@lobehub/chat 1.98.0 → 1.98.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/locales/ar/models.json +36 -9
- package/locales/bg-BG/models.json +36 -9
- package/locales/de-DE/models.json +36 -9
- package/locales/en-US/models.json +36 -9
- package/locales/es-ES/models.json +36 -9
- package/locales/fa-IR/models.json +36 -9
- package/locales/fr-FR/models.json +36 -9
- package/locales/it-IT/models.json +36 -9
- package/locales/ja-JP/models.json +36 -9
- package/locales/ko-KR/models.json +36 -9
- package/locales/nl-NL/models.json +36 -9
- package/locales/pl-PL/models.json +36 -9
- package/locales/pt-BR/models.json +36 -9
- package/locales/ru-RU/models.json +36 -9
- package/locales/tr-TR/models.json +36 -9
- package/locales/vi-VN/models.json +36 -9
- package/locales/zh-CN/models.json +36 -9
- package/locales/zh-TW/models.json +36 -9
- package/package.json +1 -1
- package/src/app/[variants]/(main)/discover/(list)/(home)/page.tsx +4 -4
@@ -203,24 +203,21 @@
|
|
203
203
|
"Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
|
204
204
|
"description": "Qwen2.5-VL là thành viên mới của series Qwen, sở hữu khả năng hiểu thị giác mạnh mẽ, có thể phân tích văn bản, biểu đồ và bố cục trong hình ảnh, cũng như hiểu video dài và bắt các sự kiện, có thể suy luận, thao tác công cụ, hỗ trợ định vị vật thể đa định dạng và tạo ra đầu ra có cấu trúc, tối ưu hóa việc huấn luyện độ phân giải và tốc độ khung hình động cho việc hiểu video, đồng thời cải thiện hiệu suất của bộ mã hóa thị giác."
|
205
205
|
},
|
206
|
+
"Pro/THUDM/GLM-4.1V-9B-Thinking": {
|
207
|
+
"description": "GLM-4.1V-9B-Thinking là một mô hình ngôn ngữ thị giác (VLM) mã nguồn mở được phát hành chung bởi Zhipu AI và Phòng thí nghiệm KEG của Đại học Thanh Hoa, được thiết kế đặc biệt để xử lý các nhiệm vụ nhận thức đa phương thức phức tạp. Mô hình này dựa trên mô hình cơ sở GLM-4-9B-0414, thông qua việc giới thiệu cơ chế suy luận “Chuỗi tư duy” (Chain-of-Thought) và áp dụng chiến lược học tăng cường, đã nâng cao đáng kể khả năng suy luận đa phương thức và tính ổn định của nó."
|
208
|
+
},
|
206
209
|
"Pro/THUDM/glm-4-9b-chat": {
|
207
210
|
"description": "GLM-4-9B-Chat là phiên bản mã nguồn mở trong loạt mô hình tiền huấn luyện GLM-4 do Zhizhu AI phát hành. Mô hình này thể hiện xuất sắc trong nhiều lĩnh vực như ngữ nghĩa, toán học, suy luận, mã và kiến thức. Ngoài việc hỗ trợ đối thoại nhiều vòng, GLM-4-9B-Chat còn có các tính năng nâng cao như duyệt web, thực thi mã, gọi công cụ tùy chỉnh (Function Call) và suy luận văn bản dài. Mô hình hỗ trợ 26 ngôn ngữ, bao gồm tiếng Trung, tiếng Anh, tiếng Nhật, tiếng Hàn và tiếng Đức. Trong nhiều bài kiểm tra chuẩn, GLM-4-9B-Chat đã thể hiện hiệu suất xuất sắc, như AlignBench-v2, MT-Bench, MMLU và C-Eval. Mô hình hỗ trợ độ dài ngữ cảnh tối đa 128K, phù hợp cho nghiên cứu học thuật và ứng dụng thương mại."
|
208
211
|
},
|
209
212
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
210
213
|
"description": "DeepSeek-R1 là một mô hình suy diễn được điều khiển bởi học tăng cường (RL), giải quyết các vấn đề về tính lặp lại và khả năng đọc trong mô hình. Trước khi áp dụng RL, DeepSeek-R1 đã giới thiệu dữ liệu khởi động lạnh, tối ưu hóa thêm hiệu suất suy diễn. Nó thể hiện hiệu suất tương đương với OpenAI-o1 trong các nhiệm vụ toán học, mã và suy diễn, và thông qua phương pháp đào tạo được thiết kế cẩn thận, nâng cao hiệu quả tổng thể."
|
211
214
|
},
|
212
|
-
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
213
|
-
"description": "DeepSeek-R1 là mô hình suy luận được điều khiển bằng học tăng cường (RL), giải quyết các vấn đề về tính lặp lại và khả năng đọc hiểu của mô hình. Trước khi áp dụng RL, DeepSeek-R1 đã giới thiệu dữ liệu khởi động lạnh để tối ưu hóa hiệu suất suy luận. Mô hình đạt hiệu quả tương đương OpenAI-o1 trong các nhiệm vụ toán học, mã hóa và suy luận, đồng thời nâng cao tổng thể nhờ phương pháp huấn luyện tinh tế."
|
214
|
-
},
|
215
215
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
216
216
|
"description": "DeepSeek-R1-Distill-Qwen-7B là mô hình được tạo ra từ Qwen2.5-Math-7B thông qua quá trình chưng cất kiến thức. Mô hình này được tinh chỉnh bằng 800.000 mẫu được chọn lọc từ DeepSeek-R1, thể hiện khả năng suy luận xuất sắc. Nó đã đạt được hiệu suất tốt trong nhiều bài kiểm tra chuẩn, trong đó có độ chính xác 92,8% trên MATH-500, tỷ lệ vượt qua 55,5% trên AIME 2024, và điểm số 1189 trên CodeForces, thể hiện khả năng toán học và lập trình mạnh mẽ cho một mô hình có quy mô 7B."
|
217
217
|
},
|
218
218
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
219
219
|
"description": "DeepSeek-V3 là một mô hình ngôn ngữ hỗn hợp chuyên gia (MoE) với 6710 tỷ tham số, sử dụng chú ý tiềm ẩn đa đầu (MLA) và kiến trúc DeepSeekMoE, kết hợp chiến lược cân bằng tải không có tổn thất phụ trợ, tối ưu hóa hiệu suất suy diễn và đào tạo. Thông qua việc được tiền huấn luyện trên 14.8 triệu tỷ token chất lượng cao, và thực hiện tinh chỉnh giám sát và học tăng cường, DeepSeek-V3 vượt trội hơn các mô hình mã nguồn mở khác, gần với các mô hình đóng kín hàng đầu."
|
220
220
|
},
|
221
|
-
"Pro/deepseek-ai/DeepSeek-V3-1226": {
|
222
|
-
"description": "DeepSeek-V3 là một mô hình ngôn ngữ hỗn hợp chuyên gia (MoE) với 6710 tỷ tham số, sử dụng cơ cấu chú ý tiềm ẩn đa đầu (MLA) và DeepSeekMoE, kết hợp với chiến lược cân bằng tải không có tổn thất phụ trợ, tối ưu hóa hiệu suất suy diễn và đào tạo. Qua việc được tiền huấn luyện trên 14.8 triệu tỷ token chất lượng cao, và thực hiện tinh chỉnh giám sát cũng như học tăng cường, DeepSeek-V3 vượt trội về hiệu suất so với các mô hình mã nguồn mở khác, gần đạt được hiệu suất của các mô hình đóng nguồn hàng đầu."
