@lobehub/chat 1.92.3 → 1.93.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (90) hide show
  1. package/CHANGELOG.md +25 -0
  2. package/README.md +8 -8
  3. package/README.zh-CN.md +8 -8
  4. package/changelog/v1.json +9 -0
  5. package/docs/development/database-schema.dbml +51 -1
  6. package/locales/ar/modelProvider.json +4 -0
  7. package/locales/ar/models.json +64 -34
  8. package/locales/ar/providers.json +3 -0
  9. package/locales/bg-BG/modelProvider.json +4 -0
  10. package/locales/bg-BG/models.json +64 -34
  11. package/locales/bg-BG/providers.json +3 -0
  12. package/locales/de-DE/modelProvider.json +4 -0
  13. package/locales/de-DE/models.json +64 -34
  14. package/locales/de-DE/providers.json +3 -0
  15. package/locales/en-US/modelProvider.json +4 -0
  16. package/locales/en-US/models.json +64 -34
  17. package/locales/en-US/providers.json +3 -0
  18. package/locales/es-ES/modelProvider.json +4 -0
  19. package/locales/es-ES/models.json +64 -34
  20. package/locales/es-ES/providers.json +3 -0
  21. package/locales/fa-IR/modelProvider.json +4 -0
  22. package/locales/fa-IR/models.json +64 -34
  23. package/locales/fa-IR/providers.json +3 -0
  24. package/locales/fr-FR/modelProvider.json +4 -0
  25. package/locales/fr-FR/models.json +64 -34
  26. package/locales/fr-FR/providers.json +3 -0
  27. package/locales/it-IT/modelProvider.json +4 -0
  28. package/locales/it-IT/models.json +64 -34
  29. package/locales/it-IT/providers.json +3 -0
  30. package/locales/ja-JP/modelProvider.json +4 -0
  31. package/locales/ja-JP/models.json +64 -34
  32. package/locales/ja-JP/providers.json +3 -0
  33. package/locales/ko-KR/modelProvider.json +4 -0
  34. package/locales/ko-KR/models.json +64 -34
  35. package/locales/ko-KR/providers.json +3 -0
  36. package/locales/nl-NL/modelProvider.json +4 -0
  37. package/locales/nl-NL/models.json +64 -34
  38. package/locales/nl-NL/providers.json +3 -0
  39. package/locales/pl-PL/modelProvider.json +4 -0
  40. package/locales/pl-PL/models.json +64 -34
  41. package/locales/pl-PL/providers.json +3 -0
  42. package/locales/pt-BR/modelProvider.json +4 -0
  43. package/locales/pt-BR/models.json +64 -34
  44. package/locales/pt-BR/providers.json +3 -0
  45. package/locales/ru-RU/modelProvider.json +4 -0
  46. package/locales/ru-RU/models.json +63 -33
  47. package/locales/ru-RU/providers.json +3 -0
  48. package/locales/tr-TR/modelProvider.json +4 -0
  49. package/locales/tr-TR/models.json +64 -34
  50. package/locales/tr-TR/providers.json +3 -0
  51. package/locales/vi-VN/modelProvider.json +4 -0
  52. package/locales/vi-VN/models.json +64 -34
  53. package/locales/vi-VN/providers.json +3 -0
  54. package/locales/zh-CN/modelProvider.json +4 -0
  55. package/locales/zh-CN/models.json +59 -29
  56. package/locales/zh-CN/providers.json +3 -0
  57. package/locales/zh-TW/modelProvider.json +4 -0
  58. package/locales/zh-TW/models.json +64 -34
  59. package/locales/zh-TW/providers.json +3 -0
  60. package/package.json +1 -1
  61. package/src/app/[variants]/(main)/settings/provider/features/ProviderConfig/index.tsx +16 -0
  62. package/src/config/modelProviders/openai.ts +3 -1
  63. package/src/database/client/migrations.json +25 -0
  64. package/src/database/migrations/0025_add_provider_config.sql +1 -0
  65. package/src/database/migrations/meta/0025_snapshot.json +5703 -0
  66. package/src/database/migrations/meta/_journal.json +7 -0
  67. package/src/database/models/__tests__/aiProvider.test.ts +2 -0
  68. package/src/database/models/aiProvider.ts +5 -2
  69. package/src/database/repositories/tableViewer/index.test.ts +1 -1
  70. package/src/database/schemas/_helpers.ts +5 -1
  71. package/src/database/schemas/aiInfra.ts +5 -1
