@lobehub/chat 1.98.0 → 1.98.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/locales/ar/models.json +36 -9
- package/locales/bg-BG/models.json +36 -9
- package/locales/de-DE/models.json +36 -9
- package/locales/en-US/models.json +36 -9
- package/locales/es-ES/models.json +36 -9
- package/locales/fa-IR/models.json +36 -9
- package/locales/fr-FR/models.json +36 -9
- package/locales/it-IT/models.json +36 -9
- package/locales/ja-JP/models.json +36 -9
- package/locales/ko-KR/models.json +36 -9
- package/locales/nl-NL/models.json +36 -9
- package/locales/pl-PL/models.json +36 -9
- package/locales/pt-BR/models.json +36 -9
- package/locales/ru-RU/models.json +36 -9
- package/locales/tr-TR/models.json +36 -9
- package/locales/vi-VN/models.json +36 -9
- package/locales/zh-CN/models.json +36 -9
- package/locales/zh-TW/models.json +36 -9
- package/package.json +1 -1
- package/src/app/[variants]/(main)/discover/(list)/(home)/page.tsx +4 -4
@@ -203,24 +203,21 @@
|
|
203
203
|
"Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
|
204
204
|
"description": "Qwen2.5-VL to nowa wersja serii Qwen, posiadająca zaawansowane zdolności zrozumienia wizualnego. Potrafi analizować tekst, wykresy i układ w obrazach, a także zrozumieć długie filmy i wykrywać zdarzenia. Jest zdolny do przeprowadzania wnioskowania, operowania narzędziami, obsługuje lokalizację obiektów w różnych formatach i generowanie wyjścia strukturalnego. Optymalizuje trening rozdzielczości i klatki wideo, a także zwiększa efektywność kodera wizualnego."
|
205
205
|
},
|
206
|
+
"Pro/THUDM/GLM-4.1V-9B-Thinking": {
|
207
|
+
"description": "GLM-4.1V-9B-Thinking to otwarty model wizualno-językowy (VLM) opracowany wspólnie przez Zhipu AI i Laboratorium KEG Uniwersytetu Tsinghua, zaprojektowany do obsługi złożonych zadań poznawczych wielomodalnych. Model opiera się na bazowym modelu GLM-4-9B-0414 i znacząco poprawia zdolności wnioskowania międzymodalnego oraz stabilność dzięki wprowadzeniu mechanizmu rozumowania „łańcucha myślowego” (Chain-of-Thought) oraz zastosowaniu strategii uczenia ze wzmocnieniem."
|
208
|
+
},
|
206
209
|
"Pro/THUDM/glm-4-9b-chat": {
|
207
210
|
"description": "GLM-4-9B-Chat to otwarta wersja modelu pretrenowanego z serii GLM-4, wydana przez Zhipu AI. Model ten wykazuje doskonałe wyniki w zakresie semantyki, matematyki, wnioskowania, kodu i wiedzy. Oprócz wsparcia dla wieloetapowych rozmów, GLM-4-9B-Chat oferuje również zaawansowane funkcje, takie jak przeglądanie stron internetowych, wykonywanie kodu, wywoływanie niestandardowych narzędzi (Function Call) oraz wnioskowanie z długich tekstów. Model obsługuje 26 języków, w tym chiński, angielski, japoński, koreański i niemiecki. W wielu testach benchmarkowych, takich jak AlignBench-v2, MT-Bench, MMLU i C-Eval, GLM-4-9B-Chat wykazuje doskonałą wydajność. Model obsługuje maksymalną długość kontekstu 128K, co czyni go odpowiednim do badań akademickich i zastosowań komercyjnych."
|
208
211
|
},
|
209
212
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
210
213
|
"description": "DeepSeek-R1 to model wnioskowania napędzany uczeniem ze wzmocnieniem (RL), który rozwiązuje problemy z powtarzalnością i czytelnością modeli. Przed RL, DeepSeek-R1 wprowadził dane do zimnego startu, co dodatkowo zoptymalizowało wydajność wnioskowania. W zadaniach matematycznych, kodowych i wnioskowania, osiąga wyniki porównywalne z OpenAI-o1, a dzięki starannie zaprojektowanym metodom treningowym poprawia ogólne wyniki."
|
211
214
|
},
|
212
|
-
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
213
|
-
"description": "DeepSeek-R1 to model wnioskowania napędzany uczeniem ze wzmocnieniem (RL), rozwiązujący problemy powtarzalności i czytelności w modelach. Przed zastosowaniem RL wprowadzono dane cold start, co dodatkowo zoptymalizowało wydajność wnioskowania. Model osiąga wyniki porównywalne z OpenAI-o1 w zadaniach matematycznych, kodowania i wnioskowania, a dzięki starannie zaprojektowanym metodom treningowym poprawia ogólną efektywność."
|
214
|
-
},
|
215
215
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
216
216
|
"description": "DeepSeek-R1-Distill-Qwen-7B to model stworzony na podstawie Qwen2.5-Math-7B poprzez proces wiedzy distylacji. Model ten został wytrenowany na 800 000 wybrukowanych próbkach wygenerowanych przez DeepSeek-R1, co pozwoliło mu wykazać się doskonałymi zdolnościami wnioskowania. W wielu testach referencyjnych osiągnął znakomite wyniki, w tym 92,8% dokładności na MATH-500, 55,5% sukcesów na AIME 2024 oraz 1189 punktów na CodeForces, co potwierdza jego silne umiejętności matematyczne i programistyczne jako modelu o rozmiarze 7B."
|
217
217
|
},
|
218
218
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
219
219
|
"description": "DeepSeek-V3 to model językowy z 6710 miliardami parametrów, oparty na architekturze mieszanych ekspertów (MoE), wykorzystujący wielogłowicową potencjalną uwagę (MLA) oraz strategię równoważenia obciążenia bez dodatkowych strat, co optymalizuje wydajność wnioskowania i treningu. Dzięki wstępnemu treningowi na 14,8 bilionach wysokiej jakości tokenów oraz nadzorowanemu dostrajaniu i uczeniu ze wzmocnieniem, DeepSeek-V3 przewyższa inne modele open source, zbliżając się do wiodących modeli zamkniętych."
|
220
220
|
},
|
221
|
-
"Pro/deepseek-ai/DeepSeek-V3-1226": {
|
222
|
-
"description": "DeepSeek-V3 to model językowy z 671 miliardami parametrów, oparty na architekturze mieszanych ekspertów (MoE), wykorzystujący wielogłowicową uwagę (MLA) oraz strategię równoważenia obciążenia bez dodatkowych strat, co optymalizuje efektywność wnioskowania i treningu. Model został wstępnie wytrenowany na 14,8 bilionach wysokiej jakości tokenów, a następnie poddany nadzorowanemu dostrajaniu i uczeniu przez wzmocnienie, co pozwala mu przewyższać inne modele open-source i zbliżać się do wiodących modeli zamkniętych."
|
223
|
-
},
|
224
221
|
"QwQ-32B-Preview": {
|
225
222
|
"description": "QwQ-32B-Preview to innowacyjny model przetwarzania języka naturalnego, który efektywnie radzi sobie z złożonymi zadaniami generowania dialogów i rozumienia kontekstu."
|
226
223
|
},
|
@@ -383,6 +380,9 @@
|
|
383
380
|
"THUDM/GLM-4-9B-0414": {
|
384
381
|
"description": "GLM-4-9B-0414 to mały model z serii GLM, mający 9 miliardów parametrów. Model ten dziedziczy cechy technologiczne serii GLM-4-32B, ale oferuje lżejsze opcje wdrożeniowe. Mimo mniejszych rozmiarów, GLM-4-9B-0414 nadal wykazuje doskonałe zdolności w generowaniu kodu, projektowaniu stron internetowych, generowaniu grafiki SVG i pisaniu opartym na wyszukiwaniu."
|
385
382
|
},
|
383
|
+
"THUDM/GLM-4.1V-9B-Thinking": {
|
384
|
+
"description": "GLM-4.1V-9B-Thinking to otwarty model wizualno-językowy (VLM) opracowany wspólnie przez Zhipu AI i Laboratorium KEG Uniwersytetu Tsinghua, zaprojektowany do obsługi złożonych zadań poznawczych wielomodalnych. Model opiera się na bazowym modelu GLM-4-9B-0414 i znacząco poprawia zdolności wnioskowania międzymodalnego oraz stabilność dzięki wprowadzeniu mechanizmu rozumowania „łańcucha myślowego” (Chain-of-Thought) oraz zastosowaniu strategii uczenia ze wzmocnieniem."
|
385
|
+
},
|
386
386
|
"THUDM/GLM-Z1-32B-0414": {
|
387
387
|
"description": "GLM-Z1-32B-0414 to model wnioskowania z głęboką zdolnością myślenia. Model ten oparty jest na GLM-4-32B-0414, rozwinięty poprzez zimny start i rozszerzone uczenie przez wzmocnienie, a także przeszedł dalsze szkolenie w zadaniach matematycznych, kodowania i logiki. W porównaniu do modelu bazowego, GLM-Z1-32B-0414 znacznie poprawił zdolności matematyczne i umiejętność rozwiązywania złożonych zadań."
|
388
388
|
},
|
@@ -539,6 +539,9 @@
|
|
539
539
|
"anthropic/claude-sonnet-4": {
|
540
540
|
"description": "Claude Sonnet 4 potrafi generować niemal natychmiastowe odpowiedzi lub wydłużone, stopniowe rozumowanie, które użytkownicy mogą wyraźnie obserwować. Użytkownicy API mają również precyzyjną kontrolę nad czasem rozmyślania modelu."
|
541
541
|
},
|
542
|
+
"ascend-tribe/pangu-pro-moe": {
|
543
|
+
"description": "Pangu-Pro-MoE 72B-A16B to rzadki, duży model językowy o 72 miliardach parametrów i 16 miliardach aktywowanych parametrów, oparty na architekturze grupowanych ekspertów (MoGE). W fazie wyboru ekspertów model grupuje ekspertów i ogranicza aktywację tokenów do równej liczby ekspertów w każdej grupie, co zapewnia równomierne obciążenie ekspertów i znacznie poprawia efektywność wdrożenia modelu na platformie Ascend."
|
544
|
+
},
|
542
545
|
"aya": {
|
543
546
|
"description": "Aya 23 to model wielojęzyczny wydany przez Cohere, wspierający 23 języki, ułatwiający różnorodne zastosowania językowe."
