@lobehub/lobehub 2.0.0-next.50 → 2.0.0-next.52

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (171) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/apps/desktop/src/main/controllers/LocalFileCtr.ts +25 -5
  3. package/apps/desktop/src/main/controllers/ShellCommandCtr.ts +242 -0
  4. package/apps/desktop/src/main/controllers/__tests__/LocalFileCtr.test.ts +4 -1
  5. package/apps/desktop/src/main/controllers/__tests__/ShellCommandCtr.test.ts +499 -0
  6. package/apps/desktop/src/main/modules/fileSearch/__tests__/macOS.integration.test.ts +357 -0
  7. package/apps/desktop/src/main/modules/fileSearch/impl/macOS.ts +30 -22
  8. package/changelog/v1.json +18 -0
  9. package/locales/ar/chat.json +20 -0
  10. package/locales/ar/common.json +1 -0
  11. package/locales/ar/components.json +6 -0
  12. package/locales/ar/models.json +119 -126
  13. package/locales/ar/plugin.json +2 -1
  14. package/locales/bg-BG/chat.json +20 -0
  15. package/locales/bg-BG/common.json +1 -0
  16. package/locales/bg-BG/components.json +6 -0
  17. package/locales/bg-BG/models.json +104 -132
  18. package/locales/bg-BG/plugin.json +2 -1
  19. package/locales/de-DE/chat.json +20 -0
  20. package/locales/de-DE/common.json +1 -0
  21. package/locales/de-DE/components.json +6 -0
  22. package/locales/de-DE/models.json +119 -126
  23. package/locales/de-DE/plugin.json +2 -1
  24. package/locales/en-US/chat.json +20 -0
  25. package/locales/en-US/common.json +1 -0
  26. package/locales/en-US/components.json +6 -0
  27. package/locales/en-US/models.json +167 -126
  28. package/locales/en-US/plugin.json +2 -1
  29. package/locales/es-ES/chat.json +20 -0
  30. package/locales/es-ES/common.json +1 -0
  31. package/locales/es-ES/components.json +6 -0
  32. package/locales/es-ES/models.json +119 -126
  33. package/locales/es-ES/plugin.json +2 -1
  34. package/locales/fa-IR/chat.json +20 -0
  35. package/locales/fa-IR/common.json +1 -0
  36. package/locales/fa-IR/components.json +6 -0
  37. package/locales/fa-IR/models.json +119 -126
  38. package/locales/fa-IR/plugin.json +2 -1
  39. package/locales/fr-FR/chat.json +20 -0
  40. package/locales/fr-FR/common.json +1 -0
  41. package/locales/fr-FR/components.json +6 -0
  42. package/locales/fr-FR/models.json +119 -126
  43. package/locales/fr-FR/plugin.json +2 -1
  44. package/locales/it-IT/chat.json +20 -0
  45. package/locales/it-IT/common.json +1 -0
  46. package/locales/it-IT/components.json +6 -0
  47. package/locales/it-IT/models.json +119 -126
  48. package/locales/it-IT/plugin.json +2 -1
  49. package/locales/ja-JP/chat.json +20 -0
  50. package/locales/ja-JP/common.json +1 -0
  51. package/locales/ja-JP/components.json +6 -0
  52. package/locales/ja-JP/models.json +119 -126
  53. package/locales/ja-JP/plugin.json +2 -1
  54. package/locales/ko-KR/chat.json +20 -0
  55. package/locales/ko-KR/common.json +1 -0
  56. package/locales/ko-KR/components.json +6 -0
  57. package/locales/ko-KR/models.json +119 -126
  58. package/locales/ko-KR/plugin.json +2 -1
  59. package/locales/nl-NL/chat.json +20 -0
  60. package/locales/nl-NL/common.json +1 -0
  61. package/locales/nl-NL/components.json +6 -0
  62. package/locales/nl-NL/models.json +119 -126
  63. package/locales/nl-NL/plugin.json +2 -1
  64. package/locales/pl-PL/chat.json +20 -0
  65. package/locales/pl-PL/common.json +1 -0
  66. package/locales/pl-PL/components.json +6 -0
  67. package/locales/pl-PL/models.json +119 -126
  68. package/locales/pl-PL/plugin.json +2 -1
  69. package/locales/pt-BR/chat.json +20 -0
  70. package/locales/pt-BR/common.json +1 -0
  71. package/locales/pt-BR/components.json +6 -0
  72. package/locales/pt-BR/models.json +119 -126
  73. package/locales/pt-BR/plugin.json +2 -1
  74. package/locales/ru-RU/chat.json +20 -0
  75. package/locales/ru-RU/common.json +1 -0
  76. package/locales/ru-RU/components.json +6 -0
  77. package/locales/ru-RU/models.json +119 -126
  78. package/locales/ru-RU/plugin.json +2 -1
  79. package/locales/tr-TR/chat.json +20 -0
  80. package/locales/tr-TR/common.json +1 -0
  81. package/locales/tr-TR/components.json +6 -0
  82. package/locales/tr-TR/models.json +119 -126
  83. package/locales/tr-TR/plugin.json +2 -1
  84. package/locales/vi-VN/chat.json +20 -0
  85. package/locales/vi-VN/common.json +1 -0
  86. package/locales/vi-VN/components.json +6 -0
  87. package/locales/vi-VN/models.json +119 -126
  88. package/locales/vi-VN/plugin.json +2 -1
  89. package/locales/zh-CN/chat.json +20 -0
  90. package/locales/zh-CN/common.json +1 -0
  91. package/locales/zh-CN/components.json +6 -0
  92. package/locales/zh-CN/models.json +173 -80
  93. package/locales/zh-CN/plugin.json +2 -1
  94. package/locales/zh-TW/chat.json +20 -0
  95. package/locales/zh-TW/common.json +1 -0
  96. package/locales/zh-TW/components.json +6 -0
  97. package/locales/zh-TW/models.json +119 -126
  98. package/locales/zh-TW/plugin.json +2 -1
  99. package/package.json +1 -1
  100. package/packages/agent-runtime/src/core/InterventionChecker.ts +1 -1
  101. package/packages/agent-runtime/src/core/__tests__/InterventionChecker.test.ts +23 -23
  102. package/packages/agent-runtime/src/types/state.ts +7 -1
  103. package/packages/const/src/settings/tool.ts +1 -5
  104. package/packages/electron-client-ipc/src/types/localSystem.ts +26 -2
  105. package/packages/file-loaders/src/loaders/docx/index.ts +1 -1
  106. package/packages/model-bank/src/aiModels/wenxin.ts +1348 -291
  107. package/packages/model-runtime/src/core/contextBuilders/openai.test.ts +58 -0
  108. package/packages/model-runtime/src/core/contextBuilders/openai.ts +24 -10
  109. package/packages/model-runtime/src/core/openaiCompatibleFactory/index.ts +3 -2
  110. package/packages/model-runtime/src/providers/openai/index.test.ts +44 -0
  111. package/packages/model-runtime/src/providers/wenxin/index.ts +22 -1
  112. package/packages/model-runtime/src/utils/modelParse.ts +6 -0
  113. package/packages/types/src/tool/builtin.ts +15 -4
  114. package/packages/types/src/tool/intervention.ts +32 -2
  115. package/packages/types/src/user/settings/tool.ts +3 -27
  116. package/src/config/modelProviders/wenxin.ts +2 -3
