@lobehub/chat 1.92.3 → 1.93.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +25 -0
- package/README.md +8 -8
- package/README.zh-CN.md +8 -8
- package/changelog/v1.json +9 -0
- package/docs/development/database-schema.dbml +51 -1
- package/locales/ar/modelProvider.json +4 -0
- package/locales/ar/models.json +64 -34
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/modelProvider.json +4 -0
- package/locales/bg-BG/models.json +64 -34
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/modelProvider.json +4 -0
- package/locales/de-DE/models.json +64 -34
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/modelProvider.json +4 -0
- package/locales/en-US/models.json +64 -34
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/modelProvider.json +4 -0
- package/locales/es-ES/models.json +64 -34
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/modelProvider.json +4 -0
- package/locales/fa-IR/models.json +64 -34
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/modelProvider.json +4 -0
- package/locales/fr-FR/models.json +64 -34
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/modelProvider.json +4 -0
- package/locales/it-IT/models.json +64 -34
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/modelProvider.json +4 -0
- package/locales/ja-JP/models.json +64 -34
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/modelProvider.json +4 -0
- package/locales/ko-KR/models.json +64 -34
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/modelProvider.json +4 -0
- package/locales/nl-NL/models.json +64 -34
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/modelProvider.json +4 -0
- package/locales/pl-PL/models.json +64 -34
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/modelProvider.json +4 -0
- package/locales/pt-BR/models.json +64 -34
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/modelProvider.json +4 -0
- package/locales/ru-RU/models.json +63 -33
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/modelProvider.json +4 -0
- package/locales/tr-TR/models.json +64 -34
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/modelProvider.json +4 -0
- package/locales/vi-VN/models.json +64 -34
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/modelProvider.json +4 -0
- package/locales/zh-CN/models.json +59 -29
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/modelProvider.json +4 -0
- package/locales/zh-TW/models.json +64 -34
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +1 -1
- package/src/app/[variants]/(main)/settings/provider/features/ProviderConfig/index.tsx +16 -0
- package/src/config/modelProviders/openai.ts +3 -1
- package/src/database/client/migrations.json +25 -0
- package/src/database/migrations/0025_add_provider_config.sql +1 -0
- package/src/database/migrations/meta/0025_snapshot.json +5703 -0
- package/src/database/migrations/meta/_journal.json +7 -0
- package/src/database/models/__tests__/aiProvider.test.ts +2 -0
- package/src/database/models/aiProvider.ts +5 -2
- package/src/database/repositories/tableViewer/index.test.ts +1 -1
- package/src/database/schemas/_helpers.ts +5 -1
- package/src/database/schemas/aiInfra.ts +5 -1
- package/src/libs/model-runtime/openai/index.ts +21 -2
- package/src/libs/model-runtime/types/chat.ts +6 -9
- package/src/libs/model-runtime/utils/openaiCompatibleFactory/index.ts +79 -5
- package/src/libs/model-runtime/utils/openaiHelpers.test.ts +145 -1
- package/src/libs/model-runtime/utils/openaiHelpers.ts +59 -0
- package/src/libs/model-runtime/utils/streams/openai/__snapshots__/responsesStream.test.ts.snap +193 -0
- package/src/libs/model-runtime/utils/streams/openai/index.ts +2 -0
- package/src/libs/model-runtime/utils/streams/{openai.test.ts → openai/openai.test.ts} +1 -1
- package/src/libs/model-runtime/utils/streams/{openai.ts → openai/openai.ts} +5 -5
- package/src/libs/model-runtime/utils/streams/openai/responsesStream.test.ts +826 -0
- package/src/libs/model-runtime/utils/streams/openai/responsesStream.ts +166 -0
- package/src/libs/model-runtime/utils/streams/protocol.ts +4 -1
- package/src/libs/model-runtime/utils/streams/utils.ts +20 -0
- package/src/libs/model-runtime/utils/usageConverter.ts +59 -0
- package/src/locales/default/modelProvider.ts +4 -0
- package/src/services/__tests__/chat.test.ts +27 -0
- package/src/services/chat.ts +8 -2
- package/src/store/aiInfra/slices/aiProvider/selectors.ts +11 -0
- package/src/types/aiProvider.ts +13 -1
@@ -230,6 +230,9 @@
|
|
230
230
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
231
231
|
"description": "DeepSeek-R1은 강화 학습(RL) 기반의 추론 모델로, 모델 내의 반복성과 가독성 문제를 해결합니다. RL 이전에 DeepSeek-R1은 콜드 스타트 데이터를 도입하여 추론 성능을 더욱 최적화했습니다. 수학, 코드 및 추론 작업에서 OpenAI-o1과 유사한 성능을 보이며, 정교하게 설계된 훈련 방법을 통해 전체적인 효과를 향상시켰습니다."
|
232
232
|
},
|
233
|
+
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
234
|
+
"description": "DeepSeek-R1은 강화 학습(RL) 기반 추론 모델로, 모델 내 반복성과 가독성 문제를 해결했습니다. RL 이전에 콜드 스타트 데이터를 도입하여 추론 성능을 추가 최적화했으며, 수학, 코드, 추론 작업에서 OpenAI-o1과 유사한 성능을 보이고, 정교한 훈련 방법을 통해 전체 성능을 향상시켰습니다."
|
235
|
+
},
|
233
236
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
234
237
|
"description": "DeepSeek-R1-Distill-Qwen-1.5B는 Qwen2.5-Math-1.5B를 기반으로 지식 증류를 통해 개발된 모델입니다. 이 모델은 DeepSeek-R1에서 생성된 80만 개의 선별된 샘플을 사용하여 미세 조정되었으며, 여러 벤치마크에서 우수한 성능을 보여주었습니다. 경량 모델임에도 불구하고 MATH-500에서 83.9%의 정확도, AIME 2024에서 28.9%의 통과율, CodeForces에서 954점을 기록하여 매개변수 규모를 뛰어넘는 추론 능력을 입증했습니다."
|
235
238
|
},
|
@@ -422,8 +425,8 @@
|
|
422
425
|
"THUDM/glm-4-9b-chat": {
|
423
426
|
"description": "GLM-4 9B 오픈 소스 버전으로, 대화 응용을 위한 최적화된 대화 경험을 제공합니다."
|
424
427
|
},
|
425
|
-
"
|
426
|
-
"description": "
|
428
|
+
"Tongyi-Zhiwen/QwenLong-L1-32B": {
|
429
|
+
"description": "QwenLong-L1-32B는 강화 학습으로 훈련된 최초의 장문 컨텍스트 대형 추론 모델(LRM)로, 장문 텍스트 추론 작업에 최적화되어 있습니다. 점진적 컨텍스트 확장 강화 학습 프레임워크를 통해 짧은 컨텍스트에서 긴 컨텍스트로 안정적인 전이를 실현했습니다. 7개의 장문 문서 질의응답 벤치마크에서 OpenAI-o3-mini, Qwen3-235B-A22B 등 플래그십 모델을 능가하며 Claude-3.7-Sonnet-Thinking과 견줄 만한 성능을 보입니다. 특히 수학 추론, 논리 추론, 다중 점프 추론 등 복잡한 작업에 뛰어납니다."
|
427
430
|
},
|
428
431
|
"Yi-34B-Chat": {
|
429
432
|
"description": "Yi-1.5-34B는 원래 시리즈 모델의 뛰어난 일반 언어 능력을 유지하면서, 5000억 개의 고품질 토큰을 통해 점진적으로 훈련하여 수학적 논리 및 코드 능력을 크게 향상시켰습니다."
