@lobehub/lobehub 2.0.0-next.50 → 2.0.0-next.52

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (171) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/apps/desktop/src/main/controllers/LocalFileCtr.ts +25 -5
  3. package/apps/desktop/src/main/controllers/ShellCommandCtr.ts +242 -0
  4. package/apps/desktop/src/main/controllers/__tests__/LocalFileCtr.test.ts +4 -1
  5. package/apps/desktop/src/main/controllers/__tests__/ShellCommandCtr.test.ts +499 -0
  6. package/apps/desktop/src/main/modules/fileSearch/__tests__/macOS.integration.test.ts +357 -0
  7. package/apps/desktop/src/main/modules/fileSearch/impl/macOS.ts +30 -22
  8. package/changelog/v1.json +18 -0
  9. package/locales/ar/chat.json +20 -0
  10. package/locales/ar/common.json +1 -0
  11. package/locales/ar/components.json +6 -0
  12. package/locales/ar/models.json +119 -126
  13. package/locales/ar/plugin.json +2 -1
  14. package/locales/bg-BG/chat.json +20 -0
  15. package/locales/bg-BG/common.json +1 -0
  16. package/locales/bg-BG/components.json +6 -0
  17. package/locales/bg-BG/models.json +104 -132
  18. package/locales/bg-BG/plugin.json +2 -1
  19. package/locales/de-DE/chat.json +20 -0
  20. package/locales/de-DE/common.json +1 -0
  21. package/locales/de-DE/components.json +6 -0
  22. package/locales/de-DE/models.json +119 -126
  23. package/locales/de-DE/plugin.json +2 -1
  24. package/locales/en-US/chat.json +20 -0
  25. package/locales/en-US/common.json +1 -0
  26. package/locales/en-US/components.json +6 -0
  27. package/locales/en-US/models.json +167 -126
  28. package/locales/en-US/plugin.json +2 -1
  29. package/locales/es-ES/chat.json +20 -0
  30. package/locales/es-ES/common.json +1 -0
  31. package/locales/es-ES/components.json +6 -0
  32. package/locales/es-ES/models.json +119 -126
  33. package/locales/es-ES/plugin.json +2 -1
  34. package/locales/fa-IR/chat.json +20 -0
  35. package/locales/fa-IR/common.json +1 -0
  36. package/locales/fa-IR/components.json +6 -0
  37. package/locales/fa-IR/models.json +119 -126
  38. package/locales/fa-IR/plugin.json +2 -1
  39. package/locales/fr-FR/chat.json +20 -0
  40. package/locales/fr-FR/common.json +1 -0
  41. package/locales/fr-FR/components.json +6 -0
  42. package/locales/fr-FR/models.json +119 -126
  43. package/locales/fr-FR/plugin.json +2 -1
  44. package/locales/it-IT/chat.json +20 -0
  45. package/locales/it-IT/common.json +1 -0
  46. package/locales/it-IT/components.json +6 -0
  47. package/locales/it-IT/models.json +119 -126
  48. package/locales/it-IT/plugin.json +2 -1
  49. package/locales/ja-JP/chat.json +20 -0
  50. package/locales/ja-JP/common.json +1 -0
  51. package/locales/ja-JP/components.json +6 -0
  52. package/locales/ja-JP/models.json +119 -126
  53. package/locales/ja-JP/plugin.json +2 -1
  54. package/locales/ko-KR/chat.json +20 -0
  55. package/locales/ko-KR/common.json +1 -0
  56. package/locales/ko-KR/components.json +6 -0
  57. package/locales/ko-KR/models.json +119 -126
  58. package/locales/ko-KR/plugin.json +2 -1
  59. package/locales/nl-NL/chat.json +20 -0
  60. package/locales/nl-NL/common.json +1 -0
  61. package/locales/nl-NL/components.json +6 -0
  62. package/locales/nl-NL/models.json +119 -126
  63. package/locales/nl-NL/plugin.json +2 -1
  64. package/locales/pl-PL/chat.json +20 -0
  65. package/locales/pl-PL/common.json +1 -0
  66. package/locales/pl-PL/components.json +6 -0
  67. package/locales/pl-PL/models.json +119 -126
  68. package/locales/pl-PL/plugin.json +2 -1
  69. package/locales/pt-BR/chat.json +20 -0
  70. package/locales/pt-BR/common.json +1 -0
  71. package/locales/pt-BR/components.json +6 -0
  72. package/locales/pt-BR/models.json +119 -126
  73. package/locales/pt-BR/plugin.json +2 -1
  74. package/locales/ru-RU/chat.json +20 -0
  75. package/locales/ru-RU/common.json +1 -0
  76. package/locales/ru-RU/components.json +6 -0
  77. package/locales/ru-RU/models.json +119 -126
  78. package/locales/ru-RU/plugin.json +2 -1
  79. package/locales/tr-TR/chat.json +20 -0
  80. package/locales/tr-TR/common.json +1 -0
  81. package/locales/tr-TR/components.json +6 -0
  82. package/locales/tr-TR/models.json +119 -126
  83. package/locales/tr-TR/plugin.json +2 -1
  84. package/locales/vi-VN/chat.json +20 -0
  85. package/locales/vi-VN/common.json +1 -0
  86. package/locales/vi-VN/components.json +6 -0
  87. package/locales/vi-VN/models.json +119 -126
  88. package/locales/vi-VN/plugin.json +2 -1
  89. package/locales/zh-CN/chat.json +20 -0
  90. package/locales/zh-CN/common.json +1 -0
  91. package/locales/zh-CN/components.json +6 -0
  92. package/locales/zh-CN/models.json +173 -80
  93. package/locales/zh-CN/plugin.json +2 -1
  94. package/locales/zh-TW/chat.json +20 -0
  95. package/locales/zh-TW/common.json +1 -0
  96. package/locales/zh-TW/components.json +6 -0
  97. package/locales/zh-TW/models.json +119 -126
  98. package/locales/zh-TW/plugin.json +2 -1
  99. package/package.json +1 -1
  100. package/packages/agent-runtime/src/core/InterventionChecker.ts +1 -1
  101. package/packages/agent-runtime/src/core/__tests__/InterventionChecker.test.ts +23 -23
  102. package/packages/agent-runtime/src/types/state.ts +7 -1
  103. package/packages/const/src/settings/tool.ts +1 -5
  104. package/packages/electron-client-ipc/src/types/localSystem.ts +26 -2
  105. package/packages/file-loaders/src/loaders/docx/index.ts +1 -1
  106. package/packages/model-bank/src/aiModels/wenxin.ts +1348 -291
  107. package/packages/model-runtime/src/core/contextBuilders/openai.test.ts +58 -0
  108. package/packages/model-runtime/src/core/contextBuilders/openai.ts +24 -10
  109. package/packages/model-runtime/src/core/openaiCompatibleFactory/index.ts +3 -2
  110. package/packages/model-runtime/src/providers/openai/index.test.ts +44 -0
  111. package/packages/model-runtime/src/providers/wenxin/index.ts +22 -1
  112. package/packages/model-runtime/src/utils/modelParse.ts +6 -0
  113. package/packages/types/src/tool/builtin.ts +15 -4
  114. package/packages/types/src/tool/intervention.ts +32 -2
  115. package/packages/types/src/user/settings/tool.ts +3 -27
  116. package/src/config/modelProviders/wenxin.ts +2 -3
  117. package/src/features/Conversation/MarkdownElements/remarkPlugins/__snapshots__/createRemarkSelfClosingTagPlugin.test.ts.snap +133 -0
  118. package/src/features/Conversation/MarkdownElements/remarkPlugins/createRemarkSelfClosingTagPlugin.test.ts +48 -0
  119. package/src/features/Conversation/MarkdownElements/remarkPlugins/createRemarkSelfClosingTagPlugin.ts +2 -1
  120. package/src/features/Conversation/Messages/Assistant/Tool/Render/LoadingPlaceholder/index.tsx +3 -3
  121. package/src/features/Conversation/Messages/Group/Tool/Render/Intervention/Fallback.tsx +98 -0