  72. package/src/libs/model-runtime/openai/index.ts +21 -2
  73. package/src/libs/model-runtime/types/chat.ts +6 -9
  74. package/src/libs/model-runtime/utils/openaiCompatibleFactory/index.ts +79 -5
  75. package/src/libs/model-runtime/utils/openaiHelpers.test.ts +145 -1
  76. package/src/libs/model-runtime/utils/openaiHelpers.ts +59 -0
  77. package/src/libs/model-runtime/utils/streams/openai/__snapshots__/responsesStream.test.ts.snap +193 -0
  78. package/src/libs/model-runtime/utils/streams/openai/index.ts +2 -0
  79. package/src/libs/model-runtime/utils/streams/{openai.test.ts → openai/openai.test.ts} +1 -1
  80. package/src/libs/model-runtime/utils/streams/{openai.ts → openai/openai.ts} +5 -5
  81. package/src/libs/model-runtime/utils/streams/openai/responsesStream.test.ts +826 -0
  82. package/src/libs/model-runtime/utils/streams/openai/responsesStream.ts +166 -0
  83. package/src/libs/model-runtime/utils/streams/protocol.ts +4 -1
  84. package/src/libs/model-runtime/utils/streams/utils.ts +20 -0
  85. package/src/libs/model-runtime/utils/usageConverter.ts +59 -0
  86. package/src/locales/default/modelProvider.ts +4 -0
  87. package/src/services/__tests__/chat.test.ts +27 -0
  88. package/src/services/chat.ts +8 -2
  89. package/src/store/aiInfra/slices/aiProvider/selectors.ts +11 -0
  90. package/src/types/aiProvider.ts +13 -1
@@ -230,6 +230,9 @@
230
230
  "Pro/deepseek-ai/DeepSeek-R1": {
231
231
  "description": "DeepSeek-R1 è un modello di inferenza guidato dall'apprendimento per rinforzo (RL) che affronta i problemi di ripetitività e leggibilità nel modello. Prima dell'RL, DeepSeek-R1 ha introdotto dati di cold start, ottimizzando ulteriormente le prestazioni di inferenza. Si comporta in modo comparabile a OpenAI-o1 in compiti matematici, di codifica e di inferenza, e migliora l'efficacia complessiva grazie a metodi di addestramento ben progettati."
232
232
  },
233
+ "Pro/deepseek-ai/DeepSeek-R1-0120": {
234
+ "description": "DeepSeek-R1 è un modello di ragionamento guidato da apprendimento rinforzato (RL) che risolve problemi di ripetitività e leggibilità. Prima del RL, ha introdotto dati di cold start per ottimizzare ulteriormente le prestazioni di ragionamento. Le sue prestazioni in matematica, codice e ragionamento sono comparabili a OpenAI-o1, con miglioramenti complessivi grazie a metodi di addestramento accuratamente progettati."
235
+ },
233
236
  "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
234
237
  "description": "DeepSeek-R1-Distill-Qwen-1.5B è un modello ottenuto attraverso il distillamento del knowledge da Qwen2.5-Math-1.5B. Questo modello è stato fine-tunato utilizzando 800.000 campioni selezionati generati da DeepSeek-R1, mostrando un'ottima performance in diversi benchmark. Come modello leggero, ha raggiunto un'accuratezza del 83,9% su MATH-500, una percentuale di passaggio del 28,9% su AIME 2024 e una valutazione di 954 su CodeForces, dimostrando capacità di inferenza superiori alla sua scala di parametri."
235
238
  },
@@ -422,8 +425,8 @@
422
425
  "THUDM/glm-4-9b-chat": {
423
426
  "description": "GLM-4 9B è una versione open source, progettata per fornire un'esperienza di dialogo ottimizzata per applicazioni conversazionali."
424
427
  },
425
- "Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
426
- "description": "Qwen2.5-72B-Instruct è uno dei più recenti modelli linguistici di grandi dimensioni rilasciati da Alibaba Cloud. Questo modello da 72B ha capacità notevolmente migliorate in codifica e matematica. Il modello offre anche supporto multilingue, coprendo oltre 29 lingue, tra cui cinese e inglese. Ha mostrato miglioramenti significativi nel seguire istruzioni, comprendere dati strutturati e generare output strutturati (soprattutto JSON)."