|
@@ -734,6 +737,12 @@
|
|
734
737
|
"deepseek-ai/DeepSeek-R1": {
|
735
738
|
"description": "DeepSeek-R1은 강화 학습(RL) 기반의 추론 모델로, 모델 내의 반복성과 가독성 문제를 해결합니다. RL 이전에 DeepSeek-R1은 콜드 스타트 데이터를 도입하여 추론 성능을 더욱 최적화했습니다. 수학, 코드 및 추론 작업에서 OpenAI-o1과 유사한 성능을 보이며, 정교하게 설계된 훈련 방법을 통해 전체적인 효과를 향상시켰습니다."
|
736
739
|
},
|
740
|
+
"deepseek-ai/DeepSeek-R1-0528": {
|
741
|
+
"description": "DeepSeek R1은 증가된 계산 자원과 후속 훈련 과정에서 도입된 알고리즘 최적화 메커니즘을 활용하여 추론 및 추론 능력의 깊이를 크게 향상시켰습니다. 이 모델은 수학, 프로그래밍, 일반 논리 등 다양한 벤치마크 평가에서 뛰어난 성능을 보이며, 전체 성능은 O3 및 Gemini 2.5 Pro와 같은 선도 모델에 근접합니다."
|
742
|
+
},
|
743
|
+
"deepseek-ai/DeepSeek-R1-0528-Qwen3-8B": {
|
744
|
+
"description": "DeepSeek-R1-0528-Qwen3-8B는 DeepSeek-R1-0528 모델에서 사고 과정(chain-of-thought)을 증류하여 Qwen3 8B Base에 적용한 모델입니다. 오픈소스 모델 중 최첨단(SOTA) 성능을 달성했으며, AIME 2024 테스트에서 Qwen3 8B를 10% 능가하고 Qwen3-235B-thinking 수준의 성능을 보입니다. 수학 추론, 프로그래밍, 일반 논리 등 여러 벤치마크에서 뛰어난 성능을 보이며, Qwen3-8B와 동일한 아키텍처를 사용하지만 DeepSeek-R1-0528의 토크나이저 구성을 공유합니다."
|
745
|
+
},
|
737
746
|
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
|
738
747
|
"description": "DeepSeek-R1 증류 모델로, 강화 학습과 콜드 스타트 데이터를 통해 추론 성능을 최적화하며, 오픈 소스 모델로 다중 작업 기준을 갱신합니다."
|
739
748
|
},
|
@@ -836,9 +845,6 @@
|
|
836
845
|
"deepseek-v3-0324": {
|
837
846
|
"description": "DeepSeek-V3-0324는 671B 매개변수를 가진 MoE 모델로, 프로그래밍 및 기술 능력, 맥락 이해 및 긴 텍스트 처리 등에서 두드러진 장점을 보입니다."
|
838
847
|
},
|
839
|
-
"deepseek/deepseek-chat": {
|
840
|
-
"description": "일반 및 코드 능력을 통합한 새로운 오픈 소스 모델로, 기존 Chat 모델의 일반 대화 능력과 Coder 모델의 강력한 코드 처리 능력을 유지하면서 인간의 선호에 더 잘 맞춰졌습니다. 또한, DeepSeek-V2.5는 작문 작업, 지시 따르기 등 여러 분야에서 큰 향상을 이루었습니다."
|
841
|
-
},
|
842
848
|
"deepseek/deepseek-chat-v3-0324": {
|
843
849
|
"description": "DeepSeek V3는 685B 매개변수를 가진 전문가 혼합 모델로, DeepSeek 팀의 플래그십 채팅 모델 시리즈의 최신 반복입니다.\n\n이 모델은 [DeepSeek V3](/deepseek/deepseek-chat-v3) 모델을 계승하며 다양한 작업에서 뛰어난 성능을 보입니다."
|
844
850
|
},
|
@@ -848,6 +854,12 @@
|
|
848
854
|
"deepseek/deepseek-r1": {
|
849
855
|
"description": "DeepSeek-R1은 극히 적은 주석 데이터로 모델의 추론 능력을 크게 향상시킵니다. 최종 답변을 출력하기 전에 모델은 먼저 사고의 연쇄 내용을 출력하여 최종 답변의 정확성을 높입니다."
|
850
856
|
},
|
857
|
+
"deepseek/deepseek-r1-0528": {
|
858
|
+
"description": "DeepSeek-R1은 매우 적은 라벨 데이터만으로도 모델 추론 능력을 크게 향상시켰습니다. 최종 답변 출력 전에 모델이 사고 과정(chain-of-thought)을 먼저 출력하여 최종 답변의 정확도를 높입니다."
|
859
|
+
},
|
860
|
+
"deepseek/deepseek-r1-0528:free": {
|
861
|
+
"description": "DeepSeek-R1은 매우 적은 라벨 데이터만으로도 모델 추론 능력을 크게 향상시켰습니다. 최종 답변 출력 전에 모델이 사고 과정(chain-of-thought)을 먼저 출력하여 최종 답변의 정확도를 높입니다."
|
862
|
+
},
|
851
863
|
"deepseek/deepseek-r1-distill-llama-70b": {
|
852
864
|
"description": "DeepSeek R1 Distill Llama 70B는 Llama3.3 70B를 기반으로 한 대형 언어 모델로, DeepSeek R1의 출력을 활용하여 대형 최첨단 모델과 동등한 경쟁 성능을 달성했습니다."
|
853
865
|
},
|
@@ -1262,6 +1274,9 @@
|
|
1262
1274
|
"gpt-4o-mini-realtime-preview": {
|
1263
1275
|
"description": "GPT-4o-mini 실시간 버전으로, 오디오 및 텍스트의 실시간 입력 및 출력을 지원합니다."
|
1264
1276
|
},
|
1277
|
+
"gpt-4o-mini-search-preview": {
|
1278
|
+
"description": "GPT-4o mini 검색 미리보기 버전은 웹 검색 쿼리 이해 및 실행을 위해 특별히 훈련된 모델로, Chat Completions API를 사용합니다. 토큰 비용 외에 웹 검색 쿼리는 도구 호출당 별도의 비용이 부과됩니다."
|
1279
|
+
},
|
1265
1280
|
"gpt-4o-mini-tts": {
|
1266
1281
|
"description": "GPT-4o mini TTS 는 GPT-4o mini 에 기반한 텍스트 음성 변환 모델로, 높은 품질의 음성 생성을 저렴한 가격으로 제공합니다."
|
1267
1282
|
},
|
@@ -1274,6 +1289,9 @@
|
|
1274
1289
|
"gpt-4o-realtime-preview-2024-12-17": {
|
1275
1290
|
"description": "GPT-4o 실시간 버전으로, 오디오 및 텍스트의 실시간 입력 및 출력을 지원합니다."
|
1276
1291
|
},
|
1292
|
+
"gpt-4o-search-preview": {
|
1293
|
+
"description": "GPT-4o 검색 미리보기 버전은 웹 검색 쿼리 이해 및 실행을 위해 특별히 훈련된 모델로, Chat Completions API를 사용합니다. 토큰 비용 외에 웹 검색 쿼리는 도구 호출당 별도의 비용이 부과됩니다."
|
1294
|
+
},
|
1277
1295
|
"grok-2-1212": {
|
1278
1296
|
"description": "이 모델은 정확성, 지시 준수 및 다국어 능력에서 개선되었습니다."
|
1279
1297
|
},
|
@@ -1307,6 +1325,9 @@
|
|
1307
1325
|
"hunyuan-large-longcontext": {
|
1308
1326
|
"description": "문서 요약 및 문서 질문 응답과 같은 긴 문서 작업을 잘 처리하며, 일반 텍스트 생성 작업도 수행할 수 있는 능력을 갖추고 있습니다. 긴 텍스트의 분석 및 생성에서 뛰어난 성능을 보이며, 복잡하고 상세한 긴 문서 내용 처리 요구에 효과적으로 대응할 수 있습니다."
