@lobehub/chat 1.93.3 → 1.94.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (47) hide show
  1. package/.i18nrc.js +1 -0
  2. package/CHANGELOG.md +33 -0
  3. package/changelog/v1.json +12 -0
  4. package/docs/self-hosting/advanced/auth/next-auth/google.mdx +82 -0
  5. package/docs/self-hosting/advanced/auth.mdx +3 -0
  6. package/locales/ar/models.json +21 -18
  7. package/locales/ar/setting.json +12 -0
  8. package/locales/bg-BG/models.json +21 -18
  9. package/locales/bg-BG/setting.json +12 -0
  10. package/locales/de-DE/models.json +21 -18
  11. package/locales/de-DE/setting.json +12 -0
  12. package/locales/en-US/models.json +21 -18
  13. package/locales/en-US/setting.json +12 -0
  14. package/locales/es-ES/models.json +21 -18
  15. package/locales/es-ES/setting.json +12 -0
  16. package/locales/fa-IR/models.json +21 -18
  17. package/locales/fa-IR/setting.json +12 -0
  18. package/locales/fr-FR/models.json +21 -18
  19. package/locales/fr-FR/setting.json +12 -0
  20. package/locales/it-IT/models.json +21 -18
  21. package/locales/it-IT/setting.json +12 -0
  22. package/locales/ja-JP/models.json +21 -18
  23. package/locales/ja-JP/setting.json +12 -0
  24. package/locales/ko-KR/models.json +21 -18
  25. package/locales/ko-KR/setting.json +12 -0
  26. package/locales/nl-NL/models.json +21 -18
  27. package/locales/nl-NL/setting.json +12 -0
  28. package/locales/pl-PL/models.json +21 -18
  29. package/locales/pl-PL/setting.json +12 -0
  30. package/locales/pt-BR/models.json +21 -18
  31. package/locales/pt-BR/setting.json +12 -0
  32. package/locales/ru-RU/models.json +21 -18
  33. package/locales/ru-RU/setting.json +12 -0
  34. package/locales/tr-TR/models.json +21 -18
  35. package/locales/tr-TR/setting.json +12 -0
  36. package/locales/vi-VN/models.json +21 -18
  37. package/locales/vi-VN/setting.json +12 -0
  38. package/locales/zh-CN/models.json +21 -18
  39. package/locales/zh-CN/setting.json +12 -0
  40. package/locales/zh-TW/models.json +21 -18
  41. package/locales/zh-TW/setting.json +12 -0
  42. package/package.json +1 -1
  43. package/src/components/NextAuth/AuthIcons.tsx +2 -0
  44. package/src/features/AgentSetting/AgentModal/index.tsx +27 -1
  45. package/src/libs/next-auth/sso-providers/google.ts +20 -0
  46. package/src/libs/next-auth/sso-providers/index.ts +2 -0
  47. package/src/locales/default/setting.ts +12 -0
package/.i18nrc.js CHANGED
@@ -24,6 +24,7 @@ module.exports = defineConfig({
24
24
  'fa-IR',
25
25
  ],
26
26
  temperature: 0,
27
+ saveImmediately: true,
27
28
  modelName: 'gpt-4.1-mini',
28
29
  experimental: {
29
30
  jsonMode: true,
package/CHANGELOG.md CHANGED
@@ -2,6 +2,39 @@
2
2
 
3
3
  # Changelog
4
4
 
5
+ ## [Version 1.94.0](https://github.com/lobehub/lobe-chat/compare/v1.93.3...v1.94.0)
6
+
7
+ <sup>Released on **2025-06-10**</sup>
8
+
9
+ #### ✨ Features
10
+
11
+ - **misc**: Support google sso as auth provider.
12
+
13
+ #### 🐛 Bug Fixes
14
+
15
+ - **misc**: Restore reasoningEffort in setting.
16
+
17
+ <br/>
18
+
19
+ <details>
20
+ <summary><kbd>Improvements and Fixes</kbd></summary>
21
+
22
+ #### What's improved
23
+
24
+ - **misc**: Support google sso as auth provider, closes [#8074](https://github.com/lobehub/lobe-chat/issues/8074) ([43ab03a](https://github.com/lobehub/lobe-chat/commit/43ab03a))
25
+
26
+ #### What's fixed
27
+
28
+ - **misc**: Restore reasoningEffort in setting, closes [#8123](https://github.com/lobehub/lobe-chat/issues/8123) ([3be609c](https://github.com/lobehub/lobe-chat/commit/3be609c))
29
+
30
+ </details>
31
+
32
+ <div align="right">
33
+
34
+ [![](https://img.shields.io/badge/-BACK_TO_TOP-151515?style=flat-square)](#readme-top)
35
+
36
+ </div>
37
+
5
38
  ### [Version 1.93.3](https://github.com/lobehub/lobe-chat/compare/v1.93.2...v1.93.3)
6
39
 
7
40
  <sup>Released on **2025-06-10**</sup>
package/changelog/v1.json CHANGED
@@ -1,4 +1,16 @@
1
1
  [
2
+ {
3
+ "children": {
4
+ "features": [
5
+ "Support google sso as auth provider."
6
+ ],
7
+ "fixes": [
8
+ "Restore reasoningEffort in setting."
9
+ ]
10
+ },
11
+ "date": "2025-06-10",
12
+ "version": "1.94.0"
13
+ },
2
14
  {
3
15
  "children": {
4
16
  "improvements": [
@@ -0,0 +1,82 @@
1
+ ---
2
+
3
+ title: Configuration of Google SSO Authentication Service for LobeChat
4
+ description: >-
5
+ Learn how to configure Google SSO Authentication Service for LobeChat,
6
+ create OAuth applications, add users, and set up environment variables for seamless integration.
7
+ tags:
8
+
9
+ * Google SSO
10
+ * Authentication Service
11
+ * Google Cloud
12
+ * OAuth
13
+ * SSO
14
+ * Environment Variables
15
+ * LobeChat
16
+
17
+ ---
18
+
19
+ # Configuration of Google SSO Authentication Service
20
+
21
+ <Steps>
22
+ ### Create a Google Cloud OAuth 2.0 Client
23
+
24
+ In your [Google Cloud Console][google-cloud-console], navigate to **APIs & Services > Credentials**.
25
+
26
+ Click on **Create Credentials** and select **OAuth client ID**.
27
+
28
+ If you haven't already set up a consent screen, you will be prompted to do so. Complete the OAuth consent screen setup (specify app name, support email, and add authorized users if needed).
29
+
30
+ Select **Web application** as the application type.
31
+
32
+ In the **Authorized redirect URIs** section, enter:
33
+
34
+ ```bash
35
+ https://your-domain/api/auth/callback/google
36
+ ```
37
+
38
+ \<Callout type={'info'}>
39
+ \- You can add or modify redirect URIs after registration, but make sure the URL matches your deployed LobeChat instance.
40
+ \- Replace "your-domain" with your actual domain. </Callout>
41
+
42
+ Click **Create**.
43
+
44
+ After creation, copy the **Client ID** and **Client Secret**.
45
+
46
+ <Image alt="Google OAuth Setup" inStep src="https://developers.google.com/static/identity/images/gsi/web/gcs-signin-2.png" />
47
+
48
+ ### Add Users (Optional for Internal Use Only)
49
+
50
+ If your application is in **Testing** or **Internal** publishing status, add user emails in the OAuth consent screen under **Test users**.
51
+ Users not added here will not be able to authenticate.