428
+ "Tongyi-Zhiwen/QwenLong-L1-32B": {
429
+ "description": "QwenLong-L1-32B è il primo modello di ragionamento a lungo contesto di grandi dimensioni (LRM) addestrato con apprendimento rinforzato, ottimizzato per compiti di ragionamento su testi lunghi. Il modello utilizza un framework di apprendimento rinforzato con espansione progressiva del contesto, garantendo una transizione stabile da contesti brevi a lunghi. Nei sette benchmark di domande su documenti a lungo contesto, QwenLong-L1-32B supera modelli di punta come OpenAI-o3-mini e Qwen3-235B-A22B, con prestazioni comparabili a Claude-3.7-Sonnet-Thinking. Eccelle in ragionamento matematico, logico e multi-hop."
427
430
  },
428
431
  "Yi-34B-Chat": {
429
432
  "description": "Yi-1.5-34B, mantenendo le eccellenti capacità linguistiche generali della serie originale, ha notevolmente migliorato la logica matematica e le capacità di codifica attraverso un addestramento incrementale su 500 miliardi di token di alta qualità."
@@ -734,6 +737,12 @@
734
737
  "deepseek-ai/DeepSeek-R1": {
735
738
  "description": "DeepSeek-R1 è un modello di inferenza guidato da apprendimento rinforzato (RL) che affronta i problemi di ripetitività e leggibilità nel modello. Prima dell'RL, DeepSeek-R1 ha introdotto dati di cold start, ottimizzando ulteriormente le prestazioni di inferenza. Si comporta in modo comparabile a OpenAI-o1 in compiti matematici, di codifica e di inferenza, e migliora l'efficacia complessiva attraverso metodi di addestramento accuratamente progettati."
736
739
  },
740
+ "deepseek-ai/DeepSeek-R1-0528": {
741
+ "description": "DeepSeek R1 migliora significativamente la profondità delle capacità di ragionamento e inferenza grazie all’uso di risorse computazionali aumentate e all’introduzione di meccanismi di ottimizzazione algoritmica nel post-addestramento. Il modello eccelle in vari benchmark, inclusi matematica, programmazione e logica generale, avvicinandosi alle prestazioni di modelli leader come O3 e Gemini 2.5 Pro."
742
+ },
743
+ "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B": {
744
+ "description": "DeepSeek-R1-0528-Qwen3-8B è un modello ottenuto distillando la catena di pensieri da DeepSeek-R1-0528 al modello base Qwen3 8B. Rappresenta lo stato dell’arte tra i modelli open source, superando Qwen3 8B del 10% nel test AIME 2024 e raggiungendo le prestazioni di Qwen3-235B-thinking. Eccelle in ragionamento matematico, programmazione e logica generale, con architettura identica a Qwen3-8B ma con configurazione del tokenizer condivisa con DeepSeek-R1-0528."
745
+ },
737
746
  "deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
738
747
  "description": "Il modello di distillazione DeepSeek-R1 ottimizza le prestazioni di inferenza attraverso l'apprendimento rinforzato e dati di avvio a freddo, aggiornando il benchmark multi-task del modello open source."
739
748
  },
@@ -836,9 +845,6 @@
836
845
  "deepseek-v3-0324": {
837
846
  "description": "DeepSeek-V3-0324 è un modello MoE con 671 miliardi di parametri, con vantaggi notevoli nelle capacità di programmazione e tecniche, comprensione del contesto e gestione di testi lunghi."
838
847
  },
839
- "deepseek/deepseek-chat": {
840
- "description": "Un nuovo modello open source che integra capacità generali e di codice, mantenendo non solo le capacità di dialogo generali del modello Chat originale e la potente capacità di elaborazione del codice del modello Coder, ma allineandosi anche meglio alle preferenze umane. Inoltre, DeepSeek-V2.5 ha ottenuto notevoli miglioramenti in vari aspetti, come compiti di scrittura e seguire istruzioni."
841
- },
842
848
  "deepseek/deepseek-chat-v3-0324": {
843
849
  "description": "DeepSeek V3 è un modello misto esperto con 685B di parametri, l'ultima iterazione della serie di modelli di chat di punta del team DeepSeek.\n\nEredita il modello [DeepSeek V3](/deepseek/deepseek-chat-v3) e si comporta eccezionalmente in vari compiti."
844
850
  },
@@ -848,6 +854,12 @@
848
854
  "deepseek/deepseek-r1": {
849
855
  "description": "DeepSeek-R1 ha notevolmente migliorato le capacità di ragionamento del modello con pochissimi dati etichettati. Prima di fornire la risposta finale, il modello genera una catena di pensiero per migliorare l'accuratezza della risposta finale."