|
223
|
-
},
|
224
221
|
"QwQ-32B-Preview": {
|
225
222
|
"description": "QwQ-32B-Preview là một mô hình xử lý ngôn ngữ tự nhiên độc đáo, có khả năng xử lý hiệu quả các nhiệm vụ tạo đối thoại phức tạp và hiểu ngữ cảnh."
|
226
223
|
},
|
@@ -383,6 +380,9 @@
|
|
383
380
|
"THUDM/GLM-4-9B-0414": {
|
384
381
|
"description": "GLM-4-9B-0414 là mô hình nhỏ trong dòng GLM, với 9 tỷ tham số. Mô hình này kế thừa các đặc điểm kỹ thuật của dòng GLM-4-32B, nhưng cung cấp lựa chọn triển khai nhẹ hơn. Mặc dù quy mô nhỏ, GLM-4-9B-0414 vẫn thể hiện khả năng xuất sắc trong các nhiệm vụ như tạo mã, thiết kế trang web, tạo đồ họa SVG và viết dựa trên tìm kiếm."
|
385
382
|
},
|
383
|
+
"THUDM/GLM-4.1V-9B-Thinking": {
|
384
|
+
"description": "GLM-4.1V-9B-Thinking là một mô hình ngôn ngữ thị giác (VLM) mã nguồn mở được phát hành chung bởi Zhipu AI và Phòng thí nghiệm KEG của Đại học Thanh Hoa, được thiết kế đặc biệt để xử lý các nhiệm vụ nhận thức đa phương thức phức tạp. Mô hình này dựa trên mô hình cơ sở GLM-4-9B-0414, thông qua việc giới thiệu cơ chế suy luận “Chuỗi tư duy” (Chain-of-Thought) và áp dụng chiến lược học tăng cường, đã nâng cao đáng kể khả năng suy luận đa phương thức và tính ổn định của nó."
|
385
|
+
},
|
386
386
|
"THUDM/GLM-Z1-32B-0414": {
|
387
387
|
"description": "GLM-Z1-32B-0414 là một mô hình suy luận có khả năng suy tư sâu. Mô hình này được phát triển dựa trên GLM-4-32B-0414 thông qua khởi động lạnh và tăng cường học tập, và đã được huấn luyện thêm trong các nhiệm vụ toán học, mã và logic. So với mô hình cơ sở, GLM-Z1-32B-0414 đã nâng cao đáng kể khả năng toán học và khả năng giải quyết các nhiệm vụ phức tạp."
|
388
388
|
},
|
@@ -539,6 +539,9 @@
|
|
539
539
|
"anthropic/claude-sonnet-4": {
|
540
540
|
"description": "Claude Sonnet 4 có thể tạo ra phản hồi gần như tức thì hoặc suy nghĩ từng bước kéo dài, người dùng có thể rõ ràng quan sát quá trình này. Người dùng API cũng có thể kiểm soát chi tiết thời gian suy nghĩ của mô hình."
|
541
541
|
},
|
542
|
+
"ascend-tribe/pangu-pro-moe": {
|
543
|
+
"description": "Pangu-Pro-MoE 72B-A16B là một mô hình ngôn ngữ lớn thưa thớt với 72 tỷ tham số và 16 tỷ tham số kích hoạt, dựa trên kiến trúc chuyên gia hỗn hợp theo nhóm (MoGE). Nó phân nhóm các chuyên gia trong giai đoạn lựa chọn chuyên gia và giới hạn token kích hoạt số lượng chuyên gia bằng nhau trong mỗi nhóm, từ đó đạt được cân bằng tải chuyên gia và cải thiện đáng kể hiệu quả triển khai mô hình trên nền tảng Ascend."
|
544
|
+
},
|
542
545
|
"aya": {
|
543
546
|
"description": "Aya 23 là mô hình đa ngôn ngữ do Cohere phát hành, hỗ trợ 23 ngôn ngữ, tạo điều kiện thuận lợi cho các ứng dụng ngôn ngữ đa dạng."
|
544
547
|
},
|
@@ -548,6 +551,9 @@
|
|
548
551
|
"baichuan/baichuan2-13b-chat": {
|
549
552
|
"description": "Baichuan-13B là mô hình ngôn ngữ lớn mã nguồn mở có thể thương mại hóa với 130 tỷ tham số, được phát triển bởi Baichuan Intelligence, đã đạt được hiệu suất tốt nhất trong cùng kích thước trên các benchmark tiếng Trung và tiếng Anh."
|
550
553
|
},
|
554
|
+
"baidu/ERNIE-4.5-300B-A47B": {
|
555
|
+
"description": "ERNIE-4.5-300B-A47B là một mô hình ngôn ngữ lớn dựa trên kiến trúc chuyên gia hỗn hợp (MoE) do công ty Baidu phát triển. Mô hình có tổng số 300 tỷ tham số, nhưng trong quá trình suy luận mỗi token chỉ kích hoạt 47 tỷ tham số, đảm bảo hiệu suất mạnh mẽ đồng thời tối ưu hóa hiệu quả tính toán. Là một trong những mô hình cốt lõi của dòng ERNIE 4.5, nó thể hiện khả năng xuất sắc trong các nhiệm vụ hiểu, tạo văn bản, suy luận và lập trình. Mô hình áp dụng phương pháp tiền huấn luyện MoE dị thể đa phương thức sáng tạo, thông qua huấn luyện kết hợp văn bản và hình ảnh, nâng cao hiệu quả tổng thể, đặc biệt nổi bật trong việc tuân thủ chỉ dẫn và ghi nhớ kiến thức thế giới."
|
556
|
+
},
|
551
557
|
"c4ai-aya-expanse-32b": {
|
552
558
|
"description": "Aya Expanse là một mô hình đa ngôn ngữ hiệu suất cao 32B, được thiết kế để thách thức hiệu suất của các mô hình đơn ngôn ngữ thông qua việc tinh chỉnh theo chỉ dẫn, khai thác dữ liệu, đào tạo theo sở thích và hợp nhất mô hình. Nó hỗ trợ 23 ngôn ngữ."
|
553
559
|
},
|
@@ -1097,9 +1103,6 @@
|
|
1097
1103
|
"gemini-2.5-pro": {
|
1098
1104
|
"description": "Gemini 2.5 Pro là mô hình tư duy tiên tiến nhất của Google, có khả năng suy luận các vấn đề phức tạp trong lĩnh vực mã nguồn, toán học và STEM, cũng như phân tích các bộ dữ liệu lớn, kho mã và tài liệu bằng ngữ cảnh dài."
|
1099
1105
|
},
|
1100
|
-
"gemini-2.5-pro-exp-03-25": {
|
1101
|
-
"description": "Gemini 2.5 Pro Experimental là mô hình tư duy tiên tiến nhất của Google, có khả năng suy luận về mã, toán học và các vấn đề phức tạp trong lĩnh vực STEM, đồng thời có thể phân tích các tập dữ liệu lớn, kho mã và tài liệu bằng cách sử dụng ngữ cảnh dài."
