@lobehub/chat 1.98.0 → 1.98.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/locales/ar/models.json +36 -9
- package/locales/bg-BG/models.json +36 -9
- package/locales/de-DE/models.json +36 -9
- package/locales/en-US/models.json +36 -9
- package/locales/es-ES/models.json +36 -9
- package/locales/fa-IR/models.json +36 -9
- package/locales/fr-FR/models.json +36 -9
- package/locales/it-IT/models.json +36 -9
- package/locales/ja-JP/models.json +36 -9
- package/locales/ko-KR/models.json +36 -9
- package/locales/nl-NL/models.json +36 -9
- package/locales/pl-PL/models.json +36 -9
- package/locales/pt-BR/models.json +36 -9
- package/locales/ru-RU/models.json +36 -9
- package/locales/tr-TR/models.json +36 -9
- package/locales/vi-VN/models.json +36 -9
- package/locales/zh-CN/models.json +36 -9
- package/locales/zh-TW/models.json +36 -9
- package/package.json +1 -1
- package/src/app/[variants]/(main)/discover/(list)/(home)/page.tsx +4 -4
package/CHANGELOG.md
CHANGED
@@ -2,6 +2,56 @@
|
|
2
2
|
|
3
3
|
# Changelog
|
4
4
|
|
5
|
+
### [Version 1.98.2](https://github.com/lobehub/lobe-chat/compare/v1.98.1...v1.98.2)
|
6
|
+
|
7
|
+
<sup>Released on **2025-07-14**</sup>
|
8
|
+
|
9
|
+
#### 💄 Styles
|
10
|
+
|
11
|
+
- **misc**: Update i18n.
|
12
|
+
|
13
|
+
<br/>
|
14
|
+
|
15
|
+
<details>
|
16
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
17
|
+
|
18
|
+
#### Styles
|
19
|
+
|
20
|
+
- **misc**: Update i18n, closes [#8422](https://github.com/lobehub/lobe-chat/issues/8422) ([5b89ec8](https://github.com/lobehub/lobe-chat/commit/5b89ec8))
|
21
|
+
|
22
|
+
</details>
|
23
|
+
|
24
|
+
<div align="right">
|
25
|
+
|
26
|
+
[](#readme-top)
|
27
|
+
|
28
|
+
</div>
|
29
|
+
|
30
|
+
### [Version 1.98.1](https://github.com/lobehub/lobe-chat/compare/v1.98.0...v1.98.1)
|
31
|
+
|
32
|
+
<sup>Released on **2025-07-14**</sup>
|
33
|
+
|
34
|
+
#### 💄 Styles
|
35
|
+
|
36
|
+
- **misc**: Fix discover translation.
|
37
|
+
|
38
|
+
<br/>
|
39
|
+
|
40
|
+
<details>
|
41
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
42
|
+
|
43
|
+
#### Styles
|
44
|
+
|
45
|
+
- **misc**: Fix discover translation, closes [#8423](https://github.com/lobehub/lobe-chat/issues/8423) ([15ae35c](https://github.com/lobehub/lobe-chat/commit/15ae35c))
|
46
|
+
|
47
|
+
</details>
|
48
|
+
|
49
|
+
<div align="right">
|
50
|
+
|
51
|
+
[](#readme-top)
|
52
|
+
|
53
|
+
</div>
|
54
|
+
|
5
55
|
## [Version 1.98.0](https://github.com/lobehub/lobe-chat/compare/v1.97.17...v1.98.0)
|
6
56
|
|
7
57
|
<sup>Released on **2025-07-13**</sup>
|
package/changelog/v1.json
CHANGED
@@ -1,4 +1,22 @@
|
|
1
1
|
[
|
2
|
+
{
|
3
|
+
"children": {
|
4
|
+
"improvements": [
|
5
|
+
"Update i18n."
|
6
|
+
]
|
7
|
+
},
|
8
|
+
"date": "2025-07-14",
|
9
|
+
"version": "1.98.2"
|
10
|
+
},
|
11
|
+
{
|
12
|
+
"children": {
|
13
|
+
"improvements": [
|
14
|
+
"Fix discover translation."
|
15
|
+
]
|
16
|
+
},
|
17
|
+
"date": "2025-07-14",
|
18
|
+
"version": "1.98.1"
|
19
|
+
},
|
2
20
|
{
|
3
21
|
"children": {
|
4
22
|
"features": [
|
package/locales/ar/models.json
CHANGED
@@ -203,24 +203,21 @@
|
|
203
203
|
"Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
|
204
204
|
"description": "Qwen2.5-VL هو العضو الجديد في سلسلة Qwen، يتمتع بقدرات فهم بصري قوية، يمكنه تحليل النصوص والرسوم البيانية والتخطيطات في الصور، وفهم مقاطع الفيديو الطويلة واستيعاب الأحداث. بإمكانه القيام بالاستدلال والتعامل مع الأدوات، يدعم تحديد الكائنات متعددة التنسيقات وإنشاء مخرجات منظمة، كما تم تحسين ديناميكية الدقة ومعدل الإطارات في التدريب لفهم الفيديو، مع تعزيز كفاءة مشفر الرؤية."
|
205
205
|
},
|
206
|
+
"Pro/THUDM/GLM-4.1V-9B-Thinking": {
|
207
|
+
"description": "GLM-4.1V-9B-Thinking هو نموذج لغة بصري مفتوح المصدر (VLM) تم إصداره بشكل مشترك من قبل Zhizhu AI ومختبر KEG بجامعة تسينغهوا، مصمم خصيصًا لمعالجة المهام الإدراكية متعددة الوسائط المعقدة. يعتمد النموذج على النموذج الأساسي GLM-4-9B-0414، ومن خلال إدخال آلية الاستدلال \"سلسلة التفكير\" (Chain-of-Thought) واستخدام استراتيجيات التعلم المعزز، تم تحسين قدرته على الاستدلال عبر الوسائط واستقراره بشكل ملحوظ."
|
208
|
+
},
|
206
209
|
"Pro/THUDM/glm-4-9b-chat": {
|
207
210
|
"description": "GLM-4-9B-Chat هو الإصدار مفتوح المصدر من نموذج GLM-4 الذي أطلقته Zhizhu AI. أظهر هذا النموذج أداءً ممتازًا في مجالات الدلالات، والرياضيات، والاستدلال، والشيفرة، والمعرفة. بالإضافة إلى دعم المحادثات متعددة الجولات، يتمتع GLM-4-9B-Chat أيضًا بميزات متقدمة مثل تصفح الويب، وتنفيذ الشيفرة، واستدعاء الأدوات المخصصة (Function Call)، والاستدلال على النصوص الطويلة. يدعم النموذج 26 لغة، بما في ذلك الصينية، والإنجليزية، واليابانية، والكورية، والألمانية. أظهر GLM-4-9B-Chat أداءً ممتازًا في العديد من اختبارات المعايير مثل AlignBench-v2 وMT-Bench وMMLU وC-Eval. يدعم النموذج طول سياق يصل إلى 128K، مما يجعله مناسبًا للأبحاث الأكاديمية والتطبيقات التجارية."
|
208
211
|
},
|
209
212
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
210
213
|
"description": "DeepSeek-R1 هو نموذج استدلال مدفوع بالتعلم المعزز (RL)، يعالج مشكلات التكرار وقابلية القراءة في النموذج. قبل التعلم المعزز، أدخل DeepSeek-R1 بيانات بدء التشغيل الباردة، مما أدى إلى تحسين أداء الاستدلال. إنه يتفوق في المهام الرياضية، والبرمجة، والاستدلال مقارنةً بـ OpenAI-o1، وقد حسّن الأداء العام من خلال طرق تدريب مصممة بعناية."
|
211
214
|
},
|
212
|
-
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
213
|
-
"description": "DeepSeek-R1 هو نموذج استدلال مدفوع بالتعلم المعزز (RL)، يعالج مشاكل التكرار وقابلية القراءة في النماذج. قبل التعلم المعزز، أدخل DeepSeek-R1 بيانات بدء باردة لتحسين أداء الاستدلال. يظهر أداءً مماثلًا لـ OpenAI-o1 في مهام الرياضيات، البرمجة، والاستدلال، مع تحسينات شاملة بفضل طرق التدريب المصممة بعناية."