850
856
  },
857
+ "deepseek/deepseek-r1-0528": {
858
+ "description": "DeepSeek-R1 migliora notevolmente la capacità di ragionamento del modello anche con pochissimi dati annotati. Prima di fornire la risposta finale, il modello genera una catena di pensieri per aumentare la precisione della risposta."
859
+ },
860
+ "deepseek/deepseek-r1-0528:free": {
861
+ "description": "DeepSeek-R1 migliora notevolmente la capacità di ragionamento del modello anche con pochissimi dati annotati. Prima di fornire la risposta finale, il modello genera una catena di pensieri per aumentare la precisione della risposta."
862
+ },
851
863
  "deepseek/deepseek-r1-distill-llama-70b": {
852
864
  "description": "DeepSeek R1 Distill Llama 70B è un grande modello di linguaggio basato su Llama3.3 70B, che utilizza il fine-tuning dell'output di DeepSeek R1 per raggiungere prestazioni competitive paragonabili a quelle dei modelli all'avanguardia di grandi dimensioni."
853
865
  },
@@ -1262,6 +1274,9 @@
1262
1274
  "gpt-4o-mini-realtime-preview": {
1263
1275
  "description": "Versione in tempo reale di GPT-4o-mini, supporta input e output audio e testuali in tempo reale."
1264
1276
  },
1277
+ "gpt-4o-mini-search-preview": {
1278
+ "description": "La versione preview di GPT-4o mini per la ricerca è un modello appositamente addestrato per comprendere ed eseguire query di ricerca web, utilizzando l’API Chat Completions. Oltre ai costi per token, le query di ricerca web comportano un costo per ogni chiamata allo strumento."
1279
+ },
1265
1280
  "gpt-4o-mini-tts": {
1266
1281
  "description": "GPT-4o mini TTS è un modello di sintesi vocale basato su GPT-4o mini, che offre una generazione di voce di alta qualità a un costo più basso."
1267
1282
  },
@@ -1274,6 +1289,9 @@
1274
1289
  "gpt-4o-realtime-preview-2024-12-17": {
1275
1290
  "description": "Versione in tempo reale di GPT-4o, supporta input e output audio e testuali in tempo reale."
1276
1291
  },
1292
+ "gpt-4o-search-preview": {
1293
+ "description": "La versione preview di GPT-4o per la ricerca è un modello appositamente addestrato per comprendere ed eseguire query di ricerca web, utilizzando l’API Chat Completions. Oltre ai costi per token, le query di ricerca web comportano un costo per ogni chiamata allo strumento."
1294
+ },
1277
1295
  "grok-2-1212": {
1278
1296
  "description": "Questo modello ha migliorato l'accuratezza, il rispetto delle istruzioni e le capacità multilingue."
1279
1297
  },
@@ -1307,6 +1325,9 @@
1307
1325
  "hunyuan-large-longcontext": {
1308
1326
  "description": "Specializzato nel gestire compiti di testi lunghi come riassunti di documenti e domande e risposte sui documenti, possiede anche capacità di generazione di testi generali. Eccelle nell'analisi e nella generazione di testi lunghi, in grado di affrontare efficacemente esigenze complesse e dettagliate di elaborazione di contenuti lunghi."
1309
1327
  },
1328
+ "hunyuan-large-vision": {
1329
+ "description": "Questo modello è adatto per scenari di comprensione testo-immagine, basato sul modello misto Large di Hunyuan. Supporta input di più immagini a risoluzione arbitraria più testo, generando contenuti testuali, con un focus sulle attività di comprensione testo-immagine e un significativo miglioramento nelle capacità multilingue."
1330
+ },
1310
1331
  "hunyuan-lite": {
1311
1332
  "description": "Aggiornato a una struttura MOE, con una finestra di contesto di 256k, è in testa a molti modelli open source in vari set di valutazione su NLP, codice, matematica e settori."
1312
1333
  },
@@ -1331,18 +1352,15 @@
1331
1352
  "hunyuan-t1-20250321": {
1332
1353
  "description": "Costruisce completamente le capacità del modello in scienze umane e scientifiche, con una forte capacità di catturare informazioni in testi lunghi. Supporta il ragionamento per risolvere problemi scientifici di varia difficoltà, inclusi matematica, logica, scienza e codice."
1333
1354
  },
1355
+ "hunyuan-t1-20250403": {
1356
+ "description": "Migliorare la capacità di generazione del codice a livello di progetto; migliorare la qualità della scrittura generata dal testo; potenziare la comprensione multi-turno degli argomenti, l’aderenza alle istruzioni toB e la comprensione di parole e termini; ottimizzare i problemi di output misto tra cinese semplificato e tradizionale e tra cinese e inglese."