|
544
547
|
},
|
@@ -548,6 +551,9 @@
|
|
548
551
|
"baichuan/baichuan2-13b-chat": {
|
549
552
|
"description": "Baichuan-13B to otwarty model językowy stworzony przez Baichuan Intelligence, zawierający 13 miliardów parametrów, który osiągnął najlepsze wyniki w swojej klasie w autorytatywnych benchmarkach w języku chińskim i angielskim."
|
550
553
|
},
|
554
|
+
"baidu/ERNIE-4.5-300B-A47B": {
|
555
|
+
"description": "ERNIE-4.5-300B-A47B to duży model językowy opracowany przez firmę Baidu, oparty na hybrydowej architekturze ekspertów (MoE). Model ma 300 miliardów parametrów, ale podczas inferencji aktywuje tylko 47 miliardów parametrów na token, co zapewnia doskonałą wydajność przy efektywności obliczeniowej. Jako jeden z kluczowych modeli serii ERNIE 4.5, wykazuje znakomite zdolności w rozumieniu tekstu, generowaniu, wnioskowaniu i programowaniu. Model wykorzystuje innowacyjną metodę pretrenowania multimodalnego heterogenicznego MoE, łącząc trening tekstu i wizji, co skutecznie zwiększa jego zdolności, zwłaszcza w zakresie przestrzegania instrukcji i pamięci wiedzy o świecie."
|
556
|
+
},
|
551
557
|
"c4ai-aya-expanse-32b": {
|
552
558
|
"description": "Aya Expanse to model wielojęzyczny o wysokiej wydajności 32B, zaprojektowany w celu wyzwania wydajności modeli jednolanguage poprzez innowacje w zakresie dostosowywania instrukcji, arbitrażu danych, treningu preferencji i łączenia modeli. Obsługuje 23 języki."
|
553
559
|
},
|
@@ -1097,9 +1103,6 @@
|
|
1097
1103
|
"gemini-2.5-pro": {
|
1098
1104
|
"description": "Gemini 2.5 Pro to najnowocześniejszy model myślowy Google, zdolny do rozumowania nad złożonymi problemami w dziedzinach kodowania, matematyki i STEM oraz analizowania dużych zbiorów danych, repozytoriów kodu i dokumentacji przy użyciu długiego kontekstu."
|
1099
1105
|
},
|
1100
|
-
"gemini-2.5-pro-exp-03-25": {
|
1101
|
-
"description": "Gemini 2.5 Pro Experimental to najnowocześniejszy model myślenia Google, zdolny do wnioskowania w zakresie kodu, matematyki i złożonych problemów w dziedzinie STEM, a także do analizy dużych zbiorów danych, repozytoriów kodu i dokumentów, wykorzystując długi kontekst."
|
1102
|
-
},
|
1103
1106
|
"gemini-2.5-pro-preview-03-25": {
|
1104
1107
|
"description": "Gemini 2.5 Pro Preview to najnowocześniejszy model myślenia Google, zdolny do wnioskowania w zakresie kodu, matematyki i złożonych problemów w dziedzinie STEM, a także do analizy dużych zbiorów danych, repozytoriów kodu i dokumentów przy użyciu długiego kontekstu."
|
1105
1108
|
},
|
@@ -1166,6 +1169,12 @@
|
|
1166
1169
|
"glm-4-plus": {
|
1167
1170
|
"description": "GLM-4-Plus jako flagowy model o wysokiej inteligencji, posiada potężne zdolności przetwarzania długich tekstów i złożonych zadań, z ogólnym wzrostem wydajności."
|
1168
1171
|
},
|
1172
|
+
"glm-4.1v-thinking-flash": {
|
1173
|
+
"description": "Seria modeli GLM-4.1V-Thinking to najsilniejsze znane modele wizualno-językowe (VLM) na poziomie 10 miliardów parametrów, integrujące najnowocześniejsze zadania wizualno-językowe na tym poziomie, w tym rozumienie wideo, pytania i odpowiedzi na obrazach, rozwiązywanie problemów naukowych, rozpoznawanie tekstu OCR, interpretację dokumentów i wykresów, agenta GUI, kodowanie front-endowe stron internetowych, grounding i inne. Wiele z tych zadań przewyższa możliwości modelu Qwen2.5-VL-72B, który ma ponad 8 razy więcej parametrów. Dzięki zaawansowanym technikom uczenia ze wzmocnieniem model opanował rozumowanie łańcuchowe, co znacząco poprawia dokładność i bogactwo odpowiedzi, przewyższając tradycyjne modele bez mechanizmu thinking pod względem końcowych rezultatów i interpretowalności."
|
1174
|
+
},
|
1175
|
+
"glm-4.1v-thinking-flashx": {
|
1176
|
+
"description": "Seria modeli GLM-4.1V-Thinking to najsilniejsze znane modele wizualno-językowe (VLM) na poziomie 10 miliardów parametrów, integrujące najnowocześniejsze zadania wizualno-językowe na tym poziomie, w tym rozumienie wideo, pytania i odpowiedzi na obrazach, rozwiązywanie problemów naukowych, rozpoznawanie tekstu OCR, interpretację dokumentów i wykresów, agenta GUI, kodowanie front-endowe stron internetowych, grounding i inne. Wiele z tych zadań przewyższa możliwości modelu Qwen2.5-VL-72B, który ma ponad 8 razy więcej parametrów. Dzięki zaawansowanym technikom uczenia ze wzmocnieniem model opanował rozumowanie łańcuchowe, co znacząco poprawia dokładność i bogactwo odpowiedzi, przewyższając tradycyjne modele bez mechanizmu thinking pod względem końcowych rezultatów i interpretowalności."
|
1177
|
+
},
|
1169
1178
|
"glm-4v": {
|
1170
1179
|
"description": "GLM-4V oferuje potężne zdolności rozumienia i wnioskowania obrazów, obsługując różne zadania wizualne."
|
1171
1180
|
},
|
@@ -1187,6 +1196,9 @@
|
|
1187
1196
|
"glm-z1-flash": {
|
1188
1197
|
"description": "Seria GLM-Z1 posiada silne zdolności wnioskowania złożonego, osiągając doskonałe wyniki w dziedzinach takich jak wnioskowanie logiczne, matematyka i programowanie. Maksymalna długość kontekstu wynosi 32K."
|
1189
1198
|
},
|
1199
|
+
"glm-z1-flashx": {
|
1200
|
+
"description": "Wysoka prędkość i niska cena: wersja wzbogacona Flash, ultra szybkie tempo inferencji i lepsza obsługa współbieżności."
|
1201
|
+
},
|
1190
1202
|
"glm-zero-preview": {
|
1191
1203
|
"description": "GLM-Zero-Preview posiada silne zdolności do złożonego wnioskowania, wyróżniając się w dziedzinach takich jak wnioskowanie logiczne, matematyka i programowanie."
|
1192
1204
|
},
|
@@ -1238,6 +1250,9 @@
|
|
1238
1250
|
"google/gemma-2b-it": {
|
1239
1251
|
"description": "Gemma Instruct (2B) oferuje podstawowe możliwości przetwarzania poleceń, idealne do lekkich aplikacji."
|
1240
1252
|
},
|
1253
|
+
"google/gemma-3-1b-it": {
|
1254
|
+
"description": "Gemma 3 1B to otwarty model językowy Google, ustanawiający nowe standardy w zakresie efektywności i wydajności."
|
1255
|
+
},
|
1241
1256
|
"google/gemma-3-27b-it": {
|
1242
1257
|
"description": "Gemma 3 27B to otwarty model językowy stworzony przez Google, który ustanowił nowe standardy w zakresie wydajności i efektywności."
|
1243
1258
|
},
|
@@ -1373,6 +1388,9 @@
|
|
1373
1388
|
"gryphe/mythomax-l2-13b": {
|
1374
1389
|
"description": "MythoMax l2 13B to model językowy łączący kreatywność i inteligencję, zintegrowany z wieloma wiodącymi modelami."
|
1375
1390
|
},
|
1391
|
+
"hunyuan-a13b": {
|
1392
|
+
"description": "Hunyuan to pierwszy hybrydowy model rozumowania, będący ulepszoną wersją hunyuan-standard-256K, z 80 miliardami parametrów i 13 miliardami aktywowanych. Domyślnie działa w trybie wolnego myślenia, ale obsługuje przełączanie między trybami szybkiego i wolnego myślenia za pomocą parametrów lub instrukcji; przełączanie odbywa się przez dodanie / no_think przed zapytaniem. Ogólne zdolności modelu znacznie przewyższają poprzednią generację, zwłaszcza w matematyce, naukach ścisłych, rozumieniu długich tekstów i zdolnościach agenta."
|
1393
|
+
},
|
1376
1394
|
"hunyuan-code": {
|
1377
1395
|
"description": "Najnowocześniejszy model generowania kodu Hunyuan, przeszkolony na bazie 200B wysokiej jakości danych kodu, z półrocznym treningiem na wysokiej jakości danych SFT, z wydłużonym oknem kontekstowym do 8K, zajmującym czołowe miejsca w automatycznych wskaźnikach oceny generowania kodu w pięciu językach; w ocenie jakościowej zadań kodowych w pięciu językach, osiąga wyniki w pierwszej lidze."
|
1378
1396
|
},
|
@@ -1424,6 +1442,9 @@
|
|
1424
1442
|
"hunyuan-t1-vision": {
|
1425
1443
|
"description": "Model głębokiego myślenia multimodalnego Hunyuan, obsługujący natywne łańcuchy myślowe multimodalne, doskonały w różnych scenariuszach wnioskowania obrazowego, z wyraźną przewagą nad modelami szybkiego myślenia w rozwiązywaniu problemów ścisłych."
|
1426
1444
|
},
|
1445
|
+
"hunyuan-t1-vision-20250619": {
|
1446
|
+
"description": "Najnowszy model wielomodalny t1-vision Hunyuan z głębokim rozumowaniem, obsługujący natywne łańcuchy myślowe wielomodalne, z kompleksową poprawą w stosunku do poprzedniej domyślnej wersji modelu."
|
1447
|
+
},
|
1427
1448
|
"hunyuan-turbo": {
|
1428
1449
|
"description": "Hunyuan to nowa generacja dużego modelu językowego w wersji próbnej, wykorzystująca nową strukturę modelu mieszanych ekspertów (MoE), która w porównaniu do hunyuan-pro charakteryzuje się szybszą efektywnością wnioskowania i lepszymi wynikami."