|
1309
1327
|
},
|
1328
|
+
"hunyuan-large-vision": {
|
1329
|
+
"description": "이 모델은 이미지-텍스트 이해 시나리오에 적합하며, 혼원 Large를 기반으로 훈련된 비전-언어 대형 모델입니다. 임의 해상도의 다중 이미지+텍스트 입력을 지원하며, 텍스트 생성에 특화되어 이미지-텍스트 이해 관련 작업에 집중합니다. 다국어 이미지-텍스트 이해 능력이 크게 향상되었습니다."
|
1330
|
+
},
|
1310
1331
|
"hunyuan-lite": {
|
1311
1332
|
"description": "MOE 구조로 업그레이드되었으며, 컨텍스트 윈도우는 256k로 설정되어 NLP, 코드, 수학, 산업 등 여러 평가 집합에서 많은 오픈 소스 모델을 선도하고 있습니다."
|
1312
1333
|
},
|
@@ -1331,18 +1352,15 @@
|
|
1331
1352
|
"hunyuan-t1-20250321": {
|
1332
1353
|
"description": "모델의 문리과 능력을 종합적으로 구축하며, 긴 텍스트 정보 포착 능력이 뛰어납니다. 다양한 난이도의 수학/논리 추론/과학/코드 등 과학 문제에 대한 추론 답변을 지원합니다."
|
1333
1354
|
},
|
1355
|
+
"hunyuan-t1-20250403": {
|
1356
|
+
"description": "프로젝트 수준의 코드 생성 능력 향상; 텍스트 생성 및 작문 품질 향상; 텍스트 이해 주제의 다중 라운드, B2B 명령 준수 및 단어 이해 능력 향상; 번체와 간체 혼용 및 중영 혼용 출력 문제 최적화."
|
1357
|
+
},
|
1334
1358
|
"hunyuan-t1-latest": {
|
1335
1359
|
"description": "업계 최초의 초대형 Hybrid-Transformer-Mamba 추론 모델로, 추론 능력을 확장하고, 뛰어난 디코딩 속도를 자랑하며, 인간의 선호에 더욱 부합합니다."
|
1336
1360
|
},
|
1337
1361
|
"hunyuan-t1-vision": {
|
1338
1362
|
"description": "혼원 다중모달 이해 심층 사고 모델로, 다중모달 원천 사고 체인을 지원하며 다양한 이미지 추론 시나리오에 능숙합니다. 이과 문제에서 빠른 사고 모델 대비 전반적인 성능 향상을 보입니다."
|
1339
1363
|
},
|
1340
|
-
"hunyuan-translation": {
|
1341
|
-
"description": "중국어, 영어, 일본어, 프랑스어, 포르투갈어, 스페인어, 터키어, 러시아어, 아랍어, 한국어, 이탈리아어, 독일어, 베트남어, 말레이어, 인도네시아어 등 15개 언어 간의 상호 번역을 지원하며, 다중 시나리오 번역 평가 집합을 기반으로 한 자동화 평가 COMET 점수를 통해, 10여 개의 일반 언어에서의 상호 번역 능력이 시장의 동급 모델보다 전반적으로 우수합니다."
|
1342
|
-
},
|
1343
|
-
"hunyuan-translation-lite": {
|
1344
|
-
"description": "혼원 번역 모델은 자연어 대화식 번역을 지원하며, 중국어, 영어, 일본어, 프랑스어, 포르투갈어, 스페인어, 터키어, 러시아어, 아랍어, 한국어, 이탈리아어, 독일어, 베트남어, 말레이어, 인도네시아어 등 15개 언어 간의 상호 번역을 지원합니다."
|
1345
|
-
},
|
1346
1364
|
"hunyuan-turbo": {
|
1347
1365
|
"description": "혼원 최신 세대 대형 언어 모델의 미리보기 버전으로, 새로운 혼합 전문가 모델(MoE) 구조를 채택하여 hunyuan-pro보다 추론 효율이 더 빠르고 성능이 더 뛰어납니다."
|
1348
1366
|
},
|
@@ -1355,8 +1373,11 @@
|
|
1355
1373
|
"hunyuan-turbo-vision": {
|
1356
1374
|
"description": "혼원 차세대 비주얼 언어 플래그십 대형 모델, 새로운 혼합 전문가 모델(MoE) 구조를 채택하여, 이미지 및 텍스트 이해 관련 기본 인식, 콘텐츠 창작, 지식 질문 응답, 분석 추론 등의 능력이 이전 세대 모델에 비해 전반적으로 향상되었습니다."
|
1357
1375
|
},
|
1358
|
-
"hunyuan-turbos-
|
1359
|
-
"description": "
|
1376
|
+
"hunyuan-turbos-20250313": {
|
1377
|
+
"description": "수학 문제 해결 단계 스타일 통일, 수학 다중 라운드 질의응답 강화. 텍스트 창작에서 답변 스타일 최적화, AI 느낌 제거, 문학적 표현 강화."
|
1378
|
+
},
|
1379
|
+
"hunyuan-turbos-20250416": {
|
1380
|
+
"description": "사전 학습 기반 업그레이드로 명령 이해 및 준수 능력 강화; 정렬 단계에서 수학, 코드, 논리, 과학 등 이공계 능력 강화; 문예 창작 품질, 텍스트 이해, 번역 정확도, 지식 질의응답 등 인문계 능력 향상; 각 분야 에이전트 능력 강화, 특히 다중 라운드 대화 이해 능력 중점 강화."
|
1360
1381
|
},
|
1361
1382
|
"hunyuan-turbos-latest": {
|
1362
1383
|
"description": "hunyuan-TurboS 혼원 플래그십 대모델 최신 버전으로, 더 강력한 사고 능력과 더 나은 경험 효과를 제공합니다."
|
@@ -1364,8 +1385,8 @@
|
|
1364
1385
|
"hunyuan-turbos-longtext-128k-20250325": {
|
1365
1386
|
"description": "문서 요약 및 문서 질문 응답과 같은 긴 문서 작업을 잘 처리하며, 일반 텍스트 생성 작업도 수행할 수 있는 능력을 갖추고 있습니다. 긴 텍스트 분석 및 생성에서 뛰어난 성능을 발휘하며, 복잡하고 상세한 긴 문서 내용 처리 요구에 효과적으로 대응할 수 있습니다."
|
1366
1387
|
},
|
1367
|
-
"hunyuan-turbos-
|
1368
|
-
"description": "
|
1388
|
+
"hunyuan-turbos-role-plus": {
|
1389
|
+
"description": "혼원 최신 버전 역할극 모델로, 혼원 공식 미세 조정 훈련을 거친 역할극 모델입니다. 혼원 모델과 역할극 시나리오 데이터셋을 결합해 추가 훈련하여 역할극 시나리오에서 더 우수한 기본 성능을 제공합니다."
|
1369
1390
|
},
|
1370
1391
|
"hunyuan-vision": {
|
1371
1392
|
"description": "혼원 최신 다중 모달 모델로, 이미지와 텍스트 입력을 지원하여 텍스트 콘텐츠를 생성합니다."
|
@@ -1886,11 +1907,14 @@
|
|
1886
1907
|
"qvq-72b-preview": {
|
1887
1908
|
"description": "QVQ 모델은 Qwen 팀이 개발한 실험적 연구 모델로, 시각적 추론 능력 향상에 중점을 두고 있으며, 특히 수학적 추론 분야에서 두드러진 성과를 보입니다."
|
1888
1909
|
},
|
1889
|
-
"qvq-max
|
1890
|
-
"description": "통의천문 QVQ
|
1910
|
+
"qvq-max": {
|
1911
|
+
"description": "통의천문 QVQ 비전 추론 모델로, 시각 입력과 사고 과정(chain-of-thought) 출력을 지원하며, 수학, 프로그래밍, 시각 분석, 창작 및 일반 작업에서 뛰어난 능력을 발휘합니다."
