@lobehub/chat 1.93.3 → 1.94.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.i18nrc.js +1 -0
- package/CHANGELOG.md +33 -0
- package/changelog/v1.json +12 -0
- package/docs/self-hosting/advanced/auth/next-auth/google.mdx +82 -0
- package/docs/self-hosting/advanced/auth.mdx +3 -0
- package/locales/ar/models.json +21 -18
- package/locales/ar/setting.json +12 -0
- package/locales/bg-BG/models.json +21 -18
- package/locales/bg-BG/setting.json +12 -0
- package/locales/de-DE/models.json +21 -18
- package/locales/de-DE/setting.json +12 -0
- package/locales/en-US/models.json +21 -18
- package/locales/en-US/setting.json +12 -0
- package/locales/es-ES/models.json +21 -18
- package/locales/es-ES/setting.json +12 -0
- package/locales/fa-IR/models.json +21 -18
- package/locales/fa-IR/setting.json +12 -0
- package/locales/fr-FR/models.json +21 -18
- package/locales/fr-FR/setting.json +12 -0
- package/locales/it-IT/models.json +21 -18
- package/locales/it-IT/setting.json +12 -0
- package/locales/ja-JP/models.json +21 -18
- package/locales/ja-JP/setting.json +12 -0
- package/locales/ko-KR/models.json +21 -18
- package/locales/ko-KR/setting.json +12 -0
- package/locales/nl-NL/models.json +21 -18
- package/locales/nl-NL/setting.json +12 -0
- package/locales/pl-PL/models.json +21 -18
- package/locales/pl-PL/setting.json +12 -0
- package/locales/pt-BR/models.json +21 -18
- package/locales/pt-BR/setting.json +12 -0
- package/locales/ru-RU/models.json +21 -18
- package/locales/ru-RU/setting.json +12 -0
- package/locales/tr-TR/models.json +21 -18
- package/locales/tr-TR/setting.json +12 -0
- package/locales/vi-VN/models.json +21 -18
- package/locales/vi-VN/setting.json +12 -0
- package/locales/zh-CN/models.json +21 -18
- package/locales/zh-CN/setting.json +12 -0
- package/locales/zh-TW/models.json +21 -18
- package/locales/zh-TW/setting.json +12 -0
- package/package.json +1 -1
- package/src/components/NextAuth/AuthIcons.tsx +2 -0
- package/src/features/AgentSetting/AgentModal/index.tsx +27 -1
- package/src/libs/next-auth/sso-providers/google.ts +20 -0
- package/src/libs/next-auth/sso-providers/index.ts +2 -0
- package/src/locales/default/setting.ts +12 -0
@@ -259,6 +259,9 @@
|
|
259
259
|
"enableMaxTokens": {
|
260
260
|
"title": "Maximale Token pro Antwort aktivieren"
|
261
261
|
},
|
262
|
+
"enableReasoningEffort": {
|
263
|
+
"title": "Aktivieren der Anpassung der Schlussfolgerungsintensität"
|
264
|
+
},
|
262
265
|
"frequencyPenalty": {
|
263
266
|
"desc": "Je höher der Wert, desto vielfältiger und abwechslungsreicher die Wortwahl; je niedriger der Wert, desto einfacher und schlichter die Wortwahl",
|
264
267
|
"title": "Wortvielfalt"
|
@@ -278,6 +281,15 @@
|
|
278
281
|
"desc": "Je höher der Wert, desto eher werden unterschiedliche Ausdrucksweisen bevorzugt, um Wiederholungen zu vermeiden; je niedriger der Wert, desto eher werden wiederholte Konzepte oder Erzählungen verwendet, was zu einer konsistenteren Ausdrucksweise führt",
|
279
282
|
"title": "Ausdrucksvielfalt"
|
280
283
|
},
|
284
|
+
"reasoningEffort": {
|
285
|
+
"desc": "Je höher der Wert, desto stärker die Schlussfolgerungsfähigkeit, kann jedoch die Antwortzeit und den Token-Verbrauch erhöhen",
|
286
|
+
"options": {
|
287
|
+
"high": "Hoch",
|
288
|
+
"low": "Niedrig",
|
289
|
+
"medium": "Mittel"
|
290
|
+
},
|
291
|
+
"title": "Schlussfolgerungsintensität"
|
292
|
+
},
|
281
293
|
"submit": "Modell-Einstellungen aktualisieren",
|
282
294
|
"temperature": {
|
283
295
|
"desc": "Je höher der Wert, desto kreativer und einfallsreicher die Antworten; je niedriger der Wert, desto strenger die Antworten",
|
@@ -206,15 +206,9 @@
|
|
206
206
|
"Phi-3.5-vision-instrust": {
|
207
207
|
"description": "An updated version of the Phi-3-vision model."
|
208
208
|
},
|
209
|
-
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
210
|
-
"description": "Qwen2-1.5B-Instruct is an instruction-tuned large language model in the Qwen2 series, with a parameter size of 1.5B. This model is based on the Transformer architecture and employs techniques such as the SwiGLU activation function, attention QKV bias, and group query attention. It excels in language understanding, generation, multilingual capabilities, coding, mathematics, and reasoning across multiple benchmark tests, surpassing most open-source models. Compared to Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct shows significant performance improvements in tests such as MMLU, HumanEval, GSM8K, C-Eval, and IFEval, despite having slightly fewer parameters."
|
211
|
-
},
|
212
209
|
"Pro/Qwen/Qwen2-7B-Instruct": {
|
213
210
|
"description": "Qwen2-7B-Instruct is an instruction-tuned large language model in the Qwen2 series, with a parameter size of 7B. This model is based on the Transformer architecture and employs techniques such as the SwiGLU activation function, attention QKV bias, and group query attention. It can handle large-scale inputs. The model excels in language understanding, generation, multilingual capabilities, coding, mathematics, and reasoning across multiple benchmark tests, surpassing most open-source models and demonstrating competitive performance comparable to proprietary models in certain tasks. Qwen2-7B-Instruct outperforms Qwen1.5-7B-Chat in multiple evaluations, showing significant performance improvements."
|
214
211
|
},
|
215
|
-
"Pro/Qwen/Qwen2-VL-7B-Instruct": {
|
216
|
-
"description": "Qwen2-VL is the latest iteration of the Qwen-VL model, achieving state-of-the-art performance in visual understanding benchmarks."
|
217
|
-
},
|
218
212
|
"Pro/Qwen/Qwen2.5-7B-Instruct": {
|
219
213
|
"description": "Qwen2.5-7B-Instruct is one of the latest large language models released by Alibaba Cloud. This 7B model shows significant improvements in coding and mathematics. It also provides multilingual support, covering over 29 languages, including Chinese and English. The model has made notable advancements in instruction following, understanding structured data, and generating structured outputs, especially JSON."
|
220
214
|
},
|
@@ -233,9 +227,6 @@
|
|
233
227
|
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
234
228
|
"description": "DeepSeek-R1 is a reinforcement learning (RL) driven reasoning model that addresses issues of repetition and readability. Before RL, it introduced cold-start data to further optimize reasoning performance. It performs comparably to OpenAI-o1 in mathematics, coding, and reasoning tasks and improves overall effectiveness through carefully designed training methods."
|
235
229
|
},
|
236
|
-
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
237
|
-
"description": "DeepSeek-R1-Distill-Qwen-1.5B is a model derived from Qwen2.5-Math-1.5B through knowledge distillation. Fine-tuned with 800,000 carefully selected samples generated by DeepSeek-R1, this model demonstrates commendable performance across multiple benchmarks. As a lightweight model, it achieves an accuracy of 83.9% on MATH-500, a pass rate of 28.9% on AIME 2024, and a score of 954 on CodeForces, showcasing reasoning capabilities that exceed its parameter scale."
|
238
|
-
},
|
239
230
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
240
231
|
"description": "DeepSeek-R1-Distill-Qwen-7B is a model derived from Qwen2.5-Math-7B through knowledge distillation. It was fine-tuned using 800,000 carefully selected samples generated by DeepSeek-R1, demonstrating exceptional reasoning capabilities. The model achieves outstanding performance across multiple benchmarks, including 92.8% accuracy on MATH-500, a 55.5% pass rate on AIME 2024, and a score of 1189 on CodeForces, showcasing strong mathematical and programming abilities for a 7B-scale model."
|
241
232
|
},
|
@@ -257,9 +248,6 @@
|
|
257
248
|
"Qwen/QwQ-32B-Preview": {
|
258
249
|
"description": "QwQ-32B-Preview is Qwen's latest experimental research model, focusing on enhancing AI reasoning capabilities. By exploring complex mechanisms such as language mixing and recursive reasoning, its main advantages include strong analytical reasoning, mathematical, and programming abilities. However, it also faces challenges such as language switching issues, reasoning loops, safety considerations, and differences in other capabilities."
|
259
250
|
},
|
260
|
-
"Qwen/Qwen2-1.5B-Instruct": {
|
261
|
-
"description": "Qwen2-1.5B-Instruct is an instruction-tuned large language model in the Qwen2 series, with a parameter size of 1.5B. This model is based on the Transformer architecture and employs techniques such as the SwiGLU activation function, attention QKV bias, and group query attention. It excels in language understanding, generation, multilingual capabilities, coding, mathematics, and reasoning across multiple benchmark tests, surpassing most open-source models. Compared to Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct shows significant performance improvements in tests such as MMLU, HumanEval, GSM8K, C-Eval, and IFEval, despite having slightly fewer parameters."