|
214
|
-
},
|
215
215
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
216
216
|
"description": "DeepSeek-R1-Distill-Qwen-7B هو نموذج تم الحصول عليه من خلال تقطير المعرفة بناءً على Qwen2.5-Math-7B. تم ضبط هذا النموذج باستخدام 800 ألف عينة مختارة تم إنشاؤها بواسطة DeepSeek-R1، مما يظهر قدرات استدلالية ممتازة. أظهر أداءً متميزًا في العديد من الاختبارات المعيارية، حيث حقق دقة 92.8٪ في MATH-500، ومعدل نجاح 55.5٪ في AIME 2024، ودرجة 1189 في CodeForces، مما يظهر قدرات قوية في الرياضيات والبرمجة كنموذج بحجم 7B."
|
217
217
|
},
|
218
218
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
219
219
|
"description": "DeepSeek-V3 هو نموذج لغوي مختلط الخبراء (MoE) يحتوي على 6710 مليار معلمة، يستخدم الانتباه المتعدد الرؤوس (MLA) وهيكل DeepSeekMoE، ويجمع بين استراتيجيات توازن الحمل بدون خسائر مساعدة، مما يحسن كفاءة الاستدلال والتدريب. تم تدريبه مسبقًا على 14.8 تريليون توكن عالية الجودة، وتم إجراء تعديل دقيق تحت الإشراف والتعلم المعزز، مما يجعل DeepSeek-V3 يتفوق على نماذج مفتوحة المصدر الأخرى، ويقترب من النماذج المغلقة الرائدة."
|
220
220
|
},
|
221
|
-
"Pro/deepseek-ai/DeepSeek-V3-1226": {
|
222
|
-
"description": "DeepSeek-V3 هو نموذج لغوي مختلط الخبراء (MoE) يحتوي على 6710 مليار معلمة، ويستخدم الانتباه المتعدد الرؤوس (MLA) وبنية DeepSeekMoE، مع دمج استراتيجية توازن الحمل بدون خسارة مساعدة، لتحسين كفاءة الاستدلال والتدريب. تم تدريبه مسبقًا على 14.8 تريليون توكن عالي الجودة، وتمت معالجته من خلال التعديل الإشرافي والتعلم المعزز، يتفوق DeepSeek-V3 في الأداء على النماذج مفتوحة المصدر الأخرى، ويقترب من النماذج المغلقة الرائدة."
|
223
|
-
},
|
224
221
|
"QwQ-32B-Preview": {
|
225
222
|
"description": "QwQ-32B-Preview هو نموذج معالجة اللغة الطبيعية المبتكر، قادر على معالجة مهام توليد الحوار وفهم السياق بشكل فعال."
|
226
223
|
},
|
@@ -383,6 +380,9 @@
|
|
383
380
|
"THUDM/GLM-4-9B-0414": {
|
384
381
|
"description": "GLM-4-9B-0414 هو نموذج صغير من سلسلة GLM، يحتوي على 9 مليار معلمة. يرث هذا النموذج الخصائص التقنية من سلسلة GLM-4-32B، لكنه يوفر خيارات نشر أخف. على الرغم من حجمه الصغير، لا يزال GLM-4-9B-0414 يظهر قدرة ممتازة في توليد الأكواد، تصميم الويب، توليد الرسوم البيانية SVG، والكتابة المعتمدة على البحث."
|
385
382
|
},
|
383
|
+
"THUDM/GLM-4.1V-9B-Thinking": {
|
384
|
+
"description": "GLM-4.1V-9B-Thinking هو نموذج لغة بصري مفتوح المصدر (VLM) تم إصداره بشكل مشترك من قبل Zhizhu AI ومختبر KEG بجامعة تسينغهوا، مصمم خصيصًا لمعالجة المهام الإدراكية متعددة الوسائط المعقدة. يعتمد النموذج على النموذج الأساسي GLM-4-9B-0414، ومن خلال إدخال آلية الاستدلال \"سلسلة التفكير\" (Chain-of-Thought) واستخدام استراتيجيات التعلم المعزز، تم تحسين قدرته على الاستدلال عبر الوسائط واستقراره بشكل ملحوظ."
|
385
|
+
},
|
386
386
|
"THUDM/GLM-Z1-32B-0414": {
|
387
387
|
"description": "GLM-Z1-32B-0414 هو نموذج استدلال يتمتع بقدرة على التفكير العميق. تم تطوير هذا النموذج بناءً على GLM-4-32B-0414 من خلال بدء التشغيل البارد وتعزيز التعلم، وتم تدريبه بشكل إضافي في المهام الرياضية، البرمجية، والمنطقية. مقارنة بالنموذج الأساسي، حقق GLM-Z1-32B-0414 تحسينًا ملحوظًا في القدرة الرياضية وحل المهام المعقدة."
|
388
388
|
},
|
@@ -539,6 +539,9 @@
|
|
539
539
|
"anthropic/claude-sonnet-4": {
|
540
540
|
"description": "كلود سونيت 4 يمكنه إنتاج استجابات شبه فورية أو تفكير تدريجي مطول، حيث يمكن للمستخدمين رؤية هذه العمليات بوضوح. كما يمكن لمستخدمي API التحكم بدقة في مدة تفكير النموذج."
|
541
541
|
},
|
542
|
+
"ascend-tribe/pangu-pro-moe": {
|
543
|
+
"description": "Pangu-Pro-MoE 72B-A16B هو نموذج لغة ضخم نادر التنشيط يحتوي على 72 مليار معلمة و16 مليار معلمة نشطة، يعتمد على بنية الخبراء المختلطين المجمعة (MoGE). في مرحلة اختيار الخبراء، يتم تجميع الخبراء وتقيد تنشيط عدد متساوٍ من الخبراء داخل كل مجموعة لكل رمز، مما يحقق توازنًا في تحميل الخبراء ويعزز بشكل كبير كفاءة نشر النموذج على منصة Ascend."
|
544
|
+
},
|
542
545
|
"aya": {
|
543
546
|
"description": "Aya 23 هو نموذج متعدد اللغات أطلقته Cohere، يدعم 23 لغة، مما يسهل التطبيقات اللغوية المتنوعة."
|
544
547
|
},
|
@@ -548,6 +551,9 @@
|
|
548
551
|
"baichuan/baichuan2-13b-chat": {
|
549
552
|
"description": "Baichuan-13B هو نموذج لغوي كبير مفتوح المصدر قابل للاستخدام التجاري تم تطويره بواسطة Baichuan Intelligence، ويحتوي على 13 مليار معلمة، وقد حقق أفضل النتائج في المعايير الصينية والإنجليزية."
|
550
553
|
},
|
554
|
+
"baidu/ERNIE-4.5-300B-A47B": {
|
555
|
+
"description": "ERNIE-4.5-300B-A47B هو نموذج لغة ضخم يعتمد على بنية الخبراء المختلطين (MoE) تم تطويره بواسطة شركة بايدو. يحتوي النموذج على 300 مليار معلمة إجمالاً، لكنه ينشط فقط 47 مليار معلمة لكل رمز أثناء الاستدلال، مما يوازن بين الأداء القوي والكفاءة الحسابية. كأحد النماذج الأساسية في سلسلة ERNIE 4.5، يظهر أداءً متميزًا في مهام فهم النصوص، التوليد، الاستدلال، والبرمجة. يستخدم النموذج طريقة تدريب مسبق مبتكرة متعددة الوسائط ومتغايرة تعتمد على MoE، من خلال التدريب المشترك للنصوص والوسائط البصرية، مما يعزز قدراته الشاملة، خاصة في الالتزام بالتعليمات وتذكر المعرفة العالمية."
|
556
|
+
},
|
551
557
|
"c4ai-aya-expanse-32b": {
|
552
558
|
"description": "Aya Expanse هو نموذج متعدد اللغات عالي الأداء بسعة 32B، يهدف إلى تحدي أداء النماذج أحادية اللغة من خلال تحسين التعليمات، وتداول البيانات، وتدريب التفضيلات، وابتكارات دمج النماذج. يدعم 23 لغة."
|
553
559
|
},
|
@@ -1097,9 +1103,6 @@
|
|
1097
1103
|
"gemini-2.5-pro": {
|
1098
1104
|
"description": "Gemini 2.5 Pro هو نموذج التفكير الأكثر تقدمًا من Google، قادر على استدلال المشكلات المعقدة في البرمجة والرياضيات ومجالات STEM، بالإضافة إلى تحليل مجموعات البيانات الكبيرة ومستودعات الأكواد والوثائق باستخدام سياق طويل."
|
1099
1105
|
},
|
1100
|
-
"gemini-2.5-pro-exp-03-25": {
|
1101
|
-
"description": "نموذج Gemini 2.5 Pro التجريبي هو الأكثر تقدمًا من Google، قادر على استنتاج المشكلات المعقدة في البرمجة والرياضيات وعلوم STEM، بالإضافة إلى تحليل مجموعات البيانات الكبيرة ومكتبات الشيفرات والمستندات باستخدام سياقات طويلة."
