@lobehub/chat 1.93.3 → 1.94.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.i18nrc.js +1 -0
- package/CHANGELOG.md +33 -0
- package/changelog/v1.json +12 -0
- package/docs/self-hosting/advanced/auth/next-auth/google.mdx +82 -0
- package/docs/self-hosting/advanced/auth.mdx +3 -0
- package/locales/ar/models.json +21 -18
- package/locales/ar/setting.json +12 -0
- package/locales/bg-BG/models.json +21 -18
- package/locales/bg-BG/setting.json +12 -0
- package/locales/de-DE/models.json +21 -18
- package/locales/de-DE/setting.json +12 -0
- package/locales/en-US/models.json +21 -18
- package/locales/en-US/setting.json +12 -0
- package/locales/es-ES/models.json +21 -18
- package/locales/es-ES/setting.json +12 -0
- package/locales/fa-IR/models.json +21 -18
- package/locales/fa-IR/setting.json +12 -0
- package/locales/fr-FR/models.json +21 -18
- package/locales/fr-FR/setting.json +12 -0
- package/locales/it-IT/models.json +21 -18
- package/locales/it-IT/setting.json +12 -0
- package/locales/ja-JP/models.json +21 -18
- package/locales/ja-JP/setting.json +12 -0
- package/locales/ko-KR/models.json +21 -18
- package/locales/ko-KR/setting.json +12 -0
- package/locales/nl-NL/models.json +21 -18
- package/locales/nl-NL/setting.json +12 -0
- package/locales/pl-PL/models.json +21 -18
- package/locales/pl-PL/setting.json +12 -0
- package/locales/pt-BR/models.json +21 -18
- package/locales/pt-BR/setting.json +12 -0
- package/locales/ru-RU/models.json +21 -18
- package/locales/ru-RU/setting.json +12 -0
- package/locales/tr-TR/models.json +21 -18
- package/locales/tr-TR/setting.json +12 -0
- package/locales/vi-VN/models.json +21 -18
- package/locales/vi-VN/setting.json +12 -0
- package/locales/zh-CN/models.json +21 -18
- package/locales/zh-CN/setting.json +12 -0
- package/locales/zh-TW/models.json +21 -18
- package/locales/zh-TW/setting.json +12 -0
- package/package.json +1 -1
- package/src/components/NextAuth/AuthIcons.tsx +2 -0
- package/src/features/AgentSetting/AgentModal/index.tsx +27 -1
- package/src/libs/next-auth/sso-providers/google.ts +20 -0
- package/src/libs/next-auth/sso-providers/index.ts +2 -0
- package/src/locales/default/setting.ts +12 -0
@@ -259,6 +259,9 @@
|
|
259
259
|
"enableMaxTokens": {
|
260
260
|
"title": "Activer la limite de tokens par réponse"
|
261
261
|
},
|
262
|
+
"enableReasoningEffort": {
|
263
|
+
"title": "Activer l'ajustement de l'intensité du raisonnement"
|
264
|
+
},
|
262
265
|
"frequencyPenalty": {
|
263
266
|
"desc": "Plus la valeur est élevée, plus le vocabulaire est riche et varié ; plus la valeur est basse, plus le vocabulaire est simple et direct",
|
264
267
|
"title": "Richesse du vocabulaire"
|
@@ -278,6 +281,15 @@
|
|
278
281
|
"desc": "Plus la valeur est élevée, plus il y a tendance à utiliser des expressions différentes, évitant la répétition des concepts ; plus la valeur est basse, plus il y a tendance à utiliser des concepts ou des narrations répétitifs, rendant l'expression plus cohérente",
|
279
282
|
"title": "Diversité de l'expression"
|
280
283
|
},
|
284
|
+
"reasoningEffort": {
|
285
|
+
"desc": "Plus la valeur est élevée, plus la capacité de raisonnement est forte, mais cela peut augmenter le temps de réponse et la consommation de jetons",
|
286
|
+
"options": {
|
287
|
+
"high": "Élevé",
|
288
|
+
"low": "Faible",
|
289
|
+
"medium": "Moyen"
|
290
|
+
},
|
291
|
+
"title": "Intensité du raisonnement"
|
292
|
+
},
|
281
293
|
"submit": "Mettre à jour les paramètres du modèle",
|
282
294
|
"temperature": {
|
283
295
|
"desc": "Plus la valeur est élevée, plus les réponses sont créatives et imaginatives ; plus la valeur est basse, plus les réponses sont rigoureuses",
|
@@ -206,15 +206,9 @@
|
|
206
206
|
"Phi-3.5-vision-instrust": {
|
207
207
|
"description": "Versione aggiornata del modello Phi-3-vision."
|
208
208
|
},
|
209
|
-
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
210
|
-
"description": "Qwen2-1.5B-Instruct è un modello linguistico di grandi dimensioni con fine-tuning per istruzioni nella serie Qwen2, con una dimensione di 1.5B parametri. Questo modello si basa sull'architettura Transformer, utilizzando funzioni di attivazione SwiGLU, bias QKV di attenzione e attenzione a query di gruppo. Ha dimostrato prestazioni eccellenti in comprensione linguistica, generazione, capacità multilingue, codifica, matematica e ragionamento in vari benchmark, superando la maggior parte dei modelli open source. Rispetto a Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct ha mostrato miglioramenti significativi nei test MMLU, HumanEval, GSM8K, C-Eval e IFEval, nonostante un numero di parametri leggermente inferiore."
|
211
|
-
},
|
212
209
|
"Pro/Qwen/Qwen2-7B-Instruct": {
|
213
210
|
"description": "Qwen2-7B-Instruct è un modello linguistico di grandi dimensioni con fine-tuning per istruzioni nella serie Qwen2, con una dimensione di 7B parametri. Questo modello si basa sull'architettura Transformer, utilizzando funzioni di attivazione SwiGLU, bias QKV di attenzione e attenzione a query di gruppo. È in grado di gestire input di grandi dimensioni. Ha dimostrato prestazioni eccellenti in comprensione linguistica, generazione, capacità multilingue, codifica, matematica e ragionamento in vari benchmark, superando la maggior parte dei modelli open source e mostrando competitività paragonabile a modelli proprietari in alcuni compiti. Qwen2-7B-Instruct ha mostrato miglioramenti significativi in vari test rispetto a Qwen1.5-7B-Chat."
|
214
211
|
},
|
215
|
-
"Pro/Qwen/Qwen2-VL-7B-Instruct": {
|
216
|
-
"description": "Qwen2-VL è l'ultima iterazione del modello Qwen-VL, che ha raggiunto prestazioni all'avanguardia nei benchmark di comprensione visiva."
|
217
|
-
},
|
218
212
|
"Pro/Qwen/Qwen2.5-7B-Instruct": {
|
219
213
|
"description": "Qwen2.5-7B-Instruct è uno dei più recenti modelli linguistici di grandi dimensioni rilasciati da Alibaba Cloud. Questo modello da 7B ha capacità notevolmente migliorate in codifica e matematica. Il modello offre anche supporto multilingue, coprendo oltre 29 lingue, tra cui cinese e inglese. Ha mostrato miglioramenti significativi nel seguire istruzioni, comprendere dati strutturati e generare output strutturati (soprattutto JSON)."
|
220
214
|
},
|
@@ -233,9 +227,6 @@
|
|
233
227
|
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
234
228
|
"description": "DeepSeek-R1 è un modello di ragionamento guidato da apprendimento rinforzato (RL) che risolve problemi di ripetitività e leggibilità. Prima del RL, ha introdotto dati di cold start per ottimizzare ulteriormente le prestazioni di ragionamento. Le sue prestazioni in matematica, codice e ragionamento sono comparabili a OpenAI-o1, con miglioramenti complessivi grazie a metodi di addestramento accuratamente progettati."
|
235
229
|
},
|
236
|
-
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
237
|
-
"description": "DeepSeek-R1-Distill-Qwen-1.5B è un modello ottenuto attraverso il distillamento del knowledge da Qwen2.5-Math-1.5B. Questo modello è stato fine-tunato utilizzando 800.000 campioni selezionati generati da DeepSeek-R1, mostrando un'ottima performance in diversi benchmark. Come modello leggero, ha raggiunto un'accuratezza del 83,9% su MATH-500, una percentuale di passaggio del 28,9% su AIME 2024 e una valutazione di 954 su CodeForces, dimostrando capacità di inferenza superiori alla sua scala di parametri."
|
238
|
-
},
|
239
230
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
240
231
|
"description": "DeepSeek-R1-Distill-Qwen-7B è un modello ottenuto attraverso il distillamento del knowledge da Qwen2.5-Math-7B. Questo modello è stato fine-tunato utilizzando 800.000 campioni selezionati generati da DeepSeek-R1, dimostrando un'ottima capacità di inferenza. Ha ottenuto risultati eccellenti in diversi benchmark, raggiungendo una precisione del 92,8% su MATH-500, un tasso di passaggio del 55,5% su AIME 2024 e una valutazione di 1189 su CodeForces, dimostrando una forte capacità matematica e di programmazione per un modello di 7B."