|
1891
1912
|
},
|
1892
|
-
"qwen-coder-plus
|
1893
|
-
"description": "
|
1913
|
+
"qwen-coder-plus": {
|
1914
|
+
"description": "통의천문 코드 모델입니다."
|
1915
|
+
},
|
1916
|
+
"qwen-coder-turbo": {
|
1917
|
+
"description": "통의천문 코드 모델입니다."
|
1894
1918
|
},
|
1895
1919
|
"qwen-coder-turbo-latest": {
|
1896
1920
|
"description": "통의 천문 코드 모델입니다."
|
@@ -1898,41 +1922,44 @@
|
|
1898
1922
|
"qwen-long": {
|
1899
1923
|
"description": "통의천문 초대규모 언어 모델로, 긴 텍스트 컨텍스트를 지원하며, 긴 문서 및 다수의 문서에 기반한 대화 기능을 제공합니다."
|
1900
1924
|
},
|
1925
|
+
"qwen-math-plus": {
|
1926
|
+
"description": "통의천문 수학 모델로, 수학 문제 해결에 특화된 언어 모델입니다."
|
1927
|
+
},
|
1901
1928
|
"qwen-math-plus-latest": {
|
1902
1929
|
"description": "통의 천문 수학 모델은 수학 문제 해결을 위해 특별히 설계된 언어 모델입니다."
|
1903
1930
|
},
|
1931
|
+
"qwen-math-turbo": {
|
1932
|
+
"description": "통의천문 수학 모델로, 수학 문제 해결에 특화된 언어 모델입니다."
|
1933
|
+
},
|
1904
1934
|
"qwen-math-turbo-latest": {
|
1905
1935
|
"description": "통의 천문 수학 모델은 수학 문제 해결을 위해 특별히 설계된 언어 모델입니다."
|
1906
1936
|
},
|
1907
1937
|
"qwen-max": {
|
1908
1938
|
"description": "통의천문 천억 수준 초대형 언어 모델로, 중국어, 영어 등 다양한 언어 입력을 지원하며, 현재 통의천문 2.5 제품 버전 뒤의 API 모델입니다."
|
1909
1939
|
},
|
1910
|
-
"qwen-
|
1911
|
-
"description": "
|
1912
|
-
},
|
1913
|
-
"qwen-omni-turbo-latest": {
|
1914
|
-
"description": "Qwen-Omni 시리즈 모델은 비디오, 오디오, 이미지, 텍스트 등 다양한 모드의 데이터를 입력으로 지원하며, 오디오와 텍스트를 출력합니다."
|
1940
|
+
"qwen-omni-turbo": {
|
1941
|
+
"description": "Qwen-Omni 시리즈 모델은 비디오, 오디오, 이미지, 텍스트 등 다양한 모달리티 입력을 지원하며, 오디오와 텍스트 출력을 제공합니다."
|
1915
1942
|
},
|
1916
1943
|
"qwen-plus": {
|
1917
1944
|
"description": "통의천문 초대형 언어 모델의 강화 버전으로, 중국어, 영어 등 다양한 언어 입력을 지원합니다."
|
1918
1945
|
},
|
1919
|
-
"qwen-plus-latest": {
|
1920
|
-
"description": "통의 천문 초대규모 언어 모델의 강화판으로, 중국어, 영어 등 다양한 언어 입력을 지원합니다."
|
1921
|
-
},
|
1922
1946
|
"qwen-turbo": {
|
1923
1947
|
"description": "통의천문 초대형 언어 모델로, 중국어, 영어 등 다양한 언어 입력을 지원합니다."
|
1924
1948
|
},
|
1925
|
-
"qwen-turbo-latest": {
|
1926
|
-
"description": "통의 천문 초대규모 언어 모델로, 중국어, 영어 등 다양한 언어 입력을 지원합니다."
|
1927
|
-
},
|
1928
1949
|
"qwen-vl-chat-v1": {
|
1929
1950
|
"description": "통의천문 VL은 다중 이미지, 다중 회차 질문 응답, 창작 등 유연한 상호작용 방식을 지원하는 모델입니다."
|
1930
1951
|
},
|
1952
|
+
"qwen-vl-max": {
|
1953
|
+
"description": "통의천문 초대규모 비전-언어 모델로, 강화판에 비해 시각 추론 능력과 명령 준수 능력을 다시 한 번 향상시켜 더 높은 시각 인지 및 인식 수준을 제공합니다."
|
1954
|
+
},
|
1931
1955
|
"qwen-vl-max-latest": {
|
1932
1956
|
"description": "통의천문 초대규모 비주얼 언어 모델. 강화판에 비해 시각적 추론 능력과 지시 준수 능력을 다시 한 번 향상시켜, 더 높은 시각적 인식과 인지 수준을 제공합니다."
|
1933
1957
|
},
|
1934
|
-
"qwen-vl-ocr
|
1935
|
-
"description": "통의천문OCR은 문서, 표,
|
1958
|
+
"qwen-vl-ocr": {
|
1959
|
+
"description": "통의천문 OCR은 문서, 표, 시험 문제, 손글씨 등 이미지 내 문자 추출에 특화된 전용 모델입니다. 중국어, 영어, 프랑스어, 일본어, 한국어, 독일어, 러시아어, 이탈리아어, 베트남어, 아랍어 등 다양한 언어를 인식할 수 있습니다."
|
1960
|
+
},
|
1961
|
+
"qwen-vl-plus": {
|
1962
|
+
"description": "통의천문 대규모 비전-언어 모델 강화판으로, 세부 인식 능력과 문자 인식 능력을 크게 향상시켰으며, 백만 화소 이상의 해상도와 임의 비율의 이미지를 지원합니다."
|
1936
1963
|
},
|
1937
1964
|
"qwen-vl-plus-latest": {
|
1938
1965
|
"description": "통의천문 대규모 비주얼 언어 모델 강화판. 세부 사항 인식 능력과 문자 인식 능력을 크게 향상시켰으며, 백만 화소 이상의 해상도와 임의의 가로 세로 비율의 이미지를 지원합니다."
|
@@ -2021,6 +2048,9 @@
|
|
2021
2048
|
"qwen2.5-coder-1.5b-instruct": {
|
2022
2049
|
"description": "통의천문 코드 모델 오픈 소스 버전입니다."
|
2023
2050
|
},
|
2051
|
+
"qwen2.5-coder-14b-instruct": {
|
2052
|
+
"description": "통의천문 코드 모델 오픈소스 버전입니다."
|
2053
|
+
},
|
2024
2054
|
"qwen2.5-coder-32b-instruct": {
|
2025
2055
|
"description": "통의 천문 코드 모델 오픈 소스 버전입니다."
|
2026
2056
|
},
|
@@ -2111,8 +2141,8 @@
|
|
2111
2141
|
"qwq-32b-preview": {
|
2112
2142
|
"description": "QwQ 모델은 Qwen 팀이 개발한 실험적 연구 모델로, AI 추론 능력을 향상시키는 데 중점을 두고 있습니다."
|
2113
2143
|
},
|
2114
|
-
"qwq-plus
|
2115
|
-
"description": "Qwen2.5 모델을 기반으로 훈련된 QwQ 추론 모델로, 강화 학습을 통해
|
2144
|
+
"qwq-plus": {
|
2145
|
+
"description": "Qwen2.5 모델을 기반으로 훈련된 QwQ 추론 모델로, 강화 학습을 통해 모델 추론 능력을 대폭 향상시켰습니다. 수학, 코드 등 핵심 지표(AIME 24/25, LiveCodeBench)와 일부 일반 지표(IFEval, LiveBench 등)에서 DeepSeek-R1 풀스펙 수준에 도달했습니다."