|
1102
|
-
},
|
1103
1106
|
"gemini-2.5-pro-preview-03-25": {
|
1104
1107
|
"description": "معاينة Gemini 2.5 Pro هي نموذج التفكير الأكثر تقدمًا من Google، قادر على الاستدلال حول الشيفرات، الرياضيات، والمشكلات المعقدة في مجالات STEM، بالإضافة إلى تحليل مجموعات البيانات الكبيرة، مكتبات الشيفرات، والمستندات باستخدام سياقات طويلة."
|
1105
1108
|
},
|
@@ -1166,6 +1169,12 @@
|
|
1166
1169
|
"glm-4-plus": {
|
1167
1170
|
"description": "GLM-4-Plus كنموذج رائد ذكي، يتمتع بقدرات قوية في معالجة النصوص الطويلة والمهام المعقدة، مع تحسين شامل في الأداء."
|
1168
1171
|
},
|
1172
|
+
"glm-4.1v-thinking-flash": {
|
1173
|
+
"description": "سلسلة نماذج GLM-4.1V-Thinking هي أقوى نماذج اللغة البصرية المعروفة على مستوى 10 مليارات معلمة، وتدمج مهام اللغة البصرية المتقدمة من نفس المستوى، بما في ذلك فهم الفيديو، الأسئلة والأجوبة على الصور، حل المسائل العلمية، التعرف على النصوص OCR، تفسير الوثائق والرسوم البيانية، وكلاء واجهة المستخدم الرسومية، ترميز صفحات الويب الأمامية، والتثبيت الأرضي، وغيرها. تتفوق قدرات هذه المهام على نموذج Qwen2.5-VL-72B الذي يحتوي على أكثر من 8 أضعاف عدد المعلمات. من خلال تقنيات التعلم المعزز الرائدة، يتقن النموذج تحسين دقة وإثراء الإجابات عبر استدلال سلسلة التفكير، متفوقًا بشكل ملحوظ على النماذج التقليدية غير المعتمدة على التفكير من حيث النتائج النهائية وقابلية التفسير."
|
1174
|
+
},
|
1175
|
+
"glm-4.1v-thinking-flashx": {
|
1176
|
+
"description": "سلسلة نماذج GLM-4.1V-Thinking هي أقوى نماذج اللغة البصرية المعروفة على مستوى 10 مليارات معلمة، وتدمج مهام اللغة البصرية المتقدمة من نفس المستوى، بما في ذلك فهم الفيديو، الأسئلة والأجوبة على الصور، حل المسائل العلمية، التعرف على النصوص OCR، تفسير الوثائق والرسوم البيانية، وكلاء واجهة المستخدم الرسومية، ترميز صفحات الويب الأمامية، والتثبيت الأرضي، وغيرها. تتفوق قدرات هذه المهام على نموذج Qwen2.5-VL-72B الذي يحتوي على أكثر من 8 أضعاف عدد المعلمات. من خلال تقنيات التعلم المعزز الرائدة، يتقن النموذج تحسين دقة وإثراء الإجابات عبر استدلال سلسلة التفكير، متفوقًا بشكل ملحوظ على النماذج التقليدية غير المعتمدة على التفكير من حيث النتائج النهائية وقابلية التفسير."
|
1177
|
+
},
|
1169
1178
|
"glm-4v": {
|
1170
1179
|
"description": "GLM-4V يوفر قدرات قوية في فهم الصور والاستدلال، ويدعم مجموعة متنوعة من المهام البصرية."
|
1171
1180
|
},
|
@@ -1187,6 +1196,9 @@
|
|
1187
1196
|
"glm-z1-flash": {
|
1188
1197
|
"description": "سلسلة GLM-Z1 تتمتع بقدرة استدلال معقدة قوية، تظهر أداءً ممتازًا في مجالات الاستدلال المنطقي، الرياضيات، والبرمجة. الحد الأقصى لطول السياق هو 32K."
|
1189
1198
|
},
|
1199
|
+
"glm-z1-flashx": {
|
1200
|
+
"description": "سرعة عالية وتكلفة منخفضة: نسخة محسنة من Flash، سرعة استدلال فائقة، وضمان تزامن أسرع."
|
1201
|
+
},
|
1190
1202
|
"glm-zero-preview": {
|
1191
1203
|
"description": "يمتلك GLM-Zero-Preview قدرة قوية على الاستدلال المعقد، ويظهر أداءً ممتازًا في مجالات الاستدلال المنطقي، والرياضيات، والبرمجة."
|
1192
1204
|
},
|
@@ -1238,6 +1250,9 @@
|
|
1238
1250
|
"google/gemma-2b-it": {
|
1239
1251
|
"description": "Gemma Instruct (2B) يوفر قدرة أساسية على معالجة التعليمات، مناسب للتطبيقات الخفيفة."
|
1240
1252
|
},
|
1253
|
+
"google/gemma-3-1b-it": {
|
1254
|
+
"description": "Gemma 3 1B هو نموذج لغة مفتوح المصدر من جوجل، وضع معايير جديدة في الكفاءة والأداء."
|
1255
|
+
},
|
1241
1256
|
"google/gemma-3-27b-it": {
|
1242
1257
|
"description": "جيمّا 3 27B هو نموذج لغوي مفتوح المصدر من جوجل، وقد وضع معايير جديدة من حيث الكفاءة والأداء."
|
1243
1258
|
},
|
@@ -1373,6 +1388,9 @@
|
|
1373
1388
|
"gryphe/mythomax-l2-13b": {
|
1374
1389
|
"description": "MythoMax l2 13B هو نموذج لغوي يجمع بين الإبداع والذكاء من خلال دمج عدة نماذج رائدة."
|
1375
1390
|
},
|
1391
|
+
"hunyuan-a13b": {
|
1392
|
+
"description": "هو أول نموذج استدلال مختلط من Hunyuan، نسخة مطورة من hunyuan-standard-256K، يحتوي على 80 مليار معلمة و13 مليار معلمة نشطة. الوضع الافتراضي هو وضع التفكير البطيء، ويدعم التبديل بين أوضاع التفكير السريع والبطيء عبر المعلمات أو التعليمات، حيث يتم التبديل بإضافة / no_think قبل الاستعلام. تم تحسين القدرات الشاملة مقارنة بالجيل السابق، مع تحسينات ملحوظة في الرياضيات، العلوم، فهم النصوص الطويلة، وقدرات الوكيل."
|
1393
|
+
},
|
1376
1394
|
"hunyuan-code": {
|
1377
1395
|
"description": "نموذج توليد الشيفرة الأحدث من Hunyuan، تم تدريبه على نموذج أساسي من بيانات الشيفرة عالية الجودة بحجم 200B، مع تدريب عالي الجودة على بيانات SFT لمدة ستة أشهر، وزيادة طول نافذة السياق إلى 8K، ويحتل مرتبة متقدمة في مؤشرات التقييم التلقائي لتوليد الشيفرة في خمس لغات؛ كما أنه في الطليعة في تقييمات الشيفرة عالية الجودة عبر عشرة معايير في خمس لغات."
|
1378
1396
|
},
|
@@ -1424,6 +1442,9 @@
|
|
1424
1442
|
"hunyuan-t1-vision": {
|
1425
1443
|
"description": "نموذج تفكير عميق متعدد الوسائط من Hunyuan، يدعم سلاسل التفكير الأصلية متعددة الوسائط، بارع في معالجة مختلف سيناريوهات الاستدلال على الصور، ويحقق تحسينًا شاملاً مقارنة بنموذج التفكير السريع في مسائل العلوم."
|
1426
1444
|
},
|
1445
|
+
"hunyuan-t1-vision-20250619": {
|
1446
|
+
"description": "أحدث نموذج تفكير عميق متعدد الوسائط t1-vision من Hunyuan، يدعم سلسلة التفكير الأصلية متعددة الوسائط، مع تحسين شامل مقارنة بالإصدار الافتراضي السابق."
|
1447
|
+
},
|
1427
1448
|
"hunyuan-turbo": {
|
1428
1449
|
"description": "نسخة المعاينة من الجيل الجديد من نموذج اللغة الكبير، يستخدم هيكل نموذج الخبراء المختلط (MoE) الجديد، مما يوفر كفاءة استدلال أسرع وأداء أقوى مقارنة بـ hunyuan-pro."