|
262
|
-
},
|
263
251
|
"Qwen/Qwen2-72B-Instruct": {
|
264
252
|
"description": "Qwen2 is an advanced general-purpose language model that supports various types of instructions."
|
265
253
|
},
|
@@ -419,9 +407,6 @@
|
|
419
407
|
"THUDM/GLM-Z1-Rumination-32B-0414": {
|
420
408
|
"description": "GLM-Z1-Rumination-32B-0414 is a deep reasoning model with reflective capabilities (comparable to OpenAI's Deep Research). Unlike typical deep thinking models, reflective models engage in longer periods of deep thought to tackle more open and complex problems."
|
421
409
|
},
|
422
|
-
"THUDM/chatglm3-6b": {
|
423
|
-
"description": "ChatGLM3-6B is an open-source model from the ChatGLM series, developed by Zhipu AI. This model retains the excellent features of its predecessor, such as smooth dialogue and low deployment barriers, while introducing new features. It utilizes more diverse training data, more extensive training steps, and more reasonable training strategies, performing exceptionally well among pre-trained models under 10B. ChatGLM3-6B supports multi-turn dialogues, tool invocation, code execution, and complex scenarios such as Agent tasks. In addition to the dialogue model, the foundational model ChatGLM-6B-Base and the long-text dialogue model ChatGLM3-6B-32K are also open-sourced. The model is fully open for academic research and allows free commercial use after registration."
|
424
|
-
},
|
425
410
|
"THUDM/glm-4-9b-chat": {
|
426
411
|
"description": "GLM-4 9B is an open-source version that provides an optimized conversational experience for chat applications."
|
427
412
|
},
|
@@ -563,6 +548,12 @@
|
|
563
548
|
"anthropic/claude-3.7-sonnet": {
|
564
549
|
"description": "Claude 3.7 Sonnet is Anthropic's most advanced model to date and the first hybrid reasoning model on the market. Claude 3.7 Sonnet can generate near-instant responses or extended step-by-step reasoning, allowing users to clearly observe these processes. Sonnet excels particularly in programming, data science, visual processing, and agent tasks."
|
565
550
|
},
|
551
|
+
"anthropic/claude-opus-4": {
|
552
|
+
"description": "Claude Opus 4 is Anthropic's most powerful model designed for handling highly complex tasks. It excels in performance, intelligence, fluency, and comprehension."
|
553
|
+
},
|
554
|
+
"anthropic/claude-sonnet-4": {
|
555
|
+
"description": "Claude Sonnet 4 can generate near-instant responses or extended step-by-step reasoning, allowing users to clearly observe these processes. API users also have fine-grained control over the model's thinking time."
|
556
|
+
},
|
566
557
|
"aya": {
|
567
558
|
"description": "Aya 23 is a multilingual model launched by Cohere, supporting 23 languages, facilitating diverse language applications."
|
568
559
|
},
|
@@ -788,6 +779,9 @@
|
|
788
779
|
"deepseek-r1": {
|
789
780
|
"description": "DeepSeek-R1 is a reinforcement learning (RL) driven inference model that addresses issues of repetitiveness and readability within the model. Prior to RL, DeepSeek-R1 introduced cold start data to further optimize inference performance. It performs comparably to OpenAI-o1 in mathematical, coding, and reasoning tasks, and enhances overall effectiveness through meticulously designed training methods."
|
790
781
|
},
|
782
|
+
"deepseek-r1-0528": {
|
783
|
+
"description": "The full-capacity 685B model released on May 28, 2025. DeepSeek-R1 extensively employs reinforcement learning during post-training, significantly enhancing reasoning capabilities with minimal labeled data. It demonstrates strong performance in mathematics, coding, and natural language reasoning tasks."
|
784
|
+
},
|
791
785
|
"deepseek-r1-70b-fast-online": {
|
792
786
|
"description": "DeepSeek R1 70B fast version, supporting real-time online search, providing faster response times while maintaining model performance."
|
793
787
|
},
|
@@ -1067,6 +1061,9 @@
|
|
1067
1061
|
"gemini-2.5-pro-preview-05-06": {
|
1068
1062
|
"description": "Gemini 2.5 Pro Preview is Google's most advanced reasoning model, capable of reasoning about complex problems in code, mathematics, and STEM fields, as well as analyzing large datasets, codebases, and documents using long context."
|
1069
1063
|
},
|
1064
|
+
"gemini-2.5-pro-preview-06-05": {
|
1065
|
+
"description": "Gemini 2.5 Pro Preview is Google's most advanced cognitive model, capable of reasoning through complex problems in code, mathematics, and STEM fields, as well as analyzing large datasets, codebases, and documents using long-context understanding."
|
1066
|
+
},
|
1070
1067
|
"gemma-7b-it": {
|
1071
1068
|
"description": "Gemma 7B is suitable for medium to small-scale task processing, offering cost-effectiveness."
|
1072
1069
|
},
|
@@ -1355,6 +1352,9 @@
|
|
1355
1352
|
"hunyuan-t1-20250403": {
|
1356
1353
|
"description": "Enhance project-level code generation capabilities; improve the quality of text generation and writing; enhance multi-turn topic understanding, ToB instruction compliance, and word comprehension; optimize issues with mixed traditional and simplified Chinese as well as mixed Chinese and English output."
|
1357
1354
|
},
|
1355
|
+
"hunyuan-t1-20250529": {
|
1356
|
+
"description": "Optimized for text creation and essay writing, with enhanced abilities in frontend coding, mathematics, logical reasoning, and improved instruction-following capabilities."
|
1357
|
+
},
|
1358
1358
|
"hunyuan-t1-latest": {
|
1359
1359
|
"description": "The industry's first ultra-large-scale Hybrid-Transformer-Mamba inference model, enhancing reasoning capabilities with exceptional decoding speed, further aligning with human preferences."
|
1360
1360
|
},
|
@@ -1379,6 +1379,9 @@
|
|
1379
1379
|
"hunyuan-turbos-20250416": {
|
1380
1380
|
"description": "Upgrade the pre-training foundation to strengthen instruction understanding and compliance; enhance STEM abilities in mathematics, coding, logic, and science during alignment; improve humanities capabilities such as creative writing quality, text comprehension, translation accuracy, and knowledge Q&A; boost agent capabilities across various domains, with a focus on multi-turn dialogue understanding."
|
1381
1381
|
},
|
1382
|
+
"hunyuan-turbos-20250604": {
|
1383
|
+
"description": "Upgraded pretraining foundation with improved writing and reading comprehension skills, significantly enhanced coding and STEM abilities, and continuous improvements in following complex instructions."
|
1384
|
+
},
|
1382
1385
|
"hunyuan-turbos-latest": {
|
1383
1386
|
"description": "The latest version of hunyuan-TurboS, the flagship model of Hunyuan, features enhanced reasoning capabilities and improved user experience."
|
1384
1387
|
},
|
@@ -1391,9 +1394,6 @@
|
|
1391
1394
|
"hunyuan-vision": {
|
1392
1395
|
"description": "The latest multimodal model from Hunyuan, supporting image + text input to generate textual content."
|
1393
1396
|
},
|
1394
|
-
"internlm/internlm2_5-20b-chat": {
|
1395
|
-
"description": "The innovative open-source model InternLM2.5 enhances dialogue intelligence through a large number of parameters."
|
1396
|
-
},
|
1397
1397
|
"internlm/internlm2_5-7b-chat": {
|
1398
1398
|
"description": "InternLM2.5 offers intelligent dialogue solutions across multiple scenarios."
|
1399
1399
|
},
|
@@ -1910,6 +1910,9 @@
|
|
1910
1910
|
"qvq-max": {
|
1911
1911
|
"description": "Tongyi Qianwen QVQ visual reasoning model supports visual input and chain-of-thought output, demonstrating stronger capabilities in mathematics, programming, visual analysis, creation, and general tasks."
|
1912
1912
|
},
|
1913
|
+
"qvq-plus": {
|
1914
|
+
"description": "A visual reasoning model supporting visual inputs and chain-of-thought outputs. The plus version, succeeding the qvq-max model, offers faster reasoning speed and a more balanced trade-off between performance and cost."
|
1915
|
+
},
|
1913
1916
|
"qwen-coder-plus": {
|
1914
1917
|
"description": "Tongyi Qianwen coding model."