52
+
53
+ ### Configure Environment Variables
54
+
55
+ When deploying LobeChat, configure the following environment variables:
56
+
57
+ | Environment Variable | Type | Description |
58
+ | ------------------------- | -------- | -------------------------------------------------------------------------------------------------------------------- |
59
+ | `NEXT_AUTH_SECRET` | Required | Key to encrypt Auth.js session tokens. Generate using: `openssl rand -base64 32` |
60
+ | `NEXT_AUTH_SSO_PROVIDERS` | Required | Select the single sign-on provider for LobeChat. Use `google` for Google SSO. |
61
+ | `AUTH_GOOGLE_ID` | Required | Client ID from Google Cloud OAuth. |
62
+ | `AUTH_GOOGLE_SECRET` | Required | Client Secret from Google Cloud OAuth. |
63
+ | `NEXTAUTH_URL` | Required | Specifies the callback address for Auth.js when performing OAuth authentication. E.g. `https://your-domain/api/auth` |
64
+
65
+ \<Callout type={'tip'}>
66
+ See [📘 environment variables](/docs/self-hosting/environment-variable#google) for more details on these variables. </Callout> </Steps>
67
+
68
+ <Callout>
69
+ After successful deployment, users can sign in to LobeChat using their Google accounts (those added as Test Users, if not in production).
70
+ </Callout>
71
+
72
+ ## Advanced Configuration
73
+
74
+ See the [Google Identity Platform Documentation][google-identity-docs] for advanced options, scopes, and consent screen configuration.
75
+
76
+ ## Related Resources
77
+
78
+ * [Quickstart: Configure a Google OAuth client][google-oauth-quickstart]
79
+
80
+ [google-cloud-console]: https://console.cloud.google.com/apis/credentials
81
+ [google-oauth-quickstart]: https://developers.google.com/identity/protocols/oauth2/web-server#creatingcred
82
+ [google-identity-docs]: https://developers.google.com/identity
@@ -53,6 +53,8 @@ Currently supported identity verification services include:
53
53
  <Card href={'/docs/self-hosting/advanced/auth/next-auth/logto'} title={'Logto'} />
54
54
 
55
55
  <Card href={'/docs/self-hosting/advanced/auth/next-auth/keycloak'} title={'Keycloak'} />
56
+
57
+ <Card href={'/docs/self-hosting/advanced/auth/next-auth/google'} title={'Google'} />
56
58
  </Cards>
57
59
 
58
60
  Click on the links to view the corresponding platform's configuration documentation.
@@ -75,6 +77,7 @@ The order corresponds to the display order of the SSO providers.
75
77
  | Microsoft Entra ID | `microsoft-entra-id` |
76
78
  | ZITADEL | `zitadel` |
77
79
  | Keycloak | `keycloak` |
80
+ | Google | `google` |
78
81
 
79
82
  ## Other SSO Providers
80
83
 
@@ -206,15 +206,9 @@
206
206
  "Phi-3.5-vision-instrust": {
207
207
  "description": "النسخة المحدثة من نموذج Phi-3-vision."
208
208
  },
209
- "Pro/Qwen/Qwen2-1.5B-Instruct": {
210
- "description": "Qwen2-1.5B-Instruct هو نموذج لغوي كبير تم تعديله وفقًا للتعليمات في سلسلة Qwen2، بحجم 1.5B. يعتمد هذا النموذج على بنية Transformer، ويستخدم تقنيات مثل دالة تنشيط SwiGLU، وتحويل QKV، والانتباه الجماعي. أظهر أداءً ممتازًا في فهم اللغة، والتوليد، والقدرات متعددة اللغات، والترميز، والرياضيات، والاستدلال في العديد من اختبارات المعايير، متجاوزًا معظم النماذج مفتوحة المصدر."
211
- },
212
209
  "Pro/Qwen/Qwen2-7B-Instruct": {
213
210
  "description": "Qwen2-7B-Instruct هو نموذج لغوي كبير تم تعديله وفقًا للتعليمات في سلسلة Qwen2، بحجم 7B. يعتمد هذا النموذج على بنية Transformer، ويستخدم تقنيات مثل دالة تنشيط SwiGLU، وتحويل QKV، والانتباه الجماعي. يمكنه معالجة المدخلات الكبيرة. أظهر النموذج أداءً ممتازًا في فهم اللغة، والتوليد، والقدرات متعددة اللغات، والترميز، والرياضيات، والاستدلال في العديد من اختبارات المعايير، متجاوزًا معظم النماذج مفتوحة المصدر."
214
211
  },
215
- "Pro/Qwen/Qwen2-VL-7B-Instruct": {
216
- "description": "Qwen2-VL هو النسخة الأحدث من نموذج Qwen-VL، وقد حقق أداءً متقدمًا في اختبارات الفهم البصري."
217
- },
218
212
  "Pro/Qwen/Qwen2.5-7B-Instruct": {
219
213
  "description": "Qwen2.5-7B-Instruct هو أحد أحدث نماذج اللغة الكبيرة التي أصدرتها Alibaba Cloud. يتمتع هذا النموذج بقدرات محسنة بشكل ملحوظ في مجالات الترميز والرياضيات. كما يوفر دعمًا للغات متعددة، تغطي أكثر من 29 لغة، بما في ذلك الصينية والإنجليزية. أظهر النموذج تحسينات ملحوظة في اتباع التعليمات، وفهم البيانات الهيكلية، وتوليد المخرجات الهيكلية (خاصة JSON)."
220
214
  },
@@ -233,9 +227,6 @@
233
227
  "Pro/deepseek-ai/DeepSeek-R1-0120": {
234
228
  "description": "DeepSeek-R1 هو نموذج استدلال مدفوع بالتعلم المعزز (RL)، يعالج مشاكل التكرار وقابلية القراءة في النماذج. قبل التعلم المعزز، أدخل DeepSeek-R1 بيانات بدء باردة لتحسين أداء الاستدلال. يظهر أداءً مماثلًا لـ OpenAI-o1 في مهام الرياضيات، البرمجة، والاستدلال، مع تحسينات شاملة بفضل طرق التدريب المصممة بعناية."
235
229
  },
236
- "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
237
- "description": "DeepSeek-R1-Distill-Qwen-1.5B هو نموذج تم الحصول عليه من خلال تقطير المعرفة بناءً على Qwen2.5-Math-1.5B. تم ضبط هذا النموذج باستخدام 800 ألف عينة مختارة تم إنشاؤها بواسطة DeepSeek-R1، حيث أظهر أداءً جيدًا في معايير متعددة. كنموذج خفيف الوزن، حقق دقة 83.9٪ في MATH-500، ومعدل نجاح 28.9٪ في AIME 2024، وحصل على تقييم 954 في CodeForces، مما يظهر قدرة استدلالية تتجاوز حجم معلماته."
238
- },
239
230
  "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
240
231
  "description": "DeepSeek-R1-Distill-Qwen-7B هو نموذج تم الحصول عليه من خلال تقطير المعرفة بناءً على Qwen2.5-Math-7B. تم ضبط هذا النموذج باستخدام 800 ألف عينة مختارة تم إنشاؤها بواسطة DeepSeek-R1، مما يظهر قدرات استدلالية ممتازة. أظهر أداءً متميزًا في العديد من الاختبارات المعيارية، حيث حقق دقة 92.8٪ في MATH-500، ومعدل نجاح 55.5٪ في AIME 2024، ودرجة 1189 في CodeForces، مما يظهر قدرات قوية في الرياضيات والبرمجة كنموذج بحجم 7B."
241
232
  },
@@ -257,9 +248,6 @@
257
248
  "Qwen/QwQ-32B-Preview": {
258
249
  "description": "QwQ-32B-Preview هو أحدث نموذج بحث تجريبي من Qwen، يركز على تعزيز قدرات الاستدلال للذكاء الاصطناعي. من خلال استكشاف آليات معقدة مثل خلط اللغة والاستدلال التكراري، تشمل المزايا الرئيسية القدرة القوية على التحليل الاستدلالي، والقدرات الرياضية والبرمجية. في الوقت نفسه، هناك أيضًا مشكلات في تبديل اللغة، ودورات الاستدلال، واعتبارات الأمان، واختلافات في القدرات الأخرى."