|
1102
|
-
},
|
1103
1106
|
"gemini-2.5-pro-preview-03-25": {
|
1104
1107
|
"description": "Gemini 2.5 Pro Preview là mô hình tư duy tiên tiến nhất của Google, có khả năng suy luận về mã, toán học và các vấn đề phức tạp trong lĩnh vực STEM, cũng như phân tích các tập dữ liệu lớn, kho mã và tài liệu bằng cách sử dụng ngữ cảnh dài."
|
1105
1108
|
},
|
@@ -1166,6 +1169,12 @@
|
|
1166
1169
|
"glm-4-plus": {
|
1167
1170
|
"description": "GLM-4-Plus là mô hình flagship thông minh cao, có khả năng xử lý văn bản dài và nhiệm vụ phức tạp, hiệu suất được nâng cao toàn diện."
|
1168
1171
|
},
|
1172
|
+
"glm-4.1v-thinking-flash": {
|
1173
|
+
"description": "Dòng mô hình GLM-4.1V-Thinking là mô hình VLM cấp 10 tỷ tham số mạnh nhất hiện biết, tích hợp các nhiệm vụ ngôn ngữ thị giác SOTA cùng cấp, bao gồm hiểu video, hỏi đáp hình ảnh, giải bài tập chuyên ngành, nhận dạng ký tự quang học (OCR), phân tích tài liệu và biểu đồ, tác nhân GUI, lập trình giao diện web frontend, định vị (Grounding) và nhiều nhiệm vụ khác, với khả năng vượt trội so với Qwen2.5-VL-72B có tham số gấp 8 lần. Thông qua công nghệ học tăng cường tiên tiến, mô hình nắm vững phương pháp suy luận chuỗi tư duy để nâng cao độ chính xác và sự phong phú của câu trả lời, vượt trội rõ rệt so với các mô hình truyền thống không có tính năng thinking về hiệu quả cuối cùng và khả năng giải thích."
|
1174
|
+
},
|
1175
|
+
"glm-4.1v-thinking-flashx": {
|
1176
|
+
"description": "Dòng mô hình GLM-4.1V-Thinking là mô hình VLM cấp 10 tỷ tham số mạnh nhất hiện biết, tích hợp các nhiệm vụ ngôn ngữ thị giác SOTA cùng cấp, bao gồm hiểu video, hỏi đáp hình ảnh, giải bài tập chuyên ngành, nhận dạng ký tự quang học (OCR), phân tích tài liệu và biểu đồ, tác nhân GUI, lập trình giao diện web frontend, định vị (Grounding) và nhiều nhiệm vụ khác, với khả năng vượt trội so với Qwen2.5-VL-72B có tham số gấp 8 lần. Thông qua công nghệ học tăng cường tiên tiến, mô hình nắm vững phương pháp suy luận chuỗi tư duy để nâng cao độ chính xác và sự phong phú của câu trả lời, vượt trội rõ rệt so với các mô hình truyền thống không có tính năng thinking về hiệu quả cuối cùng và khả năng giải thích."
|
1177
|
+
},
|
1169
1178
|
"glm-4v": {
|
1170
1179
|
"description": "GLM-4V cung cấp khả năng hiểu và suy luận hình ảnh mạnh mẽ, hỗ trợ nhiều nhiệm vụ hình ảnh."
|
1171
1180
|
},
|
@@ -1187,6 +1196,9 @@
|
|
1187
1196
|
"glm-z1-flash": {
|
1188
1197
|
"description": "Dòng GLM-Z1 có khả năng suy luận phức tạp mạnh mẽ, thể hiện xuất sắc trong các lĩnh vực suy luận logic, toán học, lập trình. Độ dài ngữ cảnh tối đa là 32K."
|
1189
1198
|
},
|
1199
|
+
"glm-z1-flashx": {
|
1200
|
+
"description": "Tốc độ cao, giá thấp: Phiên bản tăng cường Flash, tốc độ suy luận siêu nhanh, đảm bảo đồng thời nhanh hơn."
|
1201
|
+
},
|
1190
1202
|
"glm-zero-preview": {
|
1191
1203
|
"description": "GLM-Zero-Preview có khả năng suy luận phức tạp mạnh mẽ, thể hiện xuất sắc trong các lĩnh vực suy luận logic, toán học, lập trình."
|
1192
1204
|
},
|
@@ -1238,6 +1250,9 @@
|
|
1238
1250
|
"google/gemma-2b-it": {
|
1239
1251
|
"description": "Gemma Instruct (2B) cung cấp khả năng xử lý chỉ dẫn cơ bản, phù hợp cho các ứng dụng nhẹ."
|
1240
1252
|
},
|
1253
|
+
"google/gemma-3-1b-it": {
|
1254
|
+
"description": "Gemma 3 1B là một mô hình ngôn ngữ mã nguồn mở của Google, thiết lập tiêu chuẩn mới về hiệu quả và hiệu suất."
|
1255
|
+
},
|
1241
1256
|
"google/gemma-3-27b-it": {
|
1242
1257
|
"description": "Gemma 3 27B là một mô hình ngôn ngữ mã nguồn mở của Google, thiết lập tiêu chuẩn mới về hiệu suất và hiệu quả."
|
1243
1258
|
},
|
@@ -1373,6 +1388,9 @@
|
|
1373
1388
|
"gryphe/mythomax-l2-13b": {
|
1374
1389
|
"description": "MythoMax l2 13B là mô hình ngôn ngữ kết hợp giữa sáng tạo và trí thông minh, kết hợp nhiều mô hình hàng đầu."
|
1375
1390
|
},
|
1391
|
+
"hunyuan-a13b": {
|
1392
|
+
"description": "Hunyuan là mô hình suy luận hỗn hợp đầu tiên, phiên bản nâng cấp của hunyuan-standard-256K, với tổng số tham số 80 tỷ và 13 tỷ tham số kích hoạt. Mặc định ở chế độ suy nghĩ chậm, hỗ trợ chuyển đổi giữa chế độ suy nghĩ nhanh và chậm qua tham số hoặc chỉ thị, cách chuyển đổi là thêm / no_think trước truy vấn; năng lực tổng thể được cải thiện toàn diện so với thế hệ trước, đặc biệt là về toán học, khoa học, hiểu văn bản dài và năng lực tác nhân."
|
1393
|
+
},
|
1376
1394
|
"hunyuan-code": {
|
1377
1395
|
"description": "Mô hình sinh mã mới nhất của Hunyuan, được huấn luyện trên 200B dữ liệu mã chất lượng cao, trải qua nửa năm huấn luyện dữ liệu SFT chất lượng cao, độ dài cửa sổ ngữ cảnh tăng lên 8K, đứng đầu trong các chỉ số đánh giá tự động sinh mã cho năm ngôn ngữ lớn; trong đánh giá chất lượng cao của 10 tiêu chí mã tổng hợp cho năm ngôn ngữ, hiệu suất nằm trong nhóm đầu."
|
1378
1396
|
},
|
@@ -1424,6 +1442,9 @@
|
|
1424
1442
|
"hunyuan-t1-vision": {
|
1425
1443
|
"description": "Mô hình suy nghĩ sâu đa phương thức Hunyuan, hỗ trợ chuỗi suy nghĩ dài nguyên bản đa phương thức, xuất sắc trong các tình huống suy luận hình ảnh đa dạng, cải thiện toàn diện so với mô hình suy nghĩ nhanh trong các bài toán khoa học tự nhiên."