|
1915
1918
|
},
|
@@ -259,6 +259,9 @@
|
|
259
259
|
"enableMaxTokens": {
|
260
260
|
"title": "Enable Max Tokens Limit"
|
261
261
|
},
|
262
|
+
"enableReasoningEffort": {
|
263
|
+
"title": "Enable Reasoning Effort Adjustment"
|
264
|
+
},
|
262
265
|
"frequencyPenalty": {
|
263
266
|
"desc": "The higher the value, the more diverse and rich the vocabulary; the lower the value, the simpler and more straightforward the language.",
|
264
267
|
"title": "Vocabulary Richness"
|
@@ -278,6 +281,15 @@
|
|
278
281
|
"desc": "The higher the value, the more inclined to use different expressions and avoid concept repetition; the lower the value, the more inclined to use repeated concepts or narratives, resulting in more consistent expression.",
|
279
282
|
"title": "Expression Divergence"
|
280
283
|
},
|
284
|
+
"reasoningEffort": {
|
285
|
+
"desc": "Higher values enhance reasoning ability but may increase response time and token usage.",
|
286
|
+
"options": {
|
287
|
+
"high": "High",
|
288
|
+
"low": "Low",
|
289
|
+
"medium": "Medium"
|
290
|
+
},
|
291
|
+
"title": "Reasoning Effort"
|
292
|
+
},
|
281
293
|
"submit": "Update Model Settings",
|
282
294
|
"temperature": {
|
283
295
|
"desc": "The higher the value, the more creative and imaginative the responses; the lower the value, the more rigorous the responses.",
|
@@ -206,15 +206,9 @@
|
|
206
206
|
"Phi-3.5-vision-instrust": {
|
207
207
|
"description": "Versión actualizada del modelo Phi-3-vision."
|
208
208
|
},
|
209
|
-
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
210
|
-
"description": "Qwen2-1.5B-Instruct es un modelo de lenguaje a gran escala de ajuste fino por instrucciones dentro de la serie Qwen2, con un tamaño de parámetros de 1.5B. Este modelo se basa en la arquitectura Transformer, utilizando funciones de activación SwiGLU, sesgos de atención QKV y atención de consulta agrupada, entre otras técnicas. Ha destacado en múltiples pruebas de referencia en comprensión del lenguaje, generación, capacidad multilingüe, codificación, matemáticas y razonamiento, superando a la mayoría de los modelos de código abierto. En comparación con Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct ha mostrado mejoras significativas en pruebas como MMLU, HumanEval, GSM8K, C-Eval e IFEval, a pesar de tener un número de parámetros ligeramente menor."
|
211
|
-
},
|
212
209
|
"Pro/Qwen/Qwen2-7B-Instruct": {
|
213
210
|
"description": "Qwen2-7B-Instruct es un modelo de lenguaje a gran escala de ajuste fino por instrucciones dentro de la serie Qwen2, con un tamaño de parámetros de 7B. Este modelo se basa en la arquitectura Transformer, utilizando funciones de activación SwiGLU, sesgos de atención QKV y atención de consulta agrupada, entre otras técnicas. Es capaz de manejar entradas a gran escala. Este modelo ha destacado en múltiples pruebas de referencia en comprensión del lenguaje, generación, capacidad multilingüe, codificación, matemáticas y razonamiento, superando a la mayoría de los modelos de código abierto y mostrando competitividad comparable a modelos propietarios en ciertas tareas. Qwen2-7B-Instruct ha mostrado mejoras significativas en múltiples evaluaciones en comparación con Qwen1.5-7B-Chat."
|
214
211
|
},
|
215
|
-
"Pro/Qwen/Qwen2-VL-7B-Instruct": {
|
216
|
-
"description": "Qwen2-VL es la última iteración del modelo Qwen-VL, alcanzando un rendimiento de vanguardia en pruebas de comprensión visual."
|
217
|
-
},
|
218
212
|
"Pro/Qwen/Qwen2.5-7B-Instruct": {
|
219
213
|
"description": "Qwen2.5-7B-Instruct es uno de los últimos modelos de lenguaje a gran escala lanzados por Alibaba Cloud. Este modelo de 7B ha mejorado significativamente en áreas como codificación y matemáticas. También ofrece soporte multilingüe, abarcando más de 29 idiomas, incluidos chino e inglés. El modelo ha mostrado mejoras significativas en el seguimiento de instrucciones, comprensión de datos estructurados y generación de salidas estructuradas (especialmente JSON)."
|
220
214
|
},
|
@@ -233,9 +227,6 @@
|
|
233
227
|
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
234
228
|
"description": "DeepSeek-R1 es un modelo de razonamiento impulsado por aprendizaje reforzado (RL) que aborda problemas de repetición y legibilidad en modelos. Antes del RL, DeepSeek-R1 introdujo datos de arranque en frío para optimizar aún más el rendimiento del razonamiento. Su desempeño en matemáticas, código y tareas de razonamiento es comparable a OpenAI-o1, y mejora el rendimiento general mediante métodos de entrenamiento cuidadosamente diseñados."
|
235
229
|
},
|
236
|
-
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
237
|
-
"description": "DeepSeek-R1-Distill-Qwen-1.5B es un modelo obtenido mediante destilación de conocimiento basado en Qwen2.5-Math-1.5B. Este modelo fue ajustado utilizando 800,000 muestras seleccionadas generadas por DeepSeek-R1, demostrando un rendimiento notable en múltiples benchmarks. Como modelo ligero, alcanzó una precisión del 83.9% en MATH-500, una tasa de aprobación del 28.9% en AIME 2024 y una puntuación de 954 en CodeForces, mostrando capacidades de razonamiento que superan su escala de parámetros."
|
238
|
-
},
|
239
230
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
240
231
|
"description": "DeepSeek-R1-Distill-Qwen-7B es un modelo obtenido mediante destilación de conocimiento basado en Qwen2.5-Math-7B. Este modelo se ha ajustado utilizando 800.000 muestras seleccionadas generadas por DeepSeek-R1, demostrando una excelente capacidad de razonamiento. Ha mostrado un rendimiento sobresaliente en múltiples pruebas de referencia, alcanzando un 92,8% de precisión en MATH-500, un 55,5% de tasa de aprobación en AIME 2024 y una puntuación de 1189 en CodeForces, lo que demuestra una fuerte capacidad matemática y de programación para un modelo de escala 7B."
|
241
232
|
},
|
@@ -257,9 +248,6 @@
|
|
257
248
|
"Qwen/QwQ-32B-Preview": {
|
258
249
|
"description": "QwQ-32B-Preview es el último modelo de investigación experimental de Qwen, enfocado en mejorar la capacidad de razonamiento de la IA. A través de la exploración de mecanismos complejos como la mezcla de lenguajes y el razonamiento recursivo, sus principales ventajas incluyen una poderosa capacidad de análisis de razonamiento, así como habilidades matemáticas y de programación. Sin embargo, también presenta problemas de cambio de idioma, ciclos de razonamiento, consideraciones de seguridad y diferencias en otras capacidades."
|
259
250
|
},
|
260
|
-
"Qwen/Qwen2-1.5B-Instruct": {
|
261
|
-
"description": "Qwen2-1.5B-Instruct es un modelo de lenguaje a gran escala de ajuste fino por instrucciones dentro de la serie Qwen2, con un tamaño de parámetros de 1.5B. Este modelo se basa en la arquitectura Transformer, utilizando funciones de activación SwiGLU, sesgos de atención QKV y atención de consulta agrupada, entre otras técnicas. Ha destacado en múltiples pruebas de referencia en comprensión del lenguaje, generación, capacidad multilingüe, codificación, matemáticas y razonamiento, superando a la mayoría de los modelos de código abierto. En comparación con Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct ha mostrado mejoras significativas en pruebas como MMLU, HumanEval, GSM8K, C-Eval e IFEval, a pesar de tener un número de parámetros ligeramente menor."
|
262
|
-
},
|
263
251
|
"Qwen/Qwen2-72B-Instruct": {
|
264
252
|
"description": "Qwen2 es un modelo de lenguaje general avanzado, que soporta múltiples tipos de instrucciones."
|
265
253
|
},
|
@@ -419,9 +407,6 @@
|
|
419
407
|
"THUDM/GLM-Z1-Rumination-32B-0414": {
|
420
408
|
"description": "GLM-Z1-Rumination-32B-0414 es un modelo de inferencia profunda con capacidad de reflexión (en comparación con la investigación profunda de OpenAI). A diferencia de los modelos típicos de pensamiento profundo, el modelo de reflexión utiliza un tiempo de reflexión más prolongado para resolver problemas más abiertos y complejos."
|
421
409
|
},
|
422
|
-
"THUDM/chatglm3-6b": {
|
423
|
-
"description": "ChatGLM3-6B es un modelo de código abierto de la serie ChatGLM, desarrollado por Zhipu AI. Este modelo conserva las excelentes características de su predecesor, como la fluidez en el diálogo y un bajo umbral de implementación, al tiempo que introduce nuevas características. Utiliza datos de entrenamiento más diversos, un mayor número de pasos de entrenamiento y estrategias de entrenamiento más razonables, destacando entre los modelos preentrenados de menos de 10B. ChatGLM3-6B admite diálogos de múltiples turnos, llamadas a herramientas, ejecución de código y tareas de agente en escenarios complejos. Además del modelo de diálogo, también se han lanzado el modelo base ChatGLM-6B-Base y el modelo de diálogo de texto largo ChatGLM3-6B-32K. Este modelo está completamente abierto para la investigación académica y permite el uso comercial gratuito tras el registro."
|
424
|
-
},
|
425
410
|
"THUDM/glm-4-9b-chat": {
|
426
411
|
"description": "GLM-4 9B es una versión de código abierto, que proporciona una experiencia de conversación optimizada para aplicaciones de diálogo."
|
427
412
|
},
|
@@ -563,6 +548,12 @@
|
|
563
548
|
"anthropic/claude-3.7-sonnet": {
|
564
549
|
"description": "Claude 3.7 Sonnet es el modelo más inteligente de Anthropic hasta la fecha y el primer modelo de razonamiento híbrido en el mercado. Claude 3.7 Sonnet puede generar respuestas casi instantáneas o un pensamiento prolongado y gradual, permitiendo a los usuarios observar claramente estos procesos. Sonnet es especialmente hábil en programación, ciencia de datos, procesamiento visual y tareas de agente."