|
241
232
|
},
|
@@ -257,9 +248,6 @@
|
|
257
248
|
"Qwen/QwQ-32B-Preview": {
|
258
249
|
"description": "QwQ-32B-Preview è l'ultimo modello di ricerca sperimentale di Qwen, focalizzato sul miglioramento delle capacità di ragionamento dell'IA. Esplorando meccanismi complessi come la mescolanza linguistica e il ragionamento ricorsivo, i principali vantaggi includono potenti capacità di analisi del ragionamento, abilità matematiche e di programmazione. Tuttavia, ci sono anche problemi di cambio linguistico, cicli di ragionamento, considerazioni di sicurezza e differenze in altre capacità."
|
259
250
|
},
|
260
|
-
"Qwen/Qwen2-1.5B-Instruct": {
|
261
|
-
"description": "Qwen2-1.5B-Instruct è un modello linguistico di grandi dimensioni con fine-tuning per istruzioni nella serie Qwen2, con una dimensione di 1.5B parametri. Questo modello si basa sull'architettura Transformer, utilizzando funzioni di attivazione SwiGLU, bias QKV di attenzione e attenzione a query di gruppo. Ha dimostrato prestazioni eccellenti in comprensione linguistica, generazione, capacità multilingue, codifica, matematica e ragionamento in vari benchmark, superando la maggior parte dei modelli open source. Rispetto a Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct ha mostrato miglioramenti significativi nei test MMLU, HumanEval, GSM8K, C-Eval e IFEval, nonostante un numero di parametri leggermente inferiore."
|
262
|
-
},
|
263
251
|
"Qwen/Qwen2-72B-Instruct": {
|
264
252
|
"description": "Qwen2 è un modello di linguaggio universale avanzato, supportando vari tipi di istruzioni."
|
265
253
|
},
|
@@ -419,9 +407,6 @@
|
|
419
407
|
"THUDM/GLM-Z1-Rumination-32B-0414": {
|
420
408
|
"description": "GLM-Z1-Rumination-32B-0414 è un modello di inferenza profonda con capacità di riflessione (paragonabile alla Deep Research di OpenAI). A differenza dei modelli tipici di pensiero profondo, il modello di riflessione utilizza un tempo di riflessione più lungo per affrontare problemi più aperti e complessi."
|
421
409
|
},
|
422
|
-
"THUDM/chatglm3-6b": {
|
423
|
-
"description": "ChatGLM3-6B è un modello open source della serie ChatGLM, sviluppato da Zhipu AI. Questo modello conserva le eccellenti caratteristiche dei modelli precedenti, come la fluidità del dialogo e la bassa soglia di implementazione, introducendo al contempo nuove funzionalità. Utilizza dati di addestramento più diversificati, un numero maggiore di passi di addestramento e strategie di addestramento più ragionevoli, dimostrando prestazioni eccellenti tra i modelli pre-addestrati sotto i 10B. ChatGLM3-6B supporta scenari complessi come conversazioni multi-turno, chiamate a strumenti, esecuzione di codice e compiti di agente. Oltre al modello di dialogo, sono stati rilasciati anche il modello di base ChatGLM-6B-Base e il modello di dialogo su testi lunghi ChatGLM3-6B-32K. Questo modello è completamente aperto per la ricerca accademica e consente anche un uso commerciale gratuito dopo la registrazione."
|
424
|
-
},
|
425
410
|
"THUDM/glm-4-9b-chat": {
|
426
411
|
"description": "GLM-4 9B è una versione open source, progettata per fornire un'esperienza di dialogo ottimizzata per applicazioni conversazionali."
|
427
412
|
},
|
@@ -563,6 +548,12 @@
|
|
563
548
|
"anthropic/claude-3.7-sonnet": {
|
564
549
|
"description": "Claude 3.7 Sonnet è il modello più intelligente di Anthropic fino ad oggi ed è il primo modello di ragionamento ibrido sul mercato. Claude 3.7 Sonnet può generare risposte quasi istantanee o pensieri prolungati e graduali, consentendo agli utenti di vedere chiaramente questi processi. Sonnet è particolarmente abile nella programmazione, nella scienza dei dati, nell'elaborazione visiva e nei compiti di agenzia."
|
565
550
|
},
|
551
|
+
"anthropic/claude-opus-4": {
|
552
|
+
"description": "Claude Opus 4 è il modello più potente di Anthropic per gestire compiti altamente complessi. Eccelle in prestazioni, intelligenza, fluidità e capacità di comprensione."
|
553
|
+
},
|
554
|
+
"anthropic/claude-sonnet-4": {
|
555
|
+
"description": "Claude Sonnet 4 può generare risposte quasi istantanee o un ragionamento esteso e graduale, che gli utenti possono osservare chiaramente. Gli utenti API possono anche controllare con precisione il tempo di riflessione del modello."
|
556
|
+
},
|
566
557
|
"aya": {
|
567
558
|
"description": "Aya 23 è un modello multilingue lanciato da Cohere, supporta 23 lingue, facilitando applicazioni linguistiche diversificate."
|
568
559
|
},
|
@@ -788,6 +779,9 @@
|
|
788
779
|
"deepseek-r1": {
|
789
780
|
"description": "DeepSeek-R1 è un modello di inferenza guidato da apprendimento rinforzato (RL) che affronta i problemi di ripetitività e leggibilità nel modello. Prima dell'RL, DeepSeek-R1 ha introdotto dati di cold start, ottimizzando ulteriormente le prestazioni di inferenza. Si comporta in modo comparabile a OpenAI-o1 in compiti matematici, di codifica e di inferenza, e migliora l'efficacia complessiva attraverso metodi di addestramento accuratamente progettati."
|
790
781
|
},
|
782
|
+
"deepseek-r1-0528": {
|
783
|
+
"description": "Modello completo da 685 miliardi di parametri, rilasciato il 28 maggio 2025. DeepSeek-R1 utilizza ampiamente tecniche di apprendimento rinforzato nella fase post-addestramento, migliorando notevolmente le capacità di ragionamento del modello con pochissimi dati annotati. Eccelle in matematica, programmazione, ragionamento in linguaggio naturale e altre attività."
|
784
|
+
},
|
791
785
|
"deepseek-r1-70b-fast-online": {
|
792
786
|
"description": "DeepSeek R1 70B versione veloce, supporta la ricerca online in tempo reale, fornendo una velocità di risposta più rapida mantenendo le prestazioni del modello."
|
793
787
|
},
|
@@ -1067,6 +1061,9 @@
|
|
1067
1061
|
"gemini-2.5-pro-preview-05-06": {
|
1068
1062
|
"description": "Gemini 2.5 Pro Preview è il modello di pensiero più avanzato di Google, in grado di ragionare su problemi complessi nel codice, nella matematica e nei campi STEM, utilizzando analisi di lungo contesto per esaminare grandi set di dati, librerie di codice e documenti."
|
1069
1063
|
},
|
1064
|
+
"gemini-2.5-pro-preview-06-05": {
|
1065
|
+
"description": "Gemini 2.5 Pro Preview è il modello di pensiero più avanzato di Google, capace di ragionare su problemi complessi in codice, matematica e ambito STEM, oltre a utilizzare contesti estesi per analizzare grandi dataset, librerie di codice e documenti."
|
1066
|
+
},
|
1070
1067
|
"gemma-7b-it": {
|
1071
1068
|
"description": "Gemma 7B è adatto per l'elaborazione di compiti di piccole e medie dimensioni, combinando efficienza dei costi."
|
1072
1069
|
},
|
@@ -1355,6 +1352,9 @@
|
|
1355
1352
|
"hunyuan-t1-20250403": {
|
1356
1353
|
"description": "Migliorare la capacità di generazione del codice a livello di progetto; migliorare la qualità della scrittura generata dal testo; potenziare la comprensione multi-turno degli argomenti, l’aderenza alle istruzioni toB e la comprensione di parole e termini; ottimizzare i problemi di output misto tra cinese semplificato e tradizionale e tra cinese e inglese."
|
1357
1354
|
},
|
1355
|
+
"hunyuan-t1-20250529": {
|
1356
|
+
"description": "Ottimizzato per la creazione di testi, la scrittura di saggi, il frontend del codice, la matematica, il ragionamento logico e altre competenze scientifiche, con miglioramenti nella capacità di seguire istruzioni."
|
1357
|
+
},
|
1358
1358
|
"hunyuan-t1-latest": {
|
1359
1359
|
"description": "Il primo modello di inferenza ibrido su larga scala Hybrid-Transformer-Mamba del settore, che espande le capacità di inferenza, offre una velocità di decodifica eccezionale e allinea ulteriormente le preferenze umane."
|
1360
1360
|
},
|
@@ -1379,6 +1379,9 @@
|
|
1379
1379
|
"hunyuan-turbos-20250416": {
|
1380
1380
|
"description": "Aggiornamento della base pre-addestrata per rafforzare la comprensione e l’aderenza alle istruzioni; miglioramento delle capacità scientifiche in matematica, programmazione, logica e scienze durante la fase di allineamento; potenziamento delle capacità umanistiche come la qualità della scrittura creativa, la comprensione testuale, la precisione della traduzione e il question answering; rafforzamento delle capacità degli agenti in vari settori, con particolare attenzione alla comprensione multi-turno."
|
1381
1381
|
},
|
1382
|
+
"hunyuan-turbos-20250604": {
|
1383
|
+
"description": "Aggiornamento della base pre-addestrata, con miglioramenti nelle capacità di scrittura e comprensione della lettura, notevoli progressi nelle competenze di programmazione e scientifiche, e continui miglioramenti nell’aderenza a istruzioni complesse."