  117. package/src/features/Conversation/MarkdownElements/remarkPlugins/__snapshots__/createRemarkSelfClosingTagPlugin.test.ts.snap +133 -0
  118. package/src/features/Conversation/MarkdownElements/remarkPlugins/createRemarkSelfClosingTagPlugin.test.ts +48 -0
  119. package/src/features/Conversation/MarkdownElements/remarkPlugins/createRemarkSelfClosingTagPlugin.ts +2 -1
  120. package/src/features/Conversation/Messages/Assistant/Tool/Render/LoadingPlaceholder/index.tsx +3 -3
  121. package/src/features/Conversation/Messages/Group/Tool/Render/Intervention/Fallback.tsx +98 -0
  122. package/src/features/Conversation/Messages/Group/Tool/Render/Intervention/ModeSelector.tsx +5 -6
  123. package/src/features/Conversation/Messages/Group/Tool/Render/Intervention/index.tsx +40 -36
  124. package/src/features/Conversation/Messages/Group/Tool/Render/LoadingPlaceholder/index.tsx +3 -3
  125. package/src/features/Conversation/Messages/Group/Tool/Render/index.tsx +25 -18
  126. package/src/features/LocalFile/LocalFile.tsx +55 -5
  127. package/src/features/PluginsUI/Render/BuiltinType/index.test.tsx +10 -4
  128. package/src/features/PluginsUI/Render/BuiltinType/index.tsx +2 -2
  129. package/src/locales/default/components.ts +6 -0
  130. package/src/locales/default/plugin.ts +2 -1
  131. package/src/services/chat/chat.test.ts +1 -0
  132. package/src/services/electron/localFileService.ts +4 -0
  133. package/src/store/aiInfra/slices/aiProvider/__tests__/selectors.test.ts +62 -0
  134. package/src/store/aiInfra/slices/aiProvider/selectors.ts +1 -1
  135. package/src/store/chat/agents/GeneralChatAgent.ts +26 -1
  136. package/src/store/chat/agents/__tests__/GeneralChatAgent.test.ts +173 -0
  137. package/src/store/chat/slices/aiChat/actions/conversationControl.ts +8 -40
  138. package/src/store/chat/slices/aiChat/actions/streamingExecutor.ts +91 -34
  139. package/src/store/user/selectors.ts +1 -0
  140. package/src/store/user/slices/settings/action.ts +12 -0
  141. package/src/store/user/slices/settings/selectors/__snapshots__/settings.test.ts.snap +0 -7
  142. package/src/store/user/slices/settings/selectors/index.ts +1 -0
  143. package/src/store/user/slices/settings/selectors/settings.test.ts +0 -37
  144. package/src/store/user/slices/settings/selectors/settings.ts +0 -5
  145. package/src/store/user/slices/settings/selectors/toolIntervention.ts +17 -0
  146. package/src/tools/code-interpreter/Render/index.tsx +1 -1
  147. package/src/tools/interventions.ts +32 -0
  148. package/src/tools/local-system/Intervention/RunCommand/index.tsx +56 -0
  149. package/src/tools/local-system/Placeholder/ListFiles.tsx +3 -5
  150. package/src/tools/local-system/Placeholder/SearchFiles.tsx +2 -5
  151. package/src/tools/local-system/Render/ListFiles/index.tsx +16 -21
  152. package/src/tools/local-system/Render/RenameLocalFile/index.tsx +15 -20
  153. package/src/tools/local-system/Render/RunCommand/index.tsx +103 -27
  154. package/src/tools/local-system/Render/SearchFiles/SearchQuery/index.tsx +0 -1
  155. package/src/tools/local-system/Render/SearchFiles/index.tsx +15 -20
  156. package/src/tools/local-system/Render/WriteFile/index.tsx +2 -8
  157. package/src/tools/local-system/index.ts +184 -4
  158. package/src/tools/local-system/systemRole.ts +62 -8
  159. package/src/tools/placeholders.ts +39 -8
  160. package/src/tools/renders.ts +56 -9
  161. package/src/tools/web-browsing/Placeholder/{PageContent.tsx → CrawlMultiPages.tsx} +4 -1
  162. package/src/tools/web-browsing/Placeholder/CrawlSinglePage.tsx +12 -0
  163. package/src/tools/web-browsing/Placeholder/Search.tsx +4 -4
  164. package/src/tools/web-browsing/Render/CrawlMultiPages.tsx +15 -0
  165. package/src/tools/web-browsing/Render/CrawlSinglePage.tsx +15 -0
  166. package/src/tools/web-browsing/Render/Search/index.tsx +39 -44
  167. package/packages/database/migrations/0044_add_tool_intervention.sql +0 -1
  168. package/src/tools/local-system/Placeholder/index.tsx +0 -25
  169. package/src/tools/local-system/Render/index.tsx +0 -40
  170. package/src/tools/web-browsing/Placeholder/index.tsx +0 -40
  171. package/src/tools/web-browsing/Render/index.tsx +0 -57
@@ -1049,6 +1049,9 @@
1049
1049
  "deepseek-r1-0528": {
1050
1050
  "description": "Modello completo da 685 miliardi di parametri, rilasciato il 28 maggio 2025. DeepSeek-R1 utilizza ampiamente tecniche di apprendimento rinforzato nella fase post-addestramento, migliorando notevolmente le capacità di ragionamento del modello con pochissimi dati annotati. Eccelle in matematica, programmazione, ragionamento in linguaggio naturale e altre attività."
1051
1051
  },
1052
+ "deepseek-r1-250528": {
1053
+ "description": "DeepSeek R1 250528, versione completa del modello di inferenza DeepSeek-R1, ideale per compiti complessi di matematica e logica."
1054
+ },
1052
1055
  "deepseek-r1-70b-fast-online": {
1053
1056
  "description": "DeepSeek R1 70B versione veloce, supporta la ricerca online in tempo reale, fornendo una velocità di risposta più rapida mantenendo le prestazioni del modello."
1054
1057
  },
@@ -1059,31 +1062,34 @@
1059
1062
  "description": "deepseek-r1-distill-llama è un modello derivato da Llama attraverso la distillazione di DeepSeek-R1."
1060
1063
  },
1061
1064
  "deepseek-r1-distill-llama-70b": {
1062
- "description": "DeepSeek R1 - il modello più grande e intelligente del pacchetto DeepSeek - è stato distillato nell'architettura Llama 70B. Basato su test di benchmark e valutazioni umane, questo modello è più intelligente del Llama 70B originale, mostrando prestazioni eccezionali in compiti che richiedono precisione matematica e fattuale."
1065
+ "description": "DeepSeek R1 Distill Llama 70B, modello distillato che unisce le capacità di inferenza R1 con l'ecosistema Llama."
1063
1066
  },
1064
1067
  "deepseek-r1-distill-llama-8b": {
1065
- "description": "Il modello della serie DeepSeek-R1-Distill è stato ottenuto tramite la tecnologia di distillazione della conoscenza, ottimizzando i campioni generati da DeepSeek-R1 su modelli open source come Qwen e Llama."
1068
+ "description": "DeepSeek-R1-Distill-Llama-8B è un grande modello linguistico distillato basato su Llama-3.1-8B, addestrato con output di DeepSeek R1."