|
1429
1450
|
},
|
@@ -1454,6 +1475,12 @@
|
|
1454
1475
|
"hunyuan-turbos-role-plus": {
|
1455
1476
|
"description": "أحدث نموذج تمثيل الأدوار من Hunyuan، نموذج تم تدريبه بدقة من قبل Hunyuan الرسمي، يعتمد على نموذج Hunyuan مع بيانات مشاهد تمثيل الأدوار للتدريب الإضافي، ويقدم أداءً أساسيًا أفضل في مشاهد تمثيل الأدوار."
|
1456
1477
|
},
|
1478
|
+
"hunyuan-turbos-vision": {
|
1479
|
+
"description": "هذا النموذج مناسب لمشاهد فهم النصوص والصور، وهو نموذج اللغة البصرية الرائد من الجيل الجديد المبني على أحدث إصدار من Hunyuan turbos، يركز على مهام فهم النصوص والصور، بما في ذلك التعرف على الكيانات بناءً على الصور، الأسئلة المعرفية، إنشاء النصوص، وحل المسائل عبر التصوير، مع تحسين شامل مقارنة بالجيل السابق."
|
1480
|
+
},
|
1481
|
+
"hunyuan-turbos-vision-20250619": {
|
1482
|
+
"description": "أحدث نموذج رائد للغة البصرية turbos-vision من Hunyuan، مع تحسين شامل في مهام فهم النصوص والصور، بما في ذلك التعرف على الكيانات بناءً على الصور، الأسئلة المعرفية، إنشاء النصوص، وحل المسائل عبر التصوير، مقارنة بالإصدار الافتراضي السابق."
|
1483
|
+
},
|
1457
1484
|
"hunyuan-vision": {
|
1458
1485
|
"description": "نموذج Hunyuan الأحدث متعدد الوسائط، يدعم إدخال الصور والنصوص لتوليد محتوى نصي."
|
1459
1486
|
},
|
@@ -203,24 +203,21 @@
|
|
203
203
|
"Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
|
204
204
|
"description": "Qwen2.5-VL е нов член от серията Qwen, който разполага с мощни възможности за визуално разбиране. Той може да анализира текст, диаграми и оформление в изображения, да разбира дълги видеоклипове и да улавя събития. Може да извършва логически изводи, да работи с инструменти, поддържа локализиране на обекти в различни формати и генериране на структуриран изход. Оптимизиран е с динамична резолюция и честота на кадрите за разбиране на видео и подобрена ефективност на визуалния кодиращ модул."
|
205
205
|
},
|
206
|
+
"Pro/THUDM/GLM-4.1V-9B-Thinking": {
|
207
|
+
"description": "GLM-4.1V-9B-Thinking е отворен визуално-езиков модел (VLM), съвместно разработен от Zhizhu AI и KEG лабораторията на Университета Цинхуа, специално проектиран за обработка на сложни мултимодални когнитивни задачи. Моделът е базиран на основния модел GLM-4-9B-0414 и значително подобрява способностите си за кросмодално разсъждение и стабилност чрез въвеждането на механизма за разсъждение „верига на мисълта“ (Chain-of-Thought) и използването на стратегии за подсилено обучение."
|
208
|
+
},
|
206
209
|
"Pro/THUDM/glm-4-9b-chat": {
|
207
210
|
"description": "GLM-4-9B-Chat е отворената версия на предварително обучен модел от серията GLM-4, пусната от Zhizhu AI. Моделът показва отлични резултати в семантика, математика, разсъждения, код и знания. Освен че поддържа многократни разговори, GLM-4-9B-Chat предлага и напреднали функции като уеб браузинг, изпълнение на код, извикване на персонализирани инструменти (Function Call) и разсъждения с дълги текстове. Моделът поддържа 26 езика, включително китайски, английски, японски, корейски и немски. В множество бенчмаркове, GLM-4-9B-Chat показва отлична производителност, като AlignBench-v2, MT-Bench, MMLU и C-Eval. Моделът поддържа максимална контекстна дължина от 128K, подходящ за академични изследвания и търговски приложения."
|
208
211
|
},
|
209
212
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
210
213
|
"description": "DeepSeek-R1 е модел за инференция, управляван от обучение с подсилване (RL), който решава проблемите с повторяемостта и четимостта в моделите. Преди RL, DeepSeek-R1 въвежда данни за студен старт, за да оптимизира допълнително производителността на инференцията. Той показва сравними резултати с OpenAI-o1 в математически, кодови и инференционни задачи и подобрява общата ефективност чрез внимателно проектирани методи на обучение."
|
211
214
|
},
|
212
|
-
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
213
|
-
"description": "DeepSeek-R1 е модел за разсъждение, задвижван от усилено обучение (RL), който решава проблеми с повторяемост и четимост в модела. Преди RL, DeepSeek-R1 въвежда студено стартиране на данни за допълнително оптимизиране на разсъжденията. Моделът постига резултати, сравними с OpenAI-o1 в задачи по математика, кодиране и разсъждение, и подобрява общата ефективност чрез внимателно проектирани методи за обучение."
|
214
|
-
},
|
215
215
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
216
216
|
"description": "DeepSeek-R1-Distill-Qwen-7B е модел, получен чрез дистилация на знания от Qwen2.5-Math-7B. Този модел е фино настроен с 800 000 избрани проби, генерирани от DeepSeek-R1, и демонстрира изключителни способности за разсъждение. Той се представя отлично в множество тестове, постигайки 92,8% точност в MATH-500, 55,5% успеваемост в AIME 2024 и рейтинг от 1189 в CodeForces, показвайки силни математически и програмистки способности за модел с мащаб 7B."
|
217
217
|
},
|
218
218
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
219
219
|
"description": "DeepSeek-V3 е модел на езика с 6710 милиарда параметри, който използва архитектура на смесени експерти (MoE) с много глави на потенциално внимание (MLA) и стратегия за баланс на натоварването без помощни загуби, оптимизираща производителността на инференцията и обучението. Чрез предварително обучение на 14.8 трилиона висококачествени токени и последващо супервизирано фино настройване и обучение с подсилване, DeepSeek-V3 надминава производителността на други отворени модели и е близо до водещите затворени модели."
|
220
220
|
},
|
221
|
-
"Pro/deepseek-ai/DeepSeek-V3-1226": {
|
222
|
-
"description": "DeepSeek-V3 е хибриден езиков модел (MoE) с 6710 милиарда параметри, използващ многоглаво внимание (MLA) и архитектурата DeepSeekMoE, комбинираща стратегия за баланс на натоварването без помощни загуби, оптимизираща ефективността на извеждане и обучение. Чрез предварително обучение на 14.8 трилиона висококачествени токени и последващо наблюдавано фино настройване и обучение с подсилване, DeepSeek-V3 надминава други отворени модели по производителност, приближавайки се до водещите затворени модели."
|
223
|
-
},
|
224
221
|
"QwQ-32B-Preview": {
|
225
222
|
"description": "QwQ-32B-Preview е иновативен модел за обработка на естествен език, способен да обработва ефективно сложни задачи за генериране на диалог и разбиране на контекста."
|
226
223
|
},
|
@@ -383,6 +380,9 @@
|
|
383
380
|
"THUDM/GLM-4-9B-0414": {
|
384
381
|
"description": "GLM-4-9B-0414 е малкият модел от серията GLM, с 9 милиарда параметри. Този модел наследява техническите характеристики на GLM-4-32B серията, но предлага по-леко решение за внедряване. Въпреки по-малкия си размер, GLM-4-9B-0414 все още показва отлични способности в генерирането на код, уеб дизайн, генериране на SVG графики и писане на базата на търсене."
|
385
382
|
},
|
383
|
+
"THUDM/GLM-4.1V-9B-Thinking": {
|
384
|
+
"description": "GLM-4.1V-9B-Thinking е отворен визуално-езиков модел (VLM), съвместно разработен от Zhizhu AI и KEG лабораторията на Университета Цинхуа, специално проектиран за обработка на сложни мултимодални когнитивни задачи. Моделът е базиран на основния модел GLM-4-9B-0414 и значително подобрява способностите си за кросмодално разсъждение и стабилност чрез въвеждането на механизма за разсъждение „верига на мисълта“ (Chain-of-Thought) и използването на стратегии за подсилено обучение."
|
385
|
+
},
|
386
386
|
"THUDM/GLM-Z1-32B-0414": {
|
387
387
|
"description": "GLM-Z1-32B-0414 е модел за разсъждение с дълбоки способности за разсъждение. Този модел е разработен на базата на GLM-4-32B-0414 чрез студен старт и разширено обучение с подсилване и е допълнително обучен в задачи по математика, код и логика. В сравнение с основния модел, GLM-Z1-32B-0414 значително подобрява математическите способности и способността за решаване на сложни задачи."