|
1429
1450
|
},
|
@@ -1454,6 +1475,12 @@
|
|
1454
1475
|
"hunyuan-turbos-role-plus": {
|
1455
1476
|
"description": "Najnowsza wersja modelu do odgrywania ról Hunyuan, oficjalnie dostrojona przez Hunyuan, oparta na modelu Hunyuan i wzbogacona o dane scenariuszy odgrywania ról, zapewniająca lepsze podstawowe efekty w tych scenariuszach."
|
1456
1477
|
},
|
1478
|
+
"hunyuan-turbos-vision": {
|
1479
|
+
"description": "Model przeznaczony do zadań rozumienia obrazów i tekstu, oparty na najnowszym modelu turbos Hunyuan, będący nową generacją flagowego modelu wizualno-językowego. Skupia się na zadaniach związanych z rozpoznawaniem obiektów na obrazach, pytaniami i odpowiedziami opartymi na wiedzy, tworzeniem tekstów reklamowych, rozwiązywaniem problemów na podstawie zdjęć i innych, z kompleksową poprawą w stosunku do poprzedniej generacji."
|
1480
|
+
},
|
1481
|
+
"hunyuan-turbos-vision-20250619": {
|
1482
|
+
"description": "Najnowszy flagowy model wizualno-językowy turbos-vision Hunyuan, z kompleksową poprawą w zadaniach związanych z rozumieniem obrazów i tekstu, w tym rozpoznawaniem obiektów na obrazach, pytaniami i odpowiedziami opartymi na wiedzy, tworzeniem tekstów reklamowych, rozwiązywaniem problemów na podstawie zdjęć, w porównaniu do poprzedniej domyślnej wersji modelu."
|
1483
|
+
},
|
1457
1484
|
"hunyuan-vision": {
|
1458
1485
|
"description": "Najnowocześniejszy model multimodalny Hunyuan, wspierający generowanie treści tekstowych na podstawie obrazów i tekstu."
|
1459
1486
|
},
|
@@ -203,24 +203,21 @@
|
|
203
203
|
"Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
|
204
204
|
"description": "Qwen2.5-VL é o novo membro da série Qwen, com capacidades avançadas de compreensão visual. Ele pode analisar textos, gráficos e layouts em imagens, compreender vídeos longos e capturar eventos. Capaz de realizar raciocínios, manipular ferramentas, suporta localização de objetos em múltiplos formatos e geração de saídas estruturadas. Otimiza a compreensão de vídeos através de treinamento com resolução dinâmica e taxa de quadros, além de melhorar a eficiência do codificador visual."
|
205
205
|
},
|
206
|
+
"Pro/THUDM/GLM-4.1V-9B-Thinking": {
|
207
|
+
"description": "GLM-4.1V-9B-Thinking é um modelo de linguagem visual (VLM) de código aberto lançado em conjunto pela Zhipu AI e pelo Laboratório KEG da Universidade de Tsinghua, projetado para lidar com tarefas cognitivas multimodais complexas. Este modelo é baseado no modelo base GLM-4-9B-0414 e melhora significativamente sua capacidade e estabilidade de raciocínio multimodal ao introduzir o mecanismo de raciocínio \"Chain-of-Thought\" (Cadeia de Pensamento) e adotar estratégias de aprendizado por reforço."
|
208
|
+
},
|
206
209
|
"Pro/THUDM/glm-4-9b-chat": {
|
207
210
|
"description": "GLM-4-9B-Chat é a versão de código aberto da série de modelos pré-treinados GLM-4 lançada pela Zhipu AI. Este modelo se destaca em semântica, matemática, raciocínio, código e conhecimento. Além de suportar diálogos de múltiplas rodadas, o GLM-4-9B-Chat também possui recursos avançados como navegação na web, execução de código, chamadas de ferramentas personalizadas (Function Call) e raciocínio de longo texto. O modelo suporta 26 idiomas, incluindo chinês, inglês, japonês, coreano e alemão. Em vários benchmarks, o GLM-4-9B-Chat demonstrou desempenho excepcional, como AlignBench-v2, MT-Bench, MMLU e C-Eval. O modelo suporta um comprimento de contexto máximo de 128K, adequado para pesquisa acadêmica e aplicações comerciais."
|
208
211
|
},
|
209
212
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
210
213
|
"description": "DeepSeek-R1 é um modelo de inferência impulsionado por aprendizado por reforço (RL), que resolve problemas de repetitividade e legibilidade no modelo. Antes do RL, o DeepSeek-R1 introduziu dados de inicialização a frio, otimizando ainda mais o desempenho de inferência. Ele se compara ao OpenAI-o1 em tarefas matemáticas, de código e de inferência, e melhora o desempenho geral por meio de métodos de treinamento cuidadosamente projetados."
|
211
214
|
},
|
212
|
-
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
213
|
-
"description": "DeepSeek-R1 é um modelo de raciocínio impulsionado por aprendizado por reforço (RL), que resolve problemas de repetição e legibilidade no modelo. Antes do RL, DeepSeek-R1 introduziu dados de cold start para otimizar ainda mais o desempenho do raciocínio. Ele apresenta desempenho comparável ao OpenAI-o1 em tarefas de matemática, código e raciocínio, e melhora o desempenho geral por meio de métodos de treinamento cuidadosamente projetados."
|
214
|
-
},
|
215
215
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
216
216
|
"description": "DeepSeek-R1-Distill-Qwen-7B é um modelo obtido por destilação de conhecimento baseado no Qwen2.5-Math-7B. Este modelo foi refinado usando 800 mil amostras selecionadas geradas pelo DeepSeek-R1, demonstrando excelente capacidade de raciocínio. Apresenta desempenho destacado em diversos benchmarks, alcançando 92,8% de precisão no MATH-500, 55,5% de taxa de aprovação no AIME 2024 e uma pontuação de 1189 no CodeForces, mostrando forte competência em matemática e programação para um modelo de escala 7B."
|
217
217
|
},
|
218
218
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
219
219
|
"description": "DeepSeek-V3 é um modelo de linguagem com 671 bilhões de parâmetros, utilizando uma arquitetura de especialistas mistos (MoE) com atenção potencial de múltiplas cabeças (MLA) e uma estratégia de balanceamento de carga sem perda auxiliar, otimizando a eficiência de inferência e treinamento. Pré-treinado em 14,8 trilhões de tokens de alta qualidade, e ajustado por supervisão e aprendizado por reforço, o DeepSeek-V3 supera outros modelos de código aberto, aproximando-se de modelos fechados líderes."
|
220
220
|
},
|
221
|
-
"Pro/deepseek-ai/DeepSeek-V3-1226": {
|
222
|
-
"description": "DeepSeek-V3 é um modelo de linguagem híbrido de especialistas (MoE) com 671 bilhões de parâmetros, utilizando atenção latente multi-cabeça (MLA) e a arquitetura DeepSeekMoE, combinando uma estratégia de balanceamento de carga sem perda auxiliar para otimizar a eficiência de inferência e treinamento. Pré-treinado em 14,8 trilhões de tokens de alta qualidade, e passando por ajuste fino supervisionado e aprendizado por reforço, o DeepSeek-V3 supera outros modelos de código aberto em desempenho, aproximando-se de modelos fechados líderes."
|
223
|
-
},
|
224
221
|
"QwQ-32B-Preview": {
|
225
222
|
"description": "O QwQ-32B-Preview é um modelo de processamento de linguagem natural inovador, capaz de lidar eficientemente com tarefas complexas de geração de diálogos e compreensão de contexto."
|
226
223
|
},
|
@@ -383,6 +380,9 @@
|
|
383
380
|
"THUDM/GLM-4-9B-0414": {
|
384
381
|
"description": "GLM-4-9B-0414 é um modelo compacto da série GLM, com 9 bilhões de parâmetros. Este modelo herda as características técnicas da série GLM-4-32B, mas oferece uma opção de implantação mais leve. Apesar de seu tamanho menor, o GLM-4-9B-0414 ainda demonstra habilidades excepcionais em tarefas de geração de código, design de páginas da web, geração de gráficos SVG e redação baseada em pesquisa."
|
385
382
|
},
|
383
|
+
"THUDM/GLM-4.1V-9B-Thinking": {
|
384
|
+
"description": "GLM-4.1V-9B-Thinking é um modelo de linguagem visual (VLM) de código aberto lançado em conjunto pela Zhipu AI e pelo Laboratório KEG da Universidade de Tsinghua, projetado para lidar com tarefas cognitivas multimodais complexas. Este modelo é baseado no modelo base GLM-4-9B-0414 e melhora significativamente sua capacidade e estabilidade de raciocínio multimodal ao introduzir o mecanismo de raciocínio \"Chain-of-Thought\" (Cadeia de Pensamento) e adotar estratégias de aprendizado por reforço."
|
385
|
+
},
|
386
386
|
"THUDM/GLM-Z1-32B-0414": {
|
387
387
|
"description": "GLM-Z1-32B-0414 é um modelo de inferência com capacidade de pensamento profundo. Este modelo é baseado no GLM-4-32B-0414, desenvolvido através de inicialização a frio e aprendizado por reforço expandido, e foi treinado adicionalmente em tarefas de matemática, código e lógica. Em comparação com o modelo base, o GLM-Z1-32B-0414 melhorou significativamente suas habilidades matemáticas e capacidade de resolver tarefas complexas."
|
388
388
|
},
|
@@ -539,6 +539,9 @@
|
|
539
539
|
"anthropic/claude-sonnet-4": {
|
540
540
|
"description": "Claude Sonnet 4 pode gerar respostas quase instantâneas ou um pensamento gradual prolongado, permitindo que os usuários vejam claramente esses processos. Usuários da API também podem controlar detalhadamente o tempo de raciocínio do modelo."
|
541
541
|
},
|
542
|
+
"ascend-tribe/pangu-pro-moe": {
|
543
|
+
"description": "Pangu-Pro-MoE 72B-A16B é um modelo de linguagem grande esparso com 72 bilhões de parâmetros e 16 bilhões de parâmetros ativados, baseado na arquitetura Mixture of Experts em grupos (MoGE). Ele agrupa especialistas na fase de seleção e restringe a ativação de um número igual de especialistas dentro de cada grupo para cada token, alcançando equilíbrio na carga dos especialistas e melhorando significativamente a eficiência de implantação do modelo na plataforma Ascend."