1357
+ },
1334
1358
  "hunyuan-t1-latest": {
1335
1359
  "description": "Il primo modello di inferenza ibrido su larga scala Hybrid-Transformer-Mamba del settore, che espande le capacità di inferenza, offre una velocità di decodifica eccezionale e allinea ulteriormente le preferenze umane."
1336
1360
  },
1337
1361
  "hunyuan-t1-vision": {
1338
1362
  "description": "Modello di comprensione multimodale profonda Hunyuan, supporta catene di pensiero native multimodali, eccelle in vari scenari di ragionamento visivo e migliora significativamente rispetto ai modelli di pensiero rapido nei problemi scientifici."
1339
1363
  },
1340
- "hunyuan-translation": {
1341
- "description": "Supporta la traduzione tra cinese e inglese, giapponese, francese, portoghese, spagnolo, turco, russo, arabo, coreano, italiano, tedesco, vietnamita, malese e indonesiano, per un totale di 15 lingue, con valutazione automatica basata su un set di valutazione di traduzione multi-scenario e punteggio COMET, mostrando complessivamente prestazioni superiori rispetto ai modelli di dimensioni simili sul mercato in termini di capacità di traduzione reciproca tra le lingue più comuni."
1342
- },
1343
- "hunyuan-translation-lite": {
1344
- "description": "Il modello di traduzione Hunyuan supporta la traduzione in modo conversazionale in linguaggio naturale; supporta la traduzione tra cinese e inglese, giapponese, francese, portoghese, spagnolo, turco, russo, arabo, coreano, italiano, tedesco, vietnamita, malese e indonesiano, per un totale di 15 lingue."
1345
- },
1346
1364
  "hunyuan-turbo": {
1347
1365
  "description": "Anteprima della nuova generazione di modelli di linguaggio di Hunyuan, utilizza una nuova struttura di modello ibrido di esperti (MoE), con una maggiore efficienza di inferenza e prestazioni superiori rispetto a hunyuan-pro."
1348
1366
  },
@@ -1355,8 +1373,11 @@
1355
1373
  "hunyuan-turbo-vision": {
1356
1374
  "description": "Il nuovo modello di punta di linguaggio visivo di Hunyuan, adotta una nuova struttura di modello esperto misto (MoE), con miglioramenti complessivi nelle capacità di riconoscimento di base, creazione di contenuti, domande e risposte, analisi e ragionamento rispetto alla generazione precedente."
1357
1375
  },
1358
- "hunyuan-turbos-20250226": {
1359
- "description": "hunyuan-TurboS pv2.1.2 versione fissa, aggiornamento del token di addestramento della base pre-addestrata; miglioramento delle capacità di pensiero in matematica/logica/codice; miglioramento dell'esperienza generale in cinese e inglese, inclusi creazione di testi, comprensione del testo, domande e risposte di conoscenza, conversazione casuale, ecc."
1376
+ "hunyuan-turbos-20250313": {
1377
+ "description": "Uniformare lo stile dei passaggi di risoluzione dei problemi matematici e rafforzare il question answering multi-turno in matematica. Ottimizzare lo stile delle risposte nella creazione testuale, eliminando l’impronta AI e aumentando la qualità letteraria."
1378
+ },
1379
+ "hunyuan-turbos-20250416": {
1380
+ "description": "Aggiornamento della base pre-addestrata per rafforzare la comprensione e l’aderenza alle istruzioni; miglioramento delle capacità scientifiche in matematica, programmazione, logica e scienze durante la fase di allineamento; potenziamento delle capacità umanistiche come la qualità della scrittura creativa, la comprensione testuale, la precisione della traduzione e il question answering; rafforzamento delle capacità degli agenti in vari settori, con particolare attenzione alla comprensione multi-turno."
1360
1381
  },
1361
1382
  "hunyuan-turbos-latest": {
1362
1383
  "description": "hunyuan-TurboS è l'ultima versione del modello di punta Hunyuan, con capacità di pensiero più forti e un'esperienza utente migliore."
@@ -1364,8 +1385,8 @@
1364
1385
  "hunyuan-turbos-longtext-128k-20250325": {
1365
1386
  "description": "Eccelle nella gestione di compiti di testo lungo come riassunti di documenti e domande sui documenti, e possiede anche la capacità di gestire compiti di generazione di testo generico. Mostra prestazioni eccezionali nell'analisi e generazione di testi lunghi, affrontando efficacemente le esigenze di elaborazione di contenuti complessi e dettagliati."