|
565
550
|
},
|
551
|
+
"anthropic/claude-opus-4": {
|
552
|
+
"description": "Claude Opus 4 es el modelo más potente de Anthropic para manejar tareas altamente complejas. Destaca por su rendimiento, inteligencia, fluidez y capacidad de comprensión excepcionales."
|
553
|
+
},
|
554
|
+
"anthropic/claude-sonnet-4": {
|
555
|
+
"description": "Claude Sonnet 4 puede generar respuestas casi instantáneas o razonamientos prolongados paso a paso, que los usuarios pueden seguir claramente. Los usuarios de la API también pueden controlar con precisión el tiempo de reflexión del modelo."
|
556
|
+
},
|
566
557
|
"aya": {
|
567
558
|
"description": "Aya 23 es un modelo multilingüe lanzado por Cohere, que admite 23 idiomas, facilitando aplicaciones de lenguaje diversas."
|
568
559
|
},
|
@@ -788,6 +779,9 @@
|
|
788
779
|
"deepseek-r1": {
|
789
780
|
"description": "DeepSeek-R1 es un modelo de inferencia impulsado por aprendizaje reforzado (RL) que aborda los problemas de repetitividad y legibilidad en el modelo. Antes de RL, DeepSeek-R1 introdujo datos de arranque en frío, optimizando aún más el rendimiento de la inferencia. Su desempeño en tareas matemáticas, de código e inferencia es comparable al de OpenAI-o1, y ha mejorado su efectividad general a través de métodos de entrenamiento cuidadosamente diseñados."
|
790
781
|
},
|
782
|
+
"deepseek-r1-0528": {
|
783
|
+
"description": "Modelo completo de 685 mil millones de parámetros, lanzado el 28 de mayo de 2025. DeepSeek-R1 utiliza técnicas de aprendizaje reforzado a gran escala en la fase de postentrenamiento, mejorando significativamente la capacidad de razonamiento del modelo con muy pocos datos etiquetados. Presenta alto rendimiento y gran capacidad en tareas de matemáticas, código y razonamiento en lenguaje natural."
|
784
|
+
},
|
791
785
|
"deepseek-r1-70b-fast-online": {
|
792
786
|
"description": "DeepSeek R1 70B versión rápida, que soporta búsqueda en línea en tiempo real, ofreciendo una velocidad de respuesta más rápida mientras mantiene el rendimiento del modelo."
|
793
787
|
},
|
@@ -1067,6 +1061,9 @@
|
|
1067
1061
|
"gemini-2.5-pro-preview-05-06": {
|
1068
1062
|
"description": "Gemini 2.5 Pro Preview es el modelo de pensamiento más avanzado de Google, capaz de razonar sobre problemas complejos en código, matemáticas y campos STEM, así como de analizar grandes conjuntos de datos, bibliotecas de código y documentos utilizando un análisis de contexto prolongado."
|
1069
1063
|
},
|
1064
|
+
"gemini-2.5-pro-preview-06-05": {
|
1065
|
+
"description": "Gemini 2.5 Pro Preview es el modelo de pensamiento más avanzado de Google, capaz de razonar sobre problemas complejos en código, matemáticas y áreas STEM, así como analizar grandes conjuntos de datos, bases de código y documentos utilizando contextos extensos."
|
1066
|
+
},
|
1070
1067
|
"gemma-7b-it": {
|
1071
1068
|
"description": "Gemma 7B es adecuado para el procesamiento de tareas de pequeña y mediana escala, combinando rentabilidad."
|
1072
1069
|
},
|
@@ -1355,6 +1352,9 @@
|
|
1355
1352
|
"hunyuan-t1-20250403": {
|
1356
1353
|
"description": "Mejora la capacidad de generación de código a nivel de proyecto; mejora la calidad de la escritura generada en texto; mejora la comprensión de temas en texto, el seguimiento de instrucciones tob en múltiples rondas y la comprensión de palabras; optimiza problemas de salida con mezcla de caracteres tradicionales y simplificados, así como mezcla de chino e inglés."
|
1357
1354
|
},
|
1355
|
+
"hunyuan-t1-20250529": {
|
1356
|
+
"description": "Optimiza la creación de textos, redacción de ensayos, mejora habilidades en programación frontend, matemáticas y razonamiento lógico, y aumenta la capacidad de seguir instrucciones."
|
1357
|
+
},
|
1358
1358
|
"hunyuan-t1-latest": {
|
1359
1359
|
"description": "El primer modelo de inferencia híbrido de gran escala Hybrid-Transformer-Mamba de la industria, que amplía la capacidad de inferencia, ofrece una velocidad de decodificación excepcional y alinea aún más con las preferencias humanas."
|
1360
1360
|
},
|
@@ -1379,6 +1379,9 @@
|
|
1379
1379
|
"hunyuan-turbos-20250416": {
|
1380
1380
|
"description": "Actualización de la base de preentrenamiento para fortalecer la comprensión y el seguimiento de instrucciones; mejora en matemáticas, programación, lógica y ciencias durante la fase de alineación; mejora en calidad de escritura creativa, comprensión de texto, precisión en traducción y preguntas de conocimiento en humanidades; refuerzo de capacidades de agentes en diversos campos, con especial énfasis en la comprensión de diálogos multilínea."
|
1381
1381
|
},
|
1382
|
+
"hunyuan-turbos-20250604": {
|
1383
|
+
"description": "Actualización de la base de preentrenamiento, mejora en la escritura y comprensión lectora, aumento significativo en habilidades de programación y ciencias, y progreso continuo en el seguimiento de instrucciones complejas."
|
1384
|
+
},
|
1382
1385
|
"hunyuan-turbos-latest": {
|
1383
1386
|
"description": "hunyuan-TurboS es la última versión del modelo insignia Hunyuan, con una mayor capacidad de pensamiento y una mejor experiencia."
|
1384
1387
|
},
|
@@ -1391,9 +1394,6 @@
|
|
1391
1394
|
"hunyuan-vision": {
|
1392
1395
|
"description": "El último modelo multimodal de Hunyuan, que admite la entrada de imágenes y texto para generar contenido textual."
|
1393
1396
|
},
|
1394
|
-
"internlm/internlm2_5-20b-chat": {
|
1395
|
-
"description": "El innovador modelo de código abierto InternLM2.5 mejora la inteligencia del diálogo mediante un gran número de parámetros."
|
1396
|
-
},
|
1397
1397
|
"internlm/internlm2_5-7b-chat": {
|
1398
1398
|
"description": "InternLM2.5 ofrece soluciones de diálogo inteligente en múltiples escenarios."
|
1399
1399
|
},
|
@@ -1910,6 +1910,9 @@
|
|
1910
1910
|
"qvq-max": {
|
1911
1911
|
"description": "Modelo de razonamiento visual QVQ de Tongyi Qianwen, que soporta entrada visual y salida de cadena de pensamiento, mostrando capacidades superiores en matemáticas, programación, análisis visual, creación y tareas generales."
|
1912
1912
|
},
|
1913
|
+
"qvq-plus": {
|
1914
|
+
"description": "Modelo de razonamiento visual. Soporta entrada visual y salida en cadena de pensamiento. Versión plus lanzada tras el modelo qvq-max, con mayor velocidad de razonamiento y un equilibrio mejorado entre eficacia y coste en comparación con qvq-max."
|
1915
|
+
},
|
1913
1916
|
"qwen-coder-plus": {
|
1914
1917
|
"description": "Modelo de código Tongyi Qianwen."
|
1915
1918
|
},
|
@@ -259,6 +259,9 @@
|
|
259
259
|
"enableMaxTokens": {
|
260
260
|
"title": "Activar límite de tokens por respuesta"
|
261
261
|
},
|
262
|
+
"enableReasoningEffort": {
|
263
|
+
"title": "Activar ajuste de intensidad de razonamiento"
|
264
|
+
},
|
262
265
|
"frequencyPenalty": {
|
263
266
|
"desc": "Cuanto mayor sea el valor, más rica y variada será la elección de palabras; cuanto menor sea el valor, más simples y directas serán las palabras.",
|
264
267
|
"title": "Riqueza del vocabulario"
|
@@ -278,6 +281,15 @@
|
|
278
281
|
"desc": "Cuanto mayor sea el valor, más se inclinará hacia diferentes formas de expresión, evitando la repetición de conceptos; cuanto menor sea el valor, más se inclinará hacia el uso de conceptos o narrativas repetidas, expresando mayor consistencia.",
|
279
282
|
"title": "Diversidad de expresión"
|
280
283
|
},
|
284
|
+
"reasoningEffort": {
|
285
|
+
"desc": "Cuanto mayor sea el valor, más fuerte será la capacidad de razonamiento, pero puede aumentar el tiempo de respuesta y el consumo de tokens",
|
286
|
+
"options": {
|
287
|
+
"high": "Alto",
|
288
|
+
"low": "Bajo",
|
289
|
+
"medium": "Medio"
|
290
|
+
},
|
291
|
+
"title": "Intensidad de razonamiento"
|
292
|
+
},
|
281
293
|
"submit": "Actualizar configuración del modelo",
|
282
294
|
"temperature": {
|
283
295
|
"desc": "Cuanto mayor sea el valor, más creativas e imaginativas serán las respuestas; cuanto menor sea el valor, más rigurosas serán las respuestas",
|
@@ -206,15 +206,9 @@
|
|
206
206
|
"Phi-3.5-vision-instrust": {
|
207
207
|
"description": "نسخه بهروزرسانیشده مدل Phi-3-vision."