|
544
|
+
},
|
542
545
|
"aya": {
|
543
546
|
"description": "Aya 23 é um modelo multilíngue lançado pela Cohere, suportando 23 idiomas, facilitando aplicações linguísticas diversificadas."
|
544
547
|
},
|
@@ -548,6 +551,9 @@
|
|
548
551
|
"baichuan/baichuan2-13b-chat": {
|
549
552
|
"description": "Baichuan-13B é um modelo de linguagem de código aberto e comercializável desenvolvido pela Baichuan Intelligence, contendo 13 bilhões de parâmetros, alcançando os melhores resultados em benchmarks de chinês e inglês na mesma dimensão."
|
550
553
|
},
|
554
|
+
"baidu/ERNIE-4.5-300B-A47B": {
|
555
|
+
"description": "ERNIE-4.5-300B-A47B é um modelo de linguagem grande baseado na arquitetura Mixture of Experts (MoE), desenvolvido pela Baidu. Com um total de 300 bilhões de parâmetros, ativa apenas 47 bilhões por token durante a inferência, equilibrando desempenho robusto e eficiência computacional. Como um dos modelos centrais da série ERNIE 4.5, demonstra capacidades excepcionais em compreensão, geração, raciocínio textual e programação. O modelo utiliza um método inovador de pré-treinamento multimodal heterogêneo MoE, treinando conjuntamente texto e visão, o que melhora significativamente suas habilidades gerais, especialmente em seguir instruções e memória de conhecimento mundial."
|
556
|
+
},
|
551
557
|
"c4ai-aya-expanse-32b": {
|
552
558
|
"description": "Aya Expanse é um modelo multilíngue de alto desempenho com 32B, projetado para desafiar o desempenho de modelos monolíngues por meio de inovações em ajuste por instrução, arbitragem de dados, treinamento de preferências e fusão de modelos. Ele suporta 23 idiomas."
|
553
559
|
},
|
@@ -1097,9 +1103,6 @@
|
|
1097
1103
|
"gemini-2.5-pro": {
|
1098
1104
|
"description": "Gemini 2.5 Pro é o modelo de pensamento mais avançado do Google, capaz de raciocinar sobre código, matemática e problemas complexos nas áreas de STEM, além de analisar grandes conjuntos de dados, bases de código e documentos usando contextos longos."
|
1099
1105
|
},
|
1100
|
-
"gemini-2.5-pro-exp-03-25": {
|
1101
|
-
"description": "O Gemini 2.5 Pro Experimental é o modelo de pensamento mais avançado do Google, capaz de raciocinar sobre problemas complexos em código, matemática e áreas STEM, além de analisar grandes conjuntos de dados, repositórios de código e documentos utilizando contextos longos."
|
1102
|
-
},
|
1103
1106
|
"gemini-2.5-pro-preview-03-25": {
|
1104
1107
|
"description": "O Gemini 2.5 Pro Preview é o modelo de pensamento mais avançado do Google, capaz de raciocinar sobre problemas complexos em código, matemática e áreas STEM, além de analisar grandes conjuntos de dados, bibliotecas de código e documentos usando longos contextos."
|
1105
1108
|
},
|
@@ -1166,6 +1169,12 @@
|
|
1166
1169
|
"glm-4-plus": {
|
1167
1170
|
"description": "O GLM-4-Plus, como um modelo de alta inteligência, possui uma forte capacidade de lidar com textos longos e tarefas complexas, com desempenho amplamente aprimorado."
|
1168
1171
|
},
|
1172
|
+
"glm-4.1v-thinking-flash": {
|
1173
|
+
"description": "A série GLM-4.1V-Thinking é atualmente o modelo visual mais potente conhecido na categoria de VLMs de 10 bilhões de parâmetros, integrando tarefas de linguagem visual de ponta no mesmo nível, incluindo compreensão de vídeo, perguntas e respostas sobre imagens, resolução de problemas acadêmicos, reconhecimento óptico de caracteres (OCR), interpretação de documentos e gráficos, agentes GUI, codificação front-end para web, grounding, entre outros. Suas capacidades em várias tarefas superam até modelos com 8 vezes mais parâmetros, como o Qwen2.5-VL-72B. Por meio de técnicas avançadas de aprendizado por reforço, o modelo domina o raciocínio em cadeia para melhorar a precisão e riqueza das respostas, superando significativamente modelos tradicionais sem o mecanismo thinking em termos de resultados finais e interpretabilidade."
|
1174
|
+
},
|
1175
|
+
"glm-4.1v-thinking-flashx": {
|
1176
|
+
"description": "A série GLM-4.1V-Thinking é atualmente o modelo visual mais potente conhecido na categoria de VLMs de 10 bilhões de parâmetros, integrando tarefas de linguagem visual de ponta no mesmo nível, incluindo compreensão de vídeo, perguntas e respostas sobre imagens, resolução de problemas acadêmicos, reconhecimento óptico de caracteres (OCR), interpretação de documentos e gráficos, agentes GUI, codificação front-end para web, grounding, entre outros. Suas capacidades em várias tarefas superam até modelos com 8 vezes mais parâmetros, como o Qwen2.5-VL-72B. Por meio de técnicas avançadas de aprendizado por reforço, o modelo domina o raciocínio em cadeia para melhorar a precisão e riqueza das respostas, superando significativamente modelos tradicionais sem o mecanismo thinking em termos de resultados finais e interpretabilidade."
|
1177
|
+
},
|
1169
1178
|
"glm-4v": {
|
1170
1179
|
"description": "O GLM-4V oferece uma forte capacidade de compreensão e raciocínio de imagens, suportando várias tarefas visuais."
|
1171
1180
|
},
|
@@ -1187,6 +1196,9 @@
|
|
1187
1196
|
"glm-z1-flash": {
|
1188
1197
|
"description": "A série GLM-Z1 possui forte capacidade de raciocínio complexo, destacando-se em raciocínio lógico, matemática e programação. O comprimento máximo do contexto é de 32K."
|
1189
1198
|
},
|
1199
|
+
"glm-z1-flashx": {
|
1200
|
+
"description": "Alta velocidade e baixo custo: versão aprimorada Flash, com inferência ultrarrápida e garantia de concorrência mais rápida."
|
1201
|
+
},
|
1190
1202
|
"glm-zero-preview": {
|
1191
1203
|
"description": "O GLM-Zero-Preview possui uma poderosa capacidade de raciocínio complexo, destacando-se em áreas como raciocínio lógico, matemática e programação."
|
1192
1204
|
},
|
@@ -1238,6 +1250,9 @@
|
|
1238
1250
|
"google/gemma-2b-it": {
|
1239
1251
|
"description": "Gemma Instruct (2B) oferece capacidade básica de processamento de instruções, adequada para aplicações leves."
|
1240
1252
|
},
|
1253
|
+
"google/gemma-3-1b-it": {
|
1254
|
+
"description": "Gemma 3 1B é um modelo de linguagem de código aberto do Google que estabelece novos padrões em eficiência e desempenho."
|
1255
|
+
},
|
1241
1256
|
"google/gemma-3-27b-it": {
|
1242
1257
|
"description": "Gemma 3 27B é um modelo de linguagem de código aberto do Google, que estabelece novos padrões em eficiência e desempenho."
|
1243
1258
|
},
|
@@ -1373,6 +1388,9 @@
|
|
1373
1388
|
"gryphe/mythomax-l2-13b": {
|
1374
1389
|
"description": "MythoMax l2 13B é um modelo de linguagem que combina criatividade e inteligência, integrando vários modelos de ponta."
|
1375
1390
|
},
|
1391
|
+
"hunyuan-a13b": {
|
1392
|
+
"description": "O primeiro modelo de raciocínio híbrido da Hunyuan, uma versão aprimorada do hunyuan-standard-256K, com 80 bilhões de parâmetros totais e 13 bilhões ativados. O modo padrão é o modo de pensamento lento, com suporte para alternância entre modos rápido e lento via parâmetros ou instruções, usando prefixos query / no_think para alternar. A capacidade geral foi amplamente melhorada em relação à geração anterior, especialmente em matemática, ciências, compreensão de textos longos e habilidades de agente."
|
1393
|
+
},
|
1376
1394
|
"hunyuan-code": {
|
1377
1395
|
"description": "O mais recente modelo de geração de código Hunyuan, treinado com 200B de dados de código de alta qualidade, com seis meses de treinamento de dados SFT de alta qualidade, aumentando o comprimento da janela de contexto para 8K, destacando-se em métricas automáticas de geração de código em cinco linguagens; em avaliações de qualidade de código em dez aspectos em cinco linguagens, o desempenho está na primeira divisão."
|
1378
1396
|
},
|
@@ -1424,6 +1442,9 @@
|
|
1424
1442
|
"hunyuan-t1-vision": {
|
1425
1443
|
"description": "Modelo de pensamento profundo multimodal Hunyuan, suporta cadeias de pensamento nativas multimodais de longo alcance, excelente em diversos cenários de raciocínio com imagens, com melhorias significativas em problemas científicos em comparação com modelos de pensamento rápido."
|
1426
1444
|
},
|
1445
|
+
"hunyuan-t1-vision-20250619": {
|
1446
|
+
"description": "A versão mais recente do modelo de pensamento profundo multimodal t1-vision da Hunyuan, que suporta cadeias de pensamento nativas multimodais, com melhorias abrangentes em relação à versão padrão anterior."
|
1447
|
+
},
|
1427
1448
|
"hunyuan-turbo": {
|
1428
1449
|
"description": "Versão de pré-visualização do novo modelo de linguagem de próxima geração Hunyuan, utilizando uma nova estrutura de modelo de especialistas mistos (MoE), com eficiência de inferência mais rápida e desempenho superior em comparação ao Hunyuan-Pro."
|
1429
1450
|
},
|
@@ -1454,6 +1475,12 @@
|
|
1454
1475
|
"hunyuan-turbos-role-plus": {
|
1455
1476
|
"description": "Modelo de interpretação de papéis da versão mais recente do Hunyuan, ajustado finamente pela equipe oficial Hunyuan. Baseado no modelo Hunyuan e treinado adicionalmente com conjuntos de dados de cenários de interpretação de papéis, oferecendo melhores resultados básicos nesses contextos."
|
1456
1477
|
},
|
1478
|
+
"hunyuan-turbos-vision": {
|
1479
|
+
"description": "Este modelo é adequado para cenários de compreensão de imagens e texto, baseado na mais recente geração turbos da Hunyuan, um modelo de linguagem visual flagship focado em tarefas relacionadas à compreensão de imagens e texto, incluindo reconhecimento de entidades em imagens, perguntas e respostas baseadas em conhecimento, criação de textos e resolução de problemas por foto, com melhorias abrangentes em relação à geração anterior."