|
388
388
|
},
|
@@ -539,6 +539,9 @@
|
|
539
539
|
"anthropic/claude-sonnet-4": {
|
540
540
|
"description": "Claude Sonnet 4 може да генерира почти мигновени отговори или удължено стъпково мислене, което потребителите могат ясно да проследят. Потребителите на API също така имат прецизен контрол върху времето за мислене на модела."
|
541
541
|
},
|
542
|
+
"ascend-tribe/pangu-pro-moe": {
|
543
|
+
"description": "Pangu-Pro-MoE 72B-A16B е голям езиков модел с 72 милиарда параметри и 16 милиарда активирани параметри, базиран на архитектурата с групирани смесени експерти (MoGE). Той групира експертите по време на избора им и ограничава активацията на токените да активират равен брой експерти във всяка група, което осигурява балансирано натоварване на експертите и значително подобрява ефективността на разгръщане на модела на платформата Ascend."
|
544
|
+
},
|
542
545
|
"aya": {
|
543
546
|
"description": "Aya 23 е многозначен модел, представен от Cohere, поддържащ 23 езика, предоставяйки удобство за многоезични приложения."
|
544
547
|
},
|
@@ -548,6 +551,9 @@
|
|
548
551
|
"baichuan/baichuan2-13b-chat": {
|
549
552
|
"description": "Baichuan-13B е отворен, комерсиален голям езиков модел, разработен от Baichuan Intelligence, с 13 милиарда параметри, който постига най-добрите резултати в своя размер на авторитетни бенчмаркове на китайски и английски."
|
550
553
|
},
|
554
|
+
"baidu/ERNIE-4.5-300B-A47B": {
|
555
|
+
"description": "ERNIE-4.5-300B-A47B е голям езиков модел, разработен от Baidu, базиран на архитектурата с хибридни експерти (MoE). Моделът има общо 300 милиарда параметри, но при инференция активира само 47 милиарда параметри на токен, което осигурява висока производителност и изчислителна ефективност. Като един от основните модели в серията ERNIE 4.5, той демонстрира изключителни способности в задачи като разбиране на текст, генериране, разсъждение и програмиране. Моделът използва иновативен мултимодален хетерогенен MoE метод за предварително обучение, който чрез съвместно обучение на текстови и визуални модалности значително подобрява цялостните му възможности, особено в следването на инструкции и запаметяването на световни знания."
|
556
|
+
},
|
551
557
|
"c4ai-aya-expanse-32b": {
|
552
558
|
"description": "Aya Expanse е високопроизводителен многоезичен модел с 32B, проектиран да предизвика представянето на едноезични модели чрез иновации в настройката на инструкции, арбитраж на данни, обучение на предпочитания и комбиниране на модели. Той поддържа 23 езика."
|
553
559
|
},
|
@@ -1097,9 +1103,6 @@
|
|
1097
1103
|
"gemini-2.5-pro": {
|
1098
1104
|
"description": "Gemini 2.5 Pro е най-напредналият мисловен модел на Google, способен да разсъждава върху сложни проблеми в областта на кода, математиката и STEM, както и да анализира големи набори от данни, кодови бази и документи с дълъг контекст."
|
1099
1105
|
},
|
1100
|
-
"gemini-2.5-pro-exp-03-25": {
|
1101
|
-
"description": "Gemini 2.5 Pro Experimental е най-напредналият модел на мислене на Google, способен да разсъждава по сложни проблеми в код, математика и STEM области, както и да анализира големи набори от данни, кодови библиотеки и документи, използвайки дълъг контекст."
|
1102
|
-
},
|
1103
1106
|
"gemini-2.5-pro-preview-03-25": {
|
1104
1107
|
"description": "Gemini 2.5 Pro Preview е най-напредналият модел на Google за мислене, способен да разсъждава по сложни проблеми в кодиране, математика и STEM области, както и да анализира големи набори от данни, кодови библиотеки и документи с дълъг контекст."
|
1105
1108
|
},
|
@@ -1166,6 +1169,12 @@
|
|
1166
1169
|
"glm-4-plus": {
|
1167
1170
|
"description": "GLM-4-Plus, като флагман с висока интелигентност, разполага с мощни способности за обработка на дълги текстове и сложни задачи, с цялостно подобрена производителност."
|
1168
1171
|
},
|
1172
|
+
"glm-4.1v-thinking-flash": {
|
1173
|
+
"description": "Серията модели GLM-4.1V-Thinking е най-мощният визуален модел сред известните VLM модели с размер около 10 милиарда параметри, обединяващ водещи в класа си задачи за визуално-езиково разбиране, включително видео разбиране, въпроси и отговори върху изображения, решаване на предметни задачи, OCR разпознаване на текст, интерпретация на документи и графики, GUI агент, кодиране на уеб страници, Grounding и други. Някои от задачите дори превъзхождат модели с 8 пъти повече параметри като Qwen2.5-VL-72B. Чрез водещи техники за подсилено обучение моделът овладява разсъждения чрез вериги на мисълта, което значително подобрява точността и богатството на отговорите, превъзхождайки традиционните модели без мисловен процес по отношение на крайния резултат и обяснимостта."
|
1174
|
+
},
|
1175
|
+
"glm-4.1v-thinking-flashx": {
|
1176
|
+
"description": "Серията модели GLM-4.1V-Thinking е най-мощният визуален модел сред известните VLM модели с размер около 10 милиарда параметри, обединяващ водещи в класа си задачи за визуално-езиково разбиране, включително видео разбиране, въпроси и отговори върху изображения, решаване на предметни задачи, OCR разпознаване на текст, интерпретация на документи и графики, GUI агент, кодиране на уеб страници, Grounding и други. Някои от задачите дори превъзхождат модели с 8 пъти повече параметри като Qwen2.5-VL-72B. Чрез водещи техники за подсилено обучение моделът овладява разсъждения чрез вериги на мисълта, което значително подобрява точността и богатството на отговорите, превъзхождайки традиционните модели без мисловен процес по отношение на крайния резултат и обяснимостта."
|
1177
|
+
},
|
1169
1178
|
"glm-4v": {
|
1170
1179
|
"description": "GLM-4V предлага мощни способности за разбиране и разсъждение на изображения, поддържаща множество визуални задачи."
|
1171
1180
|
},
|
@@ -1187,6 +1196,9 @@
|
|
1187
1196
|
"glm-z1-flash": {
|
1188
1197
|
"description": "GLM-Z1 серията притежава силни способности за сложни разсъждения, показвайки отлични резултати в логическите разсъждения, математиката и програмирането. Максималната дължина на контекста е 32K."
|
1189
1198
|
},
|
1199
|
+
"glm-z1-flashx": {
|
1200
|
+
"description": "Висока скорост и ниска цена: Flash подобрена версия с изключително бърза скорост на инференция и по-добра гаранция за паралелна обработка."
|
1201
|
+
},
|
1190
1202
|
"glm-zero-preview": {
|
1191
1203
|
"description": "GLM-Zero-Preview притежава мощни способности за сложни разсъждения, показвайки отлични резултати в логическото разсъждение, математиката и програмирането."
|
1192
1204
|
},
|
@@ -1238,6 +1250,9 @@
|
|
1238
1250
|
"google/gemma-2b-it": {
|
1239
1251
|
"description": "Gemma Instruct (2B) предлага основни способности за обработка на инструкции, подходящи за леки приложения."
|
1240
1252
|
},
|
1253
|
+
"google/gemma-3-1b-it": {
|
1254
|
+
"description": "Gemma 3 1B е отворен езиков модел на Google, който поставя нови стандарти за ефективност и производителност."
|
1255
|
+
},
|
1241
1256
|
"google/gemma-3-27b-it": {
|
1242
1257
|
"description": "Gemma 3 27B е отворен езиков модел на Google, който поставя нови стандарти за ефективност и производителност."
|
1243
1258
|
},
|
@@ -1373,6 +1388,9 @@
|
|
1373
1388
|
"gryphe/mythomax-l2-13b": {
|
1374
1389
|
"description": "MythoMax l2 13B е езиков модел, който комбинира креативност и интелигентност, обединявайки множество водещи модели."
|
1375
1390
|
},
|
1391
|
+
"hunyuan-a13b": {
|
1392
|
+
"description": "Hunyuan е първият хибриден разсъждаващ модел, ъпгрейд на hunyuan-standard-256K, с общо 80 милиарда параметри и 13 милиарда активирани. По подразбиране работи в режим на бавно мислене, като поддържа превключване между бърз и бавен режим чрез параметри или инструкции, като превключването се осъществява чрез добавяне на query префикс / no_think. Общите способности са значително подобрени спрямо предишното поколение, особено в областите математика, наука, разбиране на дълги текстове и агентски функции."