|
1426
1444
|
},
|
1445
|
+
"hunyuan-t1-vision-20250619": {
|
1446
|
+
"description": "Phiên bản mới nhất của Hunyuan t1-vision là mô hình suy nghĩ sâu đa phương thức, hỗ trợ chuỗi tư duy dài nguyên bản đa phương thức, cải thiện toàn diện so với phiên bản mặc định thế hệ trước."
|
1447
|
+
},
|
1427
1448
|
"hunyuan-turbo": {
|
1428
1449
|
"description": "Phiên bản xem trước của thế hệ mới mô hình ngôn ngữ lớn Hunyuan, sử dụng cấu trúc mô hình chuyên gia hỗn hợp (MoE) hoàn toàn mới, so với hunyuan-pro, hiệu suất suy diễn nhanh hơn và hiệu quả mạnh mẽ hơn."
|
1429
1450
|
},
|
@@ -1454,6 +1475,12 @@
|
|
1454
1475
|
"hunyuan-turbos-role-plus": {
|
1455
1476
|
"description": "Mô hình nhập vai phiên bản mới nhất của Hunyuan, được tinh chỉnh chính thức bởi Hunyuan, dựa trên mô hình Hunyuan kết hợp với bộ dữ liệu kịch bản nhập vai để tăng cường huấn luyện, mang lại hiệu quả cơ bản tốt hơn trong các kịch bản nhập vai."
|
1456
1477
|
},
|
1478
|
+
"hunyuan-turbos-vision": {
|
1479
|
+
"description": "Mô hình này phù hợp với các kịch bản hiểu hình ảnh và văn bản, là mô hình ngôn ngữ thị giác hàng đầu thế hệ mới dựa trên Hunyuan turbos mới nhất, tập trung vào các nhiệm vụ liên quan đến hiểu hình ảnh và văn bản, bao gồm nhận dạng thực thể dựa trên hình ảnh, hỏi đáp kiến thức, sáng tạo nội dung, giải bài tập qua ảnh chụp, với cải tiến toàn diện so với thế hệ trước."
|
1480
|
+
},
|
1481
|
+
"hunyuan-turbos-vision-20250619": {
|
1482
|
+
"description": "Phiên bản mới nhất của Hunyuan turbos-vision là mô hình ngôn ngữ thị giác hàng đầu, cải thiện toàn diện so với phiên bản mặc định thế hệ trước trong các nhiệm vụ liên quan đến hiểu hình ảnh và văn bản, bao gồm nhận dạng thực thể dựa trên hình ảnh, hỏi đáp kiến thức, sáng tạo nội dung, giải bài tập qua ảnh chụp."
|
1483
|
+
},
|
1457
1484
|
"hunyuan-vision": {
|
1458
1485
|
"description": "Mô hình đa phương thức mới nhất của Hunyuan, hỗ trợ đầu vào hình ảnh + văn bản để tạo ra nội dung văn bản."
|
1459
1486
|
},
|
@@ -203,24 +203,21 @@
|
|
203
203
|
"Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
|
204
204
|
"description": "Qwen2.5-VL 是 Qwen 系列的新成员,具备强大的视觉理解能力,能分析图像中的文本、图表和布局,并能理解长视频和捕捉事件,它可以进行推理、操作工具,支持多格式物体定位和生成结构化输出,优化了视频理解的动态分辨率与帧率训练,并提升了视觉编码器效率。"
|
205
205
|
},
|
206
|
+
"Pro/THUDM/GLM-4.1V-9B-Thinking": {
|
207
|
+
"description": "GLM-4.1V-9B-Thinking 是由智谱 AI 和清华大学 KEG 实验室联合发布的一款开源视觉语言模型(VLM),专为处理复杂的多模态认知任务而设计。该模型基于 GLM-4-9B-0414 基础模型,通过引入“思维链”(Chain-of-Thought)推理机制和采用强化学习策略,显著提升了其跨模态的推理能力和稳定性。"
|
208
|
+
},
|
206
209
|
"Pro/THUDM/glm-4-9b-chat": {
|
207
210
|
"description": "GLM-4-9B-Chat 是智谱 AI 推出的 GLM-4 系列预训练模型中的开源版本。该模型在语义、数学、推理、代码和知识等多个方面表现出色。除了支持多轮对话外,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理等高级功能。模型支持 26 种语言,包括中文、英文、日语、韩语和德语等。在多项基准测试中,GLM-4-9B-Chat 展现了优秀的性能,如 AlignBench-v2、MT-Bench、MMLU 和 C-Eval 等。该模型支持最大 128K 的上下文长度,适用于学术研究和商业应用"
|
208
211
|
},
|
209
212
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
210
213
|
"description": "DeepSeek-R1 是一款强化学习(RL)驱动的推理模型,解决了模型中的重复性和可读性问题。在 RL 之前,DeepSeek-R1 引入了冷启动数据,进一步优化了推理性能。它在数学、代码和推理任务中与 OpenAI-o1 表现相当,并且通过精心设计的训练方法,提升了整体效果。"
|
211
214
|
},
|
212
|
-
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
213
|
-
"description": "DeepSeek-R1 是一款强化学习(RL)驱动的推理模型,解决了模型中的重复性和可读性问题。在 RL 之前,DeepSeek-R1 引入了冷启动数据,进一步优化了推理性能。它在数学、代码和推理任务中与 OpenAI-o1 表现相当,并且通过精心设计的训练方法,提升了整体效果。"
|
214
|
-
},
|
215
215
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
216
216
|
"description": "DeepSeek-R1-Distill-Qwen-7B 是基于 Qwen2.5-Math-7B 通过知识蒸馏得到的模型。该模型使用 DeepSeek-R1 生成的 80 万个精选样本进行微调,展现出优秀的推理能力。在多个基准测试中表现出色,其中在 MATH-500 上达到了 92.8% 的准确率,在 AIME 2024 上达到了 55.5% 的通过率,在 CodeForces 上获得了 1189 的评分,作为 7B 规模的模型展示了较强的数学和编程能力。"
|
217
217
|
},
|
218
218
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
219
219
|
"description": "DeepSeek-V3 是一款拥有 6710 亿参数的混合专家(MoE)语言模型,采用多头潜在注意力(MLA)和 DeepSeekMoE 架构,结合无辅助损失的负载平衡策略,优化推理和训练效率。通过在 14.8 万亿高质量tokens上预训练,并进行监督微调和强化学习,DeepSeek-V3 在性能上超越其他开源模型,接近领先闭源模型。"