|
208
208
|
},
|
209
|
-
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
210
|
-
"description": "Qwen2-1.5B-Instruct یک مدل زبانی بزرگ با تنظیم دقیق دستوری در سری Qwen2 است که اندازه پارامتر آن 1.5B است. این مدل بر اساس معماری Transformer ساخته شده و از تکنیکهای SwiGLU،偏置 QKV توجه و توجه گروهی استفاده میکند. این مدل در درک زبان، تولید، توانایی چند زبانه، کدنویسی، ریاضی و استدلال در چندین آزمون معیار عملکرد عالی دارد و از اکثر مدلهای متن باز پیشی گرفته است. در مقایسه با Qwen1.5-1.8B-Chat، Qwen2-1.5B-Instruct در آزمونهای MMLU، HumanEval، GSM8K، C-Eval و IFEval بهبود قابل توجهی در عملکرد نشان داده است، هرچند که تعداد پارامترها کمی کمتر است."
|
211
|
-
},
|
212
209
|
"Pro/Qwen/Qwen2-7B-Instruct": {
|
213
210
|
"description": "Qwen2-7B-Instruct یک مدل زبانی بزرگ با تنظیم دقیق دستوری در سری Qwen2 است که اندازه پارامتر آن 7B است. این مدل بر اساس معماری Transformer ساخته شده و از تکنیکهای SwiGLU،偏置 QKV توجه و توجه گروهی استفاده میکند. این مدل قادر به پردازش ورودیهای بزرگ مقیاس است. این مدل در درک زبان، تولید، توانایی چند زبانه، کدنویسی، ریاضی و استدلال در چندین آزمون معیار عملکرد عالی دارد و از اکثر مدلهای متن باز پیشی گرفته و در برخی وظایف رقابت قابل توجهی با مدلهای اختصاصی نشان میدهد. Qwen2-7B-Instruct در چندین ارزیابی از Qwen1.5-7B-Chat پیشی گرفته و بهبود قابل توجهی در عملکرد نشان داده است."
|
214
211
|
},
|
215
|
-
"Pro/Qwen/Qwen2-VL-7B-Instruct": {
|
216
|
-
"description": "Qwen2-VL جدیدترین نسخه از مدل Qwen-VL است که در آزمونهای معیار درک بصری به پیشرفتهترین عملکرد دست یافته است."
|
217
|
-
},
|
218
212
|
"Pro/Qwen/Qwen2.5-7B-Instruct": {
|
219
213
|
"description": "Qwen2.5-7B-Instruct یکی از جدیدترین سری مدلهای زبانی بزرگ منتشر شده توسط Alibaba Cloud است. این مدل 7B در زمینههای کدنویسی و ریاضی دارای تواناییهای بهبود یافته قابل توجهی است. این مدل همچنین از پشتیبانی چند زبانه برخوردار است و بیش از 29 زبان از جمله چینی و انگلیسی را پوشش میدهد. این مدل در پیروی از دستورات، درک دادههای ساختاری و تولید خروجیهای ساختاری (به ویژه JSON) به طور قابل توجهی بهبود یافته است."
|
220
214
|
},
|
@@ -233,9 +227,6 @@
|
|
233
227
|
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
234
228
|
"description": "DeepSeek-R1 مدلی استدلالی مبتنی بر یادگیری تقویتی (RL) که مشکلات تکراری بودن و خوانایی مدل را حل کرده است. پیش از RL، DeepSeek-R1 دادههای شروع سرد را معرفی کرد تا عملکرد استدلال را بهبود بخشد. این مدل در ریاضیات، کد نویسی و وظایف استدلال عملکردی مشابه OpenAI-o1 دارد و با روشهای آموزشی دقیق، اثر کلی را ارتقاء داده است."
|
235
229
|
},
|
236
|
-
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
237
|
-
"description": "DeepSeek-R1-Distill-Qwen-1.5B مدلی است که از Qwen2.5-Math-1.5B از طریق دستیابی به دانش (Knowledge Distillation) به دست آمده است. این مدل با استفاده از 800,000 نمونه انتخابی تولید شده توسط DeepSeek-R1 آموزش داده شده و در چندین تست استاندارد عملکرد خوبی نشان داده است. به عنوان یک مدل سبک، در MATH-500 دقت 83.9٪ را کسب کرده، در AIME 2024 نرخ موفقیت 28.9٪ داشته و در CodeForces نمره 954 به دست آورده که نشاندهنده توانایی استنتاج فراتر از حجم پارامترهای آن است."
|
238
|
-
},
|
239
230
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
240
231
|
"description": "DeepSeek-R1-Distill-Qwen-7B مدلی است که بر اساس Qwen2.5-Math-7B از طریق دستیابی به دانش (Knowledge Distillation) ساخته شده است. این مدل با استفاده از 800,000 نمونه انتخابی تولید شده توسط DeepSeek-R1 آموزش داده شده و توانایی استنتاج ممتازی نشان میدهد. این مدل در چندین تست استاندارد عملکرد خوبی داشته است، از جمله دقت 92.8٪ در MATH-500، نرخ موفقیت 55.5٪ در AIME 2024 و نمره 1189 در CodeForces، که نشاندهنده تواناییهای قوی ریاضی و برنامهنویسی برای یک مدل با حجم 7B است."
|
241
232
|
},
|
@@ -257,9 +248,6 @@
|
|
257
248
|
"Qwen/QwQ-32B-Preview": {
|
258
249
|
"description": "QwQ-32B-Preview جدیدترین مدل تحقیقاتی تجربی Qwen است که بر بهبود توانایی استدلال AI تمرکز دارد. با کاوش در مکانیزمهای پیچیدهای مانند ترکیب زبان و استدلال بازگشتی، مزایای اصلی شامل توانایی تحلیل استدلال قوی، توانایی ریاضی و برنامهنویسی است. در عین حال، مشکلاتی مانند تغییر زبان، حلقههای استدلال، ملاحظات ایمنی و تفاوتهای دیگر در تواناییها وجود دارد."
|
259
250
|
},
|
260
|
-
"Qwen/Qwen2-1.5B-Instruct": {
|
261
|
-
"description": "Qwen2-1.5B-Instruct یک مدل زبانی بزرگ با تنظیم دقیق دستوری در سری Qwen2 است که اندازه پارامتر آن 1.5B است. این مدل بر اساس معماری Transformer ساخته شده و از تکنیکهای SwiGLU،偏置 QKV توجه و توجه گروهی استفاده میکند. این مدل در درک زبان، تولید، توانایی چند زبانه، کدنویسی، ریاضی و استدلال در چندین آزمون معیار عملکرد عالی دارد و از اکثر مدلهای متن باز پیشی گرفته است. در مقایسه با Qwen1.5-1.8B-Chat، Qwen2-1.5B-Instruct در آزمونهای MMLU، HumanEval، GSM8K، C-Eval و IFEval بهبود قابل توجهی در عملکرد نشان داده است، هرچند که تعداد پارامترها کمی کمتر است."
|
262
|
-
},
|
263
251
|
"Qwen/Qwen2-72B-Instruct": {
|
264
252
|
"description": "Qwen 2 Instruct (72B) دستورالعملهای دقیق برای کاربردهای سازمانی ارائه میدهد و به درستی به آنها پاسخ میدهد."
|
265
253
|
},
|
@@ -419,9 +407,6 @@
|
|
419
407
|
"THUDM/GLM-Z1-Rumination-32B-0414": {
|
420
408
|
"description": "GLM-Z1-Rumination-32B-0414 یک مدل استدلال عمیق با توانایی تفکر است (که با Deep Research OpenAI مقایسه میشود). برخلاف مدلهای تفکر عمیق معمولی، این مدل از تفکر عمیق طولانیمدت برای حل مسائل باز و پیچیده استفاده میکند."
|
421
409
|
},
|
422
|
-
"THUDM/chatglm3-6b": {
|
423
|
-
"description": "ChatGLM3-6B مدل متن باز از سری ChatGLM است که توسط AI Zhizhu توسعه یافته است. این مدل ویژگیهای عالی نسل قبلی خود را حفظ کرده است، مانند روان بودن گفتگو و آستانه پایین برای استقرار، در عین حال ویژگیهای جدیدی را معرفی کرده است. این مدل از دادههای آموزشی متنوعتر، تعداد مراحل آموزشی بیشتر و استراتژیهای آموزشی منطقیتر استفاده کرده و در میان مدلهای پیشآموزش شده زیر 10B عملکرد عالی دارد. ChatGLM3-6B از گفتگوی چند دور، فراخوانی ابزار، اجرای کد و وظایف عامل در سناریوهای پیچیده پشتیبانی میکند. علاوه بر مدل گفتگویی، مدل پایه ChatGLM-6B-Base و مدل گفتگوی طولانی ChatGLM3-6B-32K نیز به صورت متن باز ارائه شده است. این مدل به طور کامل برای تحقیقات علمی باز است و پس از ثبتنام، استفاده تجاری رایگان نیز مجاز است."