259
250
  },
260
- "Qwen/Qwen2-1.5B-Instruct": {
261
- "description": "Qwen2-1.5B-Instruct هو نموذج لغوي كبير تم تعديله وفقًا للتعليمات في سلسلة Qwen2، بحجم 1.5B. يعتمد هذا النموذج على بنية Transformer، ويستخدم تقنيات مثل دالة تنشيط SwiGLU، وتحويل QKV، والانتباه الجماعي. أظهر أداءً ممتازًا في فهم اللغة، والتوليد، والقدرات متعددة اللغات، والترميز، والرياضيات، والاستدلال في العديد من اختبارات المعايير، متجاوزًا معظم النماذج مفتوحة المصدر."
262
- },
263
251
  "Qwen/Qwen2-72B-Instruct": {
264
252
  "description": "Qwen2 هو نموذج لغوي عام متقدم، يدعم أنواع متعددة من التعليمات."
265
253
  },
@@ -419,9 +407,6 @@
419
407
  "THUDM/GLM-Z1-Rumination-32B-0414": {
420
408
  "description": "GLM-Z1-Rumination-32B-0414 هو نموذج استدلال عميق يتمتع بقدرة على التفكير العميق (مقابل Deep Research من OpenAI). على عكس نماذج التفكير العميق التقليدية، يستخدم نموذج التفكير العميق وقتًا أطول لحل المشكلات الأكثر انفتاحًا وتعقيدًا."
421
409
  },
422
- "THUDM/chatglm3-6b": {
423
- "description": "ChatGLM3-6B هو نموذج مفتوح المصدر من سلسلة ChatGLM، تم تطويره بواسطة Zhizhu AI. يحتفظ هذا النموذج بخصائص الجيل السابق الممتازة، مثل سلاسة المحادثة وانخفاض عتبة النشر، بينما يقدم ميزات جديدة. تم تدريبه على بيانات تدريب أكثر تنوعًا، وعدد أكبر من خطوات التدريب، واستراتيجيات تدريب أكثر منطقية، مما يجعله نموذجًا ممتازًا بين النماذج المدربة مسبقًا التي تقل عن 10B. يدعم ChatGLM3-6B المحادثات متعددة الجولات، واستدعاء الأدوات، وتنفيذ الشيفرة، ومهام الوكلاء في سيناريوهات معقدة. بالإضافة إلى نموذج المحادثة، تم إصدار النموذج الأساسي ChatGLM-6B-Base ونموذج المحادثة الطويلة ChatGLM3-6B-32K. النموذج مفتوح بالكامل للأبحاث الأكاديمية، ويسمح بالاستخدام التجاري المجاني بعد التسجيل."
424
- },
425
410
  "THUDM/glm-4-9b-chat": {
426
411
  "description": "GLM-4 9B هو إصدار مفتوح المصدر، يوفر تجربة حوار محسنة لتطبيقات الحوار."
427
412
  },
@@ -563,6 +548,12 @@
563
548
  "anthropic/claude-3.7-sonnet": {
564
549
  "description": "Claude 3.7 Sonnet هو أكثر النماذج ذكاءً من Anthropic حتى الآن، وهو أيضًا أول نموذج مختلط للتفكير في السوق. يمكن لـ Claude 3.7 Sonnet إنتاج استجابات شبه فورية أو تفكير تدريجي ممتد، حيث يمكن للمستخدمين رؤية هذه العمليات بوضوح. يتميز Sonnet بشكل خاص في البرمجة، وعلوم البيانات، ومعالجة الصور، والمهام الوكيلة."
565
550
  },
551
+ "anthropic/claude-opus-4": {
552
+ "description": "كلود أوبوس 4 هو أقوى نموذج من أنثروبيك لمعالجة المهام المعقدة للغاية. يتميز بأداء ممتاز وذكاء وسلاسة وفهم عميق."
553
+ },
554
+ "anthropic/claude-sonnet-4": {
555
+ "description": "كلود سونيت 4 يمكنه إنتاج استجابات شبه فورية أو تفكير تدريجي مطول، حيث يمكن للمستخدمين رؤية هذه العمليات بوضوح. كما يمكن لمستخدمي API التحكم بدقة في مدة تفكير النموذج."
556
+ },
566
557
  "aya": {
567
558
  "description": "Aya 23 هو نموذج متعدد اللغات أطلقته Cohere، يدعم 23 لغة، مما يسهل التطبيقات اللغوية المتنوعة."
568
559
  },
@@ -788,6 +779,9 @@
788
779
  "deepseek-r1": {
789
780
  "description": "DeepSeek-R1 هو نموذج استدلال مدفوع بالتعلم المعزز (RL) يعالج مشكلات التكرار وقابلية القراءة في النموذج. قبل استخدام RL، قدم DeepSeek-R1 بيانات بدء باردة، مما أدى إلى تحسين أداء الاستدلال. إنه يقدم أداءً مماثلاً لـ OpenAI-o1 في المهام الرياضية والبرمجية والاستدلال، وقد حسّن النتائج العامة من خلال طرق تدريب مصممة بعناية."
790
781
  },
782
+ "deepseek-r1-0528": {
783
+ "description": "نموذج كامل القوة بحجم 685 مليار، صدر في 28 مايو 2025. استخدم DeepSeek-R1 تقنيات التعلم المعزز على نطاق واسع في مرحلة ما بعد التدريب، مما عزز بشكل كبير قدرات الاستدلال للنموذج مع وجود بيانات تعليمية قليلة جدًا. يتمتع بأداء عالي وقدرات قوية في المهام المتعلقة بالرياضيات، البرمجة، والاستدلال اللغوي الطبيعي."
784
+ },
791
785
  "deepseek-r1-70b-fast-online": {
792
786
  "description": "DeepSeek R1 70B النسخة السريعة، تدعم البحث المتصل في الوقت الحقيقي، وتوفر سرعة استجابة أسرع مع الحفاظ على أداء النموذج."
793
787
  },
@@ -1067,6 +1061,9 @@
1067
1061
  "gemini-2.5-pro-preview-05-06": {
1068
1062
  "description": "Gemini 2.5 Pro Preview هو نموذج التفكير الأكثر تقدمًا من Google، قادر على الاستدلال حول الشيفرات، الرياضيات، والمشكلات المعقدة في مجالات STEM، بالإضافة إلى تحليل مجموعات البيانات الكبيرة، ومكتبات الشيفرات، والمستندات باستخدام سياقات طويلة."
1069
1063
  },
1064
+ "gemini-2.5-pro-preview-06-05": {
1065
+ "description": "جيميني 2.5 برو بريڤيو هو أحدث نموذج تفكيري من جوجل، قادر على استنتاج حلول للمشكلات المعقدة في مجالات البرمجة، الرياضيات، والعلوم والتكنولوجيا والهندسة والرياضيات (STEM)، بالإضافة إلى تحليل مجموعات بيانات كبيرة، قواعد بيانات البرمجة، والوثائق باستخدام سياق طويل."
1066
+ },
1070
1067
  "gemma-7b-it": {
1071
1068
  "description": "Gemma 7B مناسب لمعالجة المهام المتوسطة والصغيرة، ويجمع بين الكفاءة من حيث التكلفة."
1072
1069
  },
@@ -1355,6 +1352,9 @@
1355
1352
  "hunyuan-t1-20250403": {
1356
1353
  "description": "تعزيز قدرة توليد الأكواد على مستوى المشروع؛ تحسين جودة كتابة النصوص المولدة؛ تعزيز قدرة فهم النصوص متعددة الجولات، والامتثال لتعليمات toB، وفهم الكلمات؛ تحسين مشاكل الخلط بين النصوص المبسطة والتقليدية والخلط بين اللغات الصينية والإنجليزية في المخرجات."