|
1393
|
+
},
|
1376
1394
|
"hunyuan-code": {
|
1377
1395
|
"description": "Най-новият модел за генериране на код на HunYuan, обучен с 200B висококачествени данни за код, с шестмесечно обучение на данни за SFT с високо качество, увеличен контекстен прозорец до 8K, и водещи резултати в автоматичните оценъчни показатели за генериране на код на пет основни езика; в комплексната оценка на кодови задачи на пет основни езика, представянето е в първата група."
|
1378
1396
|
},
|
@@ -1424,6 +1442,9 @@
|
|
1424
1442
|
"hunyuan-t1-vision": {
|
1425
1443
|
"description": "Модел за дълбоко мултимодално разбиране Hunyuan, поддържащ естествени мултимодални вериги на мислене, експертен в различни сценарии за разсъждение върху изображения, с цялостно подобрение спрямо бързите мисловни модели при научни задачи."
|
1426
1444
|
},
|
1445
|
+
"hunyuan-t1-vision-20250619": {
|
1446
|
+
"description": "Най-новият мултимодален дълбок мислещ модел t1-vision на Hunyuan, който поддържа оригинални мултимодални вериги на мисълта и предлага цялостно подобрение спрямо предишната версия по подразбиране."
|
1447
|
+
},
|
1427
1448
|
"hunyuan-turbo": {
|
1428
1449
|
"description": "Предварителна версия на новото поколение голям езиков модел на HunYuan, използваща нова структура на смесен експертен модел (MoE), с по-бърза скорост на извеждане и по-силни резултати в сравнение с hunyuan-pro."
|
1429
1450
|
},
|
@@ -1454,6 +1475,12 @@
|
|
1454
1475
|
"hunyuan-turbos-role-plus": {
|
1455
1476
|
"description": "Най-новият модел за ролеви игри на Hunyuan, официално фино настроен и обучен от Hunyuan, базиран на Hunyuan модел с допълнително обучение върху набор от данни за ролеви игри, осигуряващ по-добри основни резултати в ролеви игрови сцени."
|
1456
1477
|
},
|
1478
|
+
"hunyuan-turbos-vision": {
|
1479
|
+
"description": "Този модел е предназначен за задачи по разбиране на изображения и текст, базиран на най-новия turbos модел на Hunyuan, ново поколение водещ визуално-езиков модел, фокусиран върху задачи като разпознаване на обекти в изображения, въпроси и отговори, създаване на текстове и решаване на задачи чрез снимки, с цялостно подобрение спрямо предишното поколение."
|
1480
|
+
},
|
1481
|
+
"hunyuan-turbos-vision-20250619": {
|
1482
|
+
"description": "Най-новият водещ визуално-езиков модел turbos-vision на Hunyuan, който предлага цялостно подобрение спрямо предишната версия по подразбиране в задачи, свързани с разбиране на изображения и текст, включително разпознаване на обекти, въпроси и отговори, създаване на текстове и решаване на задачи чрез снимки."
|
1483
|
+
},
|
1457
1484
|
"hunyuan-vision": {
|
1458
1485
|
"description": "Най-новият мултимодален модел на HunYuan, поддържащ генериране на текстово съдържание от изображения и текстови входове."
|
1459
1486
|
},
|
@@ -203,24 +203,21 @@
|
|
203
203
|
"Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
|
204
204
|
"description": "Qwen2.5-VL ist ein neues Mitglied der Qwen-Serie und verfügt über leistungsstarke visuelle Wahrnehmungsfähigkeiten. Es kann Text, Diagramme und Layouts in Bildern analysieren, längere Videos verstehen und Ereignisse erfassen. Zudem kann es Schlussfolgerungen ziehen, Werkzeuge bedienen, mehrere Formate für Objektlokalisation unterstützen und strukturierte Ausgaben generieren. Die Videoverarbeitung wurde durch dynamische Auflösungs- und Frameratetraining optimiert, und die Effizienz des visuellen Encoders wurde verbessert."
|
205
205
|
},
|
206
|
+
"Pro/THUDM/GLM-4.1V-9B-Thinking": {
|
207
|
+
"description": "GLM-4.1V-9B-Thinking ist ein von Zhipu AI und dem KEG-Labor der Tsinghua-Universität gemeinsam veröffentlichtes Open-Source-Visuell-Sprachmodell (VLM), das speziell für die Bewältigung komplexer multimodaler kognitiver Aufgaben entwickelt wurde. Das Modell basiert auf dem GLM-4-9B-0414-Grundmodell und verbessert durch die Einführung des „Chain-of-Thought“-Schlussmechanismus und den Einsatz von Verstärkungslernstrategien seine multimodale Schlussfolgerungsfähigkeit und Stabilität erheblich."
|
208
|
+
},
|
206
209
|
"Pro/THUDM/glm-4-9b-chat": {
|
207
210
|
"description": "GLM-4-9B-Chat ist die Open-Source-Version des GLM-4-Modells, das von Zhizhu AI eingeführt wurde. Dieses Modell zeigt hervorragende Leistungen in den Bereichen Semantik, Mathematik, Inferenz, Code und Wissen. Neben der Unterstützung für mehrstufige Dialoge bietet GLM-4-9B-Chat auch fortgeschrittene Funktionen wie Web-Browsing, Code-Ausführung, benutzerdefinierte Tool-Aufrufe (Function Call) und langes Textverständnis. Das Modell unterstützt 26 Sprachen, darunter Chinesisch, Englisch, Japanisch, Koreanisch und Deutsch. In mehreren Benchmark-Tests zeigt GLM-4-9B-Chat hervorragende Leistungen, wie AlignBench-v2, MT-Bench, MMLU und C-Eval. Das Modell unterstützt eine maximale Kontextlänge von 128K und ist für akademische Forschung und kommerzielle Anwendungen geeignet."
|
208
211
|
},
|
209
212
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
210
213
|
"description": "DeepSeek-R1 ist ein durch verstärkendes Lernen (RL) gesteuertes Inferenzmodell, das Probleme mit Wiederholungen und Lesbarkeit im Modell löst. Vor dem RL führte DeepSeek-R1 Kaltstartdaten ein, um die Inferenzleistung weiter zu optimieren. Es zeigt in mathematischen, programmierbezogenen und Inferenzaufgaben eine vergleichbare Leistung zu OpenAI-o1 und verbessert die Gesamtleistung durch sorgfältig gestaltete Trainingsmethoden."
|
211
214
|
},
|
212
|
-
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
213
|
-
"description": "DeepSeek-R1 ist ein durch verstärkendes Lernen (RL) gesteuertes Inferenzmodell, das Probleme der Wiederholungen und Lesbarkeit im Modell löst. Vor RL wurde ein Cold-Start-Datensatz eingeführt, um die Inferenzleistung weiter zu optimieren. Es zeigt vergleichbare Leistungen zu OpenAI-o1 in Mathematik, Programmierung und Inferenzaufgaben und verbessert die Gesamtleistung durch sorgfältig gestaltete Trainingsmethoden."
|
214
|
-
},
|
215
215
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
216
216
|
"description": "DeepSeek-R1-Distill-Qwen-7B ist ein Modell, das durch Wissensdistillierung auf Basis von Qwen2.5-Math-7B erstellt wurde. Dieses Modell wurde mit 800.000 sorgfältig ausgewählten Beispielen, die von DeepSeek-R1 generiert wurden, feinjustiert und zeigt ausgezeichnete Inferenzfähigkeiten. Es erzielte in mehreren Benchmarks hervorragende Ergebnisse, darunter eine Genauigkeit von 92,8 % im MATH-500, einen Durchgangsrate von 55,5 % im AIME 2024 und eine Bewertung von 1189 auf CodeForces, was seine starken mathematischen und programmierischen Fähigkeiten als Modell mit 7B Parametern unterstreicht."
|
217
217
|
},
|
218
218
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
219
219
|
"description": "DeepSeek-V3 ist ein hybrides Experten (MoE) Sprachmodell mit 6710 Milliarden Parametern, das eine Multi-Head-Latente-Attention (MLA) und DeepSeekMoE-Architektur verwendet, kombiniert mit einer Lastenausgleichsstrategie ohne Hilfskosten, um die Inferenz- und Trainingseffizienz zu optimieren. Durch das Pre-Training auf 14,8 Billionen hochwertigen Tokens und anschließende überwachte Feinabstimmung und verstärktes Lernen übertrifft DeepSeek-V3 in der Leistung andere Open-Source-Modelle und nähert sich führenden geschlossenen Modellen."