|
1384
|
+
},
|
1382
1385
|
"hunyuan-turbos-latest": {
|
1383
1386
|
"description": "hunyuan-TurboS è l'ultima versione del modello di punta Hunyuan, con capacità di pensiero più forti e un'esperienza utente migliore."
|
1384
1387
|
},
|
@@ -1391,9 +1394,6 @@
|
|
1391
1394
|
"hunyuan-vision": {
|
1392
1395
|
"description": "Ultimo modello multimodale di Hunyuan, supporta l'input di immagini e testo per generare contenuti testuali."
|
1393
1396
|
},
|
1394
|
-
"internlm/internlm2_5-20b-chat": {
|
1395
|
-
"description": "Il modello open source innovativo InternLM2.5, con un gran numero di parametri, migliora l'intelligenza del dialogo."
|
1396
|
-
},
|
1397
1397
|
"internlm/internlm2_5-7b-chat": {
|
1398
1398
|
"description": "InternLM2.5 offre soluzioni di dialogo intelligente in vari scenari."
|
1399
1399
|
},
|
@@ -1910,6 +1910,9 @@
|
|
1910
1910
|
"qvq-max": {
|
1911
1911
|
"description": "Modello di ragionamento visivo QVQ di Tongyi Qianwen, supporta input visivi e output di catene di pensieri, mostrando capacità superiori in matematica, programmazione, analisi visiva, creazione e compiti generali."
|
1912
1912
|
},
|
1913
|
+
"qvq-plus": {
|
1914
|
+
"description": "Modello di ragionamento visivo. Supporta input visivi e output a catena di pensiero. Versione plus lanciata dopo il modello qvq-max, con velocità di ragionamento più elevata e un equilibrio migliore tra prestazioni ed efficienza rispetto a qvq-max."
|
1915
|
+
},
|
1913
1916
|
"qwen-coder-plus": {
|
1914
1917
|
"description": "Modello di codice Tongyi Qianwen."
|
1915
1918
|
},
|
@@ -259,6 +259,9 @@
|
|
259
259
|
"enableMaxTokens": {
|
260
260
|
"title": "Abilita limite di risposta singola"
|
261
261
|
},
|
262
|
+
"enableReasoningEffort": {
|
263
|
+
"title": "Abilita regolazione dell'intensità del ragionamento"
|
264
|
+
},
|
262
265
|
"frequencyPenalty": {
|
263
266
|
"desc": "Maggiore è il valore, più ricca e varia sarà la scelta delle parole; minore è il valore, più semplici e dirette saranno le parole",
|
264
267
|
"title": "Ricchezza del vocabolario"
|
@@ -278,6 +281,15 @@
|
|
278
281
|
"desc": "Maggiore è il valore, maggiore sarà la tendenza a esprimere in modi diversi, evitando ripetizioni; minore è il valore, maggiore sarà la tendenza a utilizzare concetti o narrazioni ripetute, rendendo l'espressione più coerente",
|
279
282
|
"title": "Divergenza espressiva"
|
280
283
|
},
|
284
|
+
"reasoningEffort": {
|
285
|
+
"desc": "Valori più alti indicano una maggiore capacità di ragionamento, ma potrebbero aumentare i tempi di risposta e il consumo di token",
|
286
|
+
"options": {
|
287
|
+
"high": "Alto",
|
288
|
+
"low": "Basso",
|
289
|
+
"medium": "Medio"
|
290
|
+
},
|
291
|
+
"title": "Intensità del ragionamento"
|
292
|
+
},
|
281
293
|
"submit": "Aggiorna impostazioni modello",
|
282
294
|
"temperature": {
|
283
295
|
"desc": "Maggiore è il valore, più creativi e fantasiosi saranno le risposte; minore è il valore, più rigorose saranno le risposte",
|
@@ -206,15 +206,9 @@
|
|
206
206
|
"Phi-3.5-vision-instrust": {
|
207
207
|
"description": "Phi-3-visionモデルの更新版です。"
|
208
208
|
},
|
209
|
-
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
210
|
-
"description": "Qwen2-1.5B-InstructはQwen2シリーズの指示微調整大規模言語モデルで、パラメータ規模は1.5Bです。このモデルはTransformerアーキテクチャに基づき、SwiGLU活性化関数、注意QKVバイアス、グループクエリ注意などの技術を採用しています。言語理解、生成、多言語能力、コーディング、数学、推論などの複数のベンチマークテストで優れたパフォーマンスを示し、ほとんどのオープンソースモデルを超えています。Qwen1.5-1.8B-Chatと比較して、Qwen2-1.5B-InstructはMMLU、HumanEval、GSM8K、C-Eval、IFEvalなどのテストで顕著な性能向上を示していますが、パラメータ数はわずかに少ないです。"
|
211
|
-
},
|
212
209
|
"Pro/Qwen/Qwen2-7B-Instruct": {
|
213
210
|
"description": "Qwen2-7B-InstructはQwen2シリーズの指示微調整大規模言語モデルで、パラメータ規模は7Bです。このモデルはTransformerアーキテクチャに基づき、SwiGLU活性化関数、注意QKVバイアス、グループクエリ注意などの技術を採用しています。大規模な入力を処理することができます。このモデルは言語理解、生成、多言語能力、コーディング、数学、推論などの複数のベンチマークテストで優れたパフォーマンスを示し、ほとんどのオープンソースモデルを超え、特定のタスクでは専有モデルと同等の競争力を示しています。Qwen2-7B-Instructは多くの評価でQwen1.5-7B-Chatを上回り、顕著な性能向上を示しています。"
|
214
211
|
},
|
215
|
-
"Pro/Qwen/Qwen2-VL-7B-Instruct": {
|
216
|
-
"description": "Qwen2-VLはQwen-VLモデルの最新のイテレーションで、視覚理解のベンチマークテストで最先端の性能を達成しました。"
|
217
|
-
},
|
218
212
|
"Pro/Qwen/Qwen2.5-7B-Instruct": {
|
219
213
|
"description": "Qwen2.5-7B-InstructはAlibaba Cloudが発表した最新の大規模言語モデルシリーズの一つです。この7Bモデルはコーディングや数学などの分野で顕著な能力の改善を持っています。このモデルは29以上の言語をカバーする多言語サポートも提供しており、中国語、英語などが含まれています。モデルは指示の遵守、構造化データの理解、特にJSONのような構造化出力の生成において顕著な向上を示しています。"
|
220
214
|
},
|
@@ -233,9 +227,6 @@
|
|
233
227
|
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
234
228
|
"description": "DeepSeek-R1は強化学習(RL)駆動の推論モデルで、モデルの反復性と可読性の問題を解決しました。RL導入前にコールドスタートデータを導入し、推論性能をさらに最適化。数学、コード、推論タスクにおいてOpenAI-o1と同等の性能を示し、精緻に設計された訓練手法により全体的な効果を向上させています。"
|
235
229
|
},
|
236
|
-
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
237
|
-
"description": "DeepSeek-R1-Distill-Qwen-1.5Bは、Qwen2.5-Math-1.5Bを基に知識蒸留によって得られたモデルです。このモデルは、DeepSeek-R1によって生成された80万の精選されたサンプルを使用して微調整されており、複数のベンチマークテストで良好な性能を示しています。軽量モデルでありながら、MATH-500では83.9%の精度、AIME 2024では28.9%の合格率、CodeForcesでは954のスコアを達成し、そのパラメータ規模を超える推論能力を発揮しています。"
|
238
|
-
},
|
239
230
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
240
231
|
"description": "DeepSeek-R1-Distill-Qwen-7B は、Qwen2.5-Math-7B を基に知識蒸留によって得られたモデルです。このモデルは、DeepSeek-R1 によって生成された80万の精選されたサンプルを使用して微調整されており、優れた推論能力を発揮します。複数のベンチマークテストで優れた性能を示し、MATH-500では92.8%の精度、AIME 2024では55.5%の合格率、CodeForcesでは1189のスコアを達成し、7B規模のモデルとして強力な数学およびプログラミング能力を実証しています。"
|
241
232
|
},
|
@@ -257,9 +248,6 @@
|
|
257
248
|
"Qwen/QwQ-32B-Preview": {
|
258
249
|
"description": "QwQ-32B-PreviewはQwenの最新の実験的研究モデルで、AIの推論能力を向上させることに特化しています。言語の混合、再帰的推論などの複雑なメカニズムを探求することで、主な利点は強力な推論分析能力、数学およびプログラミング能力です。同時に、言語切り替えの問題、推論のループ、安全性の考慮、その他の能力の違いも存在します。"
|
259
250
|
},
|
260
|
-
"Qwen/Qwen2-1.5B-Instruct": {
|
261
|
-
"description": "Qwen2-1.5B-InstructはQwen2シリーズの指示微調整大規模言語モデルで、パラメータ規模は1.5Bです。このモデルはTransformerアーキテクチャに基づき、SwiGLU活性化関数、注意QKVバイアス、グループクエリ注意などの技術を採用しています。言語理解、生成、多言語能力、コーディング、数学、推論などの複数のベンチマークテストで優れたパフォーマンスを示し、ほとんどのオープンソースモデルを超えています。Qwen1.5-1.8B-Chatと比較して、Qwen2-1.5B-InstructはMMLU、HumanEval、GSM8K、C-Eval、IFEvalなどのテストで顕著な性能向上を示していますが、パラメータ数はわずかに少ないです。"