  122. package/src/features/Conversation/Messages/Group/Tool/Render/Intervention/ModeSelector.tsx +5 -6
  123. package/src/features/Conversation/Messages/Group/Tool/Render/Intervention/index.tsx +40 -36
  124. package/src/features/Conversation/Messages/Group/Tool/Render/LoadingPlaceholder/index.tsx +3 -3
  125. package/src/features/Conversation/Messages/Group/Tool/Render/index.tsx +25 -18
  126. package/src/features/LocalFile/LocalFile.tsx +55 -5
  127. package/src/features/PluginsUI/Render/BuiltinType/index.test.tsx +10 -4
  128. package/src/features/PluginsUI/Render/BuiltinType/index.tsx +2 -2
  129. package/src/locales/default/components.ts +6 -0
  130. package/src/locales/default/plugin.ts +2 -1
  131. package/src/services/chat/chat.test.ts +1 -0
  132. package/src/services/electron/localFileService.ts +4 -0
  133. package/src/store/aiInfra/slices/aiProvider/__tests__/selectors.test.ts +62 -0
  134. package/src/store/aiInfra/slices/aiProvider/selectors.ts +1 -1
  135. package/src/store/chat/agents/GeneralChatAgent.ts +26 -1
  136. package/src/store/chat/agents/__tests__/GeneralChatAgent.test.ts +173 -0
  137. package/src/store/chat/slices/aiChat/actions/conversationControl.ts +8 -40
  138. package/src/store/chat/slices/aiChat/actions/streamingExecutor.ts +91 -34
  139. package/src/store/user/selectors.ts +1 -0
  140. package/src/store/user/slices/settings/action.ts +12 -0
  141. package/src/store/user/slices/settings/selectors/__snapshots__/settings.test.ts.snap +0 -7
  142. package/src/store/user/slices/settings/selectors/index.ts +1 -0
  143. package/src/store/user/slices/settings/selectors/settings.test.ts +0 -37
  144. package/src/store/user/slices/settings/selectors/settings.ts +0 -5
  145. package/src/store/user/slices/settings/selectors/toolIntervention.ts +17 -0
  146. package/src/tools/code-interpreter/Render/index.tsx +1 -1
  147. package/src/tools/interventions.ts +32 -0
  148. package/src/tools/local-system/Intervention/RunCommand/index.tsx +56 -0
  149. package/src/tools/local-system/Placeholder/ListFiles.tsx +3 -5
  150. package/src/tools/local-system/Placeholder/SearchFiles.tsx +2 -5
  151. package/src/tools/local-system/Render/ListFiles/index.tsx +16 -21
  152. package/src/tools/local-system/Render/RenameLocalFile/index.tsx +15 -20
  153. package/src/tools/local-system/Render/RunCommand/index.tsx +103 -27
  154. package/src/tools/local-system/Render/SearchFiles/SearchQuery/index.tsx +0 -1
  155. package/src/tools/local-system/Render/SearchFiles/index.tsx +15 -20
  156. package/src/tools/local-system/Render/WriteFile/index.tsx +2 -8
  157. package/src/tools/local-system/index.ts +184 -4
  158. package/src/tools/local-system/systemRole.ts +62 -8
  159. package/src/tools/placeholders.ts +39 -8
  160. package/src/tools/renders.ts +56 -9
  161. package/src/tools/web-browsing/Placeholder/{PageContent.tsx → CrawlMultiPages.tsx} +4 -1
  162. package/src/tools/web-browsing/Placeholder/CrawlSinglePage.tsx +12 -0
  163. package/src/tools/web-browsing/Placeholder/Search.tsx +4 -4
  164. package/src/tools/web-browsing/Render/CrawlMultiPages.tsx +15 -0
  165. package/src/tools/web-browsing/Render/CrawlSinglePage.tsx +15 -0
  166. package/src/tools/web-browsing/Render/Search/index.tsx +39 -44
  167. package/packages/database/migrations/0044_add_tool_intervention.sql +0 -1
  168. package/src/tools/local-system/Placeholder/index.tsx +0 -25
  169. package/src/tools/local-system/Render/index.tsx +0 -40
  170. package/src/tools/web-browsing/Placeholder/index.tsx +0 -40
  171. package/src/tools/web-browsing/Render/index.tsx +0 -57
@@ -1049,6 +1049,9 @@
1049
1049
  "deepseek-r1-0528": {
1050
1050
  "description": "Das voll ausgestattete 685B-Modell, veröffentlicht am 28. Mai 2025. DeepSeek-R1 nutzt im Nachtrainingsprozess umfangreiche Verstärkungslernverfahren und verbessert die Modell-Inferenzfähigkeit erheblich, selbst bei minimalen annotierten Daten. Es zeigt hohe Leistung und starke Fähigkeiten in Mathematik, Programmierung und natürlicher Sprachlogik."
1051
1051
  },
1052
+ "deepseek-r1-250528": {
1053
+ "description": "DeepSeek R1 250528, die Vollversion des DeepSeek-R1-Inferenzmodells, geeignet für anspruchsvolle Mathematik- und Logikaufgaben."
1054
+ },
1052
1055
  "deepseek-r1-70b-fast-online": {
1053
1056
  "description": "DeepSeek R1 70B Schnellversion, die Echtzeit-Online-Suche unterstützt und eine schnellere Reaktionszeit bei gleichbleibender Modellleistung bietet."
1054
1057
  },
@@ -1059,31 +1062,34 @@
1059
1062
  "description": "deepseek-r1-distill-llama ist ein Modell, das auf der Grundlage von Llama aus DeepSeek-R1 destilliert wurde."
1060
1063
  },
1061
1064
  "deepseek-r1-distill-llama-70b": {
1062
- "description": "DeepSeek R1 das größere und intelligentere Modell im DeepSeek-Paket – wurde in die Llama 70B-Architektur destilliert. Basierend auf Benchmark-Tests und menschlicher Bewertung ist dieses Modell intelligenter als das ursprüngliche Llama 70B, insbesondere bei Aufgaben, die mathematische und faktische Genauigkeit erfordern."
1065
+ "description": "DeepSeek R1 Distill Llama 70B, ein distilliertes Modell, das die allgemeine R1-Inferenzfähigkeit mit dem Llama-Ökosystem kombiniert."
1063
1066
  },
1064
1067
  "deepseek-r1-distill-llama-8b": {
1065
- "description": "Das DeepSeek-R1-Distill Modell wurde durch Wissensdistillationstechniken entwickelt, indem Proben, die von DeepSeek-R1 generiert wurden, auf Qwen, Llama und andere Open-Source-Modelle feinabgestimmt wurden."
1068
+ "description": "DeepSeek-R1-Distill-Llama-8B ist ein distilliertes großes Sprachmodell auf Basis von Llama-3.1-8B unter Verwendung der Ausgaben von DeepSeek R1."
1066
1069
  },
1067
- "deepseek-r1-distill-qianfan-llama-70b": {
1068
- "description": "Erstmals veröffentlicht am 14. Februar 2025, destilliert vom Qianfan-Modellteam auf Basis des Llama3_70B Modells (gebaut mit Meta Llama), wobei auch die Qianfan-Korpora in die Destillationsdaten aufgenommen wurden."
1070
+ "deepseek-r1-distill-qianfan-70b": {
1071
+ "description": "DeepSeek R1 Distill Qianfan 70B, ein kosteneffizientes R1-Distillationsmodell basierend auf Qianfan-70B."
1072
+ },
1073
+ "deepseek-r1-distill-qianfan-8b": {
1074
+ "description": "DeepSeek R1 Distill Qianfan 8B, ein R1-Distillationsmodell auf Basis von Qianfan-8B, geeignet für mittelgroße und kleinere Anwendungen."
1069
1075
  },
1070
- "deepseek-r1-distill-qianfan-llama-8b": {
1071
- "description": "Erstmals veröffentlicht am 14. Februar 2025, destilliert vom Qianfan-Modellteam auf Basis des Llama3_8B Modells (gebaut mit Meta Llama), wobei auch die Qianfan-Korpora in die Destillationsdaten aufgenommen wurden."
1076
+ "deepseek-r1-distill-qianfan-llama-70b": {
1077
+ "description": "DeepSeek R1 Distill Qianfan Llama 70B, ein R1-Distillationsmodell basierend auf Llama-70B."