1357
1354
  },
1355
+ "hunyuan-t1-20250529": {
1356
+ "description": "محسن لإنشاء النصوص وكتابة المقالات، مع تحسين القدرات في البرمجة الأمامية، الرياضيات، والمنطق العلمي، بالإضافة إلى تعزيز القدرة على اتباع التعليمات."
1357
+ },
1358
1358
  "hunyuan-t1-latest": {
1359
1359
  "description": "أول نموذج استدلال هجين ضخم في الصناعة، يوسع قدرات الاستدلال، بسرعة فك تشفير فائقة، ويعزز التوافق مع تفضيلات البشر."
1360
1360
  },
@@ -1379,6 +1379,9 @@
1379
1379
  "hunyuan-turbos-20250416": {
1380
1380
  "description": "ترقية قاعدة التدريب المسبق لتعزيز فهم القاعدة والامتثال للتعليمات؛ تعزيز القدرات العلمية مثل الرياضيات، البرمجة، المنطق، والعلوم خلال مرحلة المحاذاة؛ تحسين جودة الكتابة الإبداعية، فهم النصوص، دقة الترجمة، والإجابة على الأسئلة المعرفية في المجالات الأدبية؛ تعزيز قدرات الوكلاء في مختلف المجالات، مع التركيز على تحسين فهم الحوار متعدد الجولات."
1381
1381
  },
1382
+ "hunyuan-turbos-20250604": {
1383
+ "description": "ترقية قاعدة التدريب المسبق، مع تحسينات في مهارات الكتابة وفهم القراءة، وزيادة كبيرة في القدرات البرمجية والعلمية، وتحسين مستمر في اتباع التعليمات المعقدة."
1384
+ },
1382
1385
  "hunyuan-turbos-latest": {
1383
1386
  "description": "hunyuan-TurboS هو أحدث إصدار من نموذج هونيان الرائد، يتمتع بقدرات تفكير أقوى وتجربة أفضل."
1384
1387
  },
@@ -1391,9 +1394,6 @@
1391
1394
  "hunyuan-vision": {
1392
1395
  "description": "نموذج Hunyuan الأحدث متعدد الوسائط، يدعم إدخال الصور والنصوص لتوليد محتوى نصي."
1393
1396
  },
1394
- "internlm/internlm2_5-20b-chat": {
1395
- "description": "نموذج مفتوح المصدر مبتكر InternLM2.5، يعزز الذكاء الحواري من خلال عدد كبير من المعلمات."
1396
- },
1397
1397
  "internlm/internlm2_5-7b-chat": {
1398
1398
  "description": "InternLM2.5 يوفر حلول حوار ذكية في عدة سيناريوهات."
1399
1399
  },
@@ -1910,6 +1910,9 @@
1910
1910
  "qvq-max": {
1911
1911
  "description": "نموذج Tongyi Qianwen QVQ للاستدلال البصري، يدعم الإدخال البصري وإخراج سلسلة التفكير، ويظهر قدرة أقوى في الرياضيات، البرمجة، التحليل البصري، الإبداع، والمهام العامة."
1912
1912
  },
1913
+ "qvq-plus": {
1914
+ "description": "نموذج استدلال بصري يدعم الإدخال البصري وإخراج سلسلة التفكير. النسخة بلس التي تلت نموذج qvq-max، تتميز بسرعة استدلال أعلى وتوازن أفضل بين الأداء والتكلفة مقارنة بنموذج qvq-max."
1915
+ },
1913
1916
  "qwen-coder-plus": {
1914
1917
  "description": "نموذج Tongyi Qianwen للبرمجة."
1915
1918
  },
@@ -259,6 +259,9 @@
259
259
  "enableMaxTokens": {
260
260
  "title": "تمكين الحد الأقصى للردود"
261
261
  },
262
+ "enableReasoningEffort": {
263
+ "title": "تمكين ضبط قوة الاستدلال"
264
+ },
262
265
  "frequencyPenalty": {
263
266
  "desc": "كلما زادت القيمة، كانت المفردات أكثر تنوعًا؛ وكلما انخفضت القيمة، كانت المفردات أكثر بساطة ووضوحًا",
264
267
  "title": "تنوع المفردات"
@@ -278,6 +281,15 @@
278
281
  "desc": "كلما زادت القيمة، زادت الميل إلى استخدام تعبيرات مختلفة، مما يتجنب تكرار المفاهيم؛ وكلما انخفضت القيمة، زادت الميل إلى استخدام المفاهيم أو السرد المتكرر، مما يجعل التعبير أكثر اتساقًا",
279
282
  "title": "تنوع التعبير"
280
283
  },
284
+ "reasoningEffort": {
285
+ "desc": "كلما زادت القيمة، زادت قوة الاستدلال، ولكن قد يؤدي ذلك إلى زيادة وقت الاستجابة واستهلاك الرموز",
286
+ "options": {
287
+ "high": "عالي",
288
+ "low": "منخفض",
289
+ "medium": "متوسط"
290
+ },
291
+ "title": "قوة الاستدلال"
292
+ },
281
293
  "submit": "تحديث إعدادات النموذج",
282
294
  "temperature": {
283
295
  "desc": "كلما زادت القيمة، كانت الإجابات أكثر إبداعًا وخيالًا؛ وكلما انخفضت القيمة، كانت الإجابات أكثر دقة",
@@ -206,15 +206,9 @@
206
206
  "Phi-3.5-vision-instrust": {
207
207
  "description": "Актуализирана версия на модела Phi-3-vision."
208
208
  },
209
- "Pro/Qwen/Qwen2-1.5B-Instruct": {
210
- "description": "Qwen2-1.5B-Instruct е голям езиков модел с параметри 1.5B от серията Qwen2, специално настроен за инструкции. Моделът е базиран на архитектурата Transformer и използва технологии като SwiGLU активационна функция, QKV отклонение за внимание и групова внимание. Той показва отлични резултати в множество бенчмаркове за разбиране на езика, генериране, многоезични способности, кодиране, математика и разсъждения, надминавайки повечето отворени модели. В сравнение с Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct показва значителни подобрения в тестовете MMLU, HumanEval, GSM8K, C-Eval и IFEval, въпреки че параметрите са малко по-малко."
211
- },
212
209
  "Pro/Qwen/Qwen2-7B-Instruct": {
213
210
  "description": "Qwen2-7B-Instruct е голям езиков модел с параметри 7B от серията Qwen2, специално настроен за инструкции. Моделът е базиран на архитектурата Transformer и използва технологии като SwiGLU активационна функция, QKV отклонение за внимание и групова внимание. Той може да обработва големи входни данни. Моделът показва отлични резултати в множество бенчмаркове за разбиране на езика, генериране, многоезични способности, кодиране, математика и разсъждения, надминавайки повечето отворени модели и показвайки конкурентоспособност на определени задачи в сравнение с патентовани модели. Qwen2-7B-Instruct показва значителни подобрения в множество оценки в сравнение с Qwen1.5-7B-Chat."
214
211
  },
215
- "Pro/Qwen/Qwen2-VL-7B-Instruct": {
216
- "description": "Qwen2-VL е най-новата итерация на модела Qwen-VL, който е постигнал водещи резултати в тестовете за визуално разбиране."
217
- },
218
212
  "Pro/Qwen/Qwen2.5-7B-Instruct": {
219
213
  "description": "Qwen2.5-7B-Instruct е един от най-новите големи езикови модели, публикувани от Alibaba Cloud. Този 7B модел показва значителни подобрения в областите на кодирането и математиката. Моделът предлага многоезична поддръжка, обхващаща над 29 езика, включително китайски, английски и др. Моделът показва значителни подобрения в следването на инструкции, разбирането на структурирани данни и генерирането на структурирани изходи (особено JSON)."