1066
1069
  },
1067
- "deepseek-r1-distill-qianfan-llama-70b": {
1068
- "description": "Rilasciato per la prima volta il 14 febbraio 2025, distillato dal team di ricerca del grande modello Qianfan utilizzando Llama3_70B come modello base (costruito con Meta Llama), con l'aggiunta di dati di Qianfan nel set di dati di distillazione."
1070
+ "deepseek-r1-distill-qianfan-70b": {
1071
+ "description": "DeepSeek R1 Distill Qianfan 70B, modello distillato R1 basato su Qianfan-70B, con ottimo rapporto qualità-prezzo."
1069
1072
  },
1070
- "deepseek-r1-distill-qianfan-llama-8b": {
1071
- "description": "Rilasciato per la prima volta il 14 febbraio 2025, distillato dal team di ricerca del grande modello Qianfan utilizzando Llama3_8B come modello base (costruito con Meta Llama), con l'aggiunta di dati di Qianfan nel set di dati di distillazione."
1073
+ "deepseek-r1-distill-qianfan-8b": {
1074
+ "description": "DeepSeek R1 Distill Qianfan 8B, modello distillato R1 basato su Qianfan-8B, adatto per applicazioni di piccola e media scala."
1075
+ },
1076
+ "deepseek-r1-distill-qianfan-llama-70b": {
1077
+ "description": "DeepSeek R1 Distill Qianfan Llama 70B, modello distillato R1 basato su Llama-70B."
1072
1078
  },
1073
1079
  "deepseek-r1-distill-qwen": {
1074
1080
  "description": "deepseek-r1-distill-qwen è un modello distillato da Qwen basato su DeepSeek-R1."
1075
1081
  },
1076
1082
  "deepseek-r1-distill-qwen-1.5b": {
1077
- "description": "Il modello della serie DeepSeek-R1-Distill è stato ottenuto tramite la tecnologia di distillazione della conoscenza, ottimizzando i campioni generati da DeepSeek-R1 su modelli open source come Qwen e Llama."
1083
+ "description": "DeepSeek R1 Distill Qwen 1.5B, modello distillato R1 ultra-leggero, ideale per ambienti con risorse estremamente limitate."
1078
1084
  },
1079
1085
  "deepseek-r1-distill-qwen-14b": {
1080
- "description": "Il modello della serie DeepSeek-R1-Distill è stato ottenuto tramite la tecnologia di distillazione della conoscenza, ottimizzando i campioni generati da DeepSeek-R1 su modelli open source come Qwen e Llama."
1086
+ "description": "DeepSeek R1 Distill Qwen 14B, modello distillato R1 di media scala, adatto a molteplici scenari di distribuzione."
1081
1087
  },
1082
1088
  "deepseek-r1-distill-qwen-32b": {
1083
- "description": "Il modello della serie DeepSeek-R1-Distill è stato ottenuto tramite la tecnologia di distillazione della conoscenza, ottimizzando i campioni generati da DeepSeek-R1 su modelli open source come Qwen e Llama."
1089
+ "description": "DeepSeek R1 Distill Qwen 32B, modello distillato R1 basato su Qwen-32B, bilancia prestazioni e costi."
1084
1090
  },
1085
1091
  "deepseek-r1-distill-qwen-7b": {
1086
- "description": "Il modello della serie DeepSeek-R1-Distill è stato ottenuto tramite la tecnologia di distillazione della conoscenza, ottimizzando i campioni generati da DeepSeek-R1 su modelli open source come Qwen e Llama."
1092
+ "description": "DeepSeek R1 Distill Qwen 7B, modello distillato R1 leggero, adatto per ambienti edge e deployment aziendali privati."
1087
1093
  },
1088
1094
  "deepseek-r1-fast-online": {
1089
1095
  "description": "DeepSeek R1 versione veloce completa, supporta la ricerca online in tempo reale, combinando la potenza dei 671B parametri con una velocità di risposta più rapida."
@@ -1112,12 +1118,24 @@
1112
1118
  "deepseek-v3.1-terminus": {
1113
1119
  "description": "DeepSeek-V3.1-Terminus è una versione ottimizzata per dispositivi terminali del modello linguistico di grandi dimensioni sviluppato da DeepSeek."
1114
1120
  },
1121
+ "deepseek-v3.1-think-250821": {
1122
+ "description": "DeepSeek V3.1 Think 250821, modello di pensiero profondo corrispondente alla versione Terminus, ideale per scenari di inferenza ad alte prestazioni."
1123
+ },
1115
1124
  "deepseek-v3.1:671b": {
1116
1125
  "description": "DeepSeek V3.1: modello di inferenza di nuova generazione che migliora le capacità di ragionamento complesso e di pensiero a catena, adatto a compiti che richiedono analisi approfondite."
1117
1126
  },
1118
1127
  "deepseek-v3.2-exp": {
1119
1128
  "description": "deepseek-v3.2-exp introduce un meccanismo di attenzione sparsa, progettato per migliorare l'efficienza di addestramento e inferenza nel trattamento di testi lunghi, con un costo inferiore rispetto a deepseek-v3.1."
1120
1129
  },
1130
+ "deepseek-v3.2-think": {
1131
+ "description": "DeepSeek V3.2 Think, versione completa del modello di pensiero profondo, potenziato per il ragionamento su catene lunghe."
1132
+ },
1133
+ "deepseek-vl2": {
1134
+ "description": "DeepSeek VL2, modello multimodale che supporta la comprensione immagine-testo e il question answering visivo a grana fine."
1135
+ },
1136
+ "deepseek-vl2-small": {
1137
+ "description": "DeepSeek VL2 Small, versione multimodale leggera, adatta a scenari con risorse limitate e alta concorrenza."
1138
+ },
1121
1139
  "deepseek/deepseek-chat-v3-0324": {
1122
1140
  "description": "DeepSeek V3 è un modello misto esperto con 685B di parametri, l'ultima iterazione della serie di modelli di chat di punta del team DeepSeek.\n\nEredita il modello [DeepSeek V3](/deepseek/deepseek-chat-v3) e si comporta eccezionalmente in vari compiti."
1123
1141
  },
@@ -1253,83 +1271,89 @@
1253
1271
  "emohaa": {
1254
1272
  "description": "Emohaa è un modello psicologico, con capacità di consulenza professionale, aiuta gli utenti a comprendere i problemi emotivi."
1255
1273
  },
1256
- "ernie-3.5-128k": {
1257
- "description": "Il modello di linguaggio di grandi dimensioni di punta sviluppato internamente da Baidu, coprendo un'enorme quantità di dati in cinese e inglese, con forti capacità generali, in grado di soddisfare la maggior parte delle esigenze di domande e risposte, generazione creativa e scenari di applicazione di plugin; supporta l'integrazione automatica con il plugin di ricerca di Baidu, garantendo l'aggiornamento delle informazioni nelle risposte."
1258
- },
1259
- "ernie-3.5-8k": {
1260
- "description": "Il modello di linguaggio di grandi dimensioni di punta sviluppato internamente da Baidu, coprendo un'enorme quantità di dati in cinese e inglese, con forti capacità generali, in grado di soddisfare la maggior parte delle esigenze di domande e risposte, generazione creativa e scenari di applicazione di plugin; supporta l'integrazione automatica con il plugin di ricerca di Baidu, garantendo l'aggiornamento delle informazioni nelle risposte."