|
262
|
-
},
|
263
251
|
"Qwen/Qwen2-72B-Instruct": {
|
264
252
|
"description": "Qwen2は、先進的な汎用言語モデルであり、さまざまな指示タイプをサポートします。"
|
265
253
|
},
|
@@ -419,9 +407,6 @@
|
|
419
407
|
"THUDM/GLM-Z1-Rumination-32B-0414": {
|
420
408
|
"description": "GLM-Z1-Rumination-32B-0414は深い推論能力を持つモデルで(OpenAIのDeep Researchに対抗)、典型的な深い思考モデルとは異なり、より長い時間の深い思考を用いてよりオープンで複雑な問題を解決します。"
|
421
409
|
},
|
422
|
-
"THUDM/chatglm3-6b": {
|
423
|
-
"description": "ChatGLM3-6BはChatGLMシリーズのオープンモデルで、智譜AIによって開発されました。このモデルは前の世代の優れた特性を保持し、対話の流暢さとデプロイのハードルの低さを維持しつつ、新しい特性を導入しています。より多様な訓練データ、より十分な訓練ステップ、より合理的な訓練戦略を採用し、10B未満の事前訓練モデルの中で優れたパフォーマンスを示しています。ChatGLM3-6Bは多輪対話、ツール呼び出し、コード実行、エージェントタスクなどの複雑なシーンをサポートしています。対話モデルの他に、基礎モデルChatGLM-6B-Baseと長文対話モデルChatGLM3-6B-32Kもオープンソースとして提供されています。このモデルは学術研究に完全にオープンで、登録後は無料の商業利用も許可されています。"
|
424
|
-
},
|
425
410
|
"THUDM/glm-4-9b-chat": {
|
426
411
|
"description": "GLM-4 9Bはオープンソース版で、会話アプリケーションに最適化された対話体験を提供します。"
|
427
412
|
},
|
@@ -563,6 +548,12 @@
|
|
563
548
|
"anthropic/claude-3.7-sonnet": {
|
564
549
|
"description": "Claude 3.7 Sonnetは、Anthropicがこれまでに開発した最も知能の高いモデルであり、市場で初めての混合推論モデルです。Claude 3.7 Sonnetは、ほぼ瞬時の応答や段階的な思考を生成することができ、ユーザーはこれらのプロセスを明確に見ることができます。Sonnetは特にプログラミング、データサイエンス、視覚処理、代理タスクに優れています。"
|
565
550
|
},
|
551
|
+
"anthropic/claude-opus-4": {
|
552
|
+
"description": "Claude Opus 4 は、Anthropic が高度に複雑なタスクを処理するために開発した最も強力なモデルです。性能、知能、流暢さ、理解力の面で卓越した能力を発揮します。"
|
553
|
+
},
|
554
|
+
"anthropic/claude-sonnet-4": {
|
555
|
+
"description": "Claude Sonnet 4 はほぼ即時の応答や段階的な思考の延長を生成でき、ユーザーはこれらのプロセスを明確に確認できます。API ユーザーはモデルの思考時間を細かく制御することも可能です。"
|
556
|
+
},
|
566
557
|
"aya": {
|
567
558
|
"description": "Aya 23は、Cohereが提供する多言語モデルであり、23の言語をサポートし、多様な言語アプリケーションを便利にします。"
|
568
559
|
},
|
@@ -788,6 +779,9 @@
|
|
788
779
|
"deepseek-r1": {
|
789
780
|
"description": "DeepSeek-R1は、強化学習(RL)駆動の推論モデルであり、モデル内の繰り返しと可読性の問題を解決します。RLの前に、DeepSeek-R1はコールドスタートデータを導入し、推論性能をさらに最適化しました。数学、コード、推論タスクにおいてOpenAI-o1と同等のパフォーマンスを発揮し、精巧に設計されたトレーニング手法によって全体的な効果を向上させました。"
|
790
781
|
},
|
782
|
+
"deepseek-r1-0528": {
|
783
|
+
"description": "685B フルスペックモデルで、2025年5月28日にリリースされました。DeepSeek-R1 は後期トレーニング段階で大規模に強化学習技術を活用し、極めて少ないラベル付きデータでモデルの推論能力を大幅に向上させました。数学、コード、自然言語推論などのタスクで高い性能と強力な能力を持ちます。"
|
784
|
+
},
|
791
785
|
"deepseek-r1-70b-fast-online": {
|
792
786
|
"description": "DeepSeek R1 70Bファスト版で、リアルタイムのオンライン検索をサポートし、モデルのパフォーマンスを維持しながら、より速い応答速度を提供します。"
|
793
787
|
},
|
@@ -1067,6 +1061,9 @@
|
|
1067
1061
|
"gemini-2.5-pro-preview-05-06": {
|
1068
1062
|
"description": "Gemini 2.5 Pro Previewは、Googleの最先端思考モデルであり、コード、数学、STEM分野の複雑な問題に対して推論を行い、長いコンテキストを使用して大規模なデータセット、コードベース、文書を分析することができます。"
|
1069
1063
|
},
|
1064
|
+
"gemini-2.5-pro-preview-06-05": {
|
1065
|
+
"description": "Gemini 2.5 Pro Preview は Google の最先端思考モデルで、コード、数学、STEM 分野の複雑な問題を推論し、長いコンテキストを用いて大規模なデータセット、コードベース、ドキュメントを分析できます。"
|
1066
|
+
},
|
1070
1067
|
"gemma-7b-it": {
|
1071
1068
|
"description": "Gemma 7Bは、中小規模のタスク処理に適しており、コスト効果を兼ね備えています。"
|
1072
1069
|
},
|
@@ -1355,6 +1352,9 @@
|
|
1355
1352
|
"hunyuan-t1-20250403": {
|
1356
1353
|
"description": "プロジェクトレベルのコード生成能力を向上させる;テキスト生成の執筆品質を向上させる;テキスト理解のトピックにおける多段階対話、ToB指示の遵守および語彙理解能力を向上させる;繁体字と簡体字の混在、及び中英混在の出力問題を最適化する。"
|
1357
1354
|
},
|
1355
|
+
"hunyuan-t1-20250529": {
|
1356
|
+
"description": "テキスト作成や作文の最適化、コードのフロントエンド、数学、論理推論など理系能力の強化、指示遵守能力の向上を図っています。"
|
1357
|
+
},
|
1358
1358
|
"hunyuan-t1-latest": {
|
1359
1359
|
"description": "業界初の超大規模Hybrid-Transformer-Mamba推論モデルであり、推論能力を拡張し、超高速なデコード速度を実現し、人間の好みにさらに整合します。"
|
1360
1360
|
},
|
@@ -1379,6 +1379,9 @@
|
|
1379
1379
|
"hunyuan-turbos-20250416": {
|
1380
1380
|
"description": "事前学習基盤のアップグレードにより、基盤の指示理解および遵守能力を強化;整合フェーズで数学、コード、論理、科学などの理系能力を強化;文芸創作の執筆品質、テキスト理解、翻訳精度、知識問答などの文系能力を向上;各分野のエージェント能力を強化し、特に多段階対話理解能力を重点的に強化。"
|
1381
1381
|
},
|
1382
|
+
"hunyuan-turbos-20250604": {
|
1383
|
+
"description": "事前学習基盤のアップグレードにより、執筆や読解力が向上し、コードや理系能力が大幅に強化され、複雑な指示の遵守能力も継続的に向上しています。"
|
1384
|
+
},
|
1382
1385
|
"hunyuan-turbos-latest": {
|
1383
1386
|
"description": "hunyuan-TurboS混元フラッグシップ大モデルの最新バージョンで、より強力な思考能力と優れた体験効果を備えています。"
|
1384
1387
|
},
|
@@ -1391,9 +1394,6 @@
|
|
1391
1394
|
"hunyuan-vision": {
|
1392
1395
|
"description": "混元の最新のマルチモーダルモデルで、画像とテキストの入力をサポートし、テキストコンテンツを生成します。"
|
1393
1396
|
},
|
1394
|
-
"internlm/internlm2_5-20b-chat": {
|
1395
|
-
"description": "革新的なオープンソースモデルInternLM2.5は、大規模なパラメータを通じて対話のインテリジェンスを向上させました。"
|
1396
|
-
},
|
1397
1397
|
"internlm/internlm2_5-7b-chat": {
|
1398
1398
|
"description": "InternLM2.5は多様なシーンでのインテリジェントな対話ソリューションを提供します。"
|
1399
1399
|
},
|
@@ -1910,6 +1910,9 @@
|
|
1910
1910
|
"qvq-max": {
|
1911
1911
|
"description": "通義千問QVQ視覚推論モデルで、視覚入力と思考連鎖出力をサポートし、数学、プログラミング、視覚分析、創作および汎用タスクにおいてより強力な能力を発揮します。"
|
1912
1912
|
},
|
1913
|
+
"qvq-plus": {
|
1914
|
+
"description": "視覚推論モデルです。視覚入力と思考チェーン出力をサポートし、qvq-max モデルの後継である plus バージョンです。qvq-max モデルに比べて推論速度が速く、効果とコストのバランスが優れています。"
|
1915
|
+
},
|
1913
1916
|
"qwen-coder-plus": {
|
1914
1917
|
"description": "通義千問コードモデルです。"
|
1915
1918
|
},
|
@@ -259,6 +259,9 @@
|
|
259
259
|
"enableMaxTokens": {
|
260
260
|
"title": "単一応答制限を有効にする"
|
261
261
|
},
|
262
|
+
"enableReasoningEffort": {
|
263
|
+
"title": "推論強度の調整を有効にする"
|
264
|
+
},
|
262
265
|
"frequencyPenalty": {
|
263
266
|
"desc": "値が大きいほど、言葉がより豊かで多様になります。値が小さいほど、言葉はより素朴でシンプルになります。",
|
264
267
|
"title": "語彙の豊かさ"
|
@@ -278,6 +281,15 @@
|
|
278
281
|
"desc": "値が大きいほど、異なる表現方法を好み、概念の繰り返しを避けます。値が小さいほど、繰り返しの概念や表現を使用する傾向が強く、一貫性のある表現になります。",
|
279
282
|
"title": "表現の多様性"
|
280
283
|
},
|
284
|
+
"reasoningEffort": {
|
285
|
+
"desc": "値が大きいほど推論能力が高くなりますが、応答時間とトークン消費が増加する可能性があります",
|
286
|
+
"options": {
|
287
|
+
"high": "高い",
|
288
|
+
"low": "低い",
|
289
|
+
"medium": "中程度"
|
290
|
+
},
|
291
|
+
"title": "推論強度"
|
292
|
+
},
|
281
293
|
"submit": "モデル設定を更新",
|
282
294
|
"temperature": {
|
283
295
|
"desc": "数値が大きいほど、回答はより創造的で想像力に富む;数値が小さいほど、回答はより厳密になる",
|
@@ -206,15 +206,9 @@
|
|
206
206
|
"Phi-3.5-vision-instrust": {
|
207
207
|
"description": "Phi-3-vision 모델의 업데이트된 버전입니다."