|
220
220
|
},
|
221
|
-
"Pro/deepseek-ai/DeepSeek-V3-1226": {
|
222
|
-
"description": "DeepSeek-V3 ist ein hybrides Expertenmodell (MoE) mit 6710 Milliarden Parametern, das eine Multi-Head-Latente-Attention (MLA) und die DeepSeekMoE-Architektur verwendet, kombiniert mit einer Lastenausgleichsstrategie ohne Hilfskosten, um die Effizienz von Inferenz und Training zu optimieren. Durch das Pre-Training auf 14,8 Billionen hochwertigen Tokens und anschließendes überwachten Feintuning und verstärkendes Lernen übertrifft DeepSeek-V3 in der Leistung andere Open-Source-Modelle und nähert sich führenden Closed-Source-Modellen."
|
223
|
-
},
|
224
221
|
"QwQ-32B-Preview": {
|
225
222
|
"description": "QwQ-32B-Preview ist ein innovatives Modell für die Verarbeitung natürlicher Sprache, das komplexe Aufgaben der Dialoggenerierung und des Kontextverständnisses effizient bewältigen kann."
|
226
223
|
},
|
@@ -383,6 +380,9 @@
|
|
383
380
|
"THUDM/GLM-4-9B-0414": {
|
384
381
|
"description": "GLM-4-9B-0414 ist ein kleines Modell der GLM-Serie mit 9 Milliarden Parametern. Dieses Modell übernimmt die technischen Merkmale der GLM-4-32B-Serie, bietet jedoch eine leichtere Bereitstellungsoption. Trotz seiner kleineren Größe zeigt GLM-4-9B-0414 hervorragende Fähigkeiten in Aufgaben wie Codegenerierung, Webdesign, SVG-Grafikgenerierung und suchbasiertem Schreiben."
|
385
382
|
},
|
383
|
+
"THUDM/GLM-4.1V-9B-Thinking": {
|
384
|
+
"description": "GLM-4.1V-9B-Thinking ist ein von Zhipu AI und dem KEG-Labor der Tsinghua-Universität gemeinsam veröffentlichtes Open-Source-Visuell-Sprachmodell (VLM), das speziell für die Bewältigung komplexer multimodaler kognitiver Aufgaben entwickelt wurde. Das Modell basiert auf dem GLM-4-9B-0414-Grundmodell und verbessert durch die Einführung des „Chain-of-Thought“-Schlussmechanismus und den Einsatz von Verstärkungslernstrategien seine multimodale Schlussfolgerungsfähigkeit und Stabilität erheblich."
|
385
|
+
},
|
386
386
|
"THUDM/GLM-Z1-32B-0414": {
|
387
387
|
"description": "GLM-Z1-32B-0414 ist ein Schlussfolgerungsmodell mit tiefen Denkfähigkeiten. Dieses Modell wurde auf der Grundlage von GLM-4-32B-0414 durch Kaltstart und verstärktes Lernen entwickelt und wurde weiter in Mathematik, Programmierung und logischen Aufgaben trainiert. Im Vergleich zum Basismodell hat GLM-Z1-32B-0414 die mathematischen Fähigkeiten und die Fähigkeit zur Lösung komplexer Aufgaben erheblich verbessert."
|
388
388
|
},
|
@@ -539,6 +539,9 @@
|
|
539
539
|
"anthropic/claude-sonnet-4": {
|
540
540
|
"description": "Claude Sonnet 4 kann nahezu sofortige Antworten oder verlängerte schrittweise Überlegungen erzeugen, die für den Nutzer klar nachvollziehbar sind. API-Nutzer können zudem die Denkzeit des Modells präzise steuern."
|
541
541
|
},
|
542
|
+
"ascend-tribe/pangu-pro-moe": {
|
543
|
+
"description": "Pangu-Pro-MoE 72B-A16B ist ein spärlich besetztes großes Sprachmodell mit 72 Milliarden Parametern und 16 Milliarden aktivierten Parametern. Es basiert auf der gruppierten Mixture-of-Experts-Architektur (MoGE), bei der Experten in Gruppen eingeteilt werden und Tokens innerhalb jeder Gruppe eine gleiche Anzahl von Experten aktivieren, um eine ausgewogene Expertenauslastung zu gewährleisten. Dies verbessert die Effizienz der Modellausführung auf der Ascend-Plattform erheblich."
|
544
|
+
},
|
542
545
|
"aya": {
|
543
546
|
"description": "Aya 23 ist ein mehrsprachiges Modell von Cohere, das 23 Sprachen unterstützt und die Anwendung in einer Vielzahl von Sprachen erleichtert."
|
544
547
|
},
|
@@ -548,6 +551,9 @@
|
|
548
551
|
"baichuan/baichuan2-13b-chat": {
|
549
552
|
"description": "Baichuan-13B ist ein Open-Source-Sprachmodell mit 13 Milliarden Parametern, das von Baichuan Intelligence entwickelt wurde und in autorisierten chinesischen und englischen Benchmarks die besten Ergebnisse in seiner Größenordnung erzielt hat."
|
550
553
|
},
|
554
|
+
"baidu/ERNIE-4.5-300B-A47B": {
|
555
|
+
"description": "ERNIE-4.5-300B-A47B ist ein von Baidu entwickeltes großes Sprachmodell, das auf einer Mixture-of-Experts (MoE)-Architektur basiert. Das Modell verfügt über insgesamt 300 Milliarden Parameter, aktiviert jedoch bei der Inferenz nur 47 Milliarden Parameter pro Token, was eine starke Leistung bei gleichzeitig hoher Rechen-effizienz gewährleistet. Als eines der Kernmodelle der ERNIE 4.5-Serie zeigt es herausragende Fähigkeiten in Textverständnis, -generierung, Schlussfolgerung und Programmierung. Das Modell verwendet eine innovative multimodale heterogene MoE-Vortrainingsmethode, die durch gemeinsames Training von Text- und visuellen Modalitäten die Gesamtleistung verbessert, insbesondere bei der Befolgung von Anweisungen und dem Erinnern von Weltwissen."
|
556
|
+
},
|
551
557
|
"c4ai-aya-expanse-32b": {
|
552
558
|
"description": "Aya Expanse ist ein leistungsstarkes 32B mehrsprachiges Modell, das darauf abzielt, die Leistung von einsprachigen Modellen durch innovative Ansätze wie Anweisungsoptimierung, Datenarbitrage, Präferenztraining und Modellfusion herauszufordern. Es unterstützt 23 Sprachen."
|
553
559
|
},
|
@@ -1097,9 +1103,6 @@
|
|
1097
1103
|
"gemini-2.5-pro": {
|
1098
1104
|
"description": "Gemini 2.5 Pro ist Googles fortschrittlichstes Denkmodell, das komplexe Probleme in den Bereichen Code, Mathematik und MINT-Fächer lösen kann und große Datensätze, Codebasen und Dokumente mit langem Kontext analysiert."
|
1099
1105
|
},
|
1100
|
-
"gemini-2.5-pro-exp-03-25": {
|
1101
|
-
"description": "Gemini 2.5 Pro Experimental ist Googles fortschrittlichstes Denkmodell, das in der Lage ist, komplexe Probleme in den Bereichen Code, Mathematik und STEM zu analysieren. Es kann auch lange Kontexte nutzen, um große Datensätze, Codebasen und Dokumente zu analysieren."
|
1102
|
-
},
|
1103
1106
|
"gemini-2.5-pro-preview-03-25": {
|
1104
1107
|
"description": "Gemini 2.5 Pro Preview ist Googles fortschrittlichstes Denkmodell, das in der Lage ist, komplexe Probleme in den Bereichen Code, Mathematik und STEM zu analysieren sowie große Datensätze, Codebasen und Dokumente mithilfe von langen Kontextanalysen zu verarbeiten."
|
1105
1108
|
},
|
@@ -1166,6 +1169,12 @@
|
|
1166
1169
|
"glm-4-plus": {
|
1167
1170
|
"description": "GLM-4-Plus ist das hochintelligente Flaggschiffmodell mit starken Fähigkeiten zur Verarbeitung langer Texte und komplexer Aufgaben, mit umfassenden Leistungsverbesserungen."
|
1168
1171
|
},
|
1172
|
+
"glm-4.1v-thinking-flash": {
|
1173
|
+
"description": "Die GLM-4.1V-Thinking-Serie ist das leistungsstärkste visuelle Modell unter den bekannten 10-Milliarden-Parameter-VLMs und integriert SOTA-Leistungen auf diesem Niveau in verschiedenen visuellen Sprachaufgaben, darunter Videoverstehen, Bildfragen, Fachaufgaben, OCR-Texterkennung, Dokumenten- und Diagramminterpretation, GUI-Agenten, Frontend-Web-Coding und Grounding. In vielen Aufgaben übertrifft es sogar das Qwen2.5-VL-72B mit achtmal so vielen Parametern. Durch fortschrittliche Verstärkungslernverfahren beherrscht das Modell die Chain-of-Thought-Schlussfolgerung, was die Genauigkeit und Detailtiefe der Antworten deutlich verbessert und in Bezug auf Endergebnis und Erklärbarkeit traditionelle Nicht-Thinking-Modelle übertrifft."