1366
1387
  },
1367
- "hunyuan-turbos-vision": {
1368
- "description": "Questo modello è adatto per scenari di comprensione visiva e testuale, ed è un nuovo modello di linguaggio visivo di punta basato sui più recenti turbos di Hunyuan, focalizzato su compiti di comprensione visiva, inclusi riconoscimento di entità basato su immagini, domande e risposte, creazione di testi e risoluzione di problemi fotografici, con miglioramenti complessivi rispetto alla generazione precedente."
1388
+ "hunyuan-turbos-role-plus": {
1389
+ "description": "Ultima versione del modello di role-playing di Hunyuan, finemente addestrato ufficialmente, basato sul modello Hunyuan e ulteriormente addestrato con dataset specifici per scenari di role-playing, offrendo migliori prestazioni di base in tali contesti."
1369
1390
  },
1370
1391
  "hunyuan-vision": {
1371
1392
  "description": "Ultimo modello multimodale di Hunyuan, supporta l'input di immagini e testo per generare contenuti testuali."
@@ -1886,11 +1907,14 @@
1886
1907
  "qvq-72b-preview": {
1887
1908
  "description": "Il modello QVQ è un modello di ricerca sperimentale sviluppato dal team Qwen, focalizzato sul miglioramento delle capacità di ragionamento visivo, in particolare nel campo del ragionamento matematico."
1888
1909
  },
1889
- "qvq-max-latest": {
1890
- "description": "Il modello di ragionamento visivo QVQ di Tongyi Qianwen supporta input visivi e output di catene di pensiero, mostrando capacità superiori in matematica, programmazione, analisi visiva, creazione e compiti generali."
1910
+ "qvq-max": {
1911
+ "description": "Modello di ragionamento visivo QVQ di Tongyi Qianwen, supporta input visivi e output di catene di pensieri, mostrando capacità superiori in matematica, programmazione, analisi visiva, creazione e compiti generali."
1912
+ },
1913
+ "qwen-coder-plus": {
1914
+ "description": "Modello di codice Tongyi Qianwen."
1891
1915
  },
1892
- "qwen-coder-plus-latest": {
1893
- "description": "Modello di codice Qwen di Tongyi."
1916
+ "qwen-coder-turbo": {
1917
+ "description": "Modello di codice Tongyi Qianwen."
1894
1918
  },
1895
1919
  "qwen-coder-turbo-latest": {
1896
1920
  "description": "Modello di codice Tongyi Qwen."
@@ -1898,41 +1922,44 @@
1898
1922
  "qwen-long": {
1899
1923
  "description": "Qwen è un modello di linguaggio su larga scala che supporta contesti di testo lunghi e funzionalità di dialogo basate su documenti lunghi e multipli."
1900
1924
  },
1925
+ "qwen-math-plus": {
1926
+ "description": "Modello matematico Tongyi Qianwen specializzato nella risoluzione di problemi matematici."
1927
+ },
1901
1928
  "qwen-math-plus-latest": {
1902
1929
  "description": "Il modello matematico Tongyi Qwen è progettato specificamente per la risoluzione di problemi matematici."
1903
1930
  },
1931
+ "qwen-math-turbo": {
1932
+ "description": "Modello matematico Tongyi Qianwen specializzato nella risoluzione di problemi matematici."
1933
+ },
1904
1934
  "qwen-math-turbo-latest": {
1905
1935
  "description": "Il modello matematico Tongyi Qwen è progettato specificamente per la risoluzione di problemi matematici."
1906
1936
  },
1907
1937
  "qwen-max": {
1908
1938
  "description": "Qwen Max è un modello linguistico di grandi dimensioni con trilioni di parametri, supporta input in diverse lingue, tra cui cinese e inglese e attualmente è il modello API dietro la versione 2.5 di Qwen."
1909
1939
  },
1910
- "qwen-max-latest": {
1911
- "description": "Modello linguistico su larga scala Tongyi Qwen con miliardi di parametri, supporta input in diverse lingue tra cui cinese e inglese, attualmente il modello API dietro la versione del prodotto Tongyi Qwen 2.5."
1912
- },
1913
- "qwen-omni-turbo-latest": {
1914
- "description": "La serie di modelli Qwen-Omni supporta l'input di dati in diverse modalità, inclusi video, audio, immagini e testo, e produce output audio e testuale."