220
214
  },
@@ -233,9 +227,6 @@
233
227
  "Pro/deepseek-ai/DeepSeek-R1-0120": {
234
228
  "description": "DeepSeek-R1 е модел за разсъждение, задвижван от усилено обучение (RL), който решава проблеми с повторяемост и четимост в модела. Преди RL, DeepSeek-R1 въвежда студено стартиране на данни за допълнително оптимизиране на разсъжденията. Моделът постига резултати, сравними с OpenAI-o1 в задачи по математика, кодиране и разсъждение, и подобрява общата ефективност чрез внимателно проектирани методи за обучение."
235
229
  },
236
- "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
237
- "description": "DeepSeek-R1-Distill-Qwen-1.5B е модел, получен чрез дистилация на знания от Qwen2.5-Math-1.5B. Моделът е фино настроен с 800 000 избрани проби, генерирани от DeepSeek-R1, и демонстрира добро представяне в множество тестове. Като лек модел, той постига 83,9% точност в MATH-500, 28,9% успеваемост в AIME 2024 и рейтинг от 954 в CodeForces, показвайки способности за разсъждение, които надхвърлят неговия мащаб на параметри."
238
- },
239
230
  "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
240
231
  "description": "DeepSeek-R1-Distill-Qwen-7B е модел, получен чрез дистилация на знания от Qwen2.5-Math-7B. Този модел е фино настроен с 800 000 избрани проби, генерирани от DeepSeek-R1, и демонстрира изключителни способности за разсъждение. Той се представя отлично в множество тестове, постигайки 92,8% точност в MATH-500, 55,5% успеваемост в AIME 2024 и рейтинг от 1189 в CodeForces, показвайки силни математически и програмистки способности за модел с мащаб 7B."
241
232
  },
@@ -257,9 +248,6 @@
257
248
  "Qwen/QwQ-32B-Preview": {
258
249
  "description": "QwQ-32B-Preview е най-новият експериментален изследователски модел на Qwen, който се фокусира върху подобряване на AI разсъдъчните способности. Чрез изследване на сложни механизми като езикови смеси и рекурсивно разсъждение, основните предимства включват мощни аналитични способности, математически и програмистки умения. В същото време съществуват проблеми с езиковото превключване, цикли на разсъждение, съображения за безопасност и разлики в други способности."
259
250
  },
260
- "Qwen/Qwen2-1.5B-Instruct": {
261
- "description": "Qwen2-1.5B-Instruct е голям езиков модел с параметри 1.5B от серията Qwen2, специално настроен за инструкции. Моделът е базиран на архитектурата Transformer и използва технологии като SwiGLU активационна функция, QKV отклонение за внимание и групова внимание. Той показва отлични резултати в множество бенчмаркове за разбиране на езика, генериране, многоезични способности, кодиране, математика и разсъждения, надминавайки повечето отворени модели. В сравнение с Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct показва значителни подобрения в тестовете MMLU, HumanEval, GSM8K, C-Eval и IFEval, въпреки че параметрите са малко по-малко."
262
- },
263
251
  "Qwen/Qwen2-72B-Instruct": {
264
252
  "description": "Qwen2 е напреднал универсален езиков модел, поддържащ множество типове инструкции."
265
253
  },
@@ -419,9 +407,6 @@
419
407
  "THUDM/GLM-Z1-Rumination-32B-0414": {
420
408
  "description": "GLM-Z1-Rumination-32B-0414 е модел за дълбочинно разсъждение с дълбоки способности за разсъждение (сравним с Deep Research на OpenAI). За разлика от типичните модели за дълбочинно разсъждение, моделът за разсъждение използва по-дълго време за дълбочинно разсъждение, за да решава по-отворени и сложни проблеми."
421
409
  },
422
- "THUDM/chatglm3-6b": {
423
- "description": "ChatGLM3-6B е отворен модел от серията ChatGLM, разработен от Zhizhu AI. Моделът запазва отличителните характеристики на предшествениците си, като плавност на разговора и ниски изисквания за внедряване, докато въвежда нови функции. Той използва по-разнообразни тренировъчни данни, по-пълноценни тренировъчни стъпки и по-разумни тренировъчни стратегии, показвайки отлични резултати сред предварително обучените модели под 10B. ChatGLM3-6B поддържа многократни разговори, извикване на инструменти, изпълнение на код и сложни сценарии на задачи на агенти. Освен модела за разговори, са отворени и основният модел ChatGLM-6B-Base и моделът за дълги текстови разговори ChatGLM3-6B-32K. Моделът е напълно отворен за академични изследвания и позволява безплатна търговска употреба след регистрация."
424
- },
425
410
  "THUDM/glm-4-9b-chat": {
426
411
  "description": "GLM-4 9B е отворен код версия, предоставяща оптимизирано изживяване в разговорните приложения."
427
412
  },
@@ -563,6 +548,12 @@
563
548
  "anthropic/claude-3.7-sonnet": {
564
549
  "description": "Claude 3.7 Sonnet е най-интелигентният модел на Anthropic до момента и е първият хибриден модел за разсъждение на пазара. Claude 3.7 Sonnet може да генерира почти мигновени отговори или удължено стъпково мислене, което позволява на потребителите ясно да видят тези процеси. Sonnet е особено добър в програмирането, науката за данни, визуалната обработка и агентските задачи."
565
550
  },
551
+ "anthropic/claude-opus-4": {
552
+ "description": "Claude Opus 4 е най-мощният модел на Anthropic за справяне с изключително сложни задачи. Той се отличава с изключителна производителност, интелигентност, плавност и разбиране."
553
+ },
554
+ "anthropic/claude-sonnet-4": {
555
+ "description": "Claude Sonnet 4 може да генерира почти мигновени отговори или удължено стъпково мислене, което потребителите могат ясно да проследят. Потребителите на API също така имат прецизен контрол върху времето за мислене на модела."
556
+ },
566
557
  "aya": {
567
558
  "description": "Aya 23 е многозначен модел, представен от Cohere, поддържащ 23 езика, предоставяйки удобство за многоезични приложения."
568
559
  },
@@ -788,6 +779,9 @@
788
779
  "deepseek-r1": {
789
780
  "description": "DeepSeek-R1 е модел за извеждане, управляван от подсилено обучение (RL), който решава проблемите с повторяемостта и четимостта в модела. Преди RL, DeepSeek-R1 въвежда данни за студен старт, за да оптимизира допълнително производителността на извеждане. Той показва сравнима производителност с OpenAI-o1 в математически, кодови и извеждащи задачи и подобрява общите резултати чрез внимателно проектирани методи на обучение."
790
781
  },
782
+ "deepseek-r1-0528": {
783
+ "description": "Пълноценен модел с 685 милиарда параметри, пуснат на 28 май 2025 г. DeepSeek-R1 използва мащабно обучение с подсилване в последващия етап на обучение, значително подобрявайки способността за разсъждение с минимални анотирани данни. Отличава се с висока производителност и способности в задачи по математика, кодиране и естествен езиков разсъждения."
784
+ },
791
785
  "deepseek-r1-70b-fast-online": {
792
786
  "description": "DeepSeek R1 70B бърза версия, поддържаща търсене в реално време, предлагаща по-бърза скорост на отговор, без да компрометира производителността на модела."
793
787
  },
@@ -1067,6 +1061,9 @@
1067
1061
  "gemini-2.5-pro-preview-05-06": {
1068
1062
  "description": "Gemini 2.5 Pro Preview е най-напредналият модел на Google за мислене, способен да разсъждава по сложни проблеми в кодиране, математика и STEM области, както и да анализира големи набори от данни, кодови библиотеки и документи с дълъг контекст."