|
220
220
|
},
|
221
|
-
"Pro/deepseek-ai/DeepSeek-V3-1226": {
|
222
|
-
"description": "DeepSeek-V3 是一款拥有 6710 亿参数的混合专家(MoE)语言模型,采用多头潜在注意力(MLA)和 DeepSeekMoE 架构,结合无辅助损失的负载平衡策略,优化推理和训练效率。通过在 14.8 万亿高质量tokens上预训练,并进行监督微调和强化学习,DeepSeek-V3 在性能上超越其他开源模型,接近领先闭源模型。"
|
223
|
-
},
|
224
221
|
"QwQ-32B-Preview": {
|
225
222
|
"description": "Qwen QwQ 是由 Qwen 团队开发的实验研究模型,专注于提升AI推理能力。"
|
226
223
|
},
|
@@ -383,6 +380,9 @@
|
|
383
380
|
"THUDM/GLM-4-9B-0414": {
|
384
381
|
"description": "GLM-4-9B-0414 是 GLM 系列的小型模型,拥有 90 亿参数。该模型继承了 GLM-4-32B 系列的技术特点,但提供了更轻量级的部署选择。尽管规模较小,GLM-4-9B-0414 仍在代码生成、网页设计、SVG 图形生成和基于搜索的写作等任务上展现出色能力。"
|
385
382
|
},
|
383
|
+
"THUDM/GLM-4.1V-9B-Thinking": {
|
384
|
+
"description": "GLM-4.1V-9B-Thinking 是由智谱 AI 和清华大学 KEG 实验室联合发布的一款开源视觉语言模型(VLM),专为处理复杂的多模态认知任务而设计。该模型基于 GLM-4-9B-0414 基础模型,通过引入“思维链”(Chain-of-Thought)推理机制和采用强化学习策略,显著提升了其跨模态的推理能力和稳定性。"
|
385
|
+
},
|
386
386
|
"THUDM/GLM-Z1-32B-0414": {
|
387
387
|
"description": "GLM-Z1-32B-0414 是一个具有深度思考能力的推理模型。该模型基于 GLM-4-32B-0414 通过冷启动和扩展强化学习开发,并在数学、代码和逻辑任务上进行了进一步训练。与基础模型相比,GLM-Z1-32B-0414 显著提升了数学能力和解决复杂任务的能力。"
|
388
388
|
},
|
@@ -539,6 +539,9 @@
|
|
539
539
|
"anthropic/claude-sonnet-4": {
|
540
540
|
"description": "Claude Sonnet 4 可以产生近乎即时的响应或延长的逐步思考,用户可以清晰地看到这些过程。API 用户还可以对模型思考的时间进行细致的控制"
|
541
541
|
},
|
542
|
+
"ascend-tribe/pangu-pro-moe": {
|
543
|
+
"description": "Pangu-Pro-MoE 72B-A16B 是一款 720 亿参数、激活 160 亿参的稀疏大语言模型,它基于分组混合专家(MoGE)架构,它在专家选择阶段对专家进行分组,并约束 token 在每个组内激活等量专家,从而实现专家负载均衡,显著提升模型在昇腾平台的部署效率。"
|
544
|
+
},
|
542
545
|
"aya": {
|
543
546
|
"description": "Aya 23 是 Cohere 推出的多语言模型,支持 23 种语言,为多元化语言应用提供便利。"
|
544
547
|
},
|
@@ -548,6 +551,9 @@
|
|
548
551
|
"baichuan/baichuan2-13b-chat": {
|
549
552
|
"description": "Baichuan-13B 百川智能开发的包含 130 亿参数的开源可商用的大规模语言模型,在权威的中文和英文 benchmark 上均取得同尺寸最好的效果"
|
550
553
|
},
|
554
|
+
"baidu/ERNIE-4.5-300B-A47B": {
|
555
|
+
"description": "ERNIE-4.5-300B-A47B 是由百度公司开发的一款基于混合专家(MoE)架构的大语言模型。该模型总参数量为 3000 亿,但在推理时每个 token 仅激活 470 亿参数,从而在保证强大性能的同时兼顾了计算效率。作为 ERNIE 4.5 系列的核心模型之一,在文本理解、生成、推理和编程等任务上展现出卓越的能力。该模型采用了一种创新的多模态异构 MoE 预训练方法,通过文本与视觉模态的联合训练,有效提升了模型的综合能力,尤其在指令遵循和世界知识记忆方面效果突出。"
|
556
|
+
},
|
551
557
|
"c4ai-aya-expanse-32b": {
|
552
558
|
"description": "Aya Expanse 是一款高性能的 32B 多语言模型,旨在通过指令调优、数据套利、偏好训练和模型合并的创新,挑战单语言模型的表现。它支持 23 种语言。"
|
553
559
|
},
|
@@ -1097,9 +1103,6 @@
|
|
1097
1103
|
"gemini-2.5-pro": {
|
1098
1104
|
"description": "Gemini 2.5 Pro 是 Google 最先进的思维模型,能够对代码、数学和STEM领域的复杂问题进行推理,以及使用长上下文分析大型数据集、代码库和文档。"
|
1099
1105
|
},
|
1100
|
-
"gemini-2.5-pro-exp-03-25": {
|
1101
|
-
"description": "Gemini 2.5 Pro Experimental 是 Google 最先进的思维模型,能够对代码、数学和STEM领域的复杂问题进行推理,以及使用长上下文分析大型数据集、代码库和文档。"
|
1102
|
-
},
|
1103
1106
|
"gemini-2.5-pro-preview-03-25": {
|
1104
1107
|
"description": "Gemini 2.5 Pro Preview 是 Google 最先进的思维模型,能够对代码、数学和STEM领域的复杂问题进行推理,以及使用长上下文分析大型数据集、代码库和文档。"
|
1105
1108
|
},
|
@@ -1166,6 +1169,12 @@
|
|
1166
1169
|
"glm-4-plus": {
|
1167
1170
|
"description": "GLM-4-Plus 作为高智能旗舰,具备强大的处理长文本和复杂任务的能力,性能全面提升。"
|
1168
1171
|
},
|
1172
|
+
"glm-4.1v-thinking-flash": {
|
1173
|
+
"description": "GLM-4.1V-Thinking 系列模型是目前已知10B级别的VLM模型中性能最强的视觉模型,融合了同级别SOTA的各项视觉语言任务,包括视频理解、图片问答、学科解题、OCR文字识别、文档和图表解读、GUI Agent、前端网页Coding、Grounding等,多项任务能力甚至超过8倍参数量的Qwen2.5-VL-72B。通过领先的强化学习技术,模型掌握了通过思维链推理的方式提升回答的准确性和丰富度,从最终效果和可解释性等维度都显著超过传统的非thinking模型。"
|
1174
|
+
},
|
1175
|
+
"glm-4.1v-thinking-flashx": {
|
1176
|
+
"description": "GLM-4.1V-Thinking 系列模型是目前已知10B级别的VLM模型中性能最强的视觉模型,融合了同级别SOTA的各项视觉语言任务,包括视频理解、图片问答、学科解题、OCR文字识别、文档和图表解读、GUI Agent、前端网页Coding、Grounding等,多项任务能力甚至超过8倍参数量的Qwen2.5-VL-72B。通过领先的强化学习技术,模型掌握了通过思维链推理的方式提升回答的准确性和丰富度,从最终效果和可解释性等维度都显著超过传统的非thinking模型。"
|
1177
|
+
},
|
1169
1178
|
"glm-4v": {
|
1170
1179
|
"description": "GLM-4V 提供强大的图像理解与推理能力,支持多种视觉任务。"
|
1171
1180
|
},
|
@@ -1187,6 +1196,9 @@
|
|
1187
1196
|
"glm-z1-flash": {
|
1188
1197
|
"description": "GLM-Z1 系列具备强大的复杂推理能力,在逻辑推理、数学、编程等领域表现优异。最大上下文长度为32K。"