1261
- },
1262
- "ernie-3.5-8k-preview": {
1263
- "description": "Il modello di linguaggio di grandi dimensioni di punta sviluppato internamente da Baidu, coprendo un'enorme quantità di dati in cinese e inglese, con forti capacità generali, in grado di soddisfare la maggior parte delle esigenze di domande e risposte, generazione creativa e scenari di applicazione di plugin; supporta l'integrazione automatica con il plugin di ricerca di Baidu, garantendo l'aggiornamento delle informazioni nelle risposte."
1264
- },
1265
- "ernie-4.0-8k-latest": {
1266
- "description": "Il modello di linguaggio di grandi dimensioni di punta sviluppato internamente da Baidu, con un aggiornamento completo delle capacità rispetto a ERNIE 3.5, ampiamente applicabile a scenari di compiti complessi in vari campi; supporta l'integrazione automatica con il plugin di ricerca di Baidu, garantendo l'aggiornamento delle informazioni nelle risposte."
1267
- },
1268
- "ernie-4.0-8k-preview": {
1269
- "description": "Il modello di linguaggio di grandi dimensioni di punta sviluppato internamente da Baidu, con un aggiornamento completo delle capacità rispetto a ERNIE 3.5, ampiamente applicabile a scenari di compiti complessi in vari campi; supporta l'integrazione automatica con il plugin di ricerca di Baidu, garantendo l'aggiornamento delle informazioni nelle risposte."
1270
- },
1271
- "ernie-4.0-turbo-128k": {
1272
- "description": "Il modello di linguaggio di grandi dimensioni di punta sviluppato internamente da Baidu, con prestazioni complessive eccezionali, ampiamente applicabile a scenari di compiti complessi in vari campi; supporta l'integrazione automatica con il plugin di ricerca di Baidu, garantendo l'aggiornamento delle informazioni nelle risposte. Rispetto a ERNIE 4.0, offre prestazioni migliori."
1273
- },
1274
- "ernie-4.0-turbo-8k-latest": {
1275
- "description": "Il modello di linguaggio di grandi dimensioni di punta sviluppato internamente da Baidu, con prestazioni complessive eccezionali, ampiamente applicabile a scenari di compiti complessi in vari campi; supporta l'integrazione automatica con il plugin di ricerca di Baidu, garantendo l'aggiornamento delle informazioni nelle risposte. Rispetto a ERNIE 4.0, offre prestazioni migliori."
1276
- },
1277
- "ernie-4.0-turbo-8k-preview": {
1278
- "description": "Il modello di linguaggio di grandi dimensioni di punta sviluppato internamente da Baidu, con prestazioni complessive eccezionali, ampiamente applicabile a scenari di compiti complessi in vari campi; supporta l'integrazione automatica con il plugin di ricerca di Baidu, garantendo l'aggiornamento delle informazioni nelle risposte. Rispetto a ERNIE 4.0, offre prestazioni migliori."
1274
+ "ernie-4.5-0.3b": {
1275
+ "description": "ERNIE 4.5 0.3B, modello open source leggero, ideale per deployment locali e personalizzati."
1279
1276
  },
1280
1277
  "ernie-4.5-21b-a3b": {
1281
- "description": "ERNIE 4.5 21B A3B è un modello esperto ibrido sviluppato da Wenxin di Baidu, con eccellenti capacità di ragionamento e supporto multilingue."
1278
+ "description": "ERNIE 4.5 21B A3B, modello open source con parametri elevati, eccellente in compiti di comprensione e generazione."
1282
1279
  },
1283
1280
  "ernie-4.5-300b-a47b": {
1284
1281
  "description": "ERNIE 4.5 300B A47B è un modello esperto ibrido su larga scala sviluppato da Wenxin di Baidu, con prestazioni eccezionali nel ragionamento."
1285
1282
  },
1286
1283
  "ernie-4.5-8k-preview": {
1287
- "description": "Il modello di grandi dimensioni Wenxin 4.5 è una nuova generazione di modello di base multimodale sviluppato autonomamente da Baidu, realizzato attraverso la modellazione congiunta di più modalità per ottenere un'ottimizzazione collaborativa, con eccellenti capacità di comprensione multimodale; presenta capacità linguistiche più avanzate, con miglioramenti significativi nella comprensione, generazione, logica e memoria, riducendo le illusioni e migliorando il ragionamento logico e le capacità di codifica."
1284
+ "description": "ERNIE 4.5 8K Preview, modello di anteprima con contesto 8K, per testare e sperimentare le capacità di ERNIE 4.5."
1288
1285
  },
1289
1286
  "ernie-4.5-turbo-128k": {
1290
- "description": "ERNIE 4.5 Turbo ha mostrato miglioramenti significativi nella riduzione delle allucinazioni, nel ragionamento logico e nelle capacità di codifica. Rispetto a ERNIE 4.5, è più veloce e più economico. Le capacità del modello sono state ampliate per soddisfare meglio le esigenze di gestione di conversazioni lunghe e storiche e di domande e risposte su documenti lunghi."
1287
+ "description": "ERNIE 4.5 Turbo 128K, modello generico ad alte prestazioni, supporta ricerca potenziata e strumenti, adatto a Q&A, codice, agenti e altro."
1288
+ },
1289
+ "ernie-4.5-turbo-128k-preview": {
1290
+ "description": "ERNIE 4.5 Turbo 128K Preview, versione di anteprima con capacità equivalenti alla versione ufficiale, ideale per test e integrazione."
1291
1291
  },
1292
1292
  "ernie-4.5-turbo-32k": {
1293
- "description": "ERNIE 4.5 Turbo ha mostrato miglioramenti significativi nella riduzione delle allucinazioni, nel ragionamento logico e nelle capacità di codifica. Rispetto a ERNIE 4.5, è più veloce e più economico. Le capacità di creazione di testi e domande e risposte sono notevolmente migliorate. La lunghezza dell'output e il ritardo delle frasi complete sono aumentati rispetto a ERNIE 4.5."
1293
+ "description": "ERNIE 4.5 Turbo 32K, versione con contesto medio-lungo, adatta a Q&A, ricerca in knowledge base e dialoghi multi-turno."
1294
+ },
1295
+ "ernie-4.5-turbo-latest": {
1296
+ "description": "ERNIE 4.5 Turbo Ultima versione, ottimizzata per prestazioni generali, ideale come modello principale in ambienti di produzione."
1297
+ },
1298
+ "ernie-4.5-turbo-vl": {
1299
+ "description": "ERNIE 4.5 Turbo VL, modello multimodale maturo, adatto a compiti di comprensione e riconoscimento immagine-testo in produzione."
1294
1300
  },
1295
1301
  "ernie-4.5-turbo-vl-32k": {
1296
- "description": "Nuova versione del modello ERNIE, con capacità significativamente migliorate nella comprensione, creazione, traduzione e codifica delle immagini, supportando per la prima volta una lunghezza di contesto di 32K, con un ritardo del primo token notevolmente ridotto."
1302
+ "description": "ERNIE 4.5 Turbo VL 32K, versione multimodale per testi lunghi, adatta alla comprensione congiunta di documenti e immagini."
1303
+ },
1304
+ "ernie-4.5-turbo-vl-32k-preview": {
1305
+ "description": "ERNIE 4.5 Turbo VL 32K Preview, versione di anteprima multimodale 32K, utile per valutare le capacità visive su contesti lunghi."
1306
+ },
1307
+ "ernie-4.5-turbo-vl-latest": {
1308
+ "description": "ERNIE 4.5 Turbo VL Ultima versione, modello multimodale aggiornato, con migliori prestazioni in comprensione e ragionamento immagine-testo."