1072
1078
  },
1073
1079
  "deepseek-r1-distill-qwen": {
1074
1080
  "description": "deepseek-r1-distill-qwen ist ein Modell, das auf der Grundlage von Qwen durch Distillierung aus DeepSeek-R1 erstellt wurde."
1075
1081
  },
1076
1082
  "deepseek-r1-distill-qwen-1.5b": {
1077
- "description": "Das DeepSeek-R1-Distill Modell wurde durch Wissensdistillationstechniken entwickelt, indem Proben, die von DeepSeek-R1 generiert wurden, auf Qwen, Llama und andere Open-Source-Modelle feinabgestimmt wurden."
1083
+ "description": "DeepSeek R1 Distill Qwen 1.5B, ein ultraleichtes R1-Distillationsmodell, ideal für Umgebungen mit sehr begrenzten Ressourcen."
1078
1084
  },
1079
1085
  "deepseek-r1-distill-qwen-14b": {
1080
- "description": "Das DeepSeek-R1-Distill Modell wurde durch Wissensdistillationstechniken entwickelt, indem Proben, die von DeepSeek-R1 generiert wurden, auf Qwen, Llama und andere Open-Source-Modelle feinabgestimmt wurden."
1086
+ "description": "DeepSeek R1 Distill Qwen 14B, ein mittelgroßes R1-Distillationsmodell, geeignet für den Einsatz in verschiedenen Szenarien."
1081
1087
  },
1082
1088
  "deepseek-r1-distill-qwen-32b": {
1083
- "description": "Das DeepSeek-R1-Distill Modell wurde durch Wissensdistillationstechniken entwickelt, indem Proben, die von DeepSeek-R1 generiert wurden, auf Qwen, Llama und andere Open-Source-Modelle feinabgestimmt wurden."
1089
+ "description": "DeepSeek R1 Distill Qwen 32B, ein R1-Distillationsmodell basierend auf Qwen-32B, das Leistung und Kosten ausbalanciert."
1084
1090
  },
1085
1091
  "deepseek-r1-distill-qwen-7b": {
1086
- "description": "Das DeepSeek-R1-Distill Modell wurde durch Wissensdistillationstechniken entwickelt, indem Proben, die von DeepSeek-R1 generiert wurden, auf Qwen, Llama und andere Open-Source-Modelle feinabgestimmt wurden."
1092
+ "description": "DeepSeek R1 Distill Qwen 7B, ein leichtgewichtiges R1-Distillationsmodell, geeignet für Edge-Computing und unternehmensinterne Umgebungen."
1087
1093
  },
1088
1094
  "deepseek-r1-fast-online": {
1089
1095
  "description": "DeepSeek R1 Vollschnellversion, die Echtzeit-Online-Suche unterstützt und die leistungsstarken Fähigkeiten von 671B Parametern mit einer schnelleren Reaktionszeit kombiniert."
@@ -1112,12 +1118,24 @@
1112
1118
  "deepseek-v3.1-terminus": {
1113
1119
  "description": "DeepSeek-V3.1-Terminus ist eine optimierte Version des großen Sprachmodells von DeepSeek, speziell für Endgeräte entwickelt."
1114
1120
  },
1121
+ "deepseek-v3.1-think-250821": {
1122
+ "description": "DeepSeek V3.1 Think 250821, das Deep-Thinking-Modell der Terminus-Version, geeignet für leistungsstarke Inferenzszenarien."
1123
+ },
1115
1124
  "deepseek-v3.1:671b": {
1116
1125
  "description": "DeepSeek V3.1: Ein Inferenzmodell der nächsten Generation, das komplexe Schlussfolgerungen und verknüpfte Denkfähigkeiten verbessert und sich für Aufgaben eignet, die tiefgehende Analysen erfordern."
1117
1126
  },
1118
1127
  "deepseek-v3.2-exp": {
1119
1128
  "description": "deepseek-v3.2-exp führt einen sparsamen Aufmerksamkeitsmechanismus ein, um die Effizienz beim Training und der Inferenz bei der Verarbeitung langer Texte zu verbessern. Der Preis liegt unter dem von deepseek-v3.1."
1120
1129
  },
1130
+ "deepseek-v3.2-think": {
1131
+ "description": "DeepSeek V3.2 Think, die Vollversion des Deep-Thinking-Modells mit verbesserter Fähigkeit zur Langketteninferenz."
1132
+ },
1133
+ "deepseek-vl2": {
1134
+ "description": "DeepSeek VL2, ein multimodales Modell mit Unterstützung für Bild-Text-Verständnis und fein abgestimmte visuelle Fragebeantwortung."
1135
+ },
1136
+ "deepseek-vl2-small": {
1137
+ "description": "DeepSeek VL2 Small, eine leichte multimodale Version, geeignet für ressourcenbeschränkte und hochparallele Szenarien."
1138
+ },
1121
1139
  "deepseek/deepseek-chat-v3-0324": {
1122
1140
  "description": "DeepSeek V3 ist ein Experten-Mischmodell mit 685B Parametern und die neueste Iteration der Flaggschiff-Chatmodellreihe des DeepSeek-Teams.\n\nEs erbt das [DeepSeek V3](/deepseek/deepseek-chat-v3) Modell und zeigt hervorragende Leistungen in verschiedenen Aufgaben."
1123
1141
  },
@@ -1253,83 +1271,89 @@
1253
1271
  "emohaa": {
1254
1272
  "description": "Emohaa ist ein psychologisches Modell mit professionellen Beratungsfähigkeiten, das den Nutzern hilft, emotionale Probleme zu verstehen."
1255
1273
  },
1256
- "ernie-3.5-128k": {
1257
- "description": "Das von Baidu entwickelte Flaggschiff-Modell für große Sprachmodelle deckt eine riesige Menge an chinesischen und englischen Korpora ab und bietet starke allgemeine Fähigkeiten, die die meisten Anforderungen an Dialogfragen, kreative Generierung und Plugin-Anwendungen erfüllen; es unterstützt die automatische Anbindung an das Baidu-Suchplugin, um die Aktualität der Antwortinformationen zu gewährleisten."
1258
- },
1259
- "ernie-3.5-8k": {
1260
- "description": "Das von Baidu entwickelte Flaggschiff-Modell für große Sprachmodelle deckt eine riesige Menge an chinesischen und englischen Korpora ab und bietet starke allgemeine Fähigkeiten, die die meisten Anforderungen an Dialogfragen, kreative Generierung und Plugin-Anwendungen erfüllen; es unterstützt die automatische Anbindung an das Baidu-Suchplugin, um die Aktualität der Antwortinformationen zu gewährleisten."
1261
- },
1262
- "ernie-3.5-8k-preview": {
1263
- "description": "Das von Baidu entwickelte Flaggschiff-Modell für große Sprachmodelle deckt eine riesige Menge an chinesischen und englischen Korpora ab und bietet starke allgemeine Fähigkeiten, die die meisten Anforderungen an Dialogfragen, kreative Generierung und Plugin-Anwendungen erfüllen; es unterstützt die automatische Anbindung an das Baidu-Suchplugin, um die Aktualität der Antwortinformationen zu gewährleisten."
1264
- },
1265
- "ernie-4.0-8k-latest": {
1266
- "description": "Das von Baidu entwickelte Flaggschiff-Modell für große Sprachmodelle hat im Vergleich zu ERNIE 3.5 eine umfassende Verbesserung der Modellfähigkeiten erreicht und ist weit verbreitet in komplexen Aufgabenbereichen anwendbar; es unterstützt die automatische Anbindung an das Baidu-Suchplugin, um die Aktualität der Antwortinformationen zu gewährleisten."
1267
- },
1268
- "ernie-4.0-8k-preview": {
1269
- "description": "Das von Baidu entwickelte Flaggschiff-Modell für große Sprachmodelle hat im Vergleich zu ERNIE 3.5 eine umfassende Verbesserung der Modellfähigkeiten erreicht und ist weit verbreitet in komplexen Aufgabenbereichen anwendbar; es unterstützt die automatische Anbindung an das Baidu-Suchplugin, um die Aktualität der Antwortinformationen zu gewährleisten."