|
1189
1198
|
},
|
1199
|
+
"glm-z1-flashx": {
|
1200
|
+
"description": "高速低价:Flash增强版本,超快推理速度,更快并发保障。"
|
1201
|
+
},
|
1190
1202
|
"glm-zero-preview": {
|
1191
1203
|
"description": "GLM-Zero-Preview具备强大的复杂推理能力,在逻辑推理、数学、编程等领域表现优异。"
|
1192
1204
|
},
|
@@ -1238,6 +1250,9 @@
|
|
1238
1250
|
"google/gemma-2b-it": {
|
1239
1251
|
"description": "Gemma Instruct (2B) 提供基本的指令处理能力,适合轻量级应用。"
|
1240
1252
|
},
|
1253
|
+
"google/gemma-3-1b-it": {
|
1254
|
+
"description": "Gemma 3 1B 是谷歌的一款开源语言模型,以其在效率和性能方面设立了新的标准。"
|
1255
|
+
},
|
1241
1256
|
"google/gemma-3-27b-it": {
|
1242
1257
|
"description": "Gemma 3 27B 是谷歌的一款开源语言模型,以其在效率和性能方面设立了新的标准。"
|
1243
1258
|
},
|
@@ -1373,6 +1388,9 @@
|
|
1373
1388
|
"gryphe/mythomax-l2-13b": {
|
1374
1389
|
"description": "MythoMax l2 13B 是一款合并了多个顶尖模型的创意与智能相结合的语言模型。"
|
1375
1390
|
},
|
1391
|
+
"hunyuan-a13b": {
|
1392
|
+
"description": "混元第一个混合推理模型,hunyuan-standard-256K 的升级版本,总参数80B,激活13B,默认是慢思考模式,支持通过参数或者指令进行快慢思考模式切换,慢快思考切换方式为 query 前加/ no_think;整体能力相对上一代全面提升,特别数学、科学、长文理解和 Agent 能力提升显著。"
|
1393
|
+
},
|
1376
1394
|
"hunyuan-code": {
|
1377
1395
|
"description": "混元最新代码生成模型,经过 200B 高质量代码数据增训基座模型,迭代半年高质量 SFT 数据训练,上下文长窗口长度增大到 8K,五大语言代码生成自动评测指标上位居前列;五大语言10项考量各方面综合代码任务人工高质量评测上,性能处于第一梯队"
|
1378
1396
|
},
|
@@ -1424,6 +1442,9 @@
|
|
1424
1442
|
"hunyuan-t1-vision": {
|
1425
1443
|
"description": "混元多模态理解深度思考模型,支持多模态原生长思维链,擅长处理各种图片推理场景,在理科难题上相比快思考模型全面提升。"
|
1426
1444
|
},
|
1445
|
+
"hunyuan-t1-vision-20250619": {
|
1446
|
+
"description": "混元最新版t1-vision多模态理解深度思考模型,支持多模态原生长思维链,相比上一代默认版本模型全面提升。"
|
1447
|
+
},
|
1427
1448
|
"hunyuan-turbo": {
|
1428
1449
|
"description": "混元全新一代大语言模型的预览版,采用全新的混合专家模型(MoE)结构,相比hunyuan-pro推理效率更快,效果表现更强。"
|
1429
1450
|
},
|
@@ -1454,6 +1475,12 @@
|
|
1454
1475
|
"hunyuan-turbos-role-plus": {
|
1455
1476
|
"description": "混元最新版角色扮演模型,混元官方精调训练推出的角色扮演模型,基于混元模型结合角色扮演场景数据集进行增训,在角色扮演场景具有更好的基础效果。"
|
1456
1477
|
},
|
1478
|
+
"hunyuan-turbos-vision": {
|
1479
|
+
"description": "此模型适用于图文理解场景,是基于混元最新 turbos 的新一代视觉语言旗舰大模型,聚焦图文理解相关任务,包括基于图片的实体识别、知识问答、文案创作、拍照解题等方面,相比前一代模型全面提升。"
|
1480
|
+
},
|
1481
|
+
"hunyuan-turbos-vision-20250619": {
|
1482
|
+
"description": "混元最新版turbos-vision视觉语言旗舰大模型,在图文理解相关的任务上,包括基于图片的实体识别、知识问答、文案创作、拍照解题等上面相比上一代默认版本模型全面提升。"
|
1483
|
+
},
|
1457
1484
|
"hunyuan-vision": {
|
1458
1485
|
"description": "混元最新多模态模型,支持图片+文本输入生成文本内容。"
|
1459
1486
|
},
|
@@ -203,24 +203,21 @@
|
|
203
203
|
"Pro/Qwen/Qwen2.5-VL-7B-Instruct": {
|
204
204
|
"description": "Qwen2.5-VL 是 Qwen 系列的新成員,具備強大的視覺理解能力,能分析圖像中的文字、圖表和版面配置,並能理解長影片和捕捉事件。它可以進行推理、操作工具,支援多格式物件定位和生成結構化輸出,優化了影片理解的動態解析度與影格率訓練,並提升了視覺編碼器效率。"
|
205
205
|
},
|
206
|
+
"Pro/THUDM/GLM-4.1V-9B-Thinking": {
|
207
|
+
"description": "GLM-4.1V-9B-Thinking 是由智譜 AI 和清華大學 KEG 實驗室聯合發布的一款開源視覺語言模型(VLM),專為處理複雜的多模態認知任務而設計。該模型基於 GLM-4-9B-0414 基礎模型,通過引入「思維鏈」(Chain-of-Thought)推理機制和採用強化學習策略,顯著提升了其跨模態的推理能力和穩定性。"
|
208
|
+
},
|
206
209
|
"Pro/THUDM/glm-4-9b-chat": {
|
207
210
|
"description": "GLM-4-9B-Chat 是智譜 AI 推出的 GLM-4 系列預訓練模型中的開源版本。該模型在語義、數學、推理、代碼和知識等多個方面表現出色。除了支持多輪對話外,GLM-4-9B-Chat 還具備網頁瀏覽、代碼執行、自定義工具調用(Function Call)和長文本推理等高級功能。模型支持 26 種語言,包括中文、英文、日文、韓文和德文等。在多項基準測試中,GLM-4-9B-Chat 展現了優秀的性能,如 AlignBench-v2、MT-Bench、MMLU 和 C-Eval 等。該模型支持最大 128K 的上下文長度,適用於學術研究和商業應用"
|
208
211
|
},
|
209
212
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
210
213
|
"description": "DeepSeek-R1 是一款強化學習(RL)驅動的推理模型,解決了模型中的重複性和可讀性問題。在 RL 之前,DeepSeek-R1 引入了冷啟動數據,進一步優化了推理性能。它在數學、代碼和推理任務中與 OpenAI-o1 表現相當,並且透過精心設計的訓練方法,提升了整體效果。"
|
211
214
|
},
|
212
|
-
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
213
|
-
"description": "DeepSeek-R1 是一款強化學習(RL)驅動的推理模型,解決了模型中的重複性和可讀性問題。在 RL 之前,DeepSeek-R1 引入了冷啟動資料,進一步優化了推理性能。它在數學、程式碼和推理任務中與 OpenAI-o1 表現相當,並且透過精心設計的訓練方法,提升了整體效果。"
|
214
|
-
},
|
215
215
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
216
216
|
"description": "DeepSeek-R1-Distill-Qwen-7B 是基於 Qwen2.5-Math-7B 透過知識蒸餾技術所獲得的模型。該模型使用 DeepSeek-R1 生成的 80 萬個精選樣本進行微調,展現出優異的推理能力。在多個基準測試中表現出色,其中在 MATH-500 上達到了 92.8% 的準確率,在 AIME 2024 上達到了 55.5% 的通過率,在 CodeForces 上獲得了 1189 的評分,作為 7B 規模的模型展示了較強的數學和程式設計能力。"