1309
+ },
1310
+ "ernie-4.5-turbo-vl-preview": {
1311
+ "description": "ERNIE 4.5 Turbo VL Preview, modello multimodale di anteprima, supporta comprensione e generazione immagine-testo, ideale per Q&A visivo e contenuti."
1312
+ },
1313
+ "ernie-4.5-vl-28b-a3b": {
1314
+ "description": "ERNIE 4.5 VL 28B A3B, modello multimodale open source, supporta compiti di comprensione e ragionamento immagine-testo."
1315
+ },
1316
+ "ernie-5.0-thinking-preview": {
1317
+ "description": "ERNIE 5.0 Thinking Preview, modello flagship nativo multimodale, supporta testo, immagini, audio e video, ideale per Q&A complessi, creazione e agenti intelligenti."
1297
1318
  },
1298
1319
  "ernie-char-8k": {
1299
- "description": "Un modello di linguaggio di grandi dimensioni sviluppato internamente da Baidu, adatto per scenari di applicazione come NPC nei giochi, dialoghi di assistenza clienti e interpretazione di ruoli nei dialoghi, con uno stile di personaggio più distintivo e coerente, capacità di seguire istruzioni più forti e prestazioni di inferenza migliori."
1320
+ "description": "ERNIE Character 8K, modello di dialogo con personalità, adatto alla creazione di personaggi IP e conversazioni a lungo termine."
1300
1321
  },
1301
1322
  "ernie-char-fiction-8k": {
1302
- "description": "Un modello di linguaggio di grandi dimensioni sviluppato internamente da Baidu, adatto per scenari di applicazione come NPC nei giochi, dialoghi di assistenza clienti e interpretazione di ruoli nei dialoghi, con uno stile di personaggio più distintivo e coerente, capacità di seguire istruzioni più forti e prestazioni di inferenza migliori."
1323
+ "description": "ERNIE Character Fiction 8K, modello di personalità per narrativa e creazione di trame, ideale per generazione di storie lunghe."
1324
+ },
1325
+ "ernie-char-fiction-8k-preview": {
1326
+ "description": "ERNIE Character Fiction 8K Preview, versione di anteprima per creazione di personaggi e trame, utile per test e valutazione."
1303
1327
  },
1304
1328
  "ernie-irag-edit": {
1305
- "description": "Il modello di editing immagini ERNIE iRAG sviluppato da Baidu supporta operazioni come cancellazione (erase), ridipintura (repaint) e variazione (variation) basate su immagini."
1329
+ "description": "ERNIE iRAG Edit, modello di editing immagini che supporta rimozione, ritocco e generazione di varianti."
1306
1330
  },
1307
1331
  "ernie-lite-8k": {
1308
- "description": "ERNIE Lite è un modello di linguaggio di grandi dimensioni sviluppato internamente da Baidu, che bilancia prestazioni eccellenti del modello e prestazioni di inferenza, adatto per l'uso con schede di accelerazione AI a bassa potenza."
1332
+ "description": "ERNIE Lite 8K, modello generico leggero, adatto a Q&A quotidiani e generazione di contenuti a basso costo."
1309
1333
  },
1310
1334
  "ernie-lite-pro-128k": {
1311
- "description": "Un modello di linguaggio di grandi dimensioni leggero sviluppato internamente da Baidu, che bilancia prestazioni eccellenti del modello e prestazioni di inferenza, con risultati migliori rispetto a ERNIE Lite, adatto per l'uso con schede di accelerazione AI a bassa potenza."
1335
+ "description": "ERNIE Lite Pro 128K, modello leggero ad alte prestazioni, ideale per scenari sensibili a latenza e costi."
1312
1336
  },
1313
1337
  "ernie-novel-8k": {
1314
- "description": "Un modello di linguaggio di grandi dimensioni sviluppato internamente da Baidu, con un evidente vantaggio nella capacità di continuare romanzi, utilizzabile anche in scenari come cortometraggi e film."
1338
+ "description": "ERNIE Novel 8K, modello per narrativa lunga e creazione di trame IP, eccelle in narrazione multi-personaggio e multi-trama."
1315
1339
  },
1316
1340
  "ernie-speed-128k": {
1317
- "description": "Il modello di linguaggio di grandi dimensioni ad alte prestazioni sviluppato internamente da Baidu, rilasciato nel 2024, con capacità generali eccellenti, adatto come modello di base per la messa a punto, per affrontare meglio i problemi specifici, mantenendo eccellenti prestazioni di inferenza."
1341
+ "description": "ERNIE Speed 128K, grande modello senza costi di I/O, adatto a comprensione di testi lunghi e test su larga scala."
1342
+ },
1343
+ "ernie-speed-8k": {
1344
+ "description": "ERNIE Speed 8K, modello gratuito e veloce, adatto a dialoghi quotidiani e compiti testuali leggeri."
1318
1345
  },
1319
1346
  "ernie-speed-pro-128k": {
1320
- "description": "Il modello di linguaggio di grandi dimensioni ad alte prestazioni sviluppato internamente da Baidu, rilasciato nel 2024, con capacità generali eccellenti, con risultati migliori rispetto a ERNIE Speed, adatto come modello di base per la messa a punto, per affrontare meglio i problemi specifici, mantenendo eccellenti prestazioni di inferenza."
1347
+ "description": "ERNIE Speed Pro 128K, modello ad alta concorrenza e ottimo rapporto qualità-prezzo, ideale per servizi online su larga scala e applicazioni aziendali."
1321
1348
  },
1322
1349
  "ernie-tiny-8k": {
1323
- "description": "ERNIE Tiny è un modello di linguaggio di grandi dimensioni ad alte prestazioni sviluppato internamente da Baidu, con i costi di distribuzione e messa a punto più bassi della serie Wencin."
1324
- },
1325
- "ernie-x1-32k": {
1326
- "description": "Possiede una comprensione, pianificazione, riflessione e capacità evolutive superiori. Come modello di pensiero profondo più completo, ERNIE-X1 combina accuratezza, creatività e stile, eccellendo in domande e risposte in cinese, creazione letteraria, scrittura di documenti, conversazioni quotidiane, ragionamento logico, calcoli complessi e utilizzo di strumenti."
1327
- },
1328
- "ernie-x1-32k-preview": {
1329
- "description": "Il grande modello Wénxīn X1 possiede una comprensione, pianificazione, riflessione e capacità evolutive superiori. Come modello di pensiero profondo più completo, Wénxīn X1 combina precisione, creatività e stile, eccellendo in domande e risposte in cinese, creazione letteraria, scrittura di documenti, conversazioni quotidiane, ragionamento logico, calcoli complessi e invocazione di strumenti."
1350
+ "description": "ERNIE Tiny 8K, modello ultra-leggero, adatto a Q&A semplici, classificazione e inferenza a basso costo."
1330
1351
  },
1331
1352
  "ernie-x1-turbo-32k": {
1332
- "description": "Rispetto a ERNIE-X1-32K, il modello offre prestazioni e risultati migliori."
1353
+ "description": "ERNIE X1 Turbo 32K, modello di pensiero veloce con contesto lungo 32K, adatto a ragionamento complesso e dialoghi multi-turno."
1354
+ },
1355
+ "ernie-x1.1-preview": {
1356
+ "description": "ERNIE X1.1 Preview, versione di anteprima del modello di pensiero ERNIE X1.1, utile per test e validazione delle capacità."