|
2116
2146
|
},
|
2117
2147
|
"qwq_32b": {
|
2118
2148
|
"description": "Qwen 시리즈의 중간 규모 추론 모델입니다. 전통적인 지시 조정 모델에 비해 사고 및 추론 능력을 갖춘 QwQ는 하위 작업에서, 특히 문제 해결 시 성능을 크게 향상시킬 수 있습니다."
|
@@ -71,6 +71,9 @@
|
|
71
71
|
"mistral": {
|
72
72
|
"description": "Mistral은 고급 일반, 전문 및 연구형 모델을 제공하며, 복잡한 추론, 다국어 작업, 코드 생성 등 다양한 분야에 널리 사용됩니다. 기능 호출 인터페이스를 통해 사용자는 사용자 정의 기능을 통합하여 특정 응용 프로그램을 구현할 수 있습니다."
|
73
73
|
},
|
74
|
+
"modelscope": {
|
75
|
+
"description": "ModelScope는 알리바바 클라우드에서 출시한 모델 서비스 플랫폼으로, 풍부한 AI 모델과 추론 서비스를 제공합니다."
|
76
|
+
},
|
74
77
|
"moonshot": {
|
75
78
|
"description": "Moonshot은 베이징 월의 어두운 면 기술 회사가 출시한 오픈 소스 플랫폼으로, 다양한 자연어 처리 모델을 제공하며, 콘텐츠 창작, 학술 연구, 스마트 추천, 의료 진단 등 다양한 분야에 적용됩니다. 긴 텍스트 처리 및 복잡한 생성 작업을 지원합니다."
|
76
79
|
},
|
@@ -208,6 +208,10 @@
|
|
208
208
|
"title": "Gebruik clientaanvraagmodus"
|
209
209
|
},
|
210
210
|
"helpDoc": "Configuratiehandleiding",
|
211
|
+
"responsesApi": {
|
212
|
+
"desc": "Gebruik de nieuwe generatie OpenAI-aanvraagformaatstandaard om geavanceerde functies zoals keten van gedachten te ontgrendelen",
|
213
|
+
"title": "Gebruik Responses API-standaard"
|
214
|
+
},
|
211
215
|
"waitingForMore": "Meer modellen zijn in <1>planning voor integratie</1>, blijf op de hoogte"
|
212
216
|
},
|
213
217
|
"createNew": {
|
@@ -230,6 +230,9 @@
|
|
230
230
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
231
231
|
"description": "DeepSeek-R1 is een inferentiemodel aangedreven door versterkend leren (RL), dat de problemen van herhaling en leesbaarheid in modellen aanpakt. Voor RL introduceert DeepSeek-R1 koude startdata, wat de inferentieprestaties verder optimaliseert. Het presteert vergelijkbaar met OpenAI-o1 in wiskunde, code en inferentietaken, en verbetert de algehele effectiviteit door zorgvuldig ontworpen trainingsmethoden."
|
232
232
|
},
|
233
|
+
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
234
|
+
"description": "DeepSeek-R1 is een door versterkend leren (RL) aangedreven redeneermodel dat problemen met herhaling en leesbaarheid in modellen aanpakt. Voor RL introduceert DeepSeek-R1 cold-start data om de redeneerprestaties verder te optimaliseren. Het presteert vergelijkbaar met OpenAI-o1 in wiskunde, code en redeneertaken en verbetert de algehele effectiviteit door zorgvuldig ontworpen trainingsmethoden."
|
235
|
+
},
|
233
236
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
234
237
|
"description": "DeepSeek-R1-Distill-Qwen-1.5B is een model dat is afgeleid van Qwen2.5-Math-1.5B door middel van kennisdistillatie. Dit model is fijn afgesteld met 800.000 zorgvuldig geselecteerde voorbeelden die zijn gegenereerd door DeepSeek-R1, en toont goede prestaties op meerdere benchmarks. Als een lichtgewicht model behaalde het een nauwkeurigheid van 83,9% op MATH-500, een doorlooptarief van 28,9% op AIME 2024 en een score van 954 op CodeForces, wat aantoont dat het inferentiecapaciteiten heeft die verder gaan dan zijn parameterschaal."
|
235
238
|
},
|
@@ -422,8 +425,8 @@
|
|
422
425
|
"THUDM/glm-4-9b-chat": {
|
423
426
|
"description": "GLM-4 9B is de open-source versie die een geoptimaliseerde gesprekservaring biedt voor gespreksapplicaties."
|
424
427
|
},
|
425
|
-
"
|
426
|
-
"description": "
|
428
|
+
"Tongyi-Zhiwen/QwenLong-L1-32B": {
|
429
|
+
"description": "QwenLong-L1-32B is het eerste grote redeneermodel met lange context (LRM) dat getraind is met versterkend leren, geoptimaliseerd voor lange tekstredeneringstaken. Het model bereikt stabiele overdracht van korte naar lange context via een progressief contextuitbreidingsraamwerk. In zeven lange context documentvraag-en-antwoord benchmarks overtreft QwenLong-L1-32B vlaggenschipmodellen zoals OpenAI-o3-mini en Qwen3-235B-A22B, en presteert vergelijkbaar met Claude-3.7-Sonnet-Thinking. Het model blinkt uit in complexe taken zoals wiskundige, logische en multi-hop redenering."
|
427
430
|
},
|
428
431
|
"Yi-34B-Chat": {
|
429
432
|
"description": "Yi-1.5-34B heeft de uitstekende algemene taalvaardigheden van de oorspronkelijke modelserie behouden en heeft door incrementele training van 500 miljard hoogwaardige tokens de wiskundige logica en codevaardigheden aanzienlijk verbeterd."
|
@@ -734,6 +737,12 @@
|
|
734
737
|
"deepseek-ai/DeepSeek-R1": {
|
735
738
|
"description": "DeepSeek-R1 is een op versterkend leren (RL) aangedreven inferentiemodel dat de problemen van herhaling en leesbaarheid in het model oplost. Voor RL introduceerde DeepSeek-R1 koude startdata om de inferentieprestaties verder te optimaliseren. Het presteert vergelijkbaar met OpenAI-o1 in wiskunde, code en inferentietaken, en verbetert de algehele effectiviteit door zorgvuldig ontworpen trainingsmethoden."
|
736
739
|
},
|
740
|
+
"deepseek-ai/DeepSeek-R1-0528": {
|
741
|
+
"description": "DeepSeek R1 verbetert aanzienlijk de diepte van redeneer- en inferentiecapaciteiten door gebruik te maken van extra rekenkracht en algoritmische optimalisaties tijdens de natrainingsfase. Het model presteert uitstekend op diverse benchmarktests, waaronder wiskunde, programmeren en algemene logica. De algehele prestaties benaderen nu toonaangevende modellen zoals O3 en Gemini 2.5 Pro."
|
742
|
+
},
|
743
|
+
"deepseek-ai/DeepSeek-R1-0528-Qwen3-8B": {
|
744
|
+
"description": "DeepSeek-R1-0528-Qwen3-8B is een model verkregen door het destilleren van ketens van gedachten van DeepSeek-R1-0528 naar Qwen3 8B Base. Dit model bereikt state-of-the-art prestaties onder open source modellen, overtreft Qwen3 8B met 10% in de AIME 2024 test en bereikt het prestatieniveau van Qwen3-235B-thinking. Het presteert uitstekend in wiskundige redenering, programmeren en algemene logica benchmarks. De architectuur is identiek aan Qwen3-8B, maar deelt de tokenizerconfiguratie van DeepSeek-R1-0528."
|
745
|
+
},
|
737
746
|
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
|
738
747
|
"description": "DeepSeek-R1 distillatiemodel, geoptimaliseerd voor inferentieprestaties door versterkend leren en koude startdata, open-source model dat de multi-taak benchmark vernieuwt."