|
424
|
-
},
|
425
410
|
"THUDM/glm-4-9b-chat": {
|
426
411
|
"description": "نسخه منبع باز GLM-4 9B، تجربه گفتگوی بهینهشده برای برنامههای مکالمه را ارائه میدهد."
|
427
412
|
},
|
@@ -563,6 +548,12 @@
|
|
563
548
|
"anthropic/claude-3.7-sonnet": {
|
564
549
|
"description": "Claude 3.7 Sonnet هو هوش مصنوعی پیشرفتهترین مدل Anthropic است و همچنین اولین مدل استدلال ترکیبی در بازار به شمار میرود. Claude 3.7 Sonnet میتواند پاسخهای تقریباً آنی یا تفکر تدریجی و طولانیتری تولید کند که کاربران میتوانند این فرآیندها را به وضوح مشاهده کنند. Sonnet بهویژه در برنامهنویسی، علم داده، پردازش بصری و وظایف نمایندگی مهارت دارد."
|
565
550
|
},
|
551
|
+
"anthropic/claude-opus-4": {
|
552
|
+
"description": "Claude Opus 4 قویترین مدل Anthropic برای انجام وظایف بسیار پیچیده است. این مدل در عملکرد، هوش، روانی و درک برتری چشمگیری دارد."
|
553
|
+
},
|
554
|
+
"anthropic/claude-sonnet-4": {
|
555
|
+
"description": "Claude Sonnet 4 میتواند پاسخهای تقریباً فوری یا تفکر گام به گام طولانیمدت تولید کند که کاربران میتوانند این فرآیندها را به وضوح مشاهده کنند. کاربران API همچنین میتوانند زمان تفکر مدل را به دقت کنترل کنند."
|
556
|
+
},
|
566
557
|
"aya": {
|
567
558
|
"description": "Aya 23 یک مدل چندزبانه است که توسط Cohere ارائه شده و از 23 زبان پشتیبانی میکند و برای برنامههای چندزبانه تسهیلات فراهم میآورد."
|
568
559
|
},
|
@@ -788,6 +779,9 @@
|
|
788
779
|
"deepseek-r1": {
|
789
780
|
"description": "DeepSeek-R1 یک مدل استنتاجی مبتنی بر یادگیری تقویتی (RL) است که به مشکلات تکرار و خوانایی در مدل پرداخته است. قبل از RL، DeepSeek-R1 دادههای شروع سرد را معرفی کرد و عملکرد استنتاج را بهینهتر کرد. این مدل در وظایف ریاضی، کدنویسی و استنتاج با OpenAI-o1 عملکرد مشابهی دارد و با استفاده از روشهای آموزشی به دقت طراحی شده، کیفیت کلی را بهبود بخشیده است."
|
790
781
|
},
|
782
|
+
"deepseek-r1-0528": {
|
783
|
+
"description": "مدل کامل 685 میلیارد پارامتری، منتشر شده در ۲۸ مه ۲۰۲۵. DeepSeek-R1 در مرحله پسآموزش به طور گسترده از تکنیکهای یادگیری تقویتی استفاده کرده است و با دادههای برچسبخورده بسیار کم، توانایی استدلال مدل را به طور قابل توجهی افزایش داده است. این مدل در وظایف ریاضی، کدنویسی و استدلال زبان طبیعی عملکرد و توانایی بالایی دارد."
|
784
|
+
},
|
791
785
|
"deepseek-r1-70b-fast-online": {
|
792
786
|
"description": "DeepSeek R1 70B نسخه سریع است که از جستجوی آنلاین زنده پشتیبانی میکند و در عین حفظ عملکرد مدل، سرعت پاسخدهی سریعتری را ارائه میدهد."
|
793
787
|
},
|
@@ -1067,6 +1061,9 @@
|
|
1067
1061
|
"gemini-2.5-pro-preview-05-06": {
|
1068
1062
|
"description": "Gemini 2.5 Pro Preview مدل پیشرفته تفکر گوگل است که قادر به استدلال در مورد کد، ریاضیات و مسائل پیچیده در زمینه STEM میباشد و میتواند با استفاده از تحلیل زمینهای طولانی، مجموعههای داده بزرگ، کتابخانههای کد و مستندات را بررسی کند."
|
1069
1063
|
},
|
1064
|
+
"gemini-2.5-pro-preview-06-05": {
|
1065
|
+
"description": "Gemini 2.5 Pro Preview پیشرفتهترین مدل تفکر گوگل است که قادر به استدلال درباره مسائل پیچیده در حوزه کد، ریاضیات و STEM است و میتواند با استفاده از زمینه طولانی، دادههای بزرگ، مخازن کد و مستندات را تحلیل کند."
|
1066
|
+
},
|
1070
1067
|
"gemma-7b-it": {
|
1071
1068
|
"description": "Gemma 7B برای پردازش وظایف کوچک و متوسط مناسب است و از نظر هزینه مؤثر است."
|
1072
1069
|
},
|
@@ -1355,6 +1352,9 @@
|
|
1355
1352
|
"hunyuan-t1-20250403": {
|
1356
1353
|
"description": "افزایش توانایی تولید کد در سطح پروژه؛ بهبود کیفیت نوشتار تولید متن؛ ارتقاء توانایی درک موضوعات چندمرحلهای، پیروی از دستورات tob و درک واژگان؛ بهینهسازی مشکلات خروجی ترکیبی از زبانهای ساده و سنتی و همچنین ترکیب چینی و انگلیسی."
|
1357
1354
|
},
|
1355
|
+
"hunyuan-t1-20250529": {
|
1356
|
+
"description": "بهینهسازی تولید متن، نوشتن مقاله، بهبود تواناییهای کدنویسی فرانتاند، ریاضیات، استدلال منطقی و علوم پایه، و ارتقاء توانایی پیروی از دستورالعملها."
|
1357
|
+
},
|
1358
1358
|
"hunyuan-t1-latest": {
|
1359
1359
|
"description": "اولین مدل استدلال هیبریدی-ترنسفورمر-مامبا با مقیاس فوقالعاده بزرگ در صنعت، که توانایی استدلال را گسترش میدهد و سرعت رمزگشایی فوقالعادهای دارد و به طور بیشتری با ترجیحات انسانی همراستا میشود."
|
1360
1360
|
},
|
@@ -1379,6 +1379,9 @@
|
|
1379
1379
|
"hunyuan-turbos-20250416": {
|
1380
1380
|
"description": "ارتقاء پایه پیشآموزش، تقویت توانایی درک و پیروی از دستورات پایه؛ تقویت مهارتهای علوم پایه مانند ریاضیات، کد نویسی، منطق و علوم؛ بهبود کیفیت نوشتار خلاقانه، درک متن، دقت ترجمه و پاسخ به سوالات دانش؛ تقویت تواناییهای عاملهای حوزههای مختلف، با تمرکز ویژه بر درک گفتگوی چندمرحلهای."
|
1381
1381
|
},
|
1382
|
+
"hunyuan-turbos-20250604": {
|
1383
|
+
"description": "ارتقاء پایه پیشآموزش، بهبود تواناییهای نوشتن و درک مطلب، افزایش قابل توجه تواناییهای کدنویسی و علوم پایه، و بهبود مستمر در پیروی از دستورات پیچیده."
|
1384
|
+
},
|
1382
1385
|
"hunyuan-turbos-latest": {
|
1383
1386
|
"description": "hunyuan-TurboS آخرین نسخه مدل بزرگ پرچمدار مختلط است که دارای توانایی تفکر قویتر و تجربه بهتری است."
|
1384
1387
|
},
|
@@ -1391,9 +1394,6 @@
|
|
1391
1394
|
"hunyuan-vision": {
|
1392
1395
|
"description": "جدیدترین مدل چندوجهی هونیوان، پشتیبانی از ورودی تصویر + متن برای تولید محتوای متنی."
|
1393
1396
|
},
|
1394
|
-
"internlm/internlm2_5-20b-chat": {
|
1395
|
-
"description": "مدل نوآورانه و متنباز InternLM2.5، با استفاده از پارامترهای بزرگ مقیاس، هوش مکالمه را بهبود بخشیده است."
|
1396
|
-
},
|
1397
1397
|
"internlm/internlm2_5-7b-chat": {
|
1398
1398
|
"description": "InternLM2.5 راهحلهای گفتگوی هوشمند در چندین سناریو ارائه میدهد."
|
1399
1399
|
},
|
@@ -1910,6 +1910,9 @@
|
|
1910
1910
|
"qvq-max": {
|
1911
1911
|
"description": "مدل استدلال بینایی QVQ Tongyi Qianwen که از ورودیهای بینایی و خروجی زنجیره فکری پشتیبانی میکند و در ریاضیات، برنامهنویسی، تحلیل بینایی، خلاقیت و وظایف عمومی تواناییهای قویتری نشان میدهد."
|
1912
1912
|
},
|
1913
|
+
"qvq-plus": {
|
1914
|
+
"description": "مدل استدلال بصری. پشتیبانی از ورودیهای بصری و خروجی زنجیره تفکر، نسخه پلاس پس از مدل qvq-max، که نسبت به مدل qvq-max سرعت استدلال بالاتر و تعادل بهتری بین عملکرد و هزینه دارد."