1069
1063
  },
1064
+ "gemini-2.5-pro-preview-06-05": {
1065
+ "description": "Gemini 2.5 Pro Preview е най-напредналият мисловен модел на Google, способен да разсъждава върху сложни проблеми в областта на кодирането, математиката и STEM, както и да анализира големи набори от данни, кодови бази и документи с дълъг контекст."
1066
+ },
1070
1067
  "gemma-7b-it": {
1071
1068
  "description": "Gemma 7B е подходяща за обработка на средни и малки задачи, съчетаваща икономичност."
1072
1069
  },
@@ -1355,6 +1352,9 @@
1355
1352
  "hunyuan-t1-20250403": {
1356
1353
  "description": "Подобряване на възможностите за генериране на код на проектно ниво; повишаване качеството на текстовото писане; подобряване на разбирането на теми, многократното следване на инструкции и разбирането на думи и изрази; оптимизиране на проблемите с изход, смесващ опростен и традиционен китайски, както и китайски и английски."
1357
1354
  },
1355
+ "hunyuan-t1-20250529": {
1356
+ "description": "Оптимизиран за текстово творчество и писане на есета, подобрява уменията в кодирането, математиката и логическото разсъждение, както и способността за следване на инструкции."
1357
+ },
1358
1358
  "hunyuan-t1-latest": {
1359
1359
  "description": "Първият в индустрията свръхголям хибриден трансформаторен модел за инференция, който разширява инференционните способности, предлага изключителна скорост на декодиране и допълнително съгласува човешките предпочитания."
1360
1360
  },
@@ -1379,6 +1379,9 @@
1379
1379
  "hunyuan-turbos-20250416": {
1380
1380
  "description": "Актуализация на предварително обучената основа, засилване на разбирането и следването на инструкции; подобряване на научните способности в математика, кодиране, логика и наука по време на фазата на съгласуване; повишаване качеството на творческото писане, разбирането на текстове, точността на преводите и знанията в хуманитарните науки; засилване на възможностите на агенти в различни области, с особен акцент върху разбирането на многократни диалози."
1381
1381
  },
1382
+ "hunyuan-turbos-20250604": {
1383
+ "description": "Актуализирана предварително обучена основа, подобрени умения за писане и разбиране на текст, значително подобрени способности в кодирането и точните науки, както и непрекъснато усъвършенстване в следването на сложни инструкции."
1384
+ },
1382
1385
  "hunyuan-turbos-latest": {
1383
1386
  "description": "hunyuan-TurboS е последната версия на флагманския модел Hunyuan, с по-силни способности за разсъждение и по-добро потребителско изживяване."
1384
1387
  },
@@ -1391,9 +1394,6 @@
1391
1394
  "hunyuan-vision": {
1392
1395
  "description": "Най-новият мултимодален модел на HunYuan, поддържащ генериране на текстово съдържание от изображения и текстови входове."
1393
1396
  },
1394
- "internlm/internlm2_5-20b-chat": {
1395
- "description": "Иновативният отворен модел InternLM2.5 повишава интелигентността на диалога чрез голям брой параметри."
1396
- },
1397
1397
  "internlm/internlm2_5-7b-chat": {
1398
1398
  "description": "InternLM2.5 предлага интелигентни решения за диалог в множество сценарии."
1399
1399
  },
@@ -1910,6 +1910,9 @@
1910
1910
  "qvq-max": {
1911
1911
  "description": "Tongyi Qianwen QVQ визуален разсъждаващ модел, поддържащ визуален вход и изход на мисловни вериги, показващ по-силни способности в математика, програмиране, визуален анализ, творчество и общи задачи."
1912
1912
  },
1913
+ "qvq-plus": {
1914
+ "description": "Модел за визуално разсъждение. Поддържа визуален вход и изход на мисловни вериги. Версия plus, пусната след модела qvq-max, предлага по-бързо разсъждение и по-добър баланс между ефективност и разходи в сравнение с qvq-max."
1915
+ },
1913
1916
  "qwen-coder-plus": {
1914
1917
  "description": "Tongyi Qianwen модел за кодиране."
1915
1918
  },
@@ -259,6 +259,9 @@
259
259
  "enableMaxTokens": {
260
260
  "title": "Активиране на ограничението за максимален брой токени"
261
261
  },
262
+ "enableReasoningEffort": {
263
+ "title": "Активиране на настройката за интензивност на разсъжденията"
264
+ },
262
265
  "frequencyPenalty": {
263
266
  "desc": "Колкото по-голяма е стойността, толкова по-богат и разнообразен е речникът; колкото по-ниска е стойността, толкова по-прост и обикновен е речникът.",
264
267
  "title": "Богатство на речника"
@@ -278,6 +281,15 @@
278
281
  "desc": "Колкото по-голяма е стойността, толкова по-склонен е към различни изрази, избягвайки повторение на концепции; колкото по-ниска е стойността, толкова по-склонен е да използва повторение на концепции или разкази, изразявайки по-голяма последователност.",
279
282
  "title": "Разнообразие на изразите"
280
283
  },
284
+ "reasoningEffort": {
285
+ "desc": "Колкото по-висока е стойността, толкова по-силна е способността за разсъждение, но това може да увеличи времето за отговор и консумацията на токени",
286
+ "options": {
287
+ "high": "Високо",
288
+ "low": "Ниско",
289
+ "medium": "Средно"
290
+ },
291
+ "title": "Интензивност на разсъжденията"
292
+ },
281
293
  "submit": "Актуализиране на настройките на модела",
282
294
  "temperature": {
283
295
  "desc": "Колкото по-голямо е числото, толкова по-креативни и въображаеми са отговорите; колкото по-малко е числото, толкова по-строги са отговорите",
@@ -206,15 +206,9 @@
206
206
  "Phi-3.5-vision-instrust": {
207
207
  "description": "Aktualisierte Version des Phi-3-vision-Modells."
208
208
  },
209
- "Pro/Qwen/Qwen2-1.5B-Instruct": {
210
- "description": "Qwen2-1.5B-Instruct ist das anweisungsfeinabgestimmte große Sprachmodell der Qwen2-Serie mit einer Parametergröße von 1,5B. Dieses Modell basiert auf der Transformer-Architektur und verwendet Technologien wie die SwiGLU-Aktivierungsfunktion, QKV-Offsets und gruppierte Abfrageaufmerksamkeit. Es zeigt hervorragende Leistungen in der Sprachverständnis, -generierung, Mehrsprachigkeit, Codierung, Mathematik und Inferenz in mehreren Benchmark-Tests und übertrifft die meisten Open-Source-Modelle. Im Vergleich zu Qwen1.5-1.8B-Chat zeigt Qwen2-1.5B-Instruct in Tests wie MMLU, HumanEval, GSM8K, C-Eval und IFEval signifikante Leistungsverbesserungen, obwohl die Parameteranzahl etwas geringer ist."
211
- },
212
209
  "Pro/Qwen/Qwen2-7B-Instruct": {
213
210
  "description": "Qwen2-7B-Instruct ist das anweisungsfeinabgestimmte große Sprachmodell der Qwen2-Serie mit einer Parametergröße von 7B. Dieses Modell basiert auf der Transformer-Architektur und verwendet Technologien wie die SwiGLU-Aktivierungsfunktion, QKV-Offsets und gruppierte Abfrageaufmerksamkeit. Es kann große Eingaben verarbeiten. Das Modell zeigt hervorragende Leistungen in der Sprachverständnis, -generierung, Mehrsprachigkeit, Codierung, Mathematik und Inferenz in mehreren Benchmark-Tests und übertrifft die meisten Open-Source-Modelle und zeigt in bestimmten Aufgaben eine vergleichbare Wettbewerbsfähigkeit mit proprietären Modellen. Qwen2-7B-Instruct übertrifft Qwen1.5-7B-Chat in mehreren Bewertungen und zeigt signifikante Leistungsverbesserungen."