|
208
208
|
},
|
209
|
-
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
210
|
-
"description": "Qwen2-1.5B-Instruct는 Qwen2 시리즈의 지침 미세 조정 대규모 언어 모델로, 파라미터 규모는 1.5B입니다. 이 모델은 Transformer 아키텍처를 기반으로 하며, SwiGLU 활성화 함수, 주의 QKV 편향 및 그룹 쿼리 주의와 같은 기술을 사용합니다. 이 모델은 언어 이해, 생성, 다국어 능력, 코딩, 수학 및 추론 등 여러 벤치마크 테스트에서 뛰어난 성능을 보이며, 대부분의 오픈 소스 모델을 초월합니다. Qwen1.5-1.8B-Chat과 비교할 때, Qwen2-1.5B-Instruct는 MMLU, HumanEval, GSM8K, C-Eval 및 IFEval 등의 테스트에서 상당한 성능 향상을 보였습니다."
|
211
|
-
},
|
212
209
|
"Pro/Qwen/Qwen2-7B-Instruct": {
|
213
210
|
"description": "Qwen2-7B-Instruct는 Qwen2 시리즈의 지침 미세 조정 대규모 언어 모델로, 파라미터 규모는 7B입니다. 이 모델은 Transformer 아키텍처를 기반으로 하며, SwiGLU 활성화 함수, 주의 QKV 편향 및 그룹 쿼리 주의와 같은 기술을 사용합니다. 이 모델은 대규모 입력을 처리할 수 있습니다. 이 모델은 언어 이해, 생성, 다국어 능력, 코딩, 수학 및 추론 등 여러 벤치마크 테스트에서 뛰어난 성능을 보이며, 대부분의 오픈 소스 모델을 초월하고 특정 작업에서 독점 모델과 동등한 경쟁력을 보여줍니다. Qwen2-7B-Instruct는 여러 평가에서 Qwen1.5-7B-Chat보다 우수하여 상당한 성능 향상을 보였습니다."
|
214
211
|
},
|
215
|
-
"Pro/Qwen/Qwen2-VL-7B-Instruct": {
|
216
|
-
"description": "Qwen2-VL은 Qwen-VL 모델의 최신 반복 버전으로, 시각 이해 기준 테스트에서 최첨단 성능을 달성했습니다."
|
217
|
-
},
|
218
212
|
"Pro/Qwen/Qwen2.5-7B-Instruct": {
|
219
213
|
"description": "Qwen2.5-7B-Instruct는 Alibaba Cloud에서 발표한 최신 대규모 언어 모델 시리즈 중 하나입니다. 이 7B 모델은 코딩 및 수학 분야에서 상당한 개선된 능력을 가지고 있습니다. 이 모델은 또한 29개 이상의 언어를 포함한 다국어 지원을 제공합니다. 모델은 지침 준수, 구조화된 데이터 이해 및 구조화된 출력 생성(특히 JSON)에서 상당한 향상을 보입니다."
|
220
214
|
},
|
@@ -233,9 +227,6 @@
|
|
233
227
|
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
234
228
|
"description": "DeepSeek-R1은 강화 학습(RL) 기반 추론 모델로, 모델 내 반복성과 가독성 문제를 해결했습니다. RL 이전에 콜드 스타트 데이터를 도입하여 추론 성능을 추가 최적화했으며, 수학, 코드, 추론 작업에서 OpenAI-o1과 유사한 성능을 보이고, 정교한 훈련 방법을 통해 전체 성능을 향상시켰습니다."
|
235
229
|
},
|
236
|
-
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
237
|
-
"description": "DeepSeek-R1-Distill-Qwen-1.5B는 Qwen2.5-Math-1.5B를 기반으로 지식 증류를 통해 개발된 모델입니다. 이 모델은 DeepSeek-R1에서 생성된 80만 개의 선별된 샘플을 사용하여 미세 조정되었으며, 여러 벤치마크에서 우수한 성능을 보여주었습니다. 경량 모델임에도 불구하고 MATH-500에서 83.9%의 정확도, AIME 2024에서 28.9%의 통과율, CodeForces에서 954점을 기록하여 매개변수 규모를 뛰어넘는 추론 능력을 입증했습니다."
|
238
|
-
},
|
239
230
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
240
231
|
"description": "DeepSeek-R1-Distill-Qwen-7B는 Qwen2.5-Math-7B를 기반으로 지식 증류를 통해 개발된 모델입니다. 이 모델은 DeepSeek-R1에서 생성된 80만 개의 선별된 샘플을 사용하여 미세 조정되었으며, 우수한 추론 능력을 보여줍니다. 다양한 벤치마크에서 뛰어난 성능을 발휘하며, MATH-500에서 92.8%의 정확도, AIME 2024에서 55.5%의 통과율, CodeForces에서 1189점을 기록하여 7B 규모 모델로서 강력한 수학 및 프로그래밍 능력을 입증했습니다."
|
241
232
|
},
|
@@ -257,9 +248,6 @@
|
|
257
248
|
"Qwen/QwQ-32B-Preview": {
|
258
249
|
"description": "QwQ-32B-Preview는 Qwen의 최신 실험적 연구 모델로, AI 추론 능력을 향상시키는 데 중점을 두고 있습니다. 언어 혼합, 재귀 추론 등 복잡한 메커니즘을 탐구하며, 주요 장점으로는 강력한 추론 분석 능력, 수학 및 프로그래밍 능력이 포함됩니다. 동시에 언어 전환 문제, 추론 루프, 안전성 고려 및 기타 능력 차이와 같은 문제도 존재합니다."
|
259
250
|
},
|
260
|
-
"Qwen/Qwen2-1.5B-Instruct": {
|
261
|
-
"description": "Qwen2-1.5B-Instruct는 Qwen2 시리즈의 지침 미세 조정 대규모 언어 모델로, 파라미터 규모는 1.5B입니다. 이 모델은 Transformer 아키텍처를 기반으로 하며, SwiGLU 활성화 함수, 주의 QKV 편향 및 그룹 쿼리 주의와 같은 기술을 사용합니다. 이 모델은 언어 이해, 생성, 다국어 능력, 코딩, 수학 및 추론 등 여러 벤치마크 테스트에서 뛰어난 성능을 보이며, 대부분의 오픈 소스 모델을 초월합니다. Qwen1.5-1.8B-Chat과 비교할 때, Qwen2-1.5B-Instruct는 MMLU, HumanEval, GSM8K, C-Eval 및 IFEval 등의 테스트에서 상당한 성능 향상을 보였습니다."
|
262
|
-
},
|
263
251
|
"Qwen/Qwen2-72B-Instruct": {
|
264
252
|
"description": "Qwen2는 다양한 지시 유형을 지원하는 고급 범용 언어 모델입니다."
|
265
253
|
},
|
@@ -419,9 +407,6 @@
|
|
419
407
|
"THUDM/GLM-Z1-Rumination-32B-0414": {
|
420
408
|
"description": "GLM-Z1-Rumination-32B-0414는 깊은 추론 능력을 갖춘 모델로(OpenAI의 Deep Research와 비교됨), 전형적인 깊은 사고 모델과는 달리, 더 긴 시간 동안 깊은 사고를 통해 더 개방적이고 복잡한 문제를 해결합니다."