|
1915
|
+
},
|
1913
1916
|
"qwen-coder-plus": {
|
1914
1917
|
"description": "مدل کد نویسی Tongyi Qianwen."
|
1915
1918
|
},
|
@@ -259,6 +259,9 @@
|
|
259
259
|
"enableMaxTokens": {
|
260
260
|
"title": "فعالسازی محدودیت پاسخ"
|
261
261
|
},
|
262
|
+
"enableReasoningEffort": {
|
263
|
+
"title": "فعالسازی تنظیم شدت استدلال"
|
264
|
+
},
|
262
265
|
"frequencyPenalty": {
|
263
266
|
"desc": "هر چه مقدار بزرگتر باشد، واژگان متنوعتر و غنیتری استفاده میشود؛ هر چه مقدار کوچکتر باشد، واژگان سادهتر و عادیتر خواهند بود.",
|
264
267
|
"title": "تنوع واژگان"
|
@@ -278,6 +281,15 @@
|
|
278
281
|
"desc": "هر چه مقدار بزرگتر باشد، تمایل به استفاده از عبارات مختلف بیشتر میشود و از تکرار مفاهیم جلوگیری میکند؛ هر چه مقدار کوچکتر باشد، تمایل به استفاده از مفاهیم یا روایتهای تکراری بیشتر میشود و بیان یکدستتری خواهد داشت.",
|
279
282
|
"title": "گستردگی بیان"
|
280
283
|
},
|
284
|
+
"reasoningEffort": {
|
285
|
+
"desc": "هرچه مقدار بیشتر باشد، توانایی استدلال قویتر است، اما ممکن است زمان پاسخ و مصرف توکن افزایش یابد",
|
286
|
+
"options": {
|
287
|
+
"high": "زیاد",
|
288
|
+
"low": "کم",
|
289
|
+
"medium": "متوسط"
|
290
|
+
},
|
291
|
+
"title": "شدت استدلال"
|
292
|
+
},
|
281
293
|
"submit": "بهروزرسانی تنظیمات مدل",
|
282
294
|
"temperature": {
|
283
295
|
"desc": "هر چه عدد بزرگتر باشد، پاسخها خلاقانهتر و تخیلیتر خواهند بود؛ هر چه عدد کوچکتر باشد، پاسخها دقیقتر خواهند بود",
|
@@ -206,15 +206,9 @@
|
|
206
206
|
"Phi-3.5-vision-instrust": {
|
207
207
|
"description": "Version améliorée du modèle Phi-3-vision."
|
208
208
|
},
|
209
|
-
"Pro/Qwen/Qwen2-1.5B-Instruct": {
|
210
|
-
"description": "Qwen2-1.5B-Instruct est un modèle de langage à grande échelle de la série Qwen2, avec une taille de paramètre de 1.5B. Ce modèle est basé sur l'architecture Transformer, utilisant des fonctions d'activation SwiGLU, des biais d'attention QKV et des techniques d'attention par groupe. Il excelle dans la compréhension du langage, la génération, les capacités multilingues, le codage, les mathématiques et le raisonnement dans plusieurs tests de référence, surpassant la plupart des modèles open source. Comparé à Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct montre des améliorations de performance significatives dans des tests tels que MMLU, HumanEval, GSM8K, C-Eval et IFEval, bien que le nombre de paramètres soit légèrement inférieur."
|
211
|
-
},
|
212
209
|
"Pro/Qwen/Qwen2-7B-Instruct": {
|
213
210
|
"description": "Qwen2-7B-Instruct est un modèle de langage à grande échelle de la série Qwen2, avec une taille de paramètre de 7B. Ce modèle est basé sur l'architecture Transformer, utilisant des fonctions d'activation SwiGLU, des biais d'attention QKV et des techniques d'attention par groupe. Il est capable de traiter de grandes entrées. Ce modèle excelle dans la compréhension du langage, la génération, les capacités multilingues, le codage, les mathématiques et le raisonnement dans plusieurs tests de référence, surpassant la plupart des modèles open source et montrant une compétitivité comparable à celle des modèles propriétaires dans certaines tâches. Qwen2-7B-Instruct a montré des performances significativement meilleures que Qwen1.5-7B-Chat dans plusieurs évaluations."
|
214
211
|
},
|
215
|
-
"Pro/Qwen/Qwen2-VL-7B-Instruct": {
|
216
|
-
"description": "Qwen2-VL est la dernière itération du modèle Qwen-VL, atteignant des performances de pointe dans les tests de référence de compréhension visuelle."
|
217
|
-
},
|
218
212
|
"Pro/Qwen/Qwen2.5-7B-Instruct": {
|
219
213
|
"description": "Qwen2.5-7B-Instruct est l'un des derniers modèles de langage à grande échelle publiés par Alibaba Cloud. Ce modèle 7B présente des capacités considérablement améliorées dans des domaines tels que le codage et les mathématiques. Le modèle offre également un support multilingue, couvrant plus de 29 langues, y compris le chinois et l'anglais. Il a montré des améliorations significatives dans le suivi des instructions, la compréhension des données structurées et la génération de sorties structurées (en particulier JSON)."
|
220
214
|
},
|
@@ -233,9 +227,6 @@
|
|
233
227
|
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
234
228
|
"description": "DeepSeek-R1 est un modèle de raisonnement piloté par apprentissage par renforcement (RL), résolvant les problèmes de répétitivité et de lisibilité dans les modèles. Avant le RL, DeepSeek-R1 a introduit des données de démarrage à froid pour optimiser davantage les performances de raisonnement. Il offre des performances comparables à OpenAI-o1 en mathématiques, code et tâches de raisonnement, avec une amélioration globale grâce à une méthode d’entraînement soigneusement conçue."
|
235
229
|
},
|
236
|
-
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
237
|
-
"description": "DeepSeek-R1-Distill-Qwen-1.5B est un modèle obtenu par distillation de connaissances à partir de Qwen2.5-Math-1.5B. Ce modèle a été affiné à l'aide de 800 000 échantillons sélectionnés générés par DeepSeek-R1, démontrant des performances remarquables sur plusieurs benchmarks. En tant que modèle léger, il atteint une précision de 83,9 % sur MATH-500, un taux de réussite de 28,9 % sur AIME 2024 et un score de 954 sur CodeForces, révélant des capacités de raisonnement dépassant sa taille paramétrique."
|
238
|
-
},
|
239
230
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B": {
|
240
231
|
"description": "DeepSeek-R1-Distill-Qwen-7B est un modèle obtenu par distillation de connaissances à partir de Qwen2.5-Math-7B. Ce modèle a été affiné à l'aide de 800 000 échantillons sélectionnés générés par DeepSeek-R1, démontrant d'excellentes capacités de raisonnement. Il obtient des performances remarquables dans plusieurs benchmarks, atteignant une précision de 92,8 % sur MATH-500, un taux de réussite de 55,5 % sur AIME 2024 et un score de 1189 sur CodeForces, montrant ainsi de solides compétences en mathématiques et en programmation pour un modèle de taille 7B."
|
241
232
|
},
|
@@ -257,9 +248,6 @@
|
|
257
248
|
"Qwen/QwQ-32B-Preview": {
|
258
249
|
"description": "QwQ-32B-Preview est le dernier modèle de recherche expérimental de Qwen, axé sur l'amélioration des capacités de raisonnement de l'IA. En explorant des mécanismes complexes tels que le mélange de langues et le raisonnement récursif, ses principaux avantages incluent de puissantes capacités d'analyse de raisonnement, ainsi que des compétences en mathématiques et en programmation. Cependant, il existe également des problèmes de changement de langue, des cycles de raisonnement, des considérations de sécurité et des différences dans d'autres capacités."
|
259
250
|
},
|
260
|
-
"Qwen/Qwen2-1.5B-Instruct": {
|
261
|
-
"description": "Qwen2-1.5B-Instruct est un modèle de langage à grande échelle de la série Qwen2, avec une taille de paramètre de 1.5B. Ce modèle est basé sur l'architecture Transformer, utilisant des fonctions d'activation SwiGLU, des biais d'attention QKV et des techniques d'attention par groupe. Il excelle dans la compréhension du langage, la génération, les capacités multilingues, le codage, les mathématiques et le raisonnement dans plusieurs tests de référence, surpassant la plupart des modèles open source. Comparé à Qwen1.5-1.8B-Chat, Qwen2-1.5B-Instruct montre des améliorations de performance significatives dans des tests tels que MMLU, HumanEval, GSM8K, C-Eval et IFEval, bien que le nombre de paramètres soit légèrement inférieur."
|
262
|
-
},
|
263
251
|
"Qwen/Qwen2-72B-Instruct": {
|
264
252
|
"description": "Qwen2 est un modèle de langage général avancé, prenant en charge divers types d'instructions."
|
265
253
|
},
|
@@ -419,9 +407,6 @@
|
|
419
407
|
"THUDM/GLM-Z1-Rumination-32B-0414": {
|
420
408
|
"description": "GLM-Z1-Rumination-32B-0414 est un modèle de raisonnement profond avec des capacités de réflexion (comparé à la recherche approfondie d'OpenAI). Contrairement aux modèles de réflexion typiques, le modèle de réflexion utilise des périodes de réflexion plus longues pour résoudre des problèmes plus ouverts et complexes."
