系(番号順)
214
+ 本文: "... has been reported (1)."
215
+ 文献: 1. A. B. Author, C. D. Author, E. F. Author,
216
+ Title of article. *Journal* **vol**, pages (year).
217
+
218
+ ### ACS 系(番号順、上付き)
219
+ 本文: "... has been reported.¹"
220
+ 文献: (1) Author, A. B.; Author, C. D.; Author, E. F.
221
+ Title of Article. *Journal* **year**, *vol*, pages.
222
+
223
+ ### IEEE 系(角括弧番号)
224
+ 本文: "... has been reported [1]."
225
+ 文献: [1] A. B. Author, C. D. Author, and E. F. Author,
226
+ "Title of article," *Journal*, vol. X, no. Y, pp. XX-YY, year.
227
+
228
+ ### Elsevier 系(著者名-年)
229
+ 本文: "... has been reported (Author et al., 2024)."
230
+ 文献: Author, A.B., Author, C.D., Author, E.F., 2024.
231
+ Title of article. Journal Vol, pages.
232
+ ```
233
+
234
+ ### 6. Cover Letter テンプレート
235
+
236
+ ```markdown
237
+ Dear Editor,
238
+
239
+ We are pleased to submit our manuscript entitled "[タイトル]" for
240
+ consideration for publication in [ジャーナル名].
241
+
242
+ [1-2 文で研究背景と動機を記述]
243
+
244
+ In this study, we [研究の主要なアプローチを記述].
245
+ Our key findings include:
246
+ (1) [主要な発見 1],
247
+ (2) [主要な発見 2], and
248
+ (3) [主要な発見 3].
249
+
250
+ These results [研究の意義・インパクトを記述], which we believe will be of
251
+ significant interest to the readership of [ジャーナル名].
252
+
253
+ This manuscript has not been published or submitted elsewhere.
254
+ All authors have approved the manuscript and agree with its submission
255
+ to [ジャーナル名]. We declare no competing interests.
256
+
257
+ We suggest the following reviewers:
258
+ 1. Prof. [Name], [Affiliation] ([email])
259
+ 2. Prof. [Name], [Affiliation] ([email])
260
+ 3. Prof. [Name], [Affiliation] ([email])
261
+
262
+ Thank you for your consideration.
263
+
264
+ Sincerely,
265
+ [Corresponding Author Name]
266
+ [Affiliation]
267
+ [Email]
268
+ ```
269
+
270
+ ### 7. Response to Reviewers テンプレート
271
+
272
+ ```markdown
273
+ # Response to Reviewers
274
+
275
+ We thank the reviewers for their constructive comments, which have
276
+ significantly improved our manuscript. Below we address each comment
277
+ point by point. Reviewer comments are shown in **bold**, and our
278
+ responses follow each comment. Changes in the revised manuscript
279
+ are highlighted in blue.
280
+
281
+ ---
282
+
283
+ ## Reviewer 1
284
+
285
+ **Comment 1**: [レビュアーのコメントをそのまま引用]
286
+
287
+ **Response**: We thank the reviewer for this insightful comment.
288
+ [回答の内容]
289
+ We have revised the manuscript accordingly (page X, lines YY-ZZ).
290
+
291
+ > **Revised text**: "[修正箇所の文章を引用]"
292
+
293
+ ---
294
+
295
+ **Comment 2**: [コメント]
296
+
297
+ **Response**: [回答]
298
+
299
+ ---
300
+
301
+ ## Reviewer 2
302
+
303
+ **Comment 1**: [コメント]
304
+
305
+ **Response**: [回答]
306
+ ```
307
+
308
+ ### 8. Supplementary Information 構成
309
+
310
+ ```markdown
311
+ ## Supplementary Information テンプレート
312
+
313
+ # Supplementary Information for:
314
+ # [論文タイトル]
315
+
316
+ [著者名]
317
+
318
+ ## Supplementary Figures
319
+
320
+ **Figure S1.** [キャプション]
321
+
322
+ **Figure S2.** [キャプション]
323
+
324
+ ## Supplementary Tables
325
+
326
+ **Table S1.** [キャプション]
327
+
328
+ ## Supplementary Methods
329
+
330
+ ### S1. [追加実験手法の詳細]
331
+
332
+ ### S2. [追加解析手法の詳細]
333
+
334
+ ## Supplementary References
335
+
336
+ [SI 内でのみ引用した文献]
337
+ ```
338
+
339
+ ## References
340
+
341
+ ### Output Files
342
+
343
+ | ファイル | 形式 |
344
+ |---|---|
345
+ | `manuscript/manuscript.md` | Markdown 原稿 |
346
+ | `manuscript/figures/` | 図表ディレクトリ |
347
+ | `manuscript/supplementary.md` | 補足情報 |
348
+ | `manuscript/cover_letter.md` | カバーレター |
349
+ | `manuscript/response_to_reviewers.md` | レビュー回答 |
350
+
351
+ ### テンプレートファイル (assets/)
352
+
353
+ | ファイル | 対応ジャーナル |
354
+ |---|---|
355
+ | `assets/imrad_standard.md` | IMRaD 標準形式 |
356
+ | `assets/nature_article.md` | Nature / Nature Communications |
357
+ | `assets/science_research_article.md` | Science / Science Advances |
358
+ | `assets/acs_article.md` | ACS Nano / JACS / Chem. Mater. |
359
+ | `assets/ieee_transactions.md` | IEEE Transactions |
360
+ | `assets/elsevier_article.md` | Elsevier 系ジャーナル |
361
+ | `assets/qiita_technical_article.md` | Qiita 技術記事(AI for Science シリーズ) |