|
1174
|
+
},
|
1175
|
+
"glm-4.1v-thinking-flashx": {
|
1176
|
+
"description": "Die GLM-4.1V-Thinking-Serie ist das leistungsstärkste visuelle Modell unter den bekannten 10-Milliarden-Parameter-VLMs und integriert SOTA-Leistungen auf diesem Niveau in verschiedenen visuellen Sprachaufgaben, darunter Videoverstehen, Bildfragen, Fachaufgaben, OCR-Texterkennung, Dokumenten- und Diagramminterpretation, GUI-Agenten, Frontend-Web-Coding und Grounding. In vielen Aufgaben übertrifft es sogar das Qwen2.5-VL-72B mit achtmal so vielen Parametern. Durch fortschrittliche Verstärkungslernverfahren beherrscht das Modell die Chain-of-Thought-Schlussfolgerung, was die Genauigkeit und Detailtiefe der Antworten deutlich verbessert und in Bezug auf Endergebnis und Erklärbarkeit traditionelle Nicht-Thinking-Modelle übertrifft."
|
1177
|
+
},
|
1169
1178
|
"glm-4v": {
|
1170
1179
|
"description": "GLM-4V bietet starke Fähigkeiten zur Bildverständnis und -schlussfolgerung und unterstützt eine Vielzahl visueller Aufgaben."
|
1171
1180
|
},
|
@@ -1187,6 +1196,9 @@
|
|
1187
1196
|
"glm-z1-flash": {
|
1188
1197
|
"description": "Die GLM-Z1-Serie verfügt über starke Fähigkeiten zur komplexen Schlussfolgerung und zeigt in den Bereichen logische Schlussfolgerung, Mathematik und Programmierung hervorragende Leistungen. Die maximale Kontextlänge beträgt 32K."
|
1189
1198
|
},
|
1199
|
+
"glm-z1-flashx": {
|
1200
|
+
"description": "Hohe Geschwindigkeit zu niedrigem Preis: Flash-verbesserte Version mit ultraschneller Inferenzgeschwindigkeit und schnellerer gleichzeitiger Verarbeitung."
|
1201
|
+
},
|
1190
1202
|
"glm-zero-preview": {
|
1191
1203
|
"description": "GLM-Zero-Preview verfügt über starke Fähigkeiten zur komplexen Schlussfolgerung und zeigt hervorragende Leistungen in den Bereichen logisches Denken, Mathematik und Programmierung."
|
1192
1204
|
},
|
@@ -1238,6 +1250,9 @@
|
|
1238
1250
|
"google/gemma-2b-it": {
|
1239
1251
|
"description": "Gemma Instruct (2B) bietet grundlegende Anweisungsverarbeitungsfähigkeiten und eignet sich für leichte Anwendungen."
|
1240
1252
|
},
|
1253
|
+
"google/gemma-3-1b-it": {
|
1254
|
+
"description": "Gemma 3 1B ist ein Open-Source-Sprachmodell von Google, das neue Maßstäbe in Effizienz und Leistung setzt."
|
1255
|
+
},
|
1241
1256
|
"google/gemma-3-27b-it": {
|
1242
1257
|
"description": "Gemma 3 27B ist ein Open-Source-Sprachmodell von Google, das neue Maßstäbe in Bezug auf Effizienz und Leistung setzt."
|
1243
1258
|
},
|
@@ -1373,6 +1388,9 @@
|
|
1373
1388
|
"gryphe/mythomax-l2-13b": {
|
1374
1389
|
"description": "MythoMax l2 13B ist ein Sprachmodell, das Kreativität und Intelligenz kombiniert und mehrere führende Modelle integriert."
|
1375
1390
|
},
|
1391
|
+
"hunyuan-a13b": {
|
1392
|
+
"description": "Hunyuan ist das erste hybride Schlussfolgerungsmodell, eine Weiterentwicklung von hunyuan-standard-256K mit insgesamt 80 Milliarden Parametern und 13 Milliarden aktivierten Parametern. Standardmäßig im langsamen Denkmodus, unterstützt es den Wechsel zwischen schnellem und langsamem Denkmodus über Parameter oder Anweisungen, wobei der Wechsel durch Voranstellen von query mit / no_think erfolgt. Die Gesamtleistung wurde gegenüber der Vorgängergeneration deutlich verbessert, insbesondere in Mathematik, Naturwissenschaften, Langtextverständnis und Agentenfähigkeiten."
|
1393
|
+
},
|
1376
1394
|
"hunyuan-code": {
|
1377
1395
|
"description": "Das neueste Code-Generierungsmodell von Hunyuan, das auf einem Basismodell mit 200B hochwertigen Code-Daten trainiert wurde, hat ein halbes Jahr lang mit hochwertigen SFT-Daten trainiert, das Kontextfenster auf 8K erhöht und belegt in den automatischen Bewertungsmetriken für die fünf großen Programmiersprachen Spitzenplätze; in den zehn Aspekten der umfassenden Codeaufgabenbewertung für die fünf großen Sprachen liegt die Leistung in der ersten Reihe."
|
1378
1396
|
},
|
@@ -1424,6 +1442,9 @@
|
|
1424
1442
|
"hunyuan-t1-vision": {
|
1425
1443
|
"description": "Hunyuan ist ein multimodales Verständnis- und Tiefdenkmodell, das native multimodale lange Denkprozesse unterstützt. Es ist spezialisiert auf verschiedene Bildinferenzszenarien und zeigt im Vergleich zu Schnelldenkmodellen umfassende Verbesserungen bei naturwissenschaftlichen Problemen."
|
1426
1444
|
},
|
1445
|
+
"hunyuan-t1-vision-20250619": {
|
1446
|
+
"description": "Die neueste Version des hunyuan t1-vision multimodalen tiefen Denkmodells unterstützt native multimodale Chain-of-Thought-Mechanismen und bietet im Vergleich zur vorherigen Standardversion umfassende Verbesserungen."
|
1447
|
+
},
|
1427
1448
|
"hunyuan-turbo": {
|
1428
1449
|
"description": "Die Vorschauversion des neuen großen Sprachmodells von Hunyuan verwendet eine neuartige hybride Expertenmodellstruktur (MoE) und bietet im Vergleich zu Hunyuan-Pro eine schnellere Inferenz und bessere Leistung."
|
1429
1450
|
},
|
@@ -1454,6 +1475,12 @@
|
|
1454
1475
|
"hunyuan-turbos-role-plus": {
|
1455
1476
|
"description": "Die neueste Version des Hunyuan-Rollenspielsmodells, feinabgestimmt und trainiert von Hunyuan, basiert auf dem Hunyuan-Modell und wurde mit Datensätzen für Rollenspielszenarien weiter trainiert, um in Rollenspielszenarien bessere Grundleistungen zu erzielen."
|
1456
1477
|
},
|
1478
|
+
"hunyuan-turbos-vision": {
|
1479
|
+
"description": "Dieses Modell eignet sich für Szenarien mit Bild- und Textverständnis und basiert auf dem neuesten hunyuan turbos. Es ist ein neues Flaggschiff-Visuell-Sprachmodell, das sich auf Aufgaben des Bild-Text-Verstehens konzentriert, einschließlich bildbasierter Entitätenerkennung, Wissensfragen, Textkreation und fotografiebasierter Problemlösung, mit umfassenden Verbesserungen gegenüber der Vorgängerversion."
|
1480
|
+
},
|
1481
|
+
"hunyuan-turbos-vision-20250619": {
|
1482
|
+
"description": "Die neueste Version des hunyuan turbos-vision Flaggschiff-Visuell-Sprachmodells bietet umfassende Verbesserungen bei Aufgaben des Bild-Text-Verstehens, einschließlich bildbasierter Entitätenerkennung, Wissensfragen, Textkreation und fotografiebasierter Problemlösung, im Vergleich zur vorherigen Standardversion."
|
1483
|
+
},
|
1457
1484
|
"hunyuan-vision": {
|
1458
1485
|
"description": "Das neueste multimodale Modell von Hunyuan unterstützt die Eingabe von Bildern und Text zur Generierung von Textinhalten."
|
1459
1486
|
},
|