|
1480
|
+
},
|
1481
|
+
"hunyuan-turbos-vision-20250619": {
|
1482
|
+
"description": "A versão mais recente do modelo flagship de linguagem visual turbos-vision da Hunyuan, com melhorias abrangentes em tarefas relacionadas à compreensão de imagens e texto, incluindo reconhecimento de entidades em imagens, perguntas e respostas baseadas em conhecimento, criação de textos e resolução de problemas por foto, em comparação com a versão padrão anterior."
|
1483
|
+
},
|
1457
1484
|
"hunyuan-vision": {
|
1458
1485
|
"description": "O mais recente modelo multimodal Hunyuan, que suporta a entrada de imagens e texto para gerar conteúdo textual."
|
1459
1486
|
},
|
@@ -203,24 +203,21 @@
|
|
203
203
|
"Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
|
204
204
|
"description": "Qwen2.5-VL — это новый член семейства Qwen, обладающий мощными возможностями визуального понимания. Может анализировать текст, диаграммы и компоновку в изображениях, понимать длинные видео и фиксировать события. Способен к логическим рассуждениям, работе с инструментами, поддерживает локализацию объектов в различных форматах и генерацию структурированных выводов. Оптимизирован для понимания видео с динамическим разрешением и частотой кадров, а также улучшена эффективность визуального кодировщика."
|
205
205
|
},
|
206
|
+
"Pro/THUDM/GLM-4.1V-9B-Thinking": {
|
207
|
+
"description": "GLM-4.1V-9B-Thinking — это открытая визуально-языковая модель (VLM), совместно выпущенная Zhipu AI и лабораторией KEG Университета Цинхуа, специально разработанная для решения сложных мультимодальных когнитивных задач. Модель основана на базовой модели GLM-4-9B-0414 и значительно улучшает межмодальные способности рассуждения и стабильность за счёт внедрения механизма рассуждения «цепочка мышления» (Chain-of-Thought) и использования методов обучения с подкреплением."
|
208
|
+
},
|
206
209
|
"Pro/THUDM/glm-4-9b-chat": {
|
207
210
|
"description": "GLM-4-9B-Chat — это открытая версия предобученной модели из серии GLM-4, выпущенная Zhizhu AI. Эта модель показывает отличные результаты в семантике, математике, выводах, коде и знаниях. Кроме поддержки многократных диалогов, GLM-4-9B-Chat также обладает продвинутыми функциями, такими как веб-браузинг, выполнение кода, вызов пользовательских инструментов (Function Call) и вывод длинных текстов. Модель поддерживает 26 языков, включая китайский, английский, японский, корейский и немецкий. В нескольких бенчмарках GLM-4-9B-Chat демонстрирует отличные результаты, такие как AlignBench-v2, MT-Bench, MMLU и C-Eval. Эта модель поддерживает максимальную длину контекста 128K и подходит для академических исследований и коммерческих приложений."
|
208
211
|
},
|
209
212
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
210
213
|
"description": "DeepSeek-R1 — это модель вывода, управляемая обучением с подкреплением (RL), которая решает проблемы повторяемости и читаемости в модели. Перед RL DeepSeek-R1 вводит данные холодного старта, что дополнительно оптимизирует производительность вывода. Она показывает сопоставимые результаты с OpenAI-o1 в математических, кодовых и задачах вывода и улучшает общую эффективность благодаря тщательно продуманным методам обучения."
|
211
214
|
},
|
212
|
-
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
213
|
-
"description": "DeepSeek-R1 — модель рассуждений, управляемая обучением с подкреплением (RL), решающая проблемы повторяемости и читаемости в моделях. Перед RL DeepSeek-R1 использовал данные холодного старта для дальнейшей оптимизации производительности рассуждений. Модель показывает сопоставимые с OpenAI-o1 результаты в математике, программировании и задачах рассуждения, а также улучшает общую эффективность благодаря тщательно разработанным методам обучения."
|
214
|
-
},
|
215
215
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
216
216
|
"description": "DeepSeek-R1-Distill-Qwen-7B — это модель, полученная методом дистилляции знаний на основе Qwen2.5-Math-7B. Модель была доработана с использованием 800 тысяч отобранных образцов, сгенерированных DeepSeek-R1, и демонстрирует выдающиеся способности к логическому рассуждению. Показывает отличные результаты в различных тестах: точность 92,8% на MATH-500, проходной балл 55,5% на AIME 2024 и оценку 1189 на CodeForces, что подтверждает её высокие математические и программистские возможности для модели масштаба 7B."
|
217
217
|
},
|
218
218
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
219
219
|
"description": "DeepSeek-V3 — это языковая модель с 6710 миллиардами параметров, использующая архитектуру смешанных экспертов (MoE) и многофункциональное внимание (MLA), в сочетании с стратегией балансировки нагрузки без вспомогательных потерь, оптимизирующая эффективность вывода и обучения. После предобучения на 14.8 триллионах высококачественных токенов и последующей контролируемой донастройки и обучения с подкреплением, DeepSeek-V3 превосходит другие открытые модели и приближается к ведущим закрытым моделям."
|
220
220
|
},
|
221
|
-
"Pro/deepseek-ai/DeepSeek-V3-1226": {
|
222
|
-
"description": "DeepSeek-V3 — это языковая модель с 6710 миллиардами параметров, использующая смешанную экспертизу (MoE), многоуровневое внимание (MLA) и архитектуру DeepSeekMoE, в сочетании с стратегией балансировки нагрузки без вспомогательных потерь, оптимизирующей эффективность вывода и обучения. Модель была предварительно обучена на 14,8 триллионах высококачественных токенов и прошла контрольную донастройку и обучение с подкреплением, что позволяет DeepSeek-V3 превосходить другие открытые модели и приближаться к ведущим закрытым моделям."
|
223
|
-
},
|
224
221
|
"QwQ-32B-Preview": {
|
225
222
|
"description": "QwQ-32B-Preview — это инновационная модель обработки естественного языка, способная эффективно обрабатывать сложные задачи генерации диалогов и понимания контекста."
|
226
223
|
},
|
@@ -383,6 +380,9 @@
|
|
383
380
|
"THUDM/GLM-4-9B-0414": {
|
384
381
|
"description": "GLM-4-9B-0414 — это компактная модель серии GLM с 9 миллиардами параметров. Эта модель унаследовала технические характеристики серии GLM-4-32B, но предлагает более легкие варианты развертывания. Несмотря на меньший размер, GLM-4-9B-0414 все еще демонстрирует отличные способности в задачах генерации кода, веб-дизайна, генерации графики SVG и написания на основе поиска."
|
385
382
|
},
|
383
|
+
"THUDM/GLM-4.1V-9B-Thinking": {
|
384
|
+
"description": "GLM-4.1V-9B-Thinking — это открытая визуально-языковая модель (VLM), совместно выпущенная Zhipu AI и лабораторией KEG Университета Цинхуа, специально разработанная для решения сложных мультимодальных когнитивных задач. Модель основана на базовой модели GLM-4-9B-0414 и значительно улучшает межмодальные способности рассуждения и стабильность за счёт внедрения механизма рассуждения «цепочка мышления» (Chain-of-Thought) и использования методов обучения с подкреплением."
|
385
|
+
},
|
386
386
|
"THUDM/GLM-Z1-32B-0414": {
|
387
387
|
"description": "GLM-Z1-32B-0414 — это модель вывода с глубокими размышлениями. Эта модель основана на GLM-4-32B-0414 и была разработана с помощью холодного старта и расширенного усиленного обучения, а также была дополнительно обучена в задачах математики, кода и логики. По сравнению с базовой моделью, GLM-Z1-32B-0414 значительно улучшила математические способности и способности к решению сложных задач."
|
388
388
|
},
|
@@ -539,6 +539,9 @@
|
|
539
539
|
"anthropic/claude-sonnet-4": {
|
540
540
|
"description": "Claude Sonnet 4 способен генерировать практически мгновенные ответы или длительные поэтапные размышления, которые пользователи могут ясно отслеживать. API-пользователи также могут точно контролировать время размышлений модели."
|
541
541
|
},
|
542
|
+
"ascend-tribe/pangu-pro-moe": {
|
543
|
+
"description": "Pangu-Pro-MoE 72B-A16B — это разреженная большая языковая модель с 72 миллиардами параметров и 16 миллиардами активных параметров, основанная на архитектуре группового смешанного эксперта (MoGE). В фазе выбора экспертов эксперты группируются, и токен активирует равное количество экспертов в каждой группе, что обеспечивает баланс нагрузки между экспертами и значительно повышает эффективность развертывания модели на платформе Ascend."
|
544
|
+
},
|
542
545
|
"aya": {
|
543
546
|
"description": "Aya 23 — это многоязычная модель, выпущенная Cohere, поддерживающая 23 языка, обеспечивая удобство для многоязычных приложений."
|
544
547
|
},
|
@@ -548,6 +551,9 @@
|
|
548
551
|
"baichuan/baichuan2-13b-chat": {
|
549
552
|
"description": "Baichuan-13B — это открытая коммерческая крупная языковая модель с 13 миллиардами параметров, разработанная Baichuan Intelligence, которая показала лучшие результаты среди моделей того же размера на авторитетных бенчмарках на китайском и английском языках."
|
550
553
|
},
|
554
|
+
"baidu/ERNIE-4.5-300B-A47B": {
|
555
|
+
"description": "ERNIE-4.5-300B-A47B — большая языковая модель, разработанная компанией Baidu на основе архитектуры смешанных экспертов (MoE). Общий объём параметров модели составляет 300 миллиардов, однако при выводе активируется только 47 миллиардов параметров на токен, что обеспечивает высокую производительность при оптимальной вычислительной эффективности. Как одна из ключевых моделей серии ERNIE 4.5, она демонстрирует выдающиеся способности в задачах понимания текста, генерации, рассуждения и программирования. Модель использует инновационный метод предварительного обучения с мультимодальным гетерогенным MoE, объединяющий текстовые и визуальные модальности, что значительно повышает её универсальные возможности, особенно в следовании инструкциям и запоминании знаний о мире."