|
421
409
|
},
|
422
|
-
"THUDM/chatglm3-6b": {
|
423
|
-
"description": "ChatGLM3-6B는 Zhizhu AI가 개발한 ChatGLM 시리즈의 오픈 소스 모델입니다. 이 모델은 이전 모델의 우수한 특성을 유지하면서 대화의 유창함과 배포 장벽을 낮추는 새로운 기능을 도입했습니다. 더 다양한 훈련 데이터, 충분한 훈련 단계 및 합리적인 훈련 전략을 채택하여 10B 이하의 사전 훈련 모델 중에서 뛰어난 성능을 보입니다. ChatGLM3-6B는 다중 회전 대화, 도구 호출, 코드 실행 및 에이전트 작업과 같은 복잡한 시나리오를 지원합니다. 대화 모델 외에도 기본 모델 ChatGLM-6B-Base 및 긴 텍스트 대화 모델 ChatGLM3-6B-32K도 오픈 소스되었습니다. 이 모델은 학술 연구에 완전히 개방되어 있으며, 등록 후 무료 상업적 사용도 허용됩니다."
|
424
|
-
},
|
425
410
|
"THUDM/glm-4-9b-chat": {
|
426
411
|
"description": "GLM-4 9B 오픈 소스 버전으로, 대화 응용을 위한 최적화된 대화 경험을 제공합니다."
|
427
412
|
},
|
@@ -563,6 +548,12 @@
|
|
563
548
|
"anthropic/claude-3.7-sonnet": {
|
564
549
|
"description": "Claude 3.7 Sonnet은 Anthropic이 지금까지 개발한 가장 지능적인 모델로, 시장에서 최초의 혼합 추론 모델입니다. Claude 3.7 Sonnet은 거의 즉각적인 응답이나 연장된 단계적 사고를 생성할 수 있으며, 사용자는 이러한 과정을 명확하게 볼 수 있습니다. Sonnet은 프로그래밍, 데이터 과학, 시각 처리, 대리 작업에 특히 뛰어납니다."
|
565
550
|
},
|
551
|
+
"anthropic/claude-opus-4": {
|
552
|
+
"description": "Claude Opus 4는 Anthropic에서 고도로 복잡한 작업을 처리하기 위해 개발한 가장 강력한 모델입니다. 성능, 지능, 유창성 및 이해력 면에서 뛰어난 성과를 보입니다."
|
553
|
+
},
|
554
|
+
"anthropic/claude-sonnet-4": {
|
555
|
+
"description": "Claude Sonnet 4는 거의 즉각적인 응답이나 단계별 심층 사고를 생성할 수 있으며, 사용자는 이러한 과정을 명확하게 볼 수 있습니다. API 사용자는 모델의 사고 시간을 세밀하게 제어할 수도 있습니다."
|
556
|
+
},
|
566
557
|
"aya": {
|
567
558
|
"description": "Aya 23은 Cohere에서 출시한 다국어 모델로, 23개 언어를 지원하여 다양한 언어 응용에 편리함을 제공합니다."
|
568
559
|
},
|
@@ -788,6 +779,9 @@
|
|
788
779
|
"deepseek-r1": {
|
789
780
|
"description": "DeepSeek-R1은 강화 학습(RL) 기반의 추론 모델로, 모델 내의 반복성과 가독성 문제를 해결합니다. RL 이전에 DeepSeek-R1은 콜드 스타트 데이터를 도입하여 추론 성능을 더욱 최적화했습니다. 수학, 코드 및 추론 작업에서 OpenAI-o1과 유사한 성능을 보이며, 정교하게 설계된 훈련 방법을 통해 전체적인 효과를 향상시켰습니다."
|
790
781
|
},
|
782
|
+
"deepseek-r1-0528": {
|
783
|
+
"description": "685B 풀스펙 모델로, 2025년 5월 28일에 출시되었습니다. DeepSeek-R1은 후학습 단계에서 대규모 강화 학습 기술을 활용하여 극소수의 라벨 데이터만으로도 모델의 추론 능력을 크게 향상시켰습니다. 수학, 코드, 자연어 추론 등 과제에서 높은 성능과 강력한 능력을 자랑합니다."
|
784
|
+
},
|
791
785
|
"deepseek-r1-70b-fast-online": {
|
792
786
|
"description": "DeepSeek R1 70B 빠른 버전으로, 실시간 온라인 검색을 지원하며 모델 성능을 유지하면서 더 빠른 응답 속도를 제공합니다."
|
793
787
|
},
|
@@ -1067,6 +1061,9 @@
|
|
1067
1061
|
"gemini-2.5-pro-preview-05-06": {
|
1068
1062
|
"description": "Gemini 2.5 Pro Preview는 Google의 최첨단 사고 모델로, 코드, 수학 및 STEM 분야의 복잡한 문제를 추론하고 긴 맥락을 사용하여 대규모 데이터 세트, 코드베이스 및 문서를 분석할 수 있습니다."
|
1069
1063
|
},
|
1064
|
+
"gemini-2.5-pro-preview-06-05": {
|
1065
|
+
"description": "Gemini 2.5 Pro Preview는 구글의 최첨단 사고 모델로, 코드, 수학 및 STEM 분야의 복잡한 문제를 추론할 수 있으며, 긴 문맥을 활용해 대규모 데이터셋, 코드베이스 및 문서를 분석합니다."
|
1066
|
+
},
|
1070
1067
|
"gemma-7b-it": {
|
1071
1068
|
"description": "Gemma 7B는 중소 규모 작업 처리에 적합하며, 비용 효과성을 갖추고 있습니다."
|
1072
1069
|
},
|
@@ -1355,6 +1352,9 @@
|
|
1355
1352
|
"hunyuan-t1-20250403": {
|
1356
1353
|
"description": "프로젝트 수준의 코드 생성 능력 향상; 텍스트 생성 및 작문 품질 향상; 텍스트 이해 주제의 다중 라운드, B2B 명령 준수 및 단어 이해 능력 향상; 번체와 간체 혼용 및 중영 혼용 출력 문제 최적화."
|
1357
1354
|
},
|
1355
|
+
"hunyuan-t1-20250529": {
|
1356
|
+
"description": "텍스트 창작과 작문을 최적화하고, 코드 프론트엔드, 수학, 논리 추론 등 이공계 능력을 향상시키며, 명령어 준수 능력을 강화합니다."
|
1357
|
+
},
|
1358
1358
|
"hunyuan-t1-latest": {
|
1359
1359
|
"description": "업계 최초의 초대형 Hybrid-Transformer-Mamba 추론 모델로, 추론 능력을 확장하고, 뛰어난 디코딩 속도를 자랑하며, 인간의 선호에 더욱 부합합니다."
|
1360
1360
|
},
|
@@ -1379,6 +1379,9 @@
|
|
1379
1379
|
"hunyuan-turbos-20250416": {
|
1380
1380
|
"description": "사전 학습 기반 업그레이드로 명령 이해 및 준수 능력 강화; 정렬 단계에서 수학, 코드, 논리, 과학 등 이공계 능력 강화; 문예 창작 품질, 텍스트 이해, 번역 정확도, 지식 질의응답 등 인문계 능력 향상; 각 분야 에이전트 능력 강화, 특히 다중 라운드 대화 이해 능력 중점 강화."
|
1381
1381
|
},
|
1382
|
+
"hunyuan-turbos-20250604": {
|
1383
|
+
"description": "사전 학습 기반 업그레이드로 작문 및 독해 능력이 향상되었으며, 코드 및 이공계 능력이 크게 향상되고 복잡한 명령어 준수 능력도 지속적으로 개선됩니다."
|
1384
|
+
},
|
1382
1385
|
"hunyuan-turbos-latest": {
|
1383
1386
|
"description": "hunyuan-TurboS 혼원 플래그십 대모델 최신 버전으로, 더 강력한 사고 능력과 더 나은 경험 효과를 제공합니다."
|
1384
1387
|
},
|
@@ -1391,9 +1394,6 @@
|
|
1391
1394
|
"hunyuan-vision": {
|
1392
1395
|
"description": "혼원 최신 다중 모달 모델로, 이미지와 텍스트 입력을 지원하여 텍스트 콘텐츠를 생성합니다."
|
1393
1396
|
},
|
1394
|
-
"internlm/internlm2_5-20b-chat": {
|
1395
|
-
"description": "혁신적인 오픈 소스 모델 InternLM2.5는 대규모 파라미터를 통해 대화의 지능을 향상시킵니다."
|
1396
|
-
},
|
1397
1397
|
"internlm/internlm2_5-7b-chat": {
|
1398
1398
|
"description": "InternLM2.5는 다양한 시나리오에서 스마트 대화 솔루션을 제공합니다."
|
1399
1399
|
},
|
@@ -1910,6 +1910,9 @@
|
|
1910
1910
|
"qvq-max": {
|
1911
1911
|
"description": "통의천문 QVQ 비전 추론 모델로, 시각 입력과 사고 과정(chain-of-thought) 출력을 지원하며, 수학, 프로그래밍, 시각 분석, 창작 및 일반 작업에서 뛰어난 능력을 발휘합니다."
|
1912
1912
|
},
|
1913
|
+
"qvq-plus": {
|
1914
|
+
"description": "시각 추론 모델입니다. 시각 입력과 사고 체인 출력을 지원하며, qvq-max 모델에 이어 출시된 플러스 버전으로, qvq-max 모델에 비해 추론 속도가 더 빠르고 성능과 비용의 균형이 우수합니다."