|
739
748
|
},
|
@@ -836,9 +845,6 @@
|
|
836
845
|
"deepseek-v3-0324": {
|
837
846
|
"description": "DeepSeek-V3-0324 is een MoE-model met 671 miljard parameters, dat uitblinkt in programmeer- en technische vaardigheden, contextbegrip en het verwerken van lange teksten."
|
838
847
|
},
|
839
|
-
"deepseek/deepseek-chat": {
|
840
|
-
"description": "Een nieuw open-source model dat algemene en codeercapaciteiten combineert, niet alleen de algemene gespreksvaardigheden van het oorspronkelijke Chat-model en de krachtige codeverwerkingscapaciteiten van het Coder-model behoudt, maar ook beter is afgestemd op menselijke voorkeuren. Bovendien heeft DeepSeek-V2.5 aanzienlijke verbeteringen gerealiseerd in schrijfopdrachten, instructievolging en meer."
|
841
|
-
},
|
842
848
|
"deepseek/deepseek-chat-v3-0324": {
|
843
849
|
"description": "DeepSeek V3 is een expert gemengd model met 685B parameters, de nieuwste iteratie van de vlaggenschip chatmodelreeks van het DeepSeek-team.\n\nHet is een opvolger van het [DeepSeek V3](/deepseek/deepseek-chat-v3) model en presteert uitstekend in verschillende taken."
|
844
850
|
},
|
@@ -848,6 +854,12 @@
|
|
848
854
|
"deepseek/deepseek-r1": {
|
849
855
|
"description": "DeepSeek-R1 heeft de redeneringscapaciteiten van het model aanzienlijk verbeterd, zelfs met zeer weinig gelabelde gegevens. Voordat het model het uiteindelijke antwoord geeft, genereert het eerst een denkproces om de nauwkeurigheid van het uiteindelijke antwoord te verbeteren."
|
850
856
|
},
|
857
|
+
"deepseek/deepseek-r1-0528": {
|
858
|
+
"description": "DeepSeek-R1 verbetert de redeneercapaciteit van het model aanzienlijk, zelfs met zeer weinig gelabelde data. Voor het geven van het uiteindelijke antwoord genereert het model eerst een keten van gedachten om de nauwkeurigheid van het antwoord te verhogen."
|
859
|
+
},
|
860
|
+
"deepseek/deepseek-r1-0528:free": {
|
861
|
+
"description": "DeepSeek-R1 verbetert de redeneercapaciteit van het model aanzienlijk, zelfs met zeer weinig gelabelde data. Voor het geven van het uiteindelijke antwoord genereert het model eerst een keten van gedachten om de nauwkeurigheid van het antwoord te verhogen."
|
862
|
+
},
|
851
863
|
"deepseek/deepseek-r1-distill-llama-70b": {
|
852
864
|
"description": "DeepSeek R1 Distill Llama 70B is een groot taalmodel gebaseerd op Llama3.3 70B, dat gebruikmaakt van de fine-tuning van DeepSeek R1-output en vergelijkbare concurrentieprestaties bereikt als grote vooraanstaande modellen."
|
853
865
|
},
|
@@ -1262,6 +1274,9 @@
|
|
1262
1274
|
"gpt-4o-mini-realtime-preview": {
|
1263
1275
|
"description": "GPT-4o-mini realtime versie, ondersteunt audio en tekst realtime invoer en uitvoer."
|
1264
1276
|
},
|
1277
|
+
"gpt-4o-mini-search-preview": {
|
1278
|
+
"description": "GPT-4o mini zoekpreview is een model dat speciaal is getraind om webzoekopdrachten te begrijpen en uit te voeren, gebruikmakend van de Chat Completions API. Naast tokenkosten worden webzoekopdrachten ook per toolaanroep in rekening gebracht."
|
1279
|
+
},
|
1265
1280
|
"gpt-4o-mini-tts": {
|
1266
1281
|
"description": "GPT-4o mini TTS is een tekst-naar-spraak model dat is gebaseerd op GPT-4o mini, en biedt hoge kwaliteit spraakgeneratie tegen een lagere prijs."
|
1267
1282
|
},
|
@@ -1274,6 +1289,9 @@
|
|
1274
1289
|
"gpt-4o-realtime-preview-2024-12-17": {
|
1275
1290
|
"description": "GPT-4o realtime versie, ondersteunt audio en tekst realtime invoer en uitvoer."
|
1276
1291
|
},
|
1292
|
+
"gpt-4o-search-preview": {
|
1293
|
+
"description": "GPT-4o zoekpreview is een model dat speciaal is getraind om webzoekopdrachten te begrijpen en uit te voeren, gebruikmakend van de Chat Completions API. Naast tokenkosten worden webzoekopdrachten ook per toolaanroep in rekening gebracht."
|
1294
|
+
},
|
1277
1295
|
"grok-2-1212": {
|
1278
1296
|
"description": "Dit model heeft verbeteringen aangebracht in nauwkeurigheid, instructievolging en meertalige capaciteiten."
|
1279
1297
|
},
|
@@ -1307,6 +1325,9 @@
|
|
1307
1325
|
"hunyuan-large-longcontext": {
|
1308
1326
|
"description": "Uitstekend in het verwerken van lange teksttaken zoals document samenvattingen en documentvragen, en heeft ook de capaciteit om algemene tekstgeneratietaken uit te voeren. Het presteert uitstekend in de analyse en generatie van lange teksten en kan effectief omgaan met complexe en gedetailleerde lange inhoudsverwerkingsbehoeften."
|
1309
1327
|
},
|
1328
|
+
"hunyuan-large-vision": {
|
1329
|
+
"description": "Dit model is geschikt voor scenario's met beeld- en tekstbegrip. Het is een visueel-taal groot model gebaseerd op Hunyuan Large training, ondersteunt meerdere afbeeldingen met willekeurige resoluties plus tekstinvoer, genereert tekstinhoud en richt zich op taken gerelateerd aan beeld-tekstbegrip, met significante verbeteringen in meertalige beeld-tekstbegrip."
|
1330
|
+
},
|
1310
1331
|
"hunyuan-lite": {
|
1311
1332
|
"description": "Geüpgraded naar een MOE-structuur, met een contextvenster van 256k, en leidt in verschillende evaluatiesets op het gebied van NLP, code, wiskunde en industrie ten opzichte van vele open-source modellen."
|
1312
1333
|
},
|
@@ -1331,18 +1352,15 @@
|
|
1331
1352
|
"hunyuan-t1-20250321": {
|
1332
1353
|
"description": "Biedt een uitgebreide opbouw van modelcapaciteiten in zowel exacte als sociale wetenschappen, met sterke mogelijkheden voor het vastleggen van lange tekstinformatie. Ondersteunt redenering en antwoorden op wetenschappelijke vragen van verschillende moeilijkheidsgraden, zoals wiskunde/logica/wetenschap/code."
|
1333
1354
|
},
|
1355
|
+
"hunyuan-t1-20250403": {
|
1356
|
+
"description": "Verbeter de codegeneratie op projectniveau; verhoog de kwaliteit van tekstgeneratie en schrijfvaardigheid; verbeter het begrip van tekstonderwerpen, multi-turn en to-the-point instructies en woordbegrip; optimaliseer problemen met gemengde traditionele en vereenvoudigde karakters en gemengde Chinese en Engelse output."
|
1357
|
+
},
|
1334
1358
|
"hunyuan-t1-latest": {
|
1335
1359
|
"description": "De eerste ultra-grote Hybrid-Transformer-Mamba inferentiemodel in de industrie, dat de inferentiemogelijkheden uitbreidt, met een superieure decodesnelheid en verder afgestemd op menselijke voorkeuren."