|
556
|
+
},
|
551
557
|
"c4ai-aya-expanse-32b": {
|
552
558
|
"description": "Aya Expanse — это высокопроизводительная многоязычная модель 32B, созданная для того, чтобы бросить вызов производительности одноязычных моделей с помощью инноваций в области настройки по инструкциям, арбитража данных, обучения предпочтениям и объединения моделей. Она поддерживает 23 языка."
|
553
559
|
},
|
@@ -1097,9 +1103,6 @@
|
|
1097
1103
|
"gemini-2.5-pro": {
|
1098
1104
|
"description": "Gemini 2.5 Pro — самая передовая модель мышления Google, способная рассуждать над сложными задачами в области кода, математики и STEM, а также анализировать большие наборы данных, кодовые базы и документы с использованием длинного контекста."
|
1099
1105
|
},
|
1100
|
-
"gemini-2.5-pro-exp-03-25": {
|
1101
|
-
"description": "Gemini 2.5 Pro Experimental — это самая современная модель мышления от Google, способная рассуждать о сложных задачах в области кода, математики и STEM, а также анализировать большие наборы данных, кодовые базы и документы, используя длинный контекст."
|
1102
|
-
},
|
1103
1106
|
"gemini-2.5-pro-preview-03-25": {
|
1104
1107
|
"description": "Gemini 2.5 Pro Preview — это самая современная модель мышления от Google, способная рассуждать о сложных задачах в области кода, математики и STEM, а также анализировать большие наборы данных, кодовые базы и документы с использованием длинного контекста."
|
1105
1108
|
},
|
@@ -1166,6 +1169,12 @@
|
|
1166
1169
|
"glm-4-plus": {
|
1167
1170
|
"description": "GLM-4-Plus, как флагман с высоким интеллектом, обладает мощными способностями обработки длинных текстов и сложных задач, с полным улучшением производительности."
|
1168
1171
|
},
|
1172
|
+
"glm-4.1v-thinking-flash": {
|
1173
|
+
"description": "Серия моделей GLM-4.1V-Thinking является самой производительной визуальной моделью уровня 10B VLM на сегодняшний день, объединяя передовые SOTA возможности в задачах визуально-языкового понимания, включая понимание видео, вопросы по изображениям, решение предметных задач, распознавание текста OCR, интерпретацию документов и графиков, GUI-агентов, фронтенд веб-кодинг, Grounding и другие. Во многих задачах её возможности превосходят Qwen2.5-VL-72B с параметрами в 8 раз больше. Благодаря передовым методам обучения с подкреплением модель овладела рассуждениями через цепочку мышления, что значительно повышает точность и полноту ответов, превосходя традиционные модели без thinking с точки зрения конечных результатов и интерпретируемости."
|
1174
|
+
},
|
1175
|
+
"glm-4.1v-thinking-flashx": {
|
1176
|
+
"description": "Серия моделей GLM-4.1V-Thinking является самой производительной визуальной моделью уровня 10B VLM на сегодняшний день, объединяя передовые SOTA возможности в задачах визуально-языкового понимания, включая понимание видео, вопросы по изображениям, решение предметных задач, распознавание текста OCR, интерпретацию документов и графиков, GUI-агентов, фронтенд веб-кодинг, Grounding и другие. Во многих задачах её возможности превосходят Qwen2.5-VL-72B с параметрами в 8 раз больше. Благодаря передовым методам обучения с подкреплением модель овладела рассуждениями через цепочку мышления, что значительно повышает точность и полноту ответов, превосходя традиционные модели без thinking с точки зрения конечных результатов и интерпретируемости."
|
1177
|
+
},
|
1169
1178
|
"glm-4v": {
|
1170
1179
|
"description": "GLM-4V предлагает мощные способности понимания и вывода изображений, поддерживает множество визуальных задач."
|
1171
1180
|
},
|
@@ -1187,6 +1196,9 @@
|
|
1187
1196
|
"glm-z1-flash": {
|
1188
1197
|
"description": "Серия GLM-Z1 обладает мощными способностями к сложному выводу, демонстрируя отличные результаты в логическом выводе, математике и программировании. Максимальная длина контекста составляет 32K."
|
1189
1198
|
},
|
1199
|
+
"glm-z1-flashx": {
|
1200
|
+
"description": "Высокая скорость и низкая цена: улучшенная версия Flash с сверхбыстрой скоростью вывода и повышенной поддержкой параллельных запросов."
|
1201
|
+
},
|
1190
1202
|
"glm-zero-preview": {
|
1191
1203
|
"description": "GLM-Zero-Preview обладает мощными способностями к сложному выводу, демонстрируя отличные результаты в области логического вывода, математики и программирования."
|
1192
1204
|
},
|
@@ -1238,6 +1250,9 @@
|
|
1238
1250
|
"google/gemma-2b-it": {
|
1239
1251
|
"description": "Gemma Instruct (2B) предлагает базовые возможности обработки команд, подходящие для легковесных приложений."
|
1240
1252
|
},
|
1253
|
+
"google/gemma-3-1b-it": {
|
1254
|
+
"description": "Gemma 3 1B — это открытая языковая модель от Google, установившая новые стандарты в эффективности и производительности."
|
1255
|
+
},
|
1241
1256
|
"google/gemma-3-27b-it": {
|
1242
1257
|
"description": "Gemma 3 27B — это открытая языковая модель от Google, которая установила новые стандарты в области эффективности и производительности."
|
1243
1258
|
},
|
@@ -1373,6 +1388,9 @@
|
|
1373
1388
|
"gryphe/mythomax-l2-13b": {
|
1374
1389
|
"description": "MythoMax l2 13B — это языковая модель, объединяющая креативность и интеллект, основанная на нескольких ведущих моделях."
|
1375
1390
|
},
|
1391
|
+
"hunyuan-a13b": {
|
1392
|
+
"description": "Hunyuan — первая гибридная модель рассуждения, обновлённая версия hunyuan-standard-256K с общим числом параметров 80B и 13B активных параметров. По умолчанию работает в режиме медленного мышления, поддерживает переключение между режимами быстрого и медленного мышления через параметры или команды, переключение осуществляется добавлением / no_think перед запросом. Общие возможности значительно улучшены по сравнению с предыдущим поколением, особенно в математике, науке, понимании длинных текстов и агентских функциях."
|
1393
|
+
},
|
1376
1394
|
"hunyuan-code": {
|
1377
1395
|
"description": "Последняя модель генерации кода Hunyuan, обученная на базе 200B высококачественных данных кода, прошедшая полгода обучения на высококачественных данных SFT, с увеличенной длиной контекстного окна до 8K, занимает ведущие позиции по автоматическим оценочным показателям генерации кода на пяти языках; по десяти критериям оценки кода на пяти языках, производительность находится в первой группе."
|
1378
1396
|
},
|
@@ -1424,6 +1442,9 @@
|
|
1424
1442
|
"hunyuan-t1-vision": {
|
1425
1443
|
"description": "Глубокая мультимодальная модель понимания Hunyuan с нативной цепочкой размышлений для мультимодальных данных, отлично справляется с различными задачами рассуждения на изображениях, значительно превосходя модели быстрого мышления в решении научных задач."
|
1426
1444
|
},
|
1445
|
+
"hunyuan-t1-vision-20250619": {
|
1446
|
+
"description": "Последняя версия модели hunyuan t1-vision для мультимодального понимания с глубокой цепочкой мышления, поддерживающая нативные мультимодальные цепочки рассуждений, с существенным улучшением по сравнению с предыдущей версией по умолчанию."
|
1447
|
+
},
|
1427
1448
|
"hunyuan-turbo": {
|
1428
1449
|
"description": "Предварительная версия нового поколения языковой модели Hunyuan, использующая совершенно новую структуру смешанной экспертной модели (MoE), которая обеспечивает более быструю эффективность вывода и более сильные результаты по сравнению с hunyuan-pro."
|
1429
1450
|
},
|
@@ -1454,6 +1475,12 @@
|
|
1454
1475
|
"hunyuan-turbos-role-plus": {
|
1455
1476
|
"description": "Последняя версия модели ролевых игр Hunyuan, официально дообученная модель, основанная на Hunyuan и дополненная данными для ролевых сценариев, обеспечивающая лучшие базовые результаты в ролевых играх."
|
1456
1477
|
},
|
1478
|
+
"hunyuan-turbos-vision": {
|
1479
|
+
"description": "Эта модель предназначена для задач понимания изображений и текста, основана на последней версии hunyuan turbos и является новым флагманским визуально-языковым большим моделью, сосредоточенной на задачах распознавания объектов на изображениях, ответах на вопросы, создании текстов и решении задач по фотографиям, с существенным улучшением по сравнению с предыдущим поколением."
|
1480
|
+
},
|
1481
|
+
"hunyuan-turbos-vision-20250619": {
|
1482
|
+
"description": "Последняя версия флагманской визуально-языковой модели hunyuan turbos-vision, значительно улучшенная по сравнению с предыдущей версией по умолчанию в задачах понимания изображений и текста, включая распознавание объектов на изображениях, ответы на вопросы, создание текстов и решение задач по фотографиям."
|
1483
|
+
},
|
1457
1484
|
"hunyuan-vision": {
|
1458
1485
|
"description": "Последняя многомодальная модель Hunyuan, поддерживающая ввод изображений и текста для генерации текстового контента."
|
1459
1486
|
},
|
@@ -203,24 +203,21 @@
|
|
203
203
|
"Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
|
204
204
|
"description": "Qwen2.5-VL, Qwen serisinin yeni üyesidir ve güçlü görsel anlama yeteneğine sahiptir. Görsellerdeki metinleri, grafikleri ve düzenleri analiz edebilir, uzun videoları anlayabilir ve olayları yakalayabilir. Akıl yürütme yapabilir, araçları kullanabilir, çoklu format nesne konumlandırmayı destekler ve yapılandırılmış çıktılar üretebilir. Video anlama için dinamik çözünürlük ve kare hızı eğitimini optimize etmiş ve görsel kodlayıcı verimliliğini artırmıştır."
|
205
205
|
},
|
206
|
+
"Pro/THUDM/GLM-4.1V-9B-Thinking": {
|
207
|
+
"description": "GLM-4.1V-9B-Thinking, Zhipu AI ve Tsinghua Üniversitesi KEG Laboratuvarı tarafından ortaklaşa yayınlanan açık kaynaklı bir görsel dil modeli (VLM) olup, karmaşık çok modlu bilişsel görevleri işlemek için tasarlanmıştır. Bu model, GLM-4-9B-0414 temel modeli üzerine kurulmuş olup, \"Düşünce Zinciri\" (Chain-of-Thought) akıl yürütme mekanizmasını ve pekiştirmeli öğrenme stratejisini benimseyerek, modlar arası akıl yürütme yeteneği ve kararlılığını önemli ölçüde artırmıştır."