|
217
217
|
},
|
218
218
|
"Pro/deepseek-ai/DeepSeek-V3": {
|
219
219
|
"description": "DeepSeek-V3 是一款擁有 6710 億參數的混合專家(MoE)語言模型,採用多頭潛在注意力(MLA)和 DeepSeekMoE 架構,結合無輔助損失的負載平衡策略,優化推理和訓練效率。透過在 14.8 萬億高質量tokens上預訓練,並進行監督微調和強化學習,DeepSeek-V3 在性能上超越其他開源模型,接近領先閉源模型。"
|
220
220
|
},
|
221
|
-
"Pro/deepseek-ai/DeepSeek-V3-1226": {
|
222
|
-
"description": "DeepSeek-V3 是一款擁有 6710 億參數的混合專家(MoE)語言模型,採用多頭潛在注意力(MLA)和 DeepSeekMoE 架構,結合無輔助損失的負載平衡策略,優化推理和訓練效率。透過在 14.8 萬兆高品質 tokens 上預訓練,並進行監督微調和強化學習,DeepSeek-V3 在性能上超越其他開源模型,接近領先的閉源模型。"
|
223
|
-
},
|
224
221
|
"QwQ-32B-Preview": {
|
225
222
|
"description": "QwQ-32B-Preview 是一款獨具創新的自然語言處理模型,能夠高效處理複雜的對話生成與上下文理解任務。"
|
226
223
|
},
|
@@ -383,6 +380,9 @@
|
|
383
380
|
"THUDM/GLM-4-9B-0414": {
|
384
381
|
"description": "GLM-4-9B-0414 是 GLM 系列的小型模型,擁有 90 億參數。該模型繼承了 GLM-4-32B 系列的技術特點,但提供了更輕量級的部署選擇。儘管規模較小,GLM-4-9B-0414 仍在程式碼生成、網頁設計、SVG 圖形生成和基於搜索的寫作等任務上展現出色能力。"
|
385
382
|
},
|
383
|
+
"THUDM/GLM-4.1V-9B-Thinking": {
|
384
|
+
"description": "GLM-4.1V-9B-Thinking 是由智譜 AI 和清華大學 KEG 實驗室聯合發布的一款開源視覺語言模型(VLM),專為處理複雜的多模態認知任務而設計。該模型基於 GLM-4-9B-0414 基礎模型,通過引入「思維鏈」(Chain-of-Thought)推理機制和採用強化學習策略,顯著提升了其跨模態的推理能力和穩定性。"
|
385
|
+
},
|
386
386
|
"THUDM/GLM-Z1-32B-0414": {
|
387
387
|
"description": "GLM-Z1-32B-0414 是一個具有深度思考能力的推理模型。該模型基於 GLM-4-32B-0414 通過冷啟動和擴展強化學習開發,並在數學、程式碼和邏輯任務上進行了進一步訓練。與基礎模型相比,GLM-Z1-32B-0414 顯著提升了數學能力和解決複雜任務的能力。"
|
388
388
|
},
|
@@ -539,6 +539,9 @@
|
|
539
539
|
"anthropic/claude-sonnet-4": {
|
540
540
|
"description": "Claude Sonnet 4 可以產生近乎即時的回應或延長的逐步思考,使用者可以清楚地看到這些過程。API 使用者還可以對模型思考的時間進行細緻的控制。"
|
541
541
|
},
|
542
|
+
"ascend-tribe/pangu-pro-moe": {
|
543
|
+
"description": "Pangu-Pro-MoE 72B-A16B 是一款 720 億參數、激活 160 億參的稀疏大型語言模型,它基於分組混合專家(MoGE)架構,它在專家選擇階段對專家進行分組,並約束 token 在每個組內激活等量專家,從而實現專家負載均衡,顯著提升模型在昇騰平台的部署效率。"
|
544
|
+
},
|
542
545
|
"aya": {
|
543
546
|
"description": "Aya 23 是 Cohere 推出的多語言模型,支持 23 種語言,為多元化語言應用提供便利。"
|
544
547
|
},
|
@@ -548,6 +551,9 @@
|
|
548
551
|
"baichuan/baichuan2-13b-chat": {
|
549
552
|
"description": "Baichuan-13B百川智能開發的包含130億參數的開源可商用的大規模語言模型,在權威的中文和英文benchmark上均取得同尺寸最好的效果。"
|
550
553
|
},
|
554
|
+
"baidu/ERNIE-4.5-300B-A47B": {
|
555
|
+
"description": "ERNIE-4.5-300B-A47B 是由百度公司開發的一款基於混合專家(MoE)架構的大型語言模型。該模型總參數量為 3000 億,但在推理時每個 token 僅激活 470 億參數,從而在保證強大性能的同時兼顧了計算效率。作為 ERNIE 4.5 系列的核心模型之一,在文本理解、生成、推理和程式設計等任務上展現出卓越的能力。該模型採用了一種創新的多模態異構 MoE 預訓練方法,通過文本與視覺模態的聯合訓練,有效提升了模型的綜合能力,尤其在指令遵循和世界知識記憶方面效果突出。"
|
556
|
+
},
|
551
557
|
"c4ai-aya-expanse-32b": {
|
552
558
|
"description": "Aya Expanse 是一款高性能的 32B 多語言模型,旨在通過指令調優、數據套利、偏好訓練和模型合併的創新,挑戰單語言模型的表現。它支持 23 種語言。"
|
553
559
|
},
|
@@ -1097,9 +1103,6 @@
|
|
1097
1103
|
"gemini-2.5-pro": {
|
1098
1104
|
"description": "Gemini 2.5 Pro 是 Google 最先進的思維模型,能夠對程式碼、數學和 STEM 領域的複雜問題進行推理,以及使用長上下文分析大型資料集、程式碼庫和文件。"
|
1099
1105
|
},
|
1100
|
-
"gemini-2.5-pro-exp-03-25": {
|
1101
|
-
"description": "Gemini 2.5 Pro 實驗版是 Google 最先進的思維模型,能夠對代碼、數學和 STEM 領域的複雜問題進行推理,還能利用長上下文來分析大型數據集、代碼庫和文檔。"
|
1102
|
-
},
|
1103
1106
|
"gemini-2.5-pro-preview-03-25": {
|
1104
1107
|
"description": "Gemini 2.5 Pro Preview 是 Google 最先進的思維模型,能夠對程式碼、數學和STEM領域的複雜問題進行推理,以及使用長上下文分析大型數據集、程式庫和文檔。"
|
1105
1108
|
},
|
@@ -1166,6 +1169,12 @@
|
|
1166
1169
|
"glm-4-plus": {
|
1167
1170
|
"description": "GLM-4-Plus作為高智能旗艦,具備強大的處理長文本和複雜任務的能力,性能全面提升。"
|
1168
1171
|
},
|
1172
|
+
"glm-4.1v-thinking-flash": {
|
1173
|
+
"description": "GLM-4.1V-Thinking 系列模型是目前已知10B級別的VLM模型中性能最強的視覺模型,融合了同級別SOTA的各項視覺語言任務,包括影片理解、圖片問答、學科解題、OCR文字識別、文件和圖表解讀、GUI Agent、前端網頁程式設計、Grounding等,多項任務能力甚至超過8倍參數量的Qwen2.5-VL-72B。通過領先的強化學習技術,模型掌握了透過思維鏈推理的方式提升回答的準確性和豐富度,從最終效果和可解釋性等維度都顯著超過傳統的非thinking模型。"
|
1174
|
+
},
|
1175
|
+
"glm-4.1v-thinking-flashx": {
|
1176
|
+
"description": "GLM-4.1V-Thinking 系列模型是目前已知10B級別的VLM模型中性能最強的視覺模型,融合了同級別SOTA的各項視覺語言任務,包括影片理解、圖片問答、學科解題、OCR文字識別、文件和圖表解讀、GUI Agent、前端網頁程式設計、Grounding等,多項任務能力甚至超過8倍參數量的Qwen2.5-VL-72B。通過領先的強化學習技術,模型掌握了透過思維鏈推理的方式提升回答的準確性和豐富度,從最終效果和可解釋性等維度都顯著超過傳統的非thinking模型。"