|
1336
1360
|
},
|
1337
1361
|
"hunyuan-t1-vision": {
|
1338
1362
|
"description": "Hunyuan multimodaal begrip en diepdenkend model, ondersteunt native multimodale lange-denk-ketens, excelleert in diverse beeldredeneerscenario's en verbetert aanzienlijk ten opzichte van snelle denkers bij exacte wetenschappen."
|
1339
1363
|
},
|
1340
|
-
"hunyuan-translation": {
|
1341
|
-
"description": "Ondersteunt vertalingen tussen het Chinees en 15 andere talen, waaronder Engels, Japans, Frans, Portugees, Spaans, Turks, Russisch, Arabisch, Koreaans, Italiaans, Duits, Vietnamees, Maleis en Indonesisch. Gebaseerd op een geautomatiseerde evaluatie van de COMET-score met een meervoudige scenario-vertalingstestset, overtreft het in het algemeen de vertaalcapaciteiten van vergelijkbare modellen op de markt."
|
1342
|
-
},
|
1343
|
-
"hunyuan-translation-lite": {
|
1344
|
-
"description": "Het Hunyuan vertaalmodel ondersteunt natuurlijke taal conversatievertalingen; het ondersteunt vertalingen tussen het Chinees en 15 andere talen, waaronder Engels, Japans, Frans, Portugees, Spaans, Turks, Russisch, Arabisch, Koreaans, Italiaans, Duits, Vietnamees, Maleis en Indonesisch."
|
1345
|
-
},
|
1346
1364
|
"hunyuan-turbo": {
|
1347
1365
|
"description": "Een previewversie van het nieuwe generatie grote taalmodel van Hunyuan, met een nieuwe hybride expertmodel (MoE) structuur, die sneller inferentie-efficiëntie biedt en betere prestaties levert dan hunyan-pro."
|
1348
1366
|
},
|
@@ -1355,8 +1373,11 @@
|
|
1355
1373
|
"hunyuan-turbo-vision": {
|
1356
1374
|
"description": "De nieuwe generatie visuele taal vlaggenschipmodel van Hunyuan, met een geheel nieuwe hybride expertmodel (MoE) structuur, biedt aanzienlijke verbeteringen in basisherkenning, inhoudcreatie, kennisvragen, en analytische redeneervaardigheden in vergelijking met de vorige generatie modellen."
|
1357
1375
|
},
|
1358
|
-
"hunyuan-turbos-
|
1359
|
-
"description": "
|
1376
|
+
"hunyuan-turbos-20250313": {
|
1377
|
+
"description": "Uniformeer de stijl van wiskundige oplossingsstappen en versterk multi-turn wiskundige vraag-en-antwoord sessies. Optimaliseer de schrijfstijl van tekstcreatie, verwijder AI-achtige kenmerken en voeg literaire flair toe."
|
1378
|
+
},
|
1379
|
+
"hunyuan-turbos-20250416": {
|
1380
|
+
"description": "Upgrade van het pre-trainingsfundament, versterkt het begrip en de naleving van instructies; verbetert wiskundige, codeer-, logische en wetenschappelijke vaardigheden tijdens de afstemmingsfase; verhoogt de kwaliteit van creatieve teksten, tekstbegrip, vertaalnauwkeurigheid en kennisvragen; versterkt de capaciteiten van agenten in diverse domeinen, met speciale aandacht voor het begrip van multi-turn dialogen."
|
1360
1381
|
},
|
1361
1382
|
"hunyuan-turbos-latest": {
|
1362
1383
|
"description": "hunyuan-TurboS is de nieuwste versie van het Hunyuan vlaggenschipmodel, met verbeterde denkcapaciteiten en een betere gebruikerservaring."
|
@@ -1364,8 +1385,8 @@
|
|
1364
1385
|
"hunyuan-turbos-longtext-128k-20250325": {
|
1365
1386
|
"description": "Uitstekend in het verwerken van lange teksttaken zoals documentsamenvattingen en documentvragen, en heeft ook de capaciteit om algemene tekstgeneratietaken uit te voeren. Het presteert uitstekend in de analyse en generatie van lange teksten en kan effectief omgaan met complexe en gedetailleerde lange inhoud."
|
1366
1387
|
},
|
1367
|
-
"hunyuan-turbos-
|
1368
|
-
"description": "
|
1388
|
+
"hunyuan-turbos-role-plus": {
|
1389
|
+
"description": "De nieuwste versie van het Hunyuan rollenspelmodel, officieel fijngetuned door Hunyuan, getraind met datasets voor rollenspelscenario's, biedt betere basisprestaties in rollenspelsituaties."
|
1369
1390
|
},
|
1370
1391
|
"hunyuan-vision": {
|
1371
1392
|
"description": "Het nieuwste multimodale model van Hunyuan, ondersteunt het genereren van tekstinhoud op basis van afbeelding + tekstinvoer."
|
@@ -1886,11 +1907,14 @@
|
|
1886
1907
|
"qvq-72b-preview": {
|
1887
1908
|
"description": "Het QVQ-model is een experimenteel onderzoeksmodel ontwikkeld door het Qwen-team, gericht op het verbeteren van visuele redeneervaardigheden, vooral in het domein van wiskundige redenering."
|
1888
1909
|
},
|
1889
|
-
"qvq-max
|
1890
|
-
"description": "
|
1910
|
+
"qvq-max": {
|
1911
|
+
"description": "Tongyi Qianwen QVQ visueel redeneermodel, ondersteunt visuele input en keten van gedachten output, toont sterkere capaciteiten in wiskunde, programmeren, visuele analyse, creatie en algemene taken."
|
1912
|
+
},
|
1913
|
+
"qwen-coder-plus": {
|
1914
|
+
"description": "Tongyi Qianwen codeermodel."
|
1891
1915
|
},
|
1892
|
-
"qwen-coder-
|
1893
|
-
"description": "Tongyi Qianwen
|
1916
|
+
"qwen-coder-turbo": {
|
1917
|
+
"description": "Tongyi Qianwen codeermodel."
|
1894
1918
|
},
|
1895
1919
|
"qwen-coder-turbo-latest": {
|
1896
1920
|
"description": "Het Tongyi Qianwen codeermodel."
|
@@ -1898,41 +1922,44 @@
|
|
1898
1922
|
"qwen-long": {
|
1899
1923
|
"description": "Qwen is een grootschalig taalmodel dat lange tekstcontexten ondersteunt, evenals dialoogfunctionaliteit op basis van lange documenten en meerdere documenten."
|
1900
1924
|
},
|
1925
|
+
"qwen-math-plus": {
|
1926
|
+
"description": "Tongyi Qianwen wiskundemodel, speciaal ontworpen voor het oplossen van wiskundige problemen."
|
1927
|
+
},
|
1901
1928
|
"qwen-math-plus-latest": {
|
1902
1929
|
"description": "Het Tongyi Qianwen wiskundemodel is speciaal ontworpen voor het oplossen van wiskundige problemen."
|
1903
1930
|
},
|
1931
|
+
"qwen-math-turbo": {
|
1932
|
+
"description": "Tongyi Qianwen wiskundemodel, speciaal ontworpen voor het oplossen van wiskundige problemen."
|
1933
|
+
},
|
1904
1934
|
"qwen-math-turbo-latest": {
|
1905
1935
|
"description": "Het Tongyi Qianwen wiskundemodel is speciaal ontworpen voor het oplossen van wiskundige problemen."
|
1906
1936
|
},
|
1907
1937
|
"qwen-max": {
|
1908
1938
|
"description": "Qwen is een enorme versie van het grootschalige taalmodel, dat ondersteuning biedt voor verschillende taalinputs zoals Chinees en Engels en momenteel de API-modellen achter de Qwen 2.5-productversie vertegenwoordigt."