|
208
|
+
},
|
206
209
|
"Pro/THUDM/glm-4-9b-chat": {
|
207
210
|
"description": "GLM-4-9B-Chat, Zhipu AI tarafından sunulan GLM-4 serisi önceden eğitilmiş modellerin açık kaynak versiyonudur. Bu model, anlam, matematik, akıl yürütme, kod ve bilgi gibi birçok alanda mükemmel performans sergilemektedir. Çoklu diyalogları desteklemenin yanı sıra, GLM-4-9B-Chat, web tarayıcı, kod yürütme, özelleştirilmiş araç çağrısı (Function Call) ve uzun metin akıl yürütme gibi gelişmiş özelliklere de sahiptir. Model, Çince, İngilizce, Japonca, Korece ve Almanca gibi 26 dili desteklemektedir. GLM-4-9B-Chat, AlignBench-v2, MT-Bench, MMLU ve C-Eval gibi birçok standart testte mükemmel performans sergilemiştir. Bu model, maksimum 128K bağlam uzunluğunu desteklemekte olup, akademik araştırmalar ve ticari uygulamalar için uygundur."
|
208
211
|
},
|
209
212
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
210
213
|
"description": "DeepSeek-R1, modeldeki tekrarlılık ve okunabilirlik sorunlarını çözen bir güçlendirilmiş öğrenme (RL) destekli çıkarım modelidir. RL'den önce, DeepSeek-R1 soğuk başlangıç verileri tanıtarak çıkarım performansını daha da optimize etmiştir. Matematik, kod ve çıkarım görevlerinde OpenAI-o1 ile benzer performans göstermektedir ve özenle tasarlanmış eğitim yöntemleri ile genel etkisini artırmıştır."
|
211
214
|
},
|
212
|
-
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
213
|
-
"description": "DeepSeek-R1, pekiştirmeli öğrenme (RL) destekli bir akıl yürütme modelidir ve modeldeki tekrar ve okunabilirlik sorunlarını çözer. RL öncesinde soğuk başlangıç verisi kullanarak akıl yürütme performansını daha da optimize etmiştir. Matematik, kodlama ve akıl yürütme görevlerinde OpenAI-o1 ile benzer performans gösterir ve özenle tasarlanmış eğitim yöntemleriyle genel performansı artırır."
|
214
|
-
},
|
215
215
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
216
216
|
"description": "DeepSeek-R1-Distill-Qwen-7B, Qwen2.5-Math-7B modelinden bilgi damıtma yöntemiyle elde edilmiş bir modeldir. Bu model, DeepSeek-R1 tarafından oluşturulan 800 bin seçkin örnekle ince ayar yapılarak geliştirilmiş olup, üstün akıl yürütme yeteneği sergilemektedir. Çeşitli kıyaslama testlerinde başarılı performans gösteren model, MATH-500'de %92,8 doğruluk, AIME 2024'te %55,5 geçme oranı ve CodeForces'ta 1189 puan alarak, 7B ölçeğindeki bir model için güçlü matematik ve programlama yeteneklerini ortaya koymuştur."
|
217
217
|
},
|
218
218
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
219
219
|
"description": "DeepSeek-V3, 6710 milyar parametreye sahip bir karma uzman (MoE) dil modelidir ve çok başlı potansiyel dikkat (MLA) ve DeepSeekMoE mimarisini kullanarak, yardımcı kayıplar olmadan yük dengeleme stratejileri ile çıkarım ve eğitim verimliliğini optimize etmektedir. 14.8 trilyon yüksek kaliteli token üzerinde önceden eğitilmiş ve denetimli ince ayar ve güçlendirilmiş öğrenme ile, DeepSeek-V3 performans açısından diğer açık kaynak modelleri geride bırakmakta ve lider kapalı kaynak modellere yaklaşmaktadır."
|
220
220
|
},
|
221
|
-
"Pro/deepseek-ai/DeepSeek-V3-1226": {
|
222
|
-
"description": "DeepSeek-V3, 6710 milyar parametreye sahip bir karma uzman (MoE) dil modelidir. Çok başlı potansiyel dikkat (MLA) ve DeepSeekMoE mimarisini kullanarak, yardımcı kayıpsız yük dengeleme stratejileri ile optimizasyon yapar ve çıkarım ile eğitim verimliliğini artırır. 14.8 trilyon yüksek kaliteli token üzerinde önceden eğitilmiş ve denetimli ince ayar ile pekiştirmeli öğrenme ile geliştirilmiştir; DeepSeek-V3, performans açısından diğer açık kaynaklı modellere göre üstünlük sağlar ve lider kapalı kaynak modellere yakın bir performans sergiler."
|
223
|
-
},
|
224
221
|
"QwQ-32B-Preview": {
|
225
222
|
"description": "QwQ-32B-Preview, karmaşık diyalog oluşturma ve bağlam anlama görevlerini etkili bir şekilde işleyebilen yenilikçi bir doğal dil işleme modelidir."
|
226
223
|
},
|
@@ -383,6 +380,9 @@
|
|
383
380
|
"THUDM/GLM-4-9B-0414": {
|
384
381
|
"description": "GLM-4-9B-0414, GLM serisinin küçük modelidir ve 9 milyar parametreye sahiptir. Bu model, GLM-4-32B serisinin teknik özelliklerini devralır, ancak daha hafif bir dağıtım seçeneği sunar. Boyutu daha küçük olmasına rağmen, GLM-4-9B-0414, kod oluşturma, web tasarımı, SVG grafik oluşturma ve arama tabanlı yazım gibi görevlerde mükemmel yetenekler sergiler."
|
385
382
|
},
|
383
|
+
"THUDM/GLM-4.1V-9B-Thinking": {
|
384
|
+
"description": "GLM-4.1V-9B-Thinking, Zhipu AI ve Tsinghua Üniversitesi KEG Laboratuvarı tarafından ortaklaşa yayınlanan açık kaynaklı bir görsel dil modeli (VLM) olup, karmaşık çok modlu bilişsel görevleri işlemek için tasarlanmıştır. Bu model, GLM-4-9B-0414 temel modeli üzerine kurulmuş olup, \"Düşünce Zinciri\" (Chain-of-Thought) akıl yürütme mekanizmasını ve pekiştirmeli öğrenme stratejisini benimseyerek, modlar arası akıl yürütme yeteneği ve kararlılığını önemli ölçüde artırmıştır."
|
385
|
+
},
|
386
386
|
"THUDM/GLM-Z1-32B-0414": {
|
387
387
|
"description": "GLM-Z1-32B-0414, derin düşünme yeteneğine sahip bir çıkarım modelidir. Bu model, GLM-4-32B-0414 temel alınarak soğuk başlatma ve genişletilmiş pekiştirme öğrenimi ile geliştirilmiştir ve matematik, kod ve mantık görevlerinde daha fazla eğitim almıştır. Temel model ile karşılaştırıldığında, GLM-Z1-32B-0414, matematik yeteneklerini ve karmaşık görevleri çözme yeteneğini önemli ölçüde artırmıştır."
|
388
388
|
},
|
@@ -539,6 +539,9 @@
|
|
539
539
|
"anthropic/claude-sonnet-4": {
|
540
540
|
"description": "Claude Sonnet 4, neredeyse anında yanıtlar veya uzatılmış adım adım düşünme süreçleri üretebilir; kullanıcılar bu süreçleri net bir şekilde görebilir. API kullanıcıları ayrıca modelin düşünme süresini ayrıntılı olarak kontrol edebilir."
|
541
541
|
},
|
542
|
+
"ascend-tribe/pangu-pro-moe": {
|
543
|
+
"description": "Pangu-Pro-MoE 72B-A16B, 72 milyar parametreli ve 16 milyar parametre aktive eden seyrek büyük bir dil modelidir. Bu model, grup tabanlı uzman karışımı (MoGE) mimarisine dayanır; uzman seçim aşamasında uzmanları gruplar halinde düzenler ve her grupta token başına eşit sayıda uzmanı aktive ederek uzman yük dengesini sağlar. Bu sayede Ascend platformunda modelin dağıtım verimliliği önemli ölçüde artırılmıştır."
|
544
|
+
},
|
542
545
|
"aya": {
|
543
546
|
"description": "Aya 23, Cohere tarafından sunulan çok dilli bir modeldir, 23 dili destekler ve çok dilli uygulamalar için kolaylık sağlar."
|
544
547
|
},
|
@@ -548,6 +551,9 @@
|
|
548
551
|
"baichuan/baichuan2-13b-chat": {
|
549
552
|
"description": "Baichuan-13B, Baichuan Zhi Neng tarafından geliştirilen 130 milyar parametreye sahip açık kaynaklı ticari bir büyük dil modelidir ve yetkili Çince ve İngilizce benchmark'larda aynı boyuttaki en iyi sonuçları elde etmiştir."
|
550
553
|
},
|
554
|
+
"baidu/ERNIE-4.5-300B-A47B": {
|
555
|
+
"description": "ERNIE-4.5-300B-A47B, Baidu tarafından geliştirilen, karma uzman (MoE) mimarisine dayanan büyük bir dil modelidir. Modelin toplam parametre sayısı 300 milyar olup, çıkarım sırasında her token için yalnızca 47 milyar parametre aktive edilir; böylece güçlü performans ile hesaplama verimliliği dengelenir. ERNIE 4.5 serisinin temel modellerinden biri olarak, metin anlama, üretme, akıl yürütme ve programlama gibi görevlerde üstün yetenekler sergiler. Model, metin ve görsel modların ortak eğitimiyle çok modlu heterojen MoE ön eğitim yöntemi kullanarak genel yeteneklerini artırmış, özellikle talimat takibi ve dünya bilgisi hafızasında etkileyici sonuçlar elde etmiştir."
|
556
|
+
},
|
551
557
|
"c4ai-aya-expanse-32b": {
|
552
558
|
"description": "Aya Expanse, talimat ayarlama, veri arbitrajı, tercih eğitimi ve model birleştirme yenilikleri ile tek dilli modellerin performansını zorlamak için tasarlanmış yüksek performanslı bir 32B çok dilli modeldir. 23 dili desteklemektedir."