214
211
  },
215
- "Pro/Qwen/Qwen2-VL-7B-Instruct": {
216
- "description": "Qwen2-VL ist die neueste Iteration des Qwen-VL-Modells, das in visuellen Verständnis-Benchmarks erstklassige Leistungen erzielt."
217
- },
218
212
  "Pro/Qwen/Qwen2.5-7B-Instruct": {
219
213
  "description": "Qwen2.5-7B-Instruct ist eines der neuesten großen Sprachmodelle, die von Alibaba Cloud veröffentlicht wurden. Dieses 7B-Modell hat signifikante Verbesserungen in den Bereichen Codierung und Mathematik. Das Modell bietet auch mehrsprachige Unterstützung und deckt über 29 Sprachen ab, einschließlich Chinesisch und Englisch. Es zeigt signifikante Verbesserungen in der Befolgung von Anweisungen, im Verständnis strukturierter Daten und in der Generierung strukturierter Ausgaben (insbesondere JSON)."
220
214
  },
@@ -233,9 +227,6 @@
233
227
  "Pro/deepseek-ai/DeepSeek-R1-0120": {
234
228
  "description": "DeepSeek-R1 ist ein durch verstärkendes Lernen (RL) gesteuertes Inferenzmodell, das Probleme der Wiederholungen und Lesbarkeit im Modell löst. Vor RL wurde ein Cold-Start-Datensatz eingeführt, um die Inferenzleistung weiter zu optimieren. Es zeigt vergleichbare Leistungen zu OpenAI-o1 in Mathematik, Programmierung und Inferenzaufgaben und verbessert die Gesamtleistung durch sorgfältig gestaltete Trainingsmethoden."
235
229
  },
236
- "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
237
- "description": "DeepSeek-R1-Distill-Qwen-1.5B ist ein Modell, das durch Wissensdistillierung auf Basis von Qwen2.5-Math-1.5B erstellt wurde. Dieses Modell wurde mit 800.000 sorgfältig ausgewählten Beispielen, die von DeepSeek-R1 generiert wurden, feinjustiert und zeigt in mehreren Benchmarks gute Leistungen. Als leichtgewichtiges Modell erreicht es eine Genauigkeit von 83,9 % auf MATH-500, einen Durchgangsrate von 28,9 % auf AIME 2024 und eine Bewertung von 954 auf CodeForces, was seine inferenziellen Fähigkeiten über seine Parametergröße hinaus zeigt."
238
- },
239
230
  "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
240
231
  "description": "DeepSeek-R1-Distill-Qwen-7B ist ein Modell, das durch Wissensdistillierung auf Basis von Qwen2.5-Math-7B erstellt wurde. Dieses Modell wurde mit 800.000 sorgfältig ausgewählten Beispielen, die von DeepSeek-R1 generiert wurden, feinjustiert und zeigt ausgezeichnete Inferenzfähigkeiten. Es erzielte in mehreren Benchmarks hervorragende Ergebnisse, darunter eine Genauigkeit von 92,8 % im MATH-500, einen Durchgangsrate von 55,5 % im AIME 2024 und eine Bewertung von 1189 auf CodeForces, was seine starken mathematischen und programmierischen Fähigkeiten als Modell mit 7B Parametern unterstreicht."
241
232
  },
@@ -257,9 +248,6 @@
257
248
  "Qwen/QwQ-32B-Preview": {
258
249
  "description": "QwQ-32B-Preview ist das neueste experimentelle Forschungsmodell von Qwen, das sich auf die Verbesserung der KI-Inferenzfähigkeiten konzentriert. Durch die Erforschung komplexer Mechanismen wie Sprachmischung und rekursive Inferenz bietet es Hauptvorteile wie starke Analysefähigkeiten, mathematische und Programmierfähigkeiten. Gleichzeitig gibt es Herausforderungen wie Sprachwechsel, Inferenzzyklen, Sicherheitsüberlegungen und Unterschiede in anderen Fähigkeiten."
259
250
  },
260
- "Qwen/Qwen2-1.5B-Instruct": {
261
- "description": "Qwen2-1.5B-Instruct ist das anweisungsfeinabgestimmte große Sprachmodell der Qwen2-Serie mit einer Parametergröße von 1,5B. Dieses Modell basiert auf der Transformer-Architektur und verwendet Technologien wie die SwiGLU-Aktivierungsfunktion, QKV-Offsets und gruppierte Abfrageaufmerksamkeit. Es zeigt hervorragende Leistungen in der Sprachverständnis, -generierung, Mehrsprachigkeit, Codierung, Mathematik und Inferenz in mehreren Benchmark-Tests und übertrifft die meisten Open-Source-Modelle. Im Vergleich zu Qwen1.5-1.8B-Chat zeigt Qwen2-1.5B-Instruct in Tests wie MMLU, HumanEval, GSM8K, C-Eval und IFEval signifikante Leistungsverbesserungen, obwohl die Parameteranzahl etwas geringer ist."
262
- },
263
251
  "Qwen/Qwen2-72B-Instruct": {
264
252
  "description": "Qwen2 ist ein fortschrittliches allgemeines Sprachmodell, das eine Vielzahl von Anweisungsarten unterstützt."
265
253
  },
@@ -419,9 +407,6 @@
419
407
  "THUDM/GLM-Z1-Rumination-32B-0414": {
420
408
  "description": "GLM-Z1-Rumination-32B-0414 ist ein tiefes Schlussfolgerungsmodell mit nachdenklichen Fähigkeiten (vergleichbar mit OpenAI's Deep Research). Im Gegensatz zu typischen tiefen Denkmodellen verwendet das nachdenkliche Modell längere Zeiträume des tiefen Denkens, um offenere und komplexere Probleme zu lösen."
421
409
  },
422
- "THUDM/chatglm3-6b": {
423
- "description": "ChatGLM3-6B ist das Open-Source-Modell der ChatGLM-Serie, das von Zhizhu AI entwickelt wurde. Dieses Modell bewahrt die hervorragenden Eigenschaften der Vorgängermodelle, wie flüssige Dialoge und niedrige Bereitstellungskosten, während es neue Funktionen einführt. Es verwendet vielfältigere Trainingsdaten, eine größere Anzahl an Trainingsschritten und eine sinnvollere Trainingsstrategie und zeigt hervorragende Leistungen unter den vortrainierten Modellen mit weniger als 10B. ChatGLM3-6B unterstützt mehrstufige Dialoge, Tool-Aufrufe, Code-Ausführung und Agentenaufgaben in komplexen Szenarien. Neben dem Dialogmodell wurden auch das Basis-Modell ChatGLM-6B-Base und das lange Textdialogmodell ChatGLM3-6B-32K als Open Source veröffentlicht. Dieses Modell ist vollständig für akademische Forschung geöffnet und erlaubt auch kostenlose kommerzielle Nutzung nach Registrierung."
424
- },
425
410
  "THUDM/glm-4-9b-chat": {
426
411
  "description": "GLM-4 9B ist die Open-Source-Version, die ein optimiertes Dialogerlebnis für Konversationsanwendungen bietet."
427
412
  },
@@ -563,6 +548,12 @@
563
548
  "anthropic/claude-3.7-sonnet": {
564
549
  "description": "Claude 3.7 Sonnet ist das intelligenteste Modell von Anthropic bis heute und das erste hybride Inferenzmodell auf dem Markt. Claude 3.7 Sonnet kann nahezu sofortige Antworten oder verlängerte, schrittweise Überlegungen erzeugen, wobei die Benutzer diesen Prozess klar nachvollziehen können. Sonnet ist besonders gut in den Bereichen Programmierung, Datenwissenschaft, visuelle Verarbeitung und Agentenaufgaben."