1333
1357
  },
1334
1358
  "fal-ai/bytedance/seedream/v4": {
1335
1359
  "description": "Il modello di generazione immagini Seedream 4.0, sviluppato dal team Seed di ByteDance, supporta input di testo e immagini, offrendo un'esperienza di generazione immagini altamente controllabile e di alta qualità. Genera immagini basate su prompt testuali."
@@ -1389,7 +1413,7 @@
1389
1413
  "description": "FLUX.1 [schnell], attualmente il modello open source più avanzato a pochi passaggi, supera non solo i concorrenti simili ma anche potenti modelli non raffinati come Midjourney v6.0 e DALL·E 3 (HD). Ottimizzato per mantenere tutta la diversità di output della fase di pre-addestramento, migliora significativamente qualità visiva, aderenza alle istruzioni, variazioni di dimensione/proporzione, gestione dei font e diversità di output rispetto ai modelli più avanzati sul mercato, offrendo un'esperienza creativa più ricca e variegata."
1390
1414
  },
1391
1415
  "flux.1-schnell": {
1392
- "description": "Trasformatore di flusso rettificato con 12 miliardi di parametri, capace di generare immagini basate su descrizioni testuali."
1416
+ "description": "FLUX.1-schnell, modello ad alte prestazioni per generazione di immagini, ideale per creare rapidamente immagini in vari stili."
1393
1417
  },
1394
1418
  "gemini-1.0-pro-001": {
1395
1419
  "description": "Gemini 1.0 Pro 001 (Tuning) offre prestazioni stabili e ottimizzabili, è la scelta ideale per soluzioni a compiti complessi."
@@ -1538,6 +1562,9 @@
1538
1562
  "glm-4-0520": {
1539
1563
  "description": "GLM-4-0520 è l'ultima versione del modello, progettata per compiti altamente complessi e diversificati, con prestazioni eccezionali."
1540
1564
  },
1565
+ "glm-4-32b-0414": {
1566
+ "description": "GLM-4 32B 0414, versione del modello generico della serie GLM, supporta generazione e comprensione testuale multi-task."
1567
+ },
1541
1568
  "glm-4-9b-chat": {
1542
1569
  "description": "GLM-4-9B-Chat offre prestazioni elevate in semantica, matematica, ragionamento, programmazione e conoscenza. Supporta anche la navigazione web, l'esecuzione di codice, l'invocazione di strumenti personalizzati e il ragionamento su testi lunghi. Supporta 26 lingue, tra cui giapponese, coreano e tedesco."
1543
1570
  },
@@ -2036,14 +2063,26 @@
2036
2063
  "internlm3-latest": {
2037
2064
  "description": "La nostra ultima serie di modelli, con prestazioni di inferenza eccezionali, è leader tra i modelli open source della stessa classe. Punta di default ai modelli della serie InternLM3 appena rilasciati."
2038
2065
  },
2066
+ "internvl2.5-38b-mpo": {
2067
+ "description": "InternVL2.5 38B MPO, modello multimodale pre-addestrato, supporta compiti complessi di ragionamento immagine-testo."
2068
+ },
2039
2069
  "internvl2.5-latest": {
2040
2070
  "description": "La versione InternVL2.5 che stiamo ancora mantenendo, offre prestazioni eccellenti e stabili. Punta di default al nostro ultimo modello della serie InternVL2.5, attualmente indirizzato a internvl2.5-78b."
2041
2071
  },
2072
+ "internvl3-14b": {
2073
+ "description": "InternVL3 14B, modello multimodale di media scala, bilancia prestazioni e costi."
2074
+ },
2075
+ "internvl3-1b": {
2076
+ "description": "InternVL3 1B, modello multimodale leggero, adatto a deployment in ambienti con risorse limitate."
2077
+ },
2078
+ "internvl3-38b": {
2079
+ "description": "InternVL3 38B, modello multimodale open source su larga scala, ideale per compiti di comprensione immagine-testo ad alta precisione."
2080
+ },
2042
2081
  "internvl3-latest": {
2043
2082
  "description": "Il nostro ultimo modello multimodale, con una maggiore capacità di comprensione delle immagini e del testo, e una comprensione delle immagini a lungo termine, offre prestazioni paragonabili ai migliori modelli closed-source. Punta di default al nostro ultimo modello della serie InternVL, attualmente indirizzato a internvl3-78b."
2044
2083
  },
2045
2084
  "irag-1.0": {
2046
- "description": "iRAG (image based RAG) sviluppato da Baidu è una tecnologia di generazione immagini da testo potenziata da retrieval, che combina risorse di miliardi di immagini di Baidu Search con potenti modelli di base per generare immagini ultra-realistiche, superando di gran lunga i sistemi nativi di generazione da testo a immagine, eliminando l'effetto artificiale AI e mantenendo bassi costi. iRAG è caratterizzato da assenza di allucinazioni, realismo estremo e risultati immediati."
2085
+ "description": "ERNIE iRAG, modello di generazione potenziata da ricerca visiva, supporta ricerca per immagine, retrieval immagine-testo e generazione di contenuti."
2047
2086
  },
2048
2087
  "jamba-large": {
2049
2088
  "description": "Il nostro modello più potente e avanzato, progettato per gestire compiti complessi a livello aziendale, con prestazioni eccezionali."
@@ -2064,7 +2103,7 @@
2064
2103
  "description": "Il modello kimi-k2-0905-preview ha una lunghezza di contesto di 256k, con capacità di Agentic Coding più forti, una migliore estetica e praticità del codice frontend, e una migliore comprensione del contesto."
2065
2104
  },
2066
2105
  "kimi-k2-instruct": {
2067
- "description": "Kimi K2 Instruct è un modello linguistico di grandi dimensioni sviluppato da Moonshot AI, con capacità avanzate di gestione di contesti molto estesi."
2106
+ "description": "Kimi K2 Instruct, modello ufficiale di inferenza Kimi, supporta contesto lungo, codice, Q&A e altri scenari."
2068
2107
  },
2069
2108
  "kimi-k2-turbo-preview": {
2070
2109
  "description": "kimi-k2 è un modello di base con architettura MoE che offre potenti capacità di programmazione e di agent, con 1T di parametri totali e 32B di parametri attivi. Nei benchmark delle principali categorie — ragionamento su conoscenze generali, programmazione, matematica e agent — il modello K2 supera gli altri modelli open source più diffusi."
@@ -2885,9 +2924,7 @@
2885
2924
  "qwen2.5-72b-instruct": {
2886
2925
  "description": "Modello da 72B di Tongyi Qwen 2.5, open source."
2887
2926
  },
2888
- "qwen2.5-7b-instruct": {
2889
- "description": "Modello da 7B di Tongyi Qwen 2.5, open source."
2890
- },
2927
+ "qwen2.5-7b-instruct": {},
2891
2928
  "qwen2.5-coder-1.5b-instruct": {
2892
2929
  "description": "Versione open-source del modello di codice Qwen."
2893
2930
  },
@@ -2918,15 +2955,11 @@
2918
2955
  "qwen2.5-omni-7b": {
2919
2956
  "description": "La serie di modelli Qwen-Omni supporta l'input di dati multimodali, inclusi video, audio, immagini e testo, e produce output audio e testo."