|
1915
|
+
},
|
1913
1916
|
"qwen-coder-plus": {
|
1914
1917
|
"description": "통의천문 코드 모델입니다."
|
1915
1918
|
},
|
@@ -259,6 +259,9 @@
|
|
259
259
|
"enableMaxTokens": {
|
260
260
|
"title": "단일 응답 제한 활성화"
|
261
261
|
},
|
262
|
+
"enableReasoningEffort": {
|
263
|
+
"title": "추론 강도 조정 활성화"
|
264
|
+
},
|
262
265
|
"frequencyPenalty": {
|
263
266
|
"desc": "값이 클수록 단어 선택이 더 다양하고 풍부해지며, 값이 작을수록 단어 선택이 더 간단하고 소박해집니다.",
|
264
267
|
"title": "어휘 다양성"
|
@@ -278,6 +281,15 @@
|
|
278
281
|
"desc": "값이 클수록 다양한 표현 방식으로 기울어져 개념의 반복을 피하고, 값이 작을수록 반복적인 개념이나 서술을 사용하는 경향이 있어 표현이 더 일관됩니다.",
|
279
282
|
"title": "표현의 다양성"
|
280
283
|
},
|
284
|
+
"reasoningEffort": {
|
285
|
+
"desc": "값이 클수록 추론 능력이 강해지지만, 응답 시간과 토큰 소모가 증가할 수 있습니다",
|
286
|
+
"options": {
|
287
|
+
"high": "높음",
|
288
|
+
"low": "낮음",
|
289
|
+
"medium": "중간"
|
290
|
+
},
|
291
|
+
"title": "추론 강도"
|
292
|
+
},
|
281
293
|
"submit": "모델 설정 업데이트",
|
282
294
|
"temperature": {
|
283
295
|
"desc": "값이 클수록 답변이 더 창의적이고 상상력이 풍부해지며, 값이 작을수록 답변이 더 엄격해집니다.",
|
@@ -206,15 +206,9 @@
|
|
206
206
|
"Phi-3.5-vision-instrust": {
|
207
207
|
"description": "Een geüpdatete versie van het Phi-3-vision model."
|
208
208
|
},
|
209
|
-
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
210
|
-
"description": "Qwen2-1.5B-Instruct is een instructie-fijn afgesteld groot taalmodel in de Qwen2-serie, met een parameter grootte van 1.5B. Dit model is gebaseerd op de Transformer-architectuur en maakt gebruik van technieken zoals de SwiGLU-activeringsfunctie, aandacht QKV-bias en groepsquery-aandacht. Het presteert uitstekend in taalbegrip, generatie, meertalige capaciteiten, codering, wiskunde en redenering in verschillende benchmarktests, en overtreft de meeste open-source modellen. In vergelijking met Qwen1.5-1.8B-Chat toont Qwen2-1.5B-Instruct aanzienlijke prestatieverbeteringen in tests zoals MMLU, HumanEval, GSM8K, C-Eval en IFEval, ondanks een iets lager aantal parameters."
|
211
|
-
},
|
212
209
|
"Pro/Qwen/Qwen2-7B-Instruct": {
|
213
210
|
"description": "Qwen2-7B-Instruct is een instructie-fijn afgesteld groot taalmodel in de Qwen2-serie, met een parameter grootte van 7B. Dit model is gebaseerd op de Transformer-architectuur en maakt gebruik van technieken zoals de SwiGLU-activeringsfunctie, aandacht QKV-bias en groepsquery-aandacht. Het kan grote invoer verwerken. Dit model presteert uitstekend in taalbegrip, generatie, meertalige capaciteiten, codering, wiskunde en redenering in verschillende benchmarktests, en overtreft de meeste open-source modellen, en toont in sommige taken een concurrentievermogen vergelijkbaar met dat van propriëtaire modellen. Qwen2-7B-Instruct presteert beter dan Qwen1.5-7B-Chat in verschillende evaluaties, wat aanzienlijke prestatieverbeteringen aantoont."
|
214
211
|
},
|
215
|
-
"Pro/Qwen/Qwen2-VL-7B-Instruct": {
|
216
|
-
"description": "Qwen2-VL is de nieuwste iteratie van het Qwen-VL-model, dat de toonaangevende prestaties behaalde in benchmarktests voor visueel begrip."
|
217
|
-
},
|
218
212
|
"Pro/Qwen/Qwen2.5-7B-Instruct": {
|
219
213
|
"description": "Qwen2.5-7B-Instruct is een van de nieuwste grote taalmodellen die door Alibaba Cloud is uitgebracht. Dit 7B-model heeft aanzienlijke verbeteringen in coderings- en wiskundige vaardigheden. Het model biedt ook meertalige ondersteuning, met meer dan 29 ondersteunde talen, waaronder Chinees en Engels. Het model heeft aanzienlijke verbeteringen in het volgen van instructies, het begrijpen van gestructureerde gegevens en het genereren van gestructureerde uitvoer (vooral JSON)."
|
220
214
|
},
|
@@ -233,9 +227,6 @@
|
|
233
227
|
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
234
228
|
"description": "DeepSeek-R1 is een door versterkend leren (RL) aangedreven redeneermodel dat problemen met herhaling en leesbaarheid in modellen aanpakt. Voor RL introduceert DeepSeek-R1 cold-start data om de redeneerprestaties verder te optimaliseren. Het presteert vergelijkbaar met OpenAI-o1 in wiskunde, code en redeneertaken en verbetert de algehele effectiviteit door zorgvuldig ontworpen trainingsmethoden."
|
235
229
|
},
|
236
|
-
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
237
|
-
"description": "DeepSeek-R1-Distill-Qwen-1.5B is een model dat is afgeleid van Qwen2.5-Math-1.5B door middel van kennisdistillatie. Dit model is fijn afgesteld met 800.000 zorgvuldig geselecteerde voorbeelden die zijn gegenereerd door DeepSeek-R1, en toont goede prestaties op meerdere benchmarks. Als een lichtgewicht model behaalde het een nauwkeurigheid van 83,9% op MATH-500, een doorlooptarief van 28,9% op AIME 2024 en een score van 954 op CodeForces, wat aantoont dat het inferentiecapaciteiten heeft die verder gaan dan zijn parameterschaal."
|
238
|
-
},
|
239
230
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
240
231
|
"description": "DeepSeek-R1-Distill-Qwen-7B is een model dat is afgeleid van Qwen2.5-Math-7B door middel van kennisdistillatie. Dit model is fijn afgesteld met 800.000 zorgvuldig geselecteerde voorbeelden die zijn gegenereerd door DeepSeek-R1, waardoor het uitstekende inferentiecapaciteiten vertoont. Het presteert goed op verschillende benchmarks, met een nauwkeurigheid van 92,8% op MATH-500, een doorlooptarief van 55,5% op AIME 2024 en een score van 1189 op CodeForces. Als een model van 7B schaal toont het sterke wiskundige en programmeringvaardigheden."
|
241
232
|
},
|
@@ -257,9 +248,6 @@
|
|
257
248
|
"Qwen/QwQ-32B-Preview": {
|
258
249
|
"description": "QwQ-32B-Preview is het nieuwste experimentele onderzoeksmodel van Qwen, gericht op het verbeteren van AI-redeneringscapaciteiten. Door het verkennen van complexe mechanismen zoals taalmixing en recursieve redenering, zijn de belangrijkste voordelen onder andere krachtige redeneringsanalyses, wiskundige en programmeervaardigheden. Tegelijkertijd zijn er ook problemen met taalwisseling, redeneringscycli, veiligheidskwesties en verschillen in andere capaciteiten."
|
259
250
|
},
|
260
|
-
"Qwen/Qwen2-1.5B-Instruct": {
|
261
|
-
"description": "Qwen2-1.5B-Instruct is een instructie-fijn afgesteld groot taalmodel in de Qwen2-serie, met een parameter grootte van 1.5B. Dit model is gebaseerd op de Transformer-architectuur en maakt gebruik van technieken zoals de SwiGLU-activeringsfunctie, aandacht QKV-bias en groepsquery-aandacht. Het presteert uitstekend in taalbegrip, generatie, meertalige capaciteiten, codering, wiskunde en redenering in verschillende benchmarktests, en overtreft de meeste open-source modellen. In vergelijking met Qwen1.5-1.8B-Chat toont Qwen2-1.5B-Instruct aanzienlijke prestatieverbeteringen in tests zoals MMLU, HumanEval, GSM8K, C-Eval en IFEval, ondanks een iets lager aantal parameters."
|
262
|
-
},
|
263
251
|
"Qwen/Qwen2-72B-Instruct": {
|
264
252
|
"description": "Qwen2 is een geavanceerd algemeen taalmodel dat verschillende soorten instructies ondersteunt."
|
265
253
|
},
|
@@ -419,9 +407,6 @@
|
|
419
407
|
"THUDM/GLM-Z1-Rumination-32B-0414": {
|
420
408
|
"description": "GLM-Z1-Rumination-32B-0414 is een diep redeneringsmodel met reflectievermogen (vergelijkbaar met OpenAI's Deep Research). In tegenstelling tot typische diep denkmodellen, gebruikt het reflectiemodel langere periodes van diep nadenken om meer open en complexe problemen op te lossen."