565
550
  },
551
+ "anthropic/claude-opus-4": {
552
+ "description": "Claude Opus 4 ist das leistungsstärkste Modell von Anthropic zur Bewältigung hochkomplexer Aufgaben. Es zeichnet sich durch herausragende Leistung, Intelligenz, Flüssigkeit und Verständnis aus."
553
+ },
554
+ "anthropic/claude-sonnet-4": {
555
+ "description": "Claude Sonnet 4 kann nahezu sofortige Antworten oder verlängerte schrittweise Überlegungen erzeugen, die für den Nutzer klar nachvollziehbar sind. API-Nutzer können zudem die Denkzeit des Modells präzise steuern."
556
+ },
566
557
  "aya": {
567
558
  "description": "Aya 23 ist ein mehrsprachiges Modell von Cohere, das 23 Sprachen unterstützt und die Anwendung in einer Vielzahl von Sprachen erleichtert."
568
559
  },
@@ -788,6 +779,9 @@
788
779
  "deepseek-r1": {
789
780
  "description": "DeepSeek-R1 ist ein durch verstärkendes Lernen (RL) gesteuertes Inferenzmodell, das die Probleme der Wiederholbarkeit und Lesbarkeit im Modell löst. Vor dem RL führte DeepSeek-R1 Kaltstartdaten ein, um die Inferenzleistung weiter zu optimieren. Es zeigt in mathematischen, programmierbezogenen und Inferenzaufgaben eine vergleichbare Leistung zu OpenAI-o1 und verbessert durch sorgfältig gestaltete Trainingsmethoden die Gesamteffizienz."
790
781
  },
782
+ "deepseek-r1-0528": {
783
+ "description": "Das voll ausgestattete 685B-Modell, veröffentlicht am 28. Mai 2025. DeepSeek-R1 nutzt im Nachtrainingsprozess umfangreiche Verstärkungslernverfahren und verbessert die Modell-Inferenzfähigkeit erheblich, selbst bei minimalen annotierten Daten. Es zeigt hohe Leistung und starke Fähigkeiten in Mathematik, Programmierung und natürlicher Sprachlogik."
784
+ },
791
785
  "deepseek-r1-70b-fast-online": {
792
786
  "description": "DeepSeek R1 70B Schnellversion, die Echtzeit-Online-Suche unterstützt und eine schnellere Reaktionszeit bei gleichbleibender Modellleistung bietet."
793
787
  },
@@ -1067,6 +1061,9 @@
1067
1061
  "gemini-2.5-pro-preview-05-06": {
1068
1062
  "description": "Gemini 2.5 Pro Preview ist Googles fortschrittlichstes Denkmodell, das in der Lage ist, komplexe Probleme in den Bereichen Code, Mathematik und STEM zu analysieren und große Datensätze, Codebasen und Dokumente mithilfe von Langzeitkontext zu analysieren."
1069
1063
  },
1064
+ "gemini-2.5-pro-preview-06-05": {
1065
+ "description": "Gemini 2.5 Pro Preview ist Googles fortschrittlichstes Denkmodell, das komplexe Probleme in den Bereichen Code, Mathematik und MINT-Fächer lösen kann und große Datensätze, Codebasen und Dokumente mit langem Kontext analysiert."
1066
+ },
1070
1067
  "gemma-7b-it": {
1071
1068
  "description": "Gemma 7B eignet sich für die Verarbeitung von mittelgroßen Aufgaben und bietet ein gutes Kosten-Nutzen-Verhältnis."
1072
1069
  },
@@ -1355,6 +1352,9 @@
1355
1352
  "hunyuan-t1-20250403": {
1356
1353
  "description": "Verbesserung der Codegenerierungsfähigkeiten auf Projektebene; Steigerung der Qualität von Textgenerierung und Schreibstil; Verbesserung des Verständnisses von Themen in mehrstufigen Dialogen, Befehlsbefolgung und Wortverständnis; Optimierung von Ausgaben mit gemischten traditionellen und vereinfachten chinesischen Schriftzeichen sowie gemischten chinesisch-englischen Texten."
1357
1354
  },
1355
+ "hunyuan-t1-20250529": {
1356
+ "description": "Optimiert für Textkreation und Aufsatzschreiben, verbessert die Fähigkeiten in Frontend-Programmierung, Mathematik und logischem Denken sowie die Befolgung von Anweisungen."
1357
+ },
1358
1358
  "hunyuan-t1-latest": {
1359
1359
  "description": "Das erste ultra-skalierbare Hybrid-Transformer-Mamba-Inferenzmodell der Branche, das die Inferenzfähigkeiten erweitert, eine extrem hohe Dekodierungsgeschwindigkeit bietet und weiter auf menschliche Präferenzen abgestimmt ist."
1360
1360
  },
@@ -1379,6 +1379,9 @@
1379
1379
  "hunyuan-turbos-20250416": {
1380
1380
  "description": "Upgrade der vortrainierten Basis zur Stärkung des Befehlsverständnisses und der Befehlsbefolgung; Verbesserung der naturwissenschaftlichen Fähigkeiten in Mathematik, Programmierung, Logik und Wissenschaft während der Feinabstimmungsphase; Steigerung der Qualität in literarischer Kreativität, Textverständnis, Übersetzungsgenauigkeit und Wissensfragen; Verstärkung der Agentenfähigkeiten in verschiedenen Bereichen mit Schwerpunkt auf dem Verständnis mehrstufiger Dialoge."
1381
1381
  },
1382
+ "hunyuan-turbos-20250604": {
1383
+ "description": "Upgrade der vortrainierten Basis, verbessert Schreib- und Leseverständnisfähigkeiten, steigert deutlich die Programmier- und naturwissenschaftlichen Kompetenzen und verbessert kontinuierlich die Befolgung komplexer Anweisungen."
1384
+ },
1382
1385
  "hunyuan-turbos-latest": {
1383
1386
  "description": "hunyuan-TurboS ist die neueste Version des Hunyuan-Flaggschiffmodells, das über verbesserte Denkfähigkeiten und ein besseres Nutzungserlebnis verfügt."
1384
1387
  },
@@ -1391,9 +1394,6 @@
1391
1394
  "hunyuan-vision": {
1392
1395
  "description": "Das neueste multimodale Modell von Hunyuan unterstützt die Eingabe von Bildern und Text zur Generierung von Textinhalten."
1393
1396
  },
1394
- "internlm/internlm2_5-20b-chat": {
1395
- "description": "Das innovative Open-Source-Modell InternLM2.5 hat durch eine große Anzahl von Parametern die Dialogintelligenz erhöht."
1396
- },
1397
1397
  "internlm/internlm2_5-7b-chat": {
1398
1398
  "description": "InternLM2.5 bietet intelligente Dialoglösungen in mehreren Szenarien."
1399
1399
  },
@@ -1910,6 +1910,9 @@
1910
1910
  "qvq-max": {
1911
1911
  "description": "Tongyi Qianwen QVQ visuelles Schlussfolgerungsmodell, unterstützt visuelle Eingaben und Denkprozessketten-Ausgaben, zeigt stärkere Fähigkeiten in Mathematik, Programmierung, visueller Analyse, Kreativität und allgemeinen Aufgaben."
1912
1912
  },
1913
+ "qvq-plus": {
1914
+ "description": "Visuelles Schlussfolgerungsmodell. Unterstützt visuelle Eingaben und Denkprozess-Ausgaben. Die Plus-Version, die auf dem qvq-max-Modell basiert, bietet schnellere Inferenzgeschwindigkeit sowie ein ausgewogeneres Verhältnis von Leistung und Kosten."
1915
+ },
1913
1916
  "qwen-coder-plus": {
1914
1917
  "description": "Tongyi Qianwen Codierungsmodell."
1915
1918
  },