1940
+ "qwen-omni-turbo": {
1941
+ "description": "La serie di modelli Qwen-Omni supporta input multimodali, inclusi video, audio, immagini e testo, e produce output audio e testuale."
1915
1942
  },
1916
1943
  "qwen-plus": {
1917
1944
  "description": "Qwen Plus è una versione potenziata del modello linguistico di grandi dimensioni, che supporta input in diverse lingue, tra cui cinese e inglese."
1918
1945
  },
1919
- "qwen-plus-latest": {
1920
- "description": "Versione potenziata del modello linguistico su larga scala Tongyi Qwen, supporta input in diverse lingue tra cui cinese e inglese."
1921
- },
1922
1946
  "qwen-turbo": {
1923
1947
  "description": "Qwen è un modello linguistico di grandi dimensioni che supporta input in diverse lingue, tra cui cinese e inglese."
1924
1948
  },
1925
- "qwen-turbo-latest": {
1926
- "description": "Il modello linguistico su larga scala Tongyi Qwen, supporta input in diverse lingue tra cui cinese e inglese."
1927
- },
1928
1949
  "qwen-vl-chat-v1": {
1929
1950
  "description": "Qwen VL supporta modalità di interazione flessibili, inclusi modelli di domande e risposte multipli e creativi."
1930
1951
  },
1952
+ "qwen-vl-max": {
1953
+ "description": "Modello multimodale di grandissima scala Tongyi Qianwen. Rispetto alla versione potenziata, migliora ulteriormente le capacità di ragionamento visivo e l’aderenza alle istruzioni, offrendo un livello superiore di percezione e cognizione visiva."
1954
+ },
1931
1955
  "qwen-vl-max-latest": {
1932
1956
  "description": "Modello di linguaggio visivo Qwen di grande scala. Rispetto alla versione potenziata, migliora ulteriormente la capacità di ragionamento visivo e di aderenza alle istruzioni, offrendo un livello superiore di percezione visiva e cognizione."
1933
1957
  },
1934
- "qwen-vl-ocr-latest": {
1935
- "description": "Qwen OCR è un modello specializzato nell'estrazione di testo, focalizzato sulla capacità di estrazione di testo da immagini di documenti, tabelle, domande d'esame, scrittura a mano, ecc. È in grado di riconoscere vari testi, supportando attualmente le seguenti lingue: cinese, inglese, francese, giapponese, coreano, tedesco, russo, italiano, vietnamita, arabo."
1958
+ "qwen-vl-ocr": {
1959
+ "description": "Tongyi Qianwen OCR è un modello specializzato nellestrazione di testo, focalizzato su immagini di documenti, tabelle, esercizi e scrittura a mano. Riconosce molteplici lingue, tra cui cinese, inglese, francese, giapponese, coreano, tedesco, russo, italiano, vietnamita e arabo."
1960
+ },
1961
+ "qwen-vl-plus": {
1962
+ "description": "Versione potenziata del modello multimodale di grande scala Tongyi Qianwen. Migliora notevolmente la capacità di riconoscimento dei dettagli e del testo, supportando immagini con risoluzione superiore a un milione di pixel e proporzioni di dimensioni arbitrarie."
1936
1963
  },
1937
1964
  "qwen-vl-plus-latest": {
1938
1965
  "description": "Versione potenziata del modello di linguaggio visivo Qwen. Migliora notevolmente la capacità di riconoscimento dei dettagli e di riconoscimento del testo, supportando risoluzioni superiori a un milione di pixel e immagini di qualsiasi rapporto di aspetto."
@@ -2021,6 +2048,9 @@
2021
2048
  "qwen2.5-coder-1.5b-instruct": {
2022
2049
  "description": "Versione open-source del modello di codice Qwen."
2023
2050
  },
2051
+ "qwen2.5-coder-14b-instruct": {
2052
+ "description": "Versione open source del modello di codice Tongyi Qianwen."
2053
+ },
2024
2054
  "qwen2.5-coder-32b-instruct": {
2025
2055
  "description": "Versione open source del modello di codice Qwen di Tongyi."
2026
2056
  },
@@ -2111,8 +2141,8 @@
2111
2141
  "qwq-32b-preview": {
2112
2142
  "description": "Il modello QwQ è un modello di ricerca sperimentale sviluppato dal team Qwen, focalizzato sul potenziamento delle capacità di ragionamento dell'IA."