|
1909
1939
|
},
|
1910
|
-
"qwen-
|
1911
|
-
"description": "
|
1912
|
-
},
|
1913
|
-
"qwen-omni-turbo-latest": {
|
1914
|
-
"description": "De Qwen-Omni serie modellen ondersteunt het invoeren van gegevens in verschillende modaliteiten, waaronder video, audio, afbeeldingen en tekst, en kan audio en tekst als output genereren."
|
1940
|
+
"qwen-omni-turbo": {
|
1941
|
+
"description": "De Qwen-Omni serie modellen ondersteunen multimodale input, waaronder video, audio, afbeeldingen en tekst, en genereren audio en tekst als output."
|
1915
1942
|
},
|
1916
1943
|
"qwen-plus": {
|
1917
1944
|
"description": "Qwen is een verbeterde versie van het grootschalige taalmodel dat ondersteuning biedt voor verschillende taalinputs zoals Chinees en Engels."
|
1918
1945
|
},
|
1919
|
-
"qwen-plus-latest": {
|
1920
|
-
"description": "De verbeterde versie van het Tongyi Qianwen supergrote taalmodel ondersteunt invoer in verschillende talen, waaronder Chinees en Engels."
|
1921
|
-
},
|
1922
1946
|
"qwen-turbo": {
|
1923
1947
|
"description": "Qwen is een grootschalig taalmodel dat ondersteuning biedt voor verschillende taalinputs zoals Chinees en Engels."
|
1924
1948
|
},
|
1925
|
-
"qwen-turbo-latest": {
|
1926
|
-
"description": "De Tongyi Qianwen supergrote taalmodel ondersteunt invoer in verschillende talen, waaronder Chinees en Engels."
|
1927
|
-
},
|
1928
1949
|
"qwen-vl-chat-v1": {
|
1929
1950
|
"description": "Qwen VL ondersteunt flexibele interactiemethoden, inclusief meerdere afbeeldingen, meerdere rondes van vraag en antwoord, en creatiecapaciteiten."
|
1930
1951
|
},
|
1952
|
+
"qwen-vl-max": {
|
1953
|
+
"description": "Tongyi Qianwen ultra-grootschalig visueel-taalmodel. Vergeleken met de verbeterde versie, verbetert het opnieuw de visuele redeneercapaciteit en instructienaleving, en biedt een hoger niveau van visuele perceptie en cognitie."
|
1954
|
+
},
|
1931
1955
|
"qwen-vl-max-latest": {
|
1932
1956
|
"description": "Het Tongyi Qianwen ultra-grootschalige visuele taalmodel. In vergelijking met de verbeterde versie, verhoogt het opnieuw de visuele redeneervaardigheden en de naleving van instructies, en biedt het een hoger niveau van visuele waarneming en cognitie."
|
1933
1957
|
},
|
1934
|
-
"qwen-vl-ocr
|
1935
|
-
"description": "
|
1958
|
+
"qwen-vl-ocr": {
|
1959
|
+
"description": "Tongyi Qianwen OCR is een gespecialiseerd model voor teksterkenning, gericht op het extraheren van tekst uit documenten, tabellen, examenvragen, handgeschreven tekst en andere beeldtypen. Het kan meerdere talen herkennen, waaronder Chinees, Engels, Frans, Japans, Koreaans, Duits, Russisch, Italiaans, Vietnamees en Arabisch."
|
1960
|
+
},
|
1961
|
+
"qwen-vl-plus": {
|
1962
|
+
"description": "Verbeterde versie van het Tongyi Qianwen grootschalige visueel-taalmodel. Verbetert aanzienlijk de detailherkenning en tekstherkenning, ondersteunt afbeeldingen met meer dan een miljoen pixels en afbeeldingen met willekeurige verhoudingen."
|
1936
1963
|
},
|
1937
1964
|
"qwen-vl-plus-latest": {
|
1938
1965
|
"description": "De verbeterde versie van het Tongyi Qianwen grootschalige visuele taalmodel. Het verbetert aanzienlijk de detailherkenning en tekstherkenning, ondersteunt resoluties van meer dan een miljoen pixels en afbeeldingen met elke verhouding."
|
@@ -2021,6 +2048,9 @@
|
|
2021
2048
|
"qwen2.5-coder-1.5b-instruct": {
|
2022
2049
|
"description": "Qwen-code model open source versie."
|
2023
2050
|
},
|
2051
|
+
"qwen2.5-coder-14b-instruct": {
|
2052
|
+
"description": "Open source versie van het Tongyi Qianwen codeermodel."
|
2053
|
+
},
|
2024
2054
|
"qwen2.5-coder-32b-instruct": {
|
2025
2055
|
"description": "Open source versie van het Tongyi Qianwen code model."
|
2026
2056
|
},
|
@@ -2111,8 +2141,8 @@
|
|
2111
2141
|
"qwq-32b-preview": {
|
2112
2142
|
"description": "Het QwQ-model is een experimenteel onderzoeksmodel ontwikkeld door het Qwen-team, gericht op het verbeteren van de AI-redeneringscapaciteiten."
|
2113
2143
|
},
|
2114
|
-
"qwq-plus
|
2115
|
-
"description": "
|
2144
|
+
"qwq-plus": {
|
2145
|
+
"description": "QwQ redeneermodel gebaseerd op het Qwen2.5 model, met versterkt leren om de redeneercapaciteit aanzienlijk te verbeteren. De kernindicatoren voor wiskunde en code (AIME 24/25, LiveCodeBench) en enkele algemene indicatoren (IFEval, LiveBench, enz.) bereiken het volledige DeepSeek-R1 prestatieniveau."
|
2116
2146
|
},
|
2117
2147
|
"qwq_32b": {
|
2118
2148
|
"description": "Een gemiddeld schaal redeneringsmodel uit de Qwen-serie. In vergelijking met traditionele instructie-geoptimaliseerde modellen, kan QwQ, dat over denk- en redeneringscapaciteiten beschikt, de prestaties in downstream-taken, vooral bij het oplossen van moeilijke problemen, aanzienlijk verbeteren."
|
@@ -71,6 +71,9 @@
|
|
71
71
|
"mistral": {
|
72
72
|
"description": "Mistral biedt geavanceerde algemene, professionele en onderzoeksmodellen, die breed worden toegepast in complexe redenering, meertalige taken, codegeneratie en meer. Via functionele aanroepinterfaces kunnen gebruikers aangepaste functies integreren voor specifieke toepassingen."
|
73
73
|
},
|
74
|
+
"modelscope": {
|
75
|
+
"description": "ModelScope is een door Alibaba Cloud gelanceerd platform voor model-als-een-service, dat een breed scala aan AI-modellen en inferentiediensten biedt."
|
76
|
+
},
|
74
77
|
"moonshot": {
|
75
78
|
"description": "Moonshot is een open platform gelanceerd door Beijing Dark Side Technology Co., Ltd., dat verschillende modellen voor natuurlijke taalverwerking biedt, met een breed toepassingsgebied, waaronder maar niet beperkt tot contentcreatie, academisch onderzoek, slimme aanbevelingen, medische diagnose, en ondersteunt lange tekstverwerking en complexe generatietaken."
|
76
79
|
},
|
@@ -208,6 +208,10 @@
|
|
208
208
|
"title": "Użyj trybu żądania klienta"
|
209
209
|
},
|
210
210
|
"helpDoc": "Dokumentacja konfiguracyjna",
|
211
|
+
"responsesApi": {
|
212
|
+
"desc": "Wykorzystuje nową generację formatu zapytań OpenAI, odblokowując zaawansowane funkcje, takie jak łańcuchy myślowe",
|
213
|
+
"title": "Użyj specyfikacji Responses API"
|
214
|
+
},
|
211
215
|
"waitingForMore": "Więcej modeli jest w <1>planach integracji</1>, proszę czekać"
|
212
216
|
},
|
213
217
|
"createNew": {
|