|
1177
|
+
},
|
1169
1178
|
"glm-4v": {
|
1170
1179
|
"description": "GLM-4V提供強大的圖像理解與推理能力,支持多種視覺任務。"
|
1171
1180
|
},
|
@@ -1187,6 +1196,9 @@
|
|
1187
1196
|
"glm-z1-flash": {
|
1188
1197
|
"description": "GLM-Z1 系列具備強大的複雜推理能力,在邏輯推理、數學、程式設計等領域表現優異。最大上下文長度為32K。"
|
1189
1198
|
},
|
1199
|
+
"glm-z1-flashx": {
|
1200
|
+
"description": "高速低價:Flash增強版本,超快推理速度,更快並發保障。"
|
1201
|
+
},
|
1190
1202
|
"glm-zero-preview": {
|
1191
1203
|
"description": "GLM-Zero-Preview具備強大的複雜推理能力,在邏輯推理、數學、程式設計等領域表現優異。"
|
1192
1204
|
},
|
@@ -1238,6 +1250,9 @@
|
|
1238
1250
|
"google/gemma-2b-it": {
|
1239
1251
|
"description": "Gemma Instruct (2B) 提供基本的指令處理能力,適合輕量級應用。"
|
1240
1252
|
},
|
1253
|
+
"google/gemma-3-1b-it": {
|
1254
|
+
"description": "Gemma 3 1B 是谷歌的一款開源語言模型,以其在效率和性能方面樹立了新的標準。"
|
1255
|
+
},
|
1241
1256
|
"google/gemma-3-27b-it": {
|
1242
1257
|
"description": "Gemma 3 27B 是谷歌的一款開源語言模型,以其在效率和性能方面設立了新的標準。"
|
1243
1258
|
},
|
@@ -1373,6 +1388,9 @@
|
|
1373
1388
|
"gryphe/mythomax-l2-13b": {
|
1374
1389
|
"description": "MythoMax l2 13B 是一款合併了多個頂尖模型的創意與智能相結合的語言模型。"
|
1375
1390
|
},
|
1391
|
+
"hunyuan-a13b": {
|
1392
|
+
"description": "混元第一個混合推理模型,hunyuan-standard-256K 的升級版本,總參數80B,激活13B,預設為慢思考模式,支持透過參數或指令進行快慢思考模式切換,慢快思考切換方式為 query 前加/ no_think;整體能力相較上一代全面提升,特別是數學、科學、長文理解和 Agent 能力提升顯著。"
|
1393
|
+
},
|
1376
1394
|
"hunyuan-code": {
|
1377
1395
|
"description": "混元最新代碼生成模型,經過 200B 高質量代碼數據增訓基座模型,迭代半年高質量 SFT 數據訓練,上下文長窗口長度增大到 8K,五大語言代碼生成自動評測指標上位居前列;五大語言 10 項考量各方面綜合代碼任務人工高質量評測上,性能處於第一梯隊。"
|
1378
1396
|
},
|
@@ -1424,6 +1442,9 @@
|
|
1424
1442
|
"hunyuan-t1-vision": {
|
1425
1443
|
"description": "混元多模態理解深度思考模型,支援多模態原生長思維鏈,擅長處理各種圖片推理場景,在理科難題上相比快思考模型全面提升。"
|
1426
1444
|
},
|
1445
|
+
"hunyuan-t1-vision-20250619": {
|
1446
|
+
"description": "混元最新版 t1-vision 多模態理解深度思考模型,支持多模態原生長思維鏈,相較上一代預設版本模型全面提升。"
|
1447
|
+
},
|
1427
1448
|
"hunyuan-turbo": {
|
1428
1449
|
"description": "混元全新一代大語言模型的預覽版,採用全新的混合專家模型(MoE)結構,相較於 hunyuan-pro 推理效率更快,效果表現更強。"
|
1429
1450
|
},
|
@@ -1454,6 +1475,12 @@
|
|
1454
1475
|
"hunyuan-turbos-role-plus": {
|
1455
1476
|
"description": "混元最新版角色扮演模型,混元官方精調訓練推出的角色扮演模型,基於混元模型結合角色扮演場景資料集進行增訓,在角色扮演場景具有更好的基礎效果。"
|
1456
1477
|
},
|
1478
|
+
"hunyuan-turbos-vision": {
|
1479
|
+
"description": "此模型適用於圖文理解場景,是基於混元最新 turbos 的新一代視覺語言旗艦大型模型,聚焦圖文理解相關任務,包括基於圖片的實體識別、知識問答、文案創作、拍照解題等方面,相較前一代模型全面提升。"
|
1480
|
+
},
|
1481
|
+
"hunyuan-turbos-vision-20250619": {
|
1482
|
+
"description": "混元最新版 turbos-vision 視覺語言旗艦大型模型,在圖文理解相關的任務上,包括基於圖片的實體識別、知識問答、文案創作、拍照解題等方面,相較上一代預設版本模型全面提升。"
|
1483
|
+
},
|
1457
1484
|
"hunyuan-vision": {
|
1458
1485
|
"description": "混元最新多模態模型,支持圖片 + 文本輸入生成文本內容。"
|
1459
1486
|
},
|
package/package.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
{
|
2
2
|
"name": "@lobehub/chat",
|
3
|
-
"version": "1.98.
|
3
|
+
"version": "1.98.2",
|
4
4
|
"description": "Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
|
5
5
|
"keywords": [
|
6
6
|
"framework",
|
@@ -10,9 +10,9 @@ export const generateMetadata = async (props: DynamicLayoutProps) => {
|
|
10
10
|
const { locale, t } = await parsePageMetaProps(props);
|
11
11
|
return metadataModule.generate({
|
12
12
|
alternate: true,
|
13
|
-
description: t('discover.
|
13
|
+
description: t('discover.description'),
|
14
14
|
locale,
|
15
|
-
title: t('discover.
|
15
|
+
title: t('discover.title'),
|
16
16
|
url: '/discover',
|
17
17
|
});
|
18
18
|
};
|
@@ -21,9 +21,9 @@ const Page = async (props: DynamicLayoutProps) => {
|
|
21
21
|
const { locale, t, isMobile } = await parsePageMetaProps(props);
|
22
22
|
|
23
23
|
const ld = ldModule.generate({
|
24
|
-
description: t('discover.
|
24
|
+
description: t('discover.description'),
|
25
25
|
locale,
|
26
|
-
title: t('discover.
|
26
|
+
title: t('discover.title'),
|
27
27
|
url: '/discover',
|
28
28
|
webpage: {
|
29
29
|
enable: true,
|