|
553
559
|
},
|
@@ -1097,9 +1103,6 @@
|
|
1097
1103
|
"gemini-2.5-pro": {
|
1098
1104
|
"description": "Gemini 2.5 Pro, Google'ın en gelişmiş düşünce modelidir; kodlama, matematik ve STEM alanlarındaki karmaşık problemleri çıkarım yapabilir ve uzun bağlam kullanarak büyük veri setleri, kod tabanları ve belgeleri analiz edebilir."
|
1099
1105
|
},
|
1100
|
-
"gemini-2.5-pro-exp-03-25": {
|
1101
|
-
"description": "Gemini 2.5 Pro Deneysel, Google'ın en gelişmiş düşünce modeli olup, kod, matematik ve STEM alanlarındaki karmaşık sorunları akıl yürütebilmektedir. Ayrıca, uzun bağlamları kullanarak büyük veri setlerini, kod havuzlarını ve belgeleri analiz edebilir."
|
1102
|
-
},
|
1103
1106
|
"gemini-2.5-pro-preview-03-25": {
|
1104
1107
|
"description": "Gemini 2.5 Pro Önizleme, Google'ın en gelişmiş düşünce modeli olup, kod, matematik ve STEM alanlarındaki karmaşık sorunları akıl yürütme yeteneğine sahiptir. Uzun bağlamları analiz ederek büyük veri setleri, kod havuzları ve belgeler üzerinde çalışabilir."
|
1105
1108
|
},
|
@@ -1166,6 +1169,12 @@
|
|
1166
1169
|
"glm-4-plus": {
|
1167
1170
|
"description": "GLM-4-Plus, güçlü uzun metin işleme ve karmaşık görevler için yeteneklere sahip yüksek akıllı bir amiral gemisidir, performansı tamamen artırılmıştır."
|
1168
1171
|
},
|
1172
|
+
"glm-4.1v-thinking-flash": {
|
1173
|
+
"description": "GLM-4.1V-Thinking serisi modeller, bilinen 10 milyar parametre seviyesindeki VLM modelleri arasında en güçlü görsel modellerdir. Aynı seviyedeki SOTA görsel dil görevlerini birleştirir; video anlama, görsel soru-cevap, akademik problem çözme, OCR metin tanıma, belge ve grafik yorumlama, GUI ajanı, ön uç web kodlama, grounding gibi birçok görevde 8 kat daha büyük parametreli Qwen2.5-VL-72B modelini bile aşan performans gösterir. Önde gelen pekiştirmeli öğrenme teknikleri sayesinde, düşünce zinciri akıl yürütme yoluyla cevapların doğruluğu ve zenginliği artırılmıştır; nihai sonuçlar ve açıklanabilirlik açısından geleneksel düşünce zinciri olmayan modellerin çok ötesindedir."
|
1174
|
+
},
|
1175
|
+
"glm-4.1v-thinking-flashx": {
|
1176
|
+
"description": "GLM-4.1V-Thinking serisi modeller, bilinen 10 milyar parametre seviyesindeki VLM modelleri arasında en güçlü görsel modellerdir. Aynı seviyedeki SOTA görsel dil görevlerini birleştirir; video anlama, görsel soru-cevap, akademik problem çözme, OCR metin tanıma, belge ve grafik yorumlama, GUI ajanı, ön uç web kodlama, grounding gibi birçok görevde 8 kat daha büyük parametreli Qwen2.5-VL-72B modelini bile aşan performans gösterir. Önde gelen pekiştirmeli öğrenme teknikleri sayesinde, düşünce zinciri akıl yürütme yoluyla cevapların doğruluğu ve zenginliği artırılmıştır; nihai sonuçlar ve açıklanabilirlik açısından geleneksel düşünce zinciri olmayan modellerin çok ötesindedir."
|
1177
|
+
},
|
1169
1178
|
"glm-4v": {
|
1170
1179
|
"description": "GLM-4V, güçlü görüntü anlama ve akıl yürütme yetenekleri sunar, çeşitli görsel görevleri destekler."
|
1171
1180
|
},
|
@@ -1187,6 +1196,9 @@
|
|
1187
1196
|
"glm-z1-flash": {
|
1188
1197
|
"description": "GLM-Z1 serisi, karmaşık çıkarım yeteneklerine sahiptir, mantıksal çıkarım, matematik, programlama gibi alanlarda mükemmel performans gösterir. Maksimum bağlam uzunluğu 32K'dır."
|
1189
1198
|
},
|
1199
|
+
"glm-z1-flashx": {
|
1200
|
+
"description": "Yüksek hız ve düşük maliyet: Flash geliştirilmiş versiyon, ultra hızlı çıkarım hızı ve daha hızlı eşzamanlılık garantisi sunar."
|
1201
|
+
},
|
1190
1202
|
"glm-zero-preview": {
|
1191
1203
|
"description": "GLM-Zero-Preview, karmaşık akıl yürütme yeteneklerine sahip olup, mantıksal akıl yürütme, matematik, programlama gibi alanlarda mükemmel performans sergilemektedir."
|
1192
1204
|
},
|
@@ -1238,6 +1250,9 @@
|
|
1238
1250
|
"google/gemma-2b-it": {
|
1239
1251
|
"description": "Gemma Instruct (2B), temel talimat işleme yetenekleri sunar ve hafif uygulamalar için uygundur."
|
1240
1252
|
},
|
1253
|
+
"google/gemma-3-1b-it": {
|
1254
|
+
"description": "Gemma 3 1B, Google tarafından geliştirilen açık kaynaklı bir dil modelidir ve verimlilik ile performansta yeni standartlar belirlemiştir."
|
1255
|
+
},
|
1241
1256
|
"google/gemma-3-27b-it": {
|
1242
1257
|
"description": "Gemma 3 27B, Google'ın verimlilik ve performans açısından yeni standartlar belirleyen açık kaynaklı bir dil modelidir."
|
1243
1258
|
},
|
@@ -1373,6 +1388,9 @@
|
|
1373
1388
|
"gryphe/mythomax-l2-13b": {
|
1374
1389
|
"description": "MythoMax l2 13B, birden fazla üst düzey modelin birleşimiyle yaratıcı ve zeka odaklı bir dil modelidir."
|
1375
1390
|
},
|
1391
|
+
"hunyuan-a13b": {
|
1392
|
+
"description": "Hunyuan'ın ilk karma akıl yürütme modeli olan hunyuan-standard-256K'nın yükseltilmiş versiyonu, toplam 80 milyar parametre ve 13 milyar parametre aktive eder. Varsayılan olarak yavaş düşünme modundadır ve parametre veya komut yoluyla hızlı ve yavaş düşünme modları arasında geçişi destekler; hızlı/yavaş düşünme geçişi için sorguya / no_think eklenir. Genel yetenekler önceki nesle göre kapsamlı şekilde geliştirilmiş olup, özellikle matematik, bilim, uzun metin anlama ve ajan yeteneklerinde belirgin artışlar vardır."
|
1393
|
+
},
|
1376
1394
|
"hunyuan-code": {
|
1377
1395
|
"description": "Hunyuan'ın en son kod oluşturma modeli, 200B yüksek kaliteli kod verisi ile artırılmış temel model ile altı ay boyunca yüksek kaliteli SFT verisi eğitimi almıştır. Bağlam penceresi uzunluğu 8K'ya çıkarılmıştır ve beş büyük dil için kod oluşturma otomatik değerlendirme göstergelerinde ön sıralardadır; beş büyük dilde 10 kriterin her yönüyle yüksek kaliteli değerlendirmelerde performansı birinci sıradadır."
|
1378
1396
|
},
|
@@ -1424,6 +1442,9 @@
|
|
1424
1442
|
"hunyuan-t1-vision": {
|
1425
1443
|
"description": "Hunyuan çok modlu anlayış derin düşünme modeli, çok modlu doğal uzun düşünce zincirini destekler, çeşitli görsel çıkarım senaryolarında uzmandır ve fen bilimleri problemlerinde hızlı düşünme modellerine kıyasla kapsamlı iyileşme sağlar."
|
1426
1444
|
},
|
1445
|
+
"hunyuan-t1-vision-20250619": {
|
1446
|
+
"description": "Hunyuan'ın en yeni t1-vision çok modlu anlama derin düşünme modeli, çok modlu doğal düşünce zincirini destekler ve önceki nesil varsayılan modele kıyasla kapsamlı iyileştirmeler sunar."
|
1447
|
+
},
|
1427
1448
|
"hunyuan-turbo": {
|
1428
1449
|
"description": "Hunyuan'ın yeni nesil büyük dil modelinin önizleme sürümü, tamamen yeni bir karma uzman modeli (MoE) yapısı kullanır ve hunyuan-pro'ya kıyasla daha hızlı çıkarım verimliliği ve daha güçlü performans sunar."
|
1429
1450
|
},
|
@@ -1454,6 +1475,12 @@
|
|
1454
1475
|
"hunyuan-turbos-role-plus": {
|
1455
1476
|
"description": "Hunyuan'ın en son rol yapma modeli, Hunyuan tarafından resmi olarak ince ayar ve eğitimle geliştirilmiş, rol yapma senaryoları veri setiyle artırılmıştır ve rol yapma senaryolarında daha iyi temel performans sunar."
|
1456
1477
|
},
|
1478
|
+
"hunyuan-turbos-vision": {
|
1479
|
+
"description": "Bu model, görsel ve metin anlama senaryoları için uygundur ve Hunyuan'ın en yeni turbos tabanlı yeni nesil görsel dil amiral gemisi büyük modelidir. Görsel tabanlı varlık tanıma, bilgi sorgulama, metin oluşturma, fotoğrafla problem çözme gibi görevlerde odaklanır ve önceki nesil modele kıyasla kapsamlı iyileştirmeler içerir."
|
1480
|
+
},
|
1481
|
+
"hunyuan-turbos-vision-20250619": {
|
1482
|
+
"description": "Hunyuan'ın en yeni turbos-vision görsel dil amiral gemisi büyük modeli, görsel ve metin anlama ile ilgili görevlerde, görsel tabanlı varlık tanıma, bilgi sorgulama, metin oluşturma, fotoğrafla problem çözme gibi alanlarda önceki nesil varsayılan modele kıyasla kapsamlı iyileştirmeler sunar."
|
1483
|
+
},
|
1457
1484
|
"hunyuan-vision": {
|
1458
1485
|
"description": "Hunyuan'ın en son çok modlu modeli, resim + metin girişi ile metin içeriği oluşturmayı destekler."
|
1459
1486
|
},
|