|
421
409
|
},
|
422
|
-
"THUDM/chatglm3-6b": {
|
423
|
-
"description": "ChatGLM3-6B is het open-source model van de ChatGLM-serie, ontwikkeld door Zhipu AI. Dit model behoudt de uitstekende kenmerken van de vorige generatie, zoals vloeiende gesprekken en lage implementatiedrempels, terwijl het nieuwe functies introduceert. Het maakt gebruik van meer diverse trainingsdata, een groter aantal trainingsstappen en een meer redelijke trainingsstrategie, en presteert uitstekend onder de voorgetrainde modellen van minder dan 10B. ChatGLM3-6B ondersteunt complexe scenario's zoals meerdaagse gesprekken, tool-aanroepen, code-uitvoering en agenttaken. Naast het gespreksmodel zijn ook het basismodel ChatGLM-6B-Base en het lange tekstgespreksmodel ChatGLM3-6B-32K open-source gemaakt. Dit model is volledig open voor academisch onderzoek en staat ook gratis commercieel gebruik toe na registratie."
|
424
|
-
},
|
425
410
|
"THUDM/glm-4-9b-chat": {
|
426
411
|
"description": "GLM-4 9B is de open-source versie die een geoptimaliseerde gesprekservaring biedt voor gespreksapplicaties."
|
427
412
|
},
|
@@ -563,6 +548,12 @@
|
|
563
548
|
"anthropic/claude-3.7-sonnet": {
|
564
549
|
"description": "Claude 3.7 Sonnet is het meest geavanceerde model van Anthropic tot nu toe en het eerste hybride redeneermodel op de markt. Claude 3.7 Sonnet kan bijna onmiddellijke reacties of uitgebreide stapsgewijze overpeinzingen genereren, waarbij gebruikers deze processen duidelijk kunnen volgen. Sonnet is bijzonder goed in programmeren, datawetenschap, visuele verwerking en agenttaken."
|
565
550
|
},
|
551
|
+
"anthropic/claude-opus-4": {
|
552
|
+
"description": "Claude Opus 4 is het krachtigste model van Anthropic voor het verwerken van zeer complexe taken. Het blinkt uit in prestaties, intelligentie, vloeiendheid en begrip."
|
553
|
+
},
|
554
|
+
"anthropic/claude-sonnet-4": {
|
555
|
+
"description": "Claude Sonnet 4 kan bijna onmiddellijke reacties genereren of uitgebreide stapsgewijze overwegingen, waarbij gebruikers deze processen duidelijk kunnen volgen. API-gebruikers kunnen ook de denktijd van het model nauwkeurig regelen."
|
556
|
+
},
|
566
557
|
"aya": {
|
567
558
|
"description": "Aya 23 is een meertalig model van Cohere, ondersteunt 23 talen en biedt gemak voor diverse taaltoepassingen."
|
568
559
|
},
|
@@ -788,6 +779,9 @@
|
|
788
779
|
"deepseek-r1": {
|
789
780
|
"description": "DeepSeek-R1 is een op versterkend leren (RL) aangedreven inferentiemodel dat de problemen van herhaling en leesbaarheid in het model oplost. Voor RL introduceerde DeepSeek-R1 koude startdata om de inferentieprestaties verder te optimaliseren. Het presteert vergelijkbaar met OpenAI-o1 in wiskunde, code en inferentietaken, en verbetert de algehele effectiviteit door zorgvuldig ontworpen trainingsmethoden."
|
790
781
|
},
|
782
|
+
"deepseek-r1-0528": {
|
783
|
+
"description": "685 miljard parameter full-power model, uitgebracht op 28 mei 2025. DeepSeek-R1 maakt uitgebreid gebruik van versterkend leren in de post-trainingsfase, wat de reden is voor de aanzienlijke verbetering van het redeneervermogen van het model ondanks zeer beperkte gelabelde data. Het presteert uitstekend op taken zoals wiskunde, coderen en natuurlijke taalredenering."
|
784
|
+
},
|
791
785
|
"deepseek-r1-70b-fast-online": {
|
792
786
|
"description": "DeepSeek R1 70B snelle versie, ondersteunt realtime online zoeken en biedt snellere reactietijden zonder in te boeten op modelprestaties."
|
793
787
|
},
|
@@ -1067,6 +1061,9 @@
|
|
1067
1061
|
"gemini-2.5-pro-preview-05-06": {
|
1068
1062
|
"description": "Gemini 2.5 Pro Preview is Google's meest geavanceerde denkmodel, in staat om te redeneren over complexe problemen in code, wiskunde en STEM-gebieden, en om grote datasets, codebases en documenten te analyseren met lange context."
|
1069
1063
|
},
|
1064
|
+
"gemini-2.5-pro-preview-06-05": {
|
1065
|
+
"description": "Gemini 2.5 Pro Preview is Google's meest geavanceerde denkwijze-model, in staat om complexe problemen op het gebied van code, wiskunde en STEM te redeneren, en grote datasets, codebases en documenten te analyseren met lange context."
|
1066
|
+
},
|
1070
1067
|
"gemma-7b-it": {
|
1071
1068
|
"description": "Gemma 7B is geschikt voor het verwerken van middelgrote taken, met een goede kosteneffectiviteit."
|
1072
1069
|
},
|
@@ -1355,6 +1352,9 @@
|
|
1355
1352
|
"hunyuan-t1-20250403": {
|
1356
1353
|
"description": "Verbeter de codegeneratie op projectniveau; verhoog de kwaliteit van tekstgeneratie en schrijfvaardigheid; verbeter het begrip van tekstonderwerpen, multi-turn en to-the-point instructies en woordbegrip; optimaliseer problemen met gemengde traditionele en vereenvoudigde karakters en gemengde Chinese en Engelse output."
|
1357
1354
|
},
|
1355
|
+
"hunyuan-t1-20250529": {
|
1356
|
+
"description": "Geoptimaliseerd voor tekstcreatie en essay schrijven, verbeterde vaardigheden in frontend codering, wiskunde en logisch redeneren, en verbeterde instructievolging."
|
1357
|
+
},
|
1358
1358
|
"hunyuan-t1-latest": {
|
1359
1359
|
"description": "De eerste ultra-grote Hybrid-Transformer-Mamba inferentiemodel in de industrie, dat de inferentiemogelijkheden uitbreidt, met een superieure decodesnelheid en verder afgestemd op menselijke voorkeuren."
|
1360
1360
|
},
|
@@ -1379,6 +1379,9 @@
|
|
1379
1379
|
"hunyuan-turbos-20250416": {
|
1380
1380
|
"description": "Upgrade van het pre-trainingsfundament, versterkt het begrip en de naleving van instructies; verbetert wiskundige, codeer-, logische en wetenschappelijke vaardigheden tijdens de afstemmingsfase; verhoogt de kwaliteit van creatieve teksten, tekstbegrip, vertaalnauwkeurigheid en kennisvragen; versterkt de capaciteiten van agenten in diverse domeinen, met speciale aandacht voor het begrip van multi-turn dialogen."
|
1381
1381
|
},
|
1382
|
+
"hunyuan-turbos-20250604": {
|
1383
|
+
"description": "Upgrade van de pre-trainingsbasis, verbeterde schrijf- en leesbegripvaardigheden, aanzienlijke verbetering van codeer- en wetenschappelijke vaardigheden, en voortdurende verbetering in het volgen van complexe instructies."
|
1384
|
+
},
|
1382
1385
|
"hunyuan-turbos-latest": {
|
1383
1386
|
"description": "hunyuan-TurboS is de nieuwste versie van het Hunyuan vlaggenschipmodel, met verbeterde denkcapaciteiten en een betere gebruikerservaring."
|
1384
1387
|
},
|
@@ -1391,9 +1394,6 @@
|
|
1391
1394
|
"hunyuan-vision": {
|
1392
1395
|
"description": "Het nieuwste multimodale model van Hunyuan, ondersteunt het genereren van tekstinhoud op basis van afbeelding + tekstinvoer."
|
1393
1396
|
},
|
1394
|
-
"internlm/internlm2_5-20b-chat": {
|
1395
|
-
"description": "Het innovatieve open-source model InternLM2.5 verhoogt de gespreksintelligentie door een groot aantal parameters."
|
1396
|
-
},
|
1397
1397
|
"internlm/internlm2_5-7b-chat": {
|
1398
1398
|
"description": "InternLM2.5 biedt intelligente gespreksoplossingen voor meerdere scenario's."
|
1399
1399
|
},
|
@@ -1910,6 +1910,9 @@
|
|
1910
1910
|
"qvq-max": {
|
1911
1911
|
"description": "Tongyi Qianwen QVQ visueel redeneermodel, ondersteunt visuele input en keten van gedachten output, toont sterkere capaciteiten in wiskunde, programmeren, visuele analyse, creatie en algemene taken."
|
1912
1912
|
},
|
1913
|
+
"qvq-plus": {
|
1914
|
+
"description": "Visueel redeneermodel. Ondersteunt visuele input en keten van gedachten output. De plus-versie, uitgebracht na het qvq-max model, biedt snellere redeneersnelheid en een betere balans tussen effectiviteit en kosten in vergelijking met het qvq-max model."
|
1915
|
+
},
|
1913
1916
|
"qwen-coder-plus": {
|
1914
1917
|
"description": "Tongyi Qianwen codeermodel."
|
1915
1918
|
},
|