1270
- },
1271
- "ernie-4.0-turbo-128k": {
1272
- "description": "Das von Baidu entwickelte Flaggschiff-Modell für große Sprachmodelle zeigt hervorragende Gesamtergebnisse und ist weit verbreitet in komplexen Aufgabenbereichen anwendbar; es unterstützt die automatische Anbindung an das Baidu-Suchplugin, um die Aktualität der Antwortinformationen zu gewährleisten. Im Vergleich zu ERNIE 4.0 bietet es eine bessere Leistung."
1273
- },
1274
- "ernie-4.0-turbo-8k-latest": {
1275
- "description": "Das von Baidu entwickelte Flaggschiff-Modell für große Sprachmodelle zeigt hervorragende Gesamtergebnisse und ist weit verbreitet in komplexen Aufgabenbereichen anwendbar; es unterstützt die automatische Anbindung an das Baidu-Suchplugin, um die Aktualität der Antwortinformationen zu gewährleisten. Im Vergleich zu ERNIE 4.0 bietet es eine bessere Leistung."
1276
- },
1277
- "ernie-4.0-turbo-8k-preview": {
1278
- "description": "Das von Baidu entwickelte Flaggschiff-Modell für große Sprachmodelle zeigt hervorragende Gesamtergebnisse und ist weit verbreitet in komplexen Aufgabenbereichen anwendbar; es unterstützt die automatische Anbindung an das Baidu-Suchplugin, um die Aktualität der Antwortinformationen zu gewährleisten. Im Vergleich zu ERNIE 4.0 bietet es eine bessere Leistung."
1274
+ "ernie-4.5-0.3b": {
1275
+ "description": "ERNIE 4.5 0.3B, ein leichtgewichtiges Open-Source-Modell, ideal für lokale und maßgeschneiderte Bereitstellungen."
1279
1276
  },
1280
1277
  "ernie-4.5-21b-a3b": {
1281
- "description": "ERNIE 4.5 21B A3B ist ein hybrides Expertenmodell von Baidu Wenxin mit herausragenden Fähigkeiten im logischen Denken und in der Mehrsprachigkeit."
1278
+ "description": "ERNIE 4.5 21B A3B, ein Open-Source-Modell mit großer Parameteranzahl, leistungsstark bei Verständnis- und Generierungsaufgaben."
1282
1279
  },
1283
1280
  "ernie-4.5-300b-a47b": {
1284
1281
  "description": "ERNIE 4.5 300B A47B ist ein großskaliges hybrides Expertenmodell von Baidu Wenxin mit exzellenten Fähigkeiten im logischen Schlussfolgern."
1285
1282
  },
1286
1283
  "ernie-4.5-8k-preview": {
1287
- "description": "Das ERNIE 4.5 Modell ist ein neu entwickeltes, natives multimodales Basis-Modell von Baidu, das durch die gemeinsame Modellierung mehrerer Modalitäten eine synergistische Optimierung erreicht und über hervorragende multimodale Verständnisfähigkeiten verfügt; es bietet verbesserte Sprachfähigkeiten, umfassende Verbesserungen in Verständnis, Generierung, Logik und Gedächtnis, sowie signifikante Verbesserungen in der Vermeidung von Halluzinationen, logischen Schlussfolgerungen und Programmierfähigkeiten."
1284
+ "description": "ERNIE 4.5 8K Preview, ein Vorschau-Modell mit 8K-Kontext, zur Erprobung und zum Testen der Fähigkeiten von Wenxin 4.5."
1288
1285
  },
1289
1286
  "ernie-4.5-turbo-128k": {
1290
- "description": "Wenxin 4.5 Turbo hat deutliche Verbesserungen in den Bereichen Halluzinationen reduzieren, logisches Denken und Programmierfähigkeiten. Im Vergleich zu Wenxin 4.5 ist es schneller und kostengünstiger. Die Modellfähigkeiten wurden umfassend verbessert, um besser mit mehrstufigen, langen historischen Dialogen und der Beantwortung von Fragen zu langen Dokumenten umzugehen."
1287
+ "description": "ERNIE 4.5 Turbo 128K, ein leistungsstarkes Allzweckmodell mit Unterstützung für suchbasierte Erweiterung und Tool-Nutzung, geeignet für QA, Code, Agenten und mehr."
1288
+ },
1289
+ "ernie-4.5-turbo-128k-preview": {
1290
+ "description": "ERNIE 4.5 Turbo 128K Preview, eine Vorschauversion mit denselben Fähigkeiten wie die finale Version, ideal für Integrationstests und schrittweise Einführung."
1291
1291
  },
1292
1292
  "ernie-4.5-turbo-32k": {
1293
- "description": "Wenxin 4.5 Turbo hat deutliche Verbesserungen in den Bereichen Halluzinationen reduzieren, logisches Denken und Programmierfähigkeiten. Im Vergleich zu Wenxin 4.5 ist es schneller und kostengünstiger. Die Fähigkeiten in der Textkreation und Wissensfragen haben sich erheblich verbessert. Die Ausgabelänge und die Verzögerung bei vollständigen Sätzen sind im Vergleich zu ERNIE 4.5 gestiegen."
1293
+ "description": "ERNIE 4.5 Turbo 32K, eine Version mit mittellangem Kontext, geeignet für QA, Wissensdatenbankabfragen und mehrstufige Dialoge."
1294
+ },
1295
+ "ernie-4.5-turbo-latest": {
1296
+ "description": "ERNIE 4.5 Turbo Latest, die neueste Version mit umfassender Leistungsoptimierung, ideal als Hauptmodell für Produktionsumgebungen."
1297
+ },
1298
+ "ernie-4.5-turbo-vl": {
1299
+ "description": "ERNIE 4.5 Turbo VL, ein ausgereiftes multimodales Modell für Bild-Text-Verständnis und Erkennung in Produktionsumgebungen."
1294
1300
  },
1295
1301
  "ernie-4.5-turbo-vl-32k": {
1296
- "description": "Die neueste Version des Wenxin Yi Yan Modells hat signifikante Verbesserungen in den Bereichen Bildverständnis, Kreation, Übersetzung und Programmierung. Es unterstützt erstmals eine Kontextlänge von 32K, und die Verzögerung beim ersten Token wurde erheblich reduziert."
1302
+ "description": "ERNIE 4.5 Turbo VL 32K, eine multimodale Version mit mittellangem Textkontext, geeignet für das kombinierte Verständnis von langen Dokumenten und Bildern."
1303
+ },
1304
+ "ernie-4.5-turbo-vl-32k-preview": {
1305
+ "description": "ERNIE 4.5 Turbo VL 32K Preview, eine Vorschauversion des multimodalen 32K-Modells zur Bewertung der Langkontext-Bildverarbeitungsfähigkeiten."
1306
+ },
1307
+ "ernie-4.5-turbo-vl-latest": {
1308
+ "description": "ERNIE 4.5 Turbo VL Latest, die neueste multimodale Version mit verbesserter Bild-Text-Verständnis- und Inferenzleistung."
1309
+ },
1310
+ "ernie-4.5-turbo-vl-preview": {
1311
+ "description": "ERNIE 4.5 Turbo VL Preview, ein multimodales Vorschau-Modell mit Unterstützung für Bild-Text-Verständnis und -Generierung, ideal für visuelle QA und Inhaltsverständnis."
1312
+ },
1313
+ "ernie-4.5-vl-28b-a3b": {
1314
+ "description": "ERNIE 4.5 VL 28B A3B, ein Open-Source-Multimodalmodell für Bild-Text-Verständnis und Inferenzaufgaben."
1315
+ },
1316
+ "ernie-5.0-thinking-preview": {
1317
+ "description": "Wenxin 5.0 Thinking Preview, ein natives, multimodales Flaggschiffmodell mit einheitlicher Modellierung von Text, Bild, Audio und Video. Umfassend verbesserte Fähigkeiten für komplexe QA, kreative Aufgaben und Agentenszenarien."
1297
1318
  },
1298
1319
  "ernie-char-8k": {
1299
- "description": "Das von Baidu entwickelte große Sprachmodell für vertikale Szenarien eignet sich für Anwendungen wie NPCs in Spielen, Kundenservice-Dialoge und Rollenspiele, mit einem klareren und konsistenteren Charakterstil, einer stärkeren Befolgung von Anweisungen und besserer Inferenzleistung."
1320
+ "description": "ERNIE Character 8K, ein dialogorientiertes Modell mit Charakterpersönlichkeit, ideal für IP-Charakterentwicklung und langfristige Begleitdialoge."
1300
1321
  },
1301
1322
  "ernie-char-fiction-8k": {
1302
- "description": "Das von Baidu entwickelte große Sprachmodell für vertikale Szenarien eignet sich für Anwendungen wie NPCs in Spielen, Kundenservice-Dialoge und Rollenspiele, mit einem klareren und konsistenteren Charakterstil, einer stärkeren Befolgung von Anweisungen und besserer Inferenzleistung."
1323
+ "description": "ERNIE Character Fiction 8K, ein Persönlichkeitsmodell für Roman- und Storytelling, geeignet für die Generierung langer Geschichten."
1324
+ },
1325
+ "ernie-char-fiction-8k-preview": {
1326
+ "description": "ERNIE Character Fiction 8K Preview, eine Vorschauversion für Charakter- und Storytelling-Modelle zur Funktionsbewertung und zum Testen."
1303
1327
  },
1304
1328
  "ernie-irag-edit": {
1305
- "description": "Das von Baidu entwickelte ERNIE iRAG Edit Bildbearbeitungsmodell unterstützt Operationen wie Löschen (erase), Neumalen (repaint) und Variationserzeugung (variation) basierend auf Bildern."
1329
+ "description": "ERNIE iRAG Edit, ein Bildbearbeitungsmodell mit Unterstützung für Bildlöschung, Neuzeichnung und Varianten-Generierung."
1306
1330
  },
1307
1331
  "ernie-lite-8k": {
1308
- "description": "ERNIE Lite ist ein leichtgewichtiges großes Sprachmodell, das von Baidu entwickelt wurde und sowohl hervorragende Modellleistung als auch Inferenzleistung bietet, geeignet für die Verwendung mit AI-Beschleunigungskarten mit geringer Rechenleistung."
1332
+ "description": "ERNIE Lite 8K, ein leichtgewichtiges Allzweckmodell, ideal für kostensensitive Alltags-QA- und Content-Generierungsszenarien."
1309
1333
  },
1310
1334
  "ernie-lite-pro-128k": {
1311
- "description": "Das von Baidu entwickelte leichtgewichtige große Sprachmodell bietet sowohl hervorragende Modellleistung als auch Inferenzleistung, die besser ist als die von ERNIE Lite, und ist geeignet für die Verwendung mit AI-Beschleunigungskarten mit geringer Rechenleistung."
1335
+ "description": "ERNIE Lite Pro 128K, ein leichtes Hochleistungsmodell, geeignet für latenz- und kostensensitive Geschäftsanwendungen."
1312
1336
  },
1313
1337
  "ernie-novel-8k": {
1314
- "description": "Das von Baidu entwickelte allgemeine große Sprachmodell hat deutliche Vorteile in der Fähigkeit zur Fortsetzung von Romanen und kann auch in Szenarien wie Kurzdramen und Filmen eingesetzt werden."
1338
+ "description": "ERNIE Novel 8K, ein Modell für Romane und IP-Storytelling, spezialisiert auf Mehrcharakter- und Multistrang-Erzählungen."
1315
1339
  },
1316
1340
  "ernie-speed-128k": {
1317
- "description": "Das neueste hochleistungsfähige große Sprachmodell von Baidu, das 2024 veröffentlicht wurde, bietet hervorragende allgemeine Fähigkeiten und eignet sich gut als Basismodell für Feinabstimmungen, um spezifische Szenarien besser zu bewältigen, während es auch hervorragende Inferenzleistungen bietet."
1341
+ "description": "ERNIE Speed 128K, ein großes Modell ohne Ein-/Ausgabegebühren, ideal für Langtextverständnis und großflächige Testszenarien."
1342
+ },
1343
+ "ernie-speed-8k": {
1344
+ "description": "ERNIE Speed 8K, ein kostenloses Schnellmodell, geeignet für alltägliche Dialoge und leichte Textaufgaben."
1318
1345
  },
1319
1346
  "ernie-speed-pro-128k": {
1320
- "description": "Das neueste hochleistungsfähige große Sprachmodell von Baidu, das 2024 veröffentlicht wurde, bietet hervorragende allgemeine Fähigkeiten und ist besser als ERNIE Speed, geeignet als Basismodell für Feinabstimmungen, um spezifische Szenarien besser zu bewältigen, während es auch hervorragende Inferenzleistungen bietet."
1347
+ "description": "ERNIE Speed Pro 128K, ein hochgradig paralleles und kosteneffizientes Modell, ideal für großflächige Online-Dienste und Unternehmensanwendungen."
1321
1348
  },
1322
1349
  "ernie-tiny-8k": {
1323
- "description": "ERNIE Tiny ist ein hochleistungsfähiges großes Sprachmodell, dessen Bereitstellungs- und Feinabstimmungskosten die niedrigsten unter den Wenshin-Modellen sind."
1324
- },
1325
- "ernie-x1-32k": {
1326
- "description": "Verfügt über stärkere Fähigkeiten in Verständnis, Planung, Reflexion und Evolution. Als umfassenderes tiefes Denkmodell kombiniert Wenxin X1 Genauigkeit, Kreativität und Ausdruckskraft und zeigt herausragende Leistungen in den Bereichen chinesische Wissensfragen, literarische Kreation, Textverfassung, alltägliche Gespräche, logisches Denken, komplexe Berechnungen und Werkzeugnutzung."
1327
- },
1328
- "ernie-x1-32k-preview": {
1329
- "description": "Das große Modell ERNIE X1 verfügt über verbesserte Fähigkeiten in Verständnis, Planung, Reflexion und Evolution. Als umfassenderes tiefes Denkmodell kombiniert ERNIE X1 Genauigkeit, Kreativität und Ausdruckskraft und zeigt herausragende Leistungen in den Bereichen chinesische Wissensabfragen, literarisches Schaffen, Textverfassung, alltägliche Gespräche, logisches Denken, komplexe Berechnungen und Werkzeugnutzung."
1350
+ "description": "ERNIE Tiny 8K, ein extrem leichtes Modell, geeignet für einfache QA-, Klassifizierungs- und kostengünstige Inferenzszenarien."
1330
1351
  },
1331
1352
  "ernie-x1-turbo-32k": {
1332
- "description": "Im Vergleich zu ERNIE-X1-32K bietet dieses Modell bessere Leistung und Effizienz."
1353
+ "description": "ERNIE X1 Turbo 32K, ein Hochgeschwindigkeits-Denkmodell mit 32K-Kontext, geeignet für komplexe Inferenz und mehrstufige Dialoge."
1354
+ },
1355
+ "ernie-x1.1-preview": {
1356
+ "description": "ERNIE X1.1 Preview, eine Vorschauversion des Denkmodells ERNIE X1.1, geeignet für Fähigkeitsvalidierung und Tests."
1333
1357
  },
1334
1358
  "fal-ai/bytedance/seedream/v4": {
1335
1359
  "description": "Seedream 4.0 Bildgenerierungsmodell vom Seed-Team von ByteDance, unterstützt Texteingaben und Bilder und bietet eine hochgradig kontrollierbare, qualitativ hochwertige Bildgenerierung. Bilder werden basierend auf Textanweisungen erzeugt."
@@ -1389,7 +1413,7 @@
1389
1413
  "description": "FLUX.1 [schnell] ist das derzeit fortschrittlichste Open-Source-Modell mit wenigen Schritten, das nicht nur Konkurrenten übertrifft, sondern auch leistungsstärkere nicht-feinabgestimmte Modelle wie Midjourney v6.0 und DALL·E 3 (HD) übertrifft. Das Modell wurde speziell feinabgestimmt, um die gesamte Vielfalt der Vortrainingsausgaben zu bewahren. Im Vergleich zu den aktuell besten Modellen auf dem Markt bietet FLUX.1 [schnell] erhebliche Verbesserungen in visueller Qualität, Instruktionsbefolgung, Größen- und Proportionsänderungen, Schriftartenverarbeitung und Ausgabediversität, was den Nutzern eine reichhaltigere und vielfältigere kreative Bildgenerierung ermöglicht."
1390
1414
  },
1391
1415
  "flux.1-schnell": {
1392
- "description": "Ein Rectified Flow Transformer mit 12 Milliarden Parametern, der Bilder basierend auf Textbeschreibungen generieren kann."
1416
+ "description": "FLUX.1-schnell, ein leistungsstarkes Bildgenerierungsmodell, ideal für die schnelle Erstellung von Bildern in verschiedenen Stilen."
1393
1417
  },
1394
1418
  "gemini-1.0-pro-001": {
1395
1419
  "description": "Gemini 1.0 Pro 001 (Tuning) bietet stabile und anpassbare Leistung und ist die ideale Wahl für Lösungen komplexer Aufgaben."
@@ -1538,6 +1562,9 @@
1538
1562
  "glm-4-0520": {
1539
1563
  "description": "GLM-4-0520 ist die neueste Modellversion, die für hochkomplexe und vielfältige Aufgaben konzipiert wurde und hervorragende Leistungen zeigt."
1540
1564
  },
1565
+ "glm-4-32b-0414": {
1566
+ "description": "GLM-4 32B 0414, eine Version des allgemeinen GLM-Großmodells mit Unterstützung für Textgenerierung und -verständnis in mehreren Aufgaben."
1567
+ },
1541
1568
  "glm-4-9b-chat": {
1542
1569
  "description": "GLM-4-9B-Chat bietet hohe Leistung in Bereichen wie Semantik, Mathematik, logisches Denken, Programmierung und Wissen. Es unterstützt Web-Browsing, Code-Ausführung, benutzerdefinierte Tool-Nutzung und Langtext-Inferenz. Unterstützt 26 Sprachen, darunter Japanisch, Koreanisch und Deutsch."
1543
1570
  },
@@ -2036,14 +2063,26 @@
2036
2063
  "internlm3-latest": {
2037
2064
  "description": "Unsere neueste Modellreihe bietet herausragende Inferenzleistungen und führt die Open-Source-Modelle in ihrer Gewichtsklasse an. Standardmäßig verweist sie auf unser neuestes veröffentlichtes InternLM3-Modell."
2038
2065
  },
2066
+ "internvl2.5-38b-mpo": {
2067
+ "description": "InternVL2.5 38B MPO, ein multimodales vortrainiertes Modell, das komplexe Bild-Text-Inferenzaufgaben unterstützt."
2068
+ },
2039
2069
  "internvl2.5-latest": {
2040
2070
  "description": "Die von uns weiterhin unterstützte Version InternVL2.5 bietet hervorragende und stabile Leistungen. Standardmäßig verweist es auf unser neuestes veröffentlichtes InternVL2.5-Modell, derzeit auf internvl2.5-78b."
2041
2071
  },
2072
+ "internvl3-14b": {
2073
+ "description": "InternVL3 14B, ein mittelgroßes multimodales Modell mit ausgewogenem Verhältnis zwischen Leistung und Kosten."
2074
+ },
2075
+ "internvl3-1b": {
2076
+ "description": "InternVL3 1B, ein leichtgewichtiges multimodales Modell, geeignet für den Einsatz in ressourcenbeschränkten Umgebungen."
2077
+ },
2078
+ "internvl3-38b": {
2079
+ "description": "InternVL3 38B, ein großskaliges Open-Source-Multimodalmodell, geeignet für hochpräzises Bild-Text-Verständnis."
2080
+ },
2042
2081
  "internvl3-latest": {
2043
2082
  "description": "Unser neuestes multimodales Großmodell bietet verbesserte Fähigkeiten im Verständnis von Text und Bildern sowie im langfristigen Verständnis von Bildern und erreicht eine Leistung, die mit führenden proprietären Modellen vergleichbar ist. Standardmäßig verweist es auf unser neuestes veröffentlichtes InternVL-Modell, derzeit auf internvl3-78b."
2044
2083
  },
2045
2084
  "irag-1.0": {
2046
- "description": "Das von Baidu entwickelte iRAG (image based RAG) ist eine durch Suche verstärkte Text-zu-Bild-Technologie, die Baidus Milliarden von Bildressourcen mit leistungsstarken Basismodellen kombiniert, um ultra-realistische Bilder zu erzeugen. Das Gesamtergebnis übertrifft native Text-zu-Bild-Systeme deutlich, wirkt weniger künstlich und ist kostengünstig. iRAG zeichnet sich durch keine Halluzinationen, hohe Realitätsnähe und sofortige Verfügbarkeit aus."
2085
+ "description": "ERNIE iRAG, ein bildgestütztes Retrieval-Augmented-Generation-Modell mit Unterstützung für Bildsuche, Bild-Text-Retrieval und Inhaltserzeugung."
2047
2086
  },
2048
2087
  "jamba-large": {
2049
2088
  "description": "Unser leistungsstärkstes und fortschrittlichstes Modell, das speziell für die Bewältigung komplexer Aufgaben auf Unternehmensebene entwickelt wurde und herausragende Leistung bietet."
@@ -2064,7 +2103,7 @@
2064
2103
  "description": "Das Modell kimi-k2-0905-preview hat eine Kontextlänge von 256k, verfügt über stärkere Agentic-Coding-Fähigkeiten, eine herausragendere Ästhetik und Praktikabilität von Frontend-Code sowie ein besseres Kontextverständnis."
2065
2104
  },
2066
2105
  "kimi-k2-instruct": {
2067
- "description": "Kimi K2 Instruct ist ein großes Sprachmodell von Moonshot AI mit der Fähigkeit zur Verarbeitung extrem langer Kontexte."
2106
+ "description": "Kimi K2 Instruct, das offizielle Inferenzmodell von Kimi mit Unterstützung für Langkontext, Code, QA und mehr."
2068
2107
  },
2069
2108
  "kimi-k2-turbo-preview": {
2070
2109
  "description": "kimi-k2 ist ein Basis-Modell mit MoE-Architektur und besonders starken Fähigkeiten im Bereich Code und Agenten. Es verfügt über insgesamt 1T Parameter und 32B aktivierte Parameter. In Benchmark-Tests der wichtigsten Kategorien – allgemeines Wissens-Reasoning, Programmierung, Mathematik und Agenten – übertrifft das K2-Modell die Leistung anderer gängiger Open‑Source‑Modelle."
@@ -2885,9 +2924,7 @@
2885
2924
  "qwen2.5-72b-instruct": {
2886
2925
  "description": "Das 72B-Modell von Tongyi Qianwen 2.5 ist öffentlich zugänglich."
2887
2926
  },
2888
- "qwen2.5-7b-instruct": {
2889
- "description": "Das 7B-Modell von Tongyi Qianwen 2.5 ist öffentlich zugänglich."
2890
- },
2927
+ "qwen2.5-7b-instruct": {},
2891
2928
  "qwen2.5-coder-1.5b-instruct": {
2892
2929
  "description": "Die Open-Source-Version des Qwen-Codemodells."
2893
2930
  },
@@ -2918,15 +2955,11 @@
2918
2955
  "qwen2.5-omni-7b": {
2919
2956
  "description": "Das Qwen-Omni-Modell der Serie unterstützt die Eingabe verschiedener Modalitäten, einschließlich Video, Audio, Bilder und Text, und gibt Audio und Text aus."
2920
2957
  },
2921
- "qwen2.5-vl-32b-instruct": {
2922
- "description": "Die Qwen2.5-VL-Modellreihe verbessert die Intelligenz, Praktikabilität und Anwendbarkeit des Modells, sodass es in Szenarien wie natürlichen Dialogen, Inhaltserstellung, Fachwissensdiensten und Codeentwicklung besser abschneidet. Die 32B-Version verwendet Techniken des verstärkenden Lernens zur Optimierung des Modells. Im Vergleich zu anderen Modellen der Qwen2.5-VL-Reihe bietet sie einen für Menschen präferierten Ausgabe-Stil, Fähigkeiten zur Inferenz komplexer mathematischer Probleme sowie die Fähigkeit zur feingranularen Bildverarbeitung und -inferenz."
2923
- },
2958
+ "qwen2.5-vl-32b-instruct": {},
2924
2959
  "qwen2.5-vl-72b-instruct": {
2925
2960
  "description": "Verbesserte Befolgung von Anweisungen, Mathematik, Problemlösung und Programmierung, gesteigerte Erkennungsfähigkeiten für alle Arten von visuellen Elementen, Unterstützung für die präzise Lokalisierung visueller Elemente in verschiedenen Formaten, Verständnis von langen Videodateien (maximal 10 Minuten) und sekundengenauer Ereigniszeitpunktlokalisierung, Fähigkeit zur zeitlichen Einordnung und Geschwindigkeitsverständnis, Unterstützung für die Steuerung von OS- oder Mobile-Agenten basierend auf Analyse- und Lokalisierungsfähigkeiten, starke Fähigkeit zur Extraktion von Schlüsselinformationen und JSON-Format-Ausgabe. Diese Version ist die leistungsstärkste Version der 72B-Serie."
2926
2961
  },
2927
- "qwen2.5-vl-7b-instruct": {
2928
- "description": "Verbesserte Befolgung von Anweisungen, Mathematik, Problemlösung und Programmierung, gesteigerte Erkennungsfähigkeiten für alle Arten von visuellen Elementen, Unterstützung für die präzise Lokalisierung visueller Elemente in verschiedenen Formaten, Verständnis von langen Videodateien (maximal 10 Minuten) und sekundengenauer Ereigniszeitpunktlokalisierung, Fähigkeit zur zeitlichen Einordnung und Geschwindigkeitsverständnis, Unterstützung für die Steuerung von OS- oder Mobile-Agenten basierend auf Analyse- und Lokalisierungsfähigkeiten, starke Fähigkeit zur Extraktion von Schlüsselinformationen und JSON-Format-Ausgabe. Diese Version ist die leistungsstärkste Version der 72B-Serie."
2929
- },
2962
+ "qwen2.5-vl-7b-instruct": {},
2930
2963
  "qwen2.5-vl-instruct": {
2931
2964
  "description": "Qwen2.5-VL ist die neueste Version des visuellen Sprachmodells in der Qwen-Modellfamilie."
2932
2965
  },
@@ -2951,48 +2984,22 @@
2951
2984
  "qwen3": {
2952
2985
  "description": "Qwen3 ist das neue, großangelegte Sprachmodell von Alibaba, das mit hervorragender Leistung vielfältige Anwendungsbedürfnisse unterstützt."
2953
2986
  },
2954
- "qwen3-0.6b": {
2955
- "description": "Qwen3 ist ein neues, leistungsstarkes Modell der nächsten Generation, das in den Bereichen Inferenz, Allgemeinwissen, Agenten und Mehrsprachigkeit erhebliche Fortschritte erzielt hat und den Wechsel zwischen Denkmodi unterstützt."
2956
- },
2957
- "qwen3-1.7b": {
2958
- "description": "Qwen3 ist ein neues, leistungsstarkes Modell der nächsten Generation, das in den Bereichen Inferenz, Allgemeinwissen, Agenten und Mehrsprachigkeit erhebliche Fortschritte erzielt hat und den Wechsel zwischen Denkmodi unterstützt."
2959
- },
2960
- "qwen3-14b": {
2961
- "description": "Qwen3 ist ein neues, leistungsstarkes Modell der nächsten Generation, das in den Bereichen Inferenz, Allgemeinwissen, Agenten und Mehrsprachigkeit erhebliche Fortschritte erzielt hat und den Wechsel zwischen Denkmodi unterstützt."
2962
- },
2963
- "qwen3-235b-a22b": {
2964
- "description": "Qwen3 ist ein neues, leistungsstarkes Modell der nächsten Generation, das in den Bereichen Inferenz, Allgemeinwissen, Agenten und Mehrsprachigkeit erhebliche Fortschritte erzielt hat und den Wechsel zwischen Denkmodi unterstützt."
2965
- },
2966
- "qwen3-235b-a22b-instruct-2507": {
2967
- "description": "Open-Source-Modell im nicht-denkenden Modus basierend auf Qwen3, mit leichten Verbesserungen in subjektiver Kreativität und Modellsicherheit gegenüber der Vorgängerversion (Tongyi Qianwen 3-235B-A22B)."
2968
- },
2969
- "qwen3-235b-a22b-thinking-2507": {
2970
- "description": "Open-Source-Modell im Denkmodus basierend auf Qwen3, mit erheblichen Verbesserungen in Logik, allgemeinen Fähigkeiten, Wissensabdeckung und Kreativität gegenüber der Vorgängerversion (Tongyi Qianwen 3-235B-A22B). Geeignet für anspruchsvolle und stark schlussfolgernde Szenarien."
2971
- },
2972
- "qwen3-30b-a3b": {
2973
- "description": "Qwen3 ist ein neues, leistungsstarkes Modell der nächsten Generation, das in den Bereichen Inferenz, Allgemeinwissen, Agenten und Mehrsprachigkeit erhebliche Fortschritte erzielt hat und den Wechsel zwischen Denkmodi unterstützt."
2974
- },
2975
- "qwen3-30b-a3b-instruct-2507": {
2976
- "description": "Im Vergleich zur vorherigen Version (Qwen3-30B-A3B) wurde die allgemeine Leistungsfähigkeit in Chinesisch, Englisch und mehreren Sprachen deutlich verbessert. Spezielle Optimierungen für subjektive und offene Aufgaben führen zu einer deutlich besseren Übereinstimmung mit den Nutzerpräferenzen und ermöglichen hilfreichere Antworten."
2977
- },
2978
- "qwen3-30b-a3b-thinking-2507": {
2979
- "description": "Basierend auf dem Denkmodus-Open-Source-Modell von Qwen3 wurden im Vergleich zur vorherigen Version (Tongyi Qianwen 3-30B-A3B) die logischen Fähigkeiten, die allgemeine Leistungsfähigkeit, das Wissen und die Kreativität erheblich verbessert. Es eignet sich für anspruchsvolle Szenarien mit starker Argumentation."
2980
- },
2981
- "qwen3-32b": {
2982
- "description": "Qwen3 ist ein neues, leistungsstarkes Modell der nächsten Generation, das in den Bereichen Inferenz, Allgemeinwissen, Agenten und Mehrsprachigkeit erhebliche Fortschritte erzielt hat und den Wechsel zwischen Denkmodi unterstützt."
2983
- },
2984
- "qwen3-4b": {
2985
- "description": "Qwen3 ist ein neues, leistungsstarkes Modell der nächsten Generation, das in den Bereichen Inferenz, Allgemeinwissen, Agenten und Mehrsprachigkeit erhebliche Fortschritte erzielt hat und den Wechsel zwischen Denkmodi unterstützt."
2986
- },
2987
- "qwen3-8b": {
2988
- "description": "Qwen3 ist ein neues, leistungsstarkes Modell der nächsten Generation, das in den Bereichen Inferenz, Allgemeinwissen, Agenten und Mehrsprachigkeit erhebliche Fortschritte erzielt hat und den Wechsel zwischen Denkmodi unterstützt."
2989
- },
2987
+ "qwen3-0.6b": {},
2988
+ "qwen3-1.7b": {},
2989
+ "qwen3-14b": {},
2990
+ "qwen3-235b-a22b": {},
2991
+ "qwen3-235b-a22b-instruct-2507": {},
2992
+ "qwen3-235b-a22b-thinking-2507": {},
2993
+ "qwen3-30b-a3b": {},
2994
+ "qwen3-30b-a3b-instruct-2507": {},
2995
+ "qwen3-30b-a3b-thinking-2507": {},
2996
+ "qwen3-32b": {},
2997
+ "qwen3-4b": {},
2998
+ "qwen3-8b": {},
2990
2999
  "qwen3-coder-30b-a3b-instruct": {
2991
3000
  "description": "Open-Source-Version des Qwen-Codegenerierungsmodells. Das neueste qwen3-coder-30b-a3b-instruct basiert auf Qwen3 und bietet leistungsstarke Coding-Agent-Fähigkeiten. Es ist spezialisiert auf Tool-Nutzung und Interaktion mit Umgebungen, ermöglicht autonomes Programmieren und kombiniert herausragende Programmierfähigkeiten mit allgemeinen Fähigkeiten."