|
421
409
|
},
|
422
|
-
"THUDM/chatglm3-6b": {
|
423
|
-
"description": "ChatGLM3-6B est un modèle open source de la série ChatGLM, développé par Zhipu AI. Ce modèle conserve les excellentes caractéristiques de son prédécesseur, telles que la fluidité des dialogues et un faible seuil de déploiement, tout en introduisant de nouvelles fonctionnalités. Il utilise des données d'entraînement plus variées, un nombre d'étapes d'entraînement plus élevé et une stratégie d'entraînement plus raisonnable, se distinguant parmi les modèles pré-entraînés de moins de 10B. ChatGLM3-6B prend en charge des dialogues multi-tours, des appels d'outils, l'exécution de code et des tâches d'agent dans des scénarios complexes. En plus du modèle de dialogue, les modèles de base ChatGLM-6B-Base et le modèle de dialogue long ChatGLM3-6B-32K sont également open source. Ce modèle est entièrement ouvert à la recherche académique et permet également une utilisation commerciale gratuite après enregistrement."
|
424
|
-
},
|
425
410
|
"THUDM/glm-4-9b-chat": {
|
426
411
|
"description": "GLM-4 9B est une version open source, offrant une expérience de dialogue optimisée pour les applications de conversation."
|
427
412
|
},
|
@@ -563,6 +548,12 @@
|
|
563
548
|
"anthropic/claude-3.7-sonnet": {
|
564
549
|
"description": "Claude 3.7 Sonnet est le modèle le plus intelligent d'Anthropic à ce jour, et le premier modèle de raisonnement hybride sur le marché. Claude 3.7 Sonnet peut produire des réponses quasi instantanées ou un raisonnement prolongé, permettant aux utilisateurs de voir clairement ces processus. Sonnet excelle particulièrement dans la programmation, la science des données, le traitement visuel et les tâches d'agent."
|
565
550
|
},
|
551
|
+
"anthropic/claude-opus-4": {
|
552
|
+
"description": "Claude Opus 4 est le modèle le plus puissant d'Anthropic pour traiter des tâches hautement complexes. Il excelle en performance, intelligence, fluidité et compréhension."
|
553
|
+
},
|
554
|
+
"anthropic/claude-sonnet-4": {
|
555
|
+
"description": "Claude Sonnet 4 peut générer des réponses quasi instantanées ou des réflexions prolongées étape par étape, que l'utilisateur peut suivre clairement. Les utilisateurs de l'API peuvent également contrôler précisément la durée de réflexion du modèle."
|
556
|
+
},
|
566
557
|
"aya": {
|
567
558
|
"description": "Aya 23 est un modèle multilingue lancé par Cohere, prenant en charge 23 langues, facilitant les applications linguistiques diversifiées."
|
568
559
|
},
|
@@ -788,6 +779,9 @@
|
|
788
779
|
"deepseek-r1": {
|
789
780
|
"description": "DeepSeek-R1 est un modèle d'inférence alimenté par l'apprentissage par renforcement (RL), qui résout les problèmes de répétitivité et de lisibilité dans le modèle. Avant le RL, DeepSeek-R1 a introduit des données de démarrage à froid, optimisant ainsi les performances d'inférence. Il se compare à OpenAI-o1 en matière de tâches mathématiques, de code et d'inférence, et améliore l'efficacité globale grâce à des méthodes d'entraînement soigneusement conçues."
|
790
781
|
},
|
782
|
+
"deepseek-r1-0528": {
|
783
|
+
"description": "Modèle complet de 685 milliards de paramètres, publié le 28 mai 2025. DeepSeek-R1 utilise massivement l'apprentissage par renforcement en phase post-entraînement, améliorant considérablement les capacités de raisonnement du modèle avec très peu de données annotées. Il excelle en mathématiques, codage, raisonnement en langage naturel et autres tâches complexes."
|
784
|
+
},
|
791
785
|
"deepseek-r1-70b-fast-online": {
|
792
786
|
"description": "DeepSeek R1 70B version rapide, prenant en charge la recherche en ligne en temps réel, offrant une vitesse de réponse plus rapide tout en maintenant les performances du modèle."
|
793
787
|
},
|
@@ -1067,6 +1061,9 @@
|
|
1067
1061
|
"gemini-2.5-pro-preview-05-06": {
|
1068
1062
|
"description": "Gemini 2.5 Pro Preview est le modèle de pensée le plus avancé de Google, capable de raisonner sur des problèmes complexes dans les domaines du code, des mathématiques et des STEM, ainsi que d'analyser de grands ensembles de données, des bibliothèques de code et des documents en utilisant une analyse de long contexte."
|
1069
1063
|
},
|
1064
|
+
"gemini-2.5-pro-preview-06-05": {
|
1065
|
+
"description": "Gemini 2.5 Pro Preview est le modèle de pensée le plus avancé de Google, capable de raisonner sur des problèmes complexes en code, mathématiques et domaines STEM, ainsi que d'analyser de grands ensembles de données, bibliothèques de code et documents avec un contexte étendu."
|
1066
|
+
},
|
1070
1067
|
"gemma-7b-it": {
|
1071
1068
|
"description": "Gemma 7B est adapté au traitement de tâches de taille moyenne, alliant coût et efficacité."
|
1072
1069
|
},
|
@@ -1355,6 +1352,9 @@
|
|
1355
1352
|
"hunyuan-t1-20250403": {
|
1356
1353
|
"description": "Amélioration des capacités de génération de code au niveau projet ; amélioration de la qualité de la rédaction générée ; amélioration de la compréhension multi-tours des sujets, de la conformité aux instructions toB et de la compréhension des mots ; optimisation des problèmes liés à la sortie mixte de caractères simplifiés/traditionnels et chinois/anglais."
|
1357
1354
|
},
|
1355
|
+
"hunyuan-t1-20250529": {
|
1356
|
+
"description": "Optimisé pour la création de textes, la rédaction d'essais, ainsi que pour les compétences en codage frontend, mathématiques et raisonnement logique, avec une amélioration de la capacité à suivre les instructions."
|
1357
|
+
},
|
1358
1358
|
"hunyuan-t1-latest": {
|
1359
1359
|
"description": "Le premier modèle d'inférence Hybrid-Transformer-Mamba à grande échelle de l'industrie, qui étend les capacités d'inférence, offre une vitesse de décodage exceptionnelle et aligne davantage les préférences humaines."
|
1360
1360
|
},
|
@@ -1379,6 +1379,9 @@
|
|
1379
1379
|
"hunyuan-turbos-20250416": {
|
1380
1380
|
"description": "Mise à niveau de la base pré-entraînée, renforçant la compréhension et la conformité aux instructions ; amélioration des compétences en mathématiques, code, logique et sciences durant la phase d’alignement ; amélioration de la qualité de la création littéraire, de la compréhension textuelle, de la précision des traductions et des réponses aux questions de culture générale ; renforcement des capacités des agents dans divers domaines, avec un accent particulier sur la compréhension des dialogues multi-tours."
|
1381
1381
|
},
|
1382
|
+
"hunyuan-turbos-20250604": {
|
1383
|
+
"description": "Mise à niveau de la base pré-entraînée, amélioration des capacités d'écriture et de compréhension de lecture, augmentation significative des compétences en codage et en sciences, avec un suivi continu des instructions complexes."
|
1384
|
+
},
|
1382
1385
|
"hunyuan-turbos-latest": {
|
1383
1386
|
"description": "hunyuan-TurboS est la dernière version du modèle phare Hunyuan, offrant une capacité de réflexion améliorée et une expérience utilisateur optimisée."
|
1384
1387
|
},
|
@@ -1391,9 +1394,6 @@
|
|
1391
1394
|
"hunyuan-vision": {
|
1392
1395
|
"description": "Dernier modèle multimodal Hunyuan, prenant en charge l'entrée d'images et de textes pour générer du contenu textuel."
|
1393
1396
|
},
|
1394
|
-
"internlm/internlm2_5-20b-chat": {
|
1395
|
-
"description": "Le modèle open source innovant InternLM2.5 améliore l'intelligence des dialogues grâce à un grand nombre de paramètres."
|
1396
|
-
},
|
1397
1397
|
"internlm/internlm2_5-7b-chat": {
|
1398
1398
|
"description": "InternLM2.5 fournit des solutions de dialogue intelligent dans divers scénarios."
|
1399
1399
|
},
|
@@ -1910,6 +1910,9 @@
|
|
1910
1910
|
"qvq-max": {
|
1911
1911
|
"description": "Modèle de raisonnement visuel QVQ de Tongyi Qianwen, supportant l’entrée visuelle et la sortie en chaîne de pensée, démontrant des capacités renforcées en mathématiques, programmation, analyse visuelle, création et tâches générales."
|
1912
1912
|
},
|
1913
|
+
"qvq-plus": {
|
1914
|
+
"description": "Modèle de raisonnement visuel. Prend en charge les entrées visuelles et les sorties en chaîne de pensée. Version plus avancée du modèle qvq-max, offrant une vitesse de raisonnement plus rapide et un meilleur équilibre entre performance et coût."
|
1915
|
+
},
|
1913
1916
|
"qwen-coder-plus": {
|
1914
1917
|
"description": "Modèle de code Tongyi Qianwen."
|
1915
1918
|
},
|