2113
2143
  },
2114
- "qwq-plus-latest": {
2115
- "description": "Il modello di inferenza QwQ, addestrato sul modello Qwen2.5, ha notevolmente migliorato le capacità di inferenza del modello attraverso l'apprendimento rinforzato. I principali indicatori core (AIME 24/25, LiveCodeBench) e alcuni indicatori generali (IFEval, LiveBench, ecc.) raggiungono il livello della versione completa di DeepSeek-R1."
2144
+ "qwq-plus": {
2145
+ "description": "Modello di ragionamento QwQ basato su Qwen2.5, che ha migliorato significativamente le capacità di ragionamento tramite apprendimento rinforzato. Gli indicatori chiave in matematica e codice (AIME 24/25, LiveCodeBench) e alcuni indicatori generali (IFEval, LiveBench, ecc.) raggiungono il livello completo di DeepSeek-R1."
2116
2146
  },
2117
2147
  "qwq_32b": {
2118
2148
  "description": "Modello di inferenza di dimensioni medie della serie Qwen. Rispetto ai modelli tradizionali ottimizzati per le istruzioni, QwQ, con le sue capacità di pensiero e ragionamento, può migliorare significativamente le prestazioni nei compiti downstream, specialmente nella risoluzione di problemi difficili."
@@ -71,6 +71,9 @@
71
71
  "mistral": {
72
72
  "description": "Mistral offre modelli avanzati generali, professionali e di ricerca, ampiamente utilizzati in ragionamenti complessi, compiti multilingue, generazione di codice e altro, consentendo agli utenti di integrare funzionalità personalizzate tramite interfacce di chiamata funzionale."
73
73
  },
74
+ "modelscope": {
75
+ "description": "ModelScope è una piattaforma di modelli come servizio lanciata da Alibaba Cloud, che offre una ricca gamma di modelli AI e servizi di inferenza."
76
+ },
74
77
  "moonshot": {
75
78
  "description": "Moonshot è una piattaforma open source lanciata da Beijing Dark Side Technology Co., Ltd., che offre vari modelli di elaborazione del linguaggio naturale, con ampie applicazioni, inclusi ma non limitati a creazione di contenuti, ricerca accademica, raccomandazioni intelligenti, diagnosi mediche e altro, supportando l'elaborazione di testi lunghi e compiti di generazione complessi."
76
79
  },
@@ -208,6 +208,10 @@
208
208
  "title": "クライアントリクエストモードを使用"
209
209
  },
210
210
  "helpDoc": "設定ガイド",
211
+ "responsesApi": {
212
+ "desc": "OpenAIの新世代リクエストフォーマット規格を採用し、チェーン思考などの高度な機能を解放します",
213
+ "title": "Responses API 規格の使用"
214
+ },
211
215
  "waitingForMore": "さらに多くのモデルが <1>接続予定</1> です。お楽しみに"
212
216
  },
213
217
  "createNew": {
@@ -230,6 +230,9 @@
230
230
  "Pro/deepseek-ai/DeepSeek-R1": {
231
231
  "description": "DeepSeek-R1は、強化学習(RL)駆動の推論モデルで、モデル内の繰り返しと可読性の問題を解決します。RLの前に、DeepSeek-R1はコールドスタートデータを導入し、推論性能をさらに最適化しました。数学、コード、推論タスクにおいてOpenAI-o1と同等の性能を発揮し、精巧に設計されたトレーニング手法によって全体的な効果を向上させています。"
232
232
  },
233
+ "Pro/deepseek-ai/DeepSeek-R1-0120": {
234
+ "description": "DeepSeek-R1は強化学習(RL)駆動の推論モデルで、モデルの反復性と可読性の問題を解決しました。RL導入前にコールドスタートデータを導入し、推論性能をさらに最適化。数学、コード、推論タスクにおいてOpenAI-o1と同等の性能を示し、精緻に設計された訓練手法により全体的な効果を向上させています。"
235
+ },
233
236
  "Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
234
237
  "description": "DeepSeek-R1-Distill-Qwen-1.5Bは、Qwen2.5-Math-1.5Bを基に知識蒸留によって得られたモデルです。このモデルは、DeepSeek-R1によって生成された80万の精選されたサンプルを使用して微調整されており、複数のベンチマークテストで良好な性能を示しています。軽量モデルでありながら、MATH-500では83.9%の精度、AIME 2024では28.9%の合格率、CodeForcesでは954のスコアを達成し、そのパラメータ規模を超える推論能力を発揮しています。"
235
238
  },
@@ -422,8 +425,8 @@
422
425
  "THUDM/glm-4-9b-chat": {
423
426
  "description": "GLM-4 9Bはオープンソース版で、会話アプリケーションに最適化された対話体験