2920
2957
  },
2921
- "qwen2.5-vl-32b-instruct": {
2922
- "description": "La serie di modelli Qwen2.5-VL ha migliorato il livello di intelligenza, praticità e applicabilità del modello, rendendolo più performante in scenari come conversazioni naturali, creazione di contenuti, servizi di conoscenza specialistica e sviluppo di codice. La versione 32B utilizza tecniche di apprendimento rinforzato per ottimizzare il modello, offrendo uno stile di output più in linea con le preferenze umane, capacità di ragionamento per problemi matematici complessi e comprensione e ragionamento dettagliati di immagini rispetto ad altri modelli della serie Qwen2.5 VL."
2923
- },
2958
+ "qwen2.5-vl-32b-instruct": {},
2924
2959
  "qwen2.5-vl-72b-instruct": {
2925
2960
  "description": "Miglioramento complessivo nella seguire istruzioni, matematica, risoluzione di problemi e codice, con capacità di riconoscimento universale migliorate, supporto per formati diversi per il posizionamento preciso degli elementi visivi, comprensione di file video lunghi (fino a 10 minuti) e localizzazione di eventi in tempo reale, capacità di comprendere sequenze temporali e velocità, supporto per il controllo di agenti OS o Mobile basato su capacità di analisi e localizzazione, forte capacità di estrazione di informazioni chiave e output in formato Json, questa versione è la 72B, la versione più potente della serie."
2926
2961
  },
2927
- "qwen2.5-vl-7b-instruct": {
2928
- "description": "Miglioramento complessivo nella seguire istruzioni, matematica, risoluzione di problemi e codice, con capacità di riconoscimento universale migliorate, supporto per formati diversi per il posizionamento preciso degli elementi visivi, comprensione di file video lunghi (fino a 10 minuti) e localizzazione di eventi in tempo reale, capacità di comprendere sequenze temporali e velocità, supporto per il controllo di agenti OS o Mobile basato su capacità di analisi e localizzazione, forte capacità di estrazione di informazioni chiave e output in formato Json, questa versione è la 72B, la versione più potente della serie."
2929
- },
2962
+ "qwen2.5-vl-7b-instruct": {},
2930
2963
  "qwen2.5-vl-instruct": {
2931
2964
  "description": "Qwen2.5-VL è la versione più recente del modello visivo-linguistico della famiglia Qwen."
2932
2965
  },
@@ -2951,48 +2984,22 @@
2951
2984
  "qwen3": {
2952
2985
  "description": "Qwen3 è la nuova generazione di modelli linguistici su larga scala di Alibaba, che supporta una varietà di esigenze applicative con prestazioni eccellenti."
2953
2986
  },
2954
- "qwen3-0.6b": {
2955
- "description": "Qwen3 è un modello di nuova generazione con capacità notevolmente migliorate, raggiungendo livelli leader del settore in inferenza, generazione generale, agenti e multilinguismo, e supporta il passaggio tra modalità di pensiero."
2956
- },
2957
- "qwen3-1.7b": {
2958
- "description": "Qwen3 è un modello di nuova generazione con capacità notevolmente migliorate, raggiungendo livelli leader del settore in inferenza, generazione generale, agenti e multilinguismo, e supporta il passaggio tra modalità di pensiero."
2959
- },
2960
- "qwen3-14b": {
2961
- "description": "Qwen3 è un modello di nuova generazione con capacità notevolmente migliorate, raggiungendo livelli leader del settore in inferenza, generazione generale, agenti e multilinguismo, e supporta il passaggio tra modalità di pensiero."
2962
- },
2963
- "qwen3-235b-a22b": {
2964
- "description": "Qwen3 è un modello di nuova generazione con capacità notevolmente migliorate, raggiungendo livelli leader del settore in inferenza, generazione generale, agenti e multilinguismo, e supporta il passaggio tra modalità di pensiero."
2965
- },
2966
- "qwen3-235b-a22b-instruct-2507": {
2967
- "description": "Modello open source non pensante basato su Qwen3, con miglioramenti lievi nella creatività soggettiva e nella sicurezza rispetto alla versione precedente (Tongyi Qianwen 3-235B-A22B)."
2968
- },
2969
- "qwen3-235b-a22b-thinking-2507": {
2970
- "description": "Modello open source in modalità pensiero basato su Qwen3, con miglioramenti significativi in logica, capacità generali, potenziamento della conoscenza e creatività rispetto alla versione precedente (Tongyi Qianwen 3-235B-A22B), adatto a scenari di ragionamento complessi e impegnativi."
2971
- },
2972
- "qwen3-30b-a3b": {
2973
- "description": "Qwen3 è un modello di nuova generazione con capacità notevolmente migliorate, raggiungendo livelli leader del settore in inferenza, generazione generale, agenti e multilinguismo, e supporta il passaggio tra modalità di pensiero."
2974
- },
2975
- "qwen3-30b-a3b-instruct-2507": {
2976
- "description": "Rispetto alla versione precedente (Qwen3-30B-A3B), le capacità generali in cinese, inglese e multilingue sono state notevolmente migliorate. Ottimizzazione specifica per compiti soggettivi e aperti, con un allineamento molto più marcato alle preferenze degli utenti, in grado di fornire risposte più utili."
2977
- },
2978
- "qwen3-30b-a3b-thinking-2507": {
2979
- "description": "Modello open source in modalità pensante basato su Qwen3, che rispetto alla versione precedente (Tongyi Qianwen 3-30B-A3B) presenta miglioramenti significativi nelle capacità logiche, generali, di conoscenza e creative, adatto a scenari complessi che richiedono un ragionamento avanzato."
2980
- },
2981
- "qwen3-32b": {
2982
- "description": "Qwen3 è un modello di nuova generazione con capacità notevolmente migliorate, raggiungendo livelli leader del settore in inferenza, generazione generale, agenti e multilinguismo, e supporta il passaggio tra modalità di pensiero."
2983
- },
2984
- "qwen3-4b": {
2985
- "description": "Qwen3 è un modello di nuova generazione con capacità notevolmente migliorate, raggiungendo livelli leader del settore in inferenza, generazione generale, agenti e multilinguismo, e supporta il passaggio tra modalità di pensiero."
2986
- },
2987
- "qwen3-8b": {
2988
- "description": "Qwen3 è un modello di nuova generazione con capacità notevolmente migliorate, raggiungendo livelli leader del settore in inferenza, generazione generale, agenti e multilinguismo, e supporta il passaggio tra modalità di pensiero."
2989
- },
2987
+ "qwen3-0.6b": {},
2988
+ "qwen3-1.7b": {},
2989
+ "qwen3-14b": {},
2990
+ "qwen3-235b-a22b": {},
2991
+ "qwen3-235b-a22b-instruct-2507": {},
2992
+ "qwen3-235b-a22b-thinking-2507": {},
2993
+ "qwen3-30b-a3b": {},
2994
+ "qwen3-30b-a3b-instruct-2507": {},
2995
+ "qwen3-30b-a3b-thinking-2507": {},
2996
+ "qwen3-32b": {},
2997
+ "qwen3-4b": {},
2998
+ "qwen3-8b": {},
2990
2999
  "qwen3-coder-30b-a3b-instruct": {
2991
3000
  "description": "Versione open source del modello di codifica Tongyi Qianwen. Il nuovo qwen3-coder-30b-a3b-instruct, basato su Qwen3, è un modello di generazione di codice con potenti capacità da Coding Agent, eccellente nell'uso di strumenti e interazione con ambienti, in grado di programmare autonomamente con elevate competenze generali."