2992
3001
  },
2993
- "qwen3-coder-480b-a35b-instruct": {
2994
- "description": "Open-Source-Code-Modell von Tongyi Qianwen. Das neueste qwen3-coder-480b-a35b-instruct basiert auf Qwen3, verfügt über starke Coding-Agent-Fähigkeiten, ist versiert im Werkzeugaufruf und in der Umgebungskommunikation und ermöglicht selbstständiges Programmieren mit hervorragender Codequalität und allgemeinen Fähigkeiten."
2995
- },
3002
+ "qwen3-coder-480b-a35b-instruct": {},
2996
3003
  "qwen3-coder-flash": {
2997
3004
  "description": "Tongyi Qianwen Code-Modell. Die neueste Qwen3-Coder Modellreihe basiert auf Qwen3 und ist ein Code-Generierungsmodell mit starker Coding-Agent-Fähigkeit, spezialisiert auf Werkzeugaufrufe und Umgebungsinteraktion, das selbstständiges Programmieren ermöglicht und neben hervorragenden Code-Fähigkeiten auch allgemeine Kompetenzen besitzt."
2998
3005
  },
@@ -3008,30 +3015,16 @@
3008
3015
  "qwen3-next-80b-a3b-instruct": {
3009
3016
  "description": "Ein neues Open-Source-Modell der nächsten Generation im Nicht-Denk-Modus basierend auf Qwen3. Im Vergleich zur vorherigen Version (Tongyi Qianwen 3-235B-A22B-Instruct-2507) bietet es eine verbesserte chinesische Textverständnisfähigkeit, verstärkte logische Schlussfolgerungen und bessere Leistung bei textgenerierenden Aufgaben."
3010
3017
  },
3011
- "qwen3-next-80b-a3b-thinking": {
3012
- "description": "Ein neues Open-Source-Modell der nächsten Generation im Denkmodus basierend auf Qwen3. Im Vergleich zur vorherigen Version (Tongyi Qianwen 3-235B-A22B-Thinking-2507) wurde die Befehlsbefolgung verbessert und die Modellantworten sind prägnanter zusammengefasst."
3013
- },
3018
+ "qwen3-next-80b-a3b-thinking": {},
3014
3019
  "qwen3-omni-flash": {
3015
3020
  "description": "Das Qwen-Omni-Modell kann kombinierte Eingaben aus Text, Bildern, Audio und Video verarbeiten und Antworten in Text- oder Sprachform generieren. Es bietet verschiedene menschenähnliche Sprachstile, unterstützt mehrsprachige und dialektale Sprachausgabe und eignet sich für Anwendungen wie Textgenerierung, visuelle Erkennung und Sprachassistenten."
3016
3021
  },
3017
- "qwen3-vl-235b-a22b-instruct": {
3018
- "description": "Qwen3 VL 235B A22B im Non-Thinking-Modus (Instruct), geeignet für Anwendungsfälle mit einfachen Anweisungen, bei gleichzeitig starker visueller Verständnisfähigkeit."
3019
- },
3020
- "qwen3-vl-235b-a22b-thinking": {
3021
- "description": "Qwen3 VL 235B A22B im Thinking-Modus (Open-Source-Version), bietet erstklassige visuelle und textbasierte Schlussfolgerungsfähigkeiten für komplexe Aufgaben mit hoher kognitiver Anforderung und Langvideo-Verständnis."
3022
- },
3023
- "qwen3-vl-30b-a3b-instruct": {
3024
- "description": "Qwen3 VL 30B im Non-Thinking-Modus (Instruct), konzipiert für allgemeine Anweisungsfolgeszenarien mit starker multimodaler Verständnis- und Generierungsfähigkeit."
3025
- },
3026
- "qwen3-vl-30b-a3b-thinking": {
3027
- "description": "Qwen-VL (Open-Source-Version) bietet visuelles Verständnis und Textgenerierung, unterstützt Agenteninteraktion, visuelle Kodierung, räumliches Bewusstsein, Langvideo-Verständnis und tiefes Denken. Es verfügt über starke Texterkennungs- und Mehrsprachenfähigkeiten in komplexen Szenarien."
3028
- },
3029
- "qwen3-vl-8b-instruct": {
3030
- "description": "Qwen3 VL 8B im Non-Thinking-Modus (Instruct), geeignet für Standardaufgaben der multimodalen Generierung und Erkennung."
3031
- },
3032
- "qwen3-vl-8b-thinking": {
3033
- "description": "Qwen3 VL 8B im Thinking-Modus, konzipiert für leichte multimodale Schlussfolgerungs- und Interaktionsszenarien, mit erhaltener Fähigkeit zum Verständnis langer Kontexte."
3034
- },
3022
+ "qwen3-vl-235b-a22b-instruct": {},
3023
+ "qwen3-vl-235b-a22b-thinking": {},
3024
+ "qwen3-vl-30b-a3b-instruct": {},
3025
+ "qwen3-vl-30b-a3b-thinking": {},
3026
+ "qwen3-vl-8b-instruct": {},
3027
+ "qwen3-vl-8b-thinking": {},
3035
3028
  "qwen3-vl-flash": {
3036
3029
  "description": "Qwen3 VL Flash: eine leichtgewichtige, hochperformante Version für schnelle Inferenz, ideal für latenzkritische oder großvolumige Anfragen."
3037
3030
  },
@@ -255,10 +255,11 @@
255
255
  "moveLocalFiles": "Dateien verschieben",
256
256
  "readLocalFile": "Dateiinhalt lesen",
257
257
  "renameLocalFile": "Datei umbenennen",
258
+ "runCommand": "Befehl ausführen",
258
259
  "searchLocalFiles": "Dateien suchen",
259
260
  "writeLocalFile": "Datei schreiben"
260
261
  },
261
- "title": "Lokale Dateien"
262
+ "title": "Lokales System"
262
263
  },
263
264
  "mcpInstall": {
264
265
  "CHECKING_INSTALLATION": "Installationsumgebung wird geprüft...",
@@ -369,6 +369,26 @@
369
369
  "remained": "Remaining",
370
370
  "used": "Used"
371
371
  },
372
+ "tool": {
373
+ "intervention": {
374
+ "approve": "Approve",
375
+ "approveAndRemember": "Approve and Remember",
376
+ "approveOnce": "Approve This Time Only",
377
+ "mode": {
378
+ "allowList": "Allow List",
379
+ "allowListDesc": "Only automatically execute approved tools",
380
+ "autoRun": "Auto Approve",
381
+ "autoRunDesc": "Automatically approve all tool executions",
382
+ "manual": "Manual",
383
+ "manualDesc": "Manual approval required for each invocation"
384
+ },
385
+ "reject": "Reject",
386
+ "rejectReasonPlaceholder": "Providing a reason will help the Agent understand and improve future actions",
387
+ "rejectTitle": "Reject This Tool Invocation",
388
+ "rejectedWithReason": "This tool invocation was actively rejected: {{reason}}",
389
+ "toolRejected": "This tool invocation was actively rejected"
390
+ }
391
+ },
372
392
  "topic": {
373
393
  "checkOpenNewTopic": "Enable new topic?",
374
394
  "checkSaveCurrentMessages": "Do you want to save the current conversation as a topic?",
@@ -135,6 +135,7 @@
135
135
  }
136
136
  },
137
137
  "close": "Close",
138
+ "confirm": "Confirm",
138
139
  "contact": "Contact Us",
139
140
  "copy": "Copy",
140
141
  "copyFail": "Copy failed",
@@ -106,6 +106,12 @@
106
106
  "keyPlaceholder": "Key",
107
107
  "valuePlaceholder": "Value"
108
108
  },
109
+ "LocalFile": {
110
+ "action": {
111
+ "open": "Open",
112
+ "showInFolder": "Show in Folder"
113
+ }
114
+ },
109
115
  "MaxTokenSlider": {
110
116
  "unlimited": "Unlimited"
111
117
  },