2992
3001
  },
2993
- "qwen3-coder-480b-a35b-instruct": {
2994
- "description": "Versione open source del modello di codice Tongyi Qianwen. L'ultimo qwen3-coder-480b-a35b-instruct è un modello di generazione codice basato su Qwen3, con potenti capacità di Coding Agent, esperto nell'uso di strumenti e interazione ambientale, capace di programmazione autonoma con eccellenti capacità di codice e capacità generali."
2995
- },
3002
+ "qwen3-coder-480b-a35b-instruct": {},
2996
3003
  "qwen3-coder-flash": {
2997
3004
  "description": "Modello di codice Tongyi Qianwen. L'ultima serie di modelli Qwen3-Coder si basa su Qwen3 per la generazione di codice, con potenti capacità di Coding Agent, eccellente nell'invocazione di strumenti e interazione con l'ambiente, in grado di programmare autonomamente, con capacità di codice eccezionali e abilità generali."
2998
3005
  },
@@ -3008,30 +3015,16 @@
3008
3015
  "qwen3-next-80b-a3b-instruct": {
3009
3016
  "description": "Modello open source di nuova generazione basato su Qwen3 in modalità non riflessiva, con una migliore comprensione del testo in cinese rispetto alla versione precedente (Tongyi Qianwen 3-235B-A22B-Instruct-2507), capacità di ragionamento logico potenziate e prestazioni superiori nelle attività di generazione di testo."
3010
3017
  },
3011
- "qwen3-next-80b-a3b-thinking": {
3012
- "description": "Modello open source di nuova generazione basato su Qwen3 in modalità riflessiva, con migliorata capacità di seguire le istruzioni rispetto alla versione precedente (Tongyi Qianwen 3-235B-A22B-Thinking-2507) e risposte di sintesi più concise."
3013
- },
3018
+ "qwen3-next-80b-a3b-thinking": {},
3014
3019
  "qwen3-omni-flash": {
3015
3020
  "description": "Il modello Qwen-Omni accetta input multimodali combinati come testo, immagini, audio e video, generando risposte in forma testuale o vocale. Offre voci sintetiche realistiche, supporta più lingue e dialetti, ed è adatto a scenari come creazione di contenuti, riconoscimento visivo e assistenti vocali."
3016
3021
  },
3017
- "qwen3-vl-235b-a22b-instruct": {
3018
- "description": "Qwen3 VL 235B A22B in modalità non pensante (Instruct), ideale per scenari di istruzioni semplici, mantenendo una forte capacità di comprensione visiva."
3019
- },
3020
- "qwen3-vl-235b-a22b-thinking": {
3021
- "description": "Qwen3 VL 235B A22B in modalità pensante (versione open source), progettato per scenari complessi che richiedono ragionamento avanzato e comprensione di video lunghi, con capacità di ragionamento visivo e testuale di livello superiore."
3022
- },
3023
- "qwen3-vl-30b-a3b-instruct": {
3024
- "description": "Qwen3 VL 30B in modalità non pensante (Instruct), adatto a scenari di istruzioni generali, con buone capacità di comprensione e generazione multimodale."
3025
- },
3026
- "qwen3-vl-30b-a3b-thinking": {
3027
- "description": "Qwen-VL (versione open source) offre capacità di comprensione visiva e generazione testuale, supporta interazione con agenti intelligenti, codifica visiva, percezione spaziale, comprensione di video lunghi e pensiero profondo, con eccellenti prestazioni in riconoscimento testuale e supporto multilingue in scenari complessi."
3028
- },
3029
- "qwen3-vl-8b-instruct": {
3030
- "description": "Qwen3 VL 8B in modalità non pensante (Instruct), adatto a compiti multimodali comuni di generazione e riconoscimento."
3031
- },
3032
- "qwen3-vl-8b-thinking": {
3033
- "description": "Qwen3 VL 8B in modalità pensante, progettato per scenari leggeri di ragionamento e interazione multimodale, mantenendo la capacità di comprensione di contesti estesi."
3034
- },
3022
+ "qwen3-vl-235b-a22b-instruct": {},
3023
+ "qwen3-vl-235b-a22b-thinking": {},
3024
+ "qwen3-vl-30b-a3b-instruct": {},
3025
+ "qwen3-vl-30b-a3b-thinking": {},
3026
+ "qwen3-vl-8b-instruct": {},
3027
+ "qwen3-vl-8b-thinking": {},
3035
3028
  "qwen3-vl-flash": {
3036
3029
  "description": "Qwen3 VL Flash: versione leggera e ad alta velocità di ragionamento, ideale per scenari sensibili alla latenza o con richieste su larga scala."
3037
3030
  },
@@ -255,10 +255,11 @@
255
255
  "moveLocalFiles": "Sposta file",
256
256
  "readLocalFile": "Leggi contenuto file",
257
257
  "renameLocalFile": "Rinomina",
258
+ "runCommand": "Esegui codice",
258
259
  "searchLocalFiles": "Cerca file",
259
260
  "writeLocalFile": "Scrivi file"
260
261
  },
261
- "title": "File locali"
262
+ "title": "Sistema locale"
262
263
  },
263
264
  "mcpInstall": {
264
265
  "CHECKING_INSTALLATION": "Verifica ambiente di installazione...",
@@ -369,6 +369,26 @@
369
369
  "remained": "残り",
370
370
  "used": "使用済み"
371
371
  },
372
+ "tool": {
373
+ "intervention": {
374
+ "approve": "承認",
375
+ "approveAndRemember": "承認して記憶する",
376
+ "approveOnce": "今回のみ承認",
377
+ "mode": {
378
+ "allowList": "ホワイトリスト",
379
+ "allowListDesc": "承認されたツールのみ自動実行されます",
380
+ "autoRun": "自動承認",
381
+ "autoRunDesc": "すべてのツール実行を自動的に承認します",
382
+ "manual": "手動",
383
+ "manualDesc": "毎回の呼び出しに手動承認が必要です"
384
+ },
385
+ "reject": "拒否",
386
+ "rejectReasonPlaceholder": "拒否理由を入力すると、エージェントが理解し今後の行動を最適化するのに役立ちます",
387
+ "rejectTitle": "今回のツール呼び出しを拒否",
388
+ "rejectedWithReason": "今回のツール呼び出しは次の理由で拒否されました:{{reason}}",
389
+ "toolRejected": "今回のツール呼び出しは拒否されました"
390
+ }
391
+ },
372
392
  "topic": {
373
393
  "checkOpenNewTopic": "新しいトピックを開始しますか?",
374
394
  "checkSaveCurrentMessages": "現在の会話をトピックとして保存しますか?",
@@ -135,6 +135,7 @@
135
135
  }
136
136
  },
137
137
  "close": "閉じる",
138
+ "confirm": "確認",
138
139
  "contact": "お問い合わせ",
139
140
  "copy": "コピー",
140
141
  "copyFail": "コピーに失敗しました",
@@ -106,6 +106,12 @@
106
106
  "keyPlaceholder": "キー",
107
107
  "valuePlaceholder": "値"
108
108
  },
109
+ "LocalFile": {
110
+ "action": {
111
+ "open": "開く",
112
+ "showInFolder": "フォルダーで表示"
113
+ }
114
+ },
109
115
  "MaxTokenSlider": {
110
116
  "unlimited": "無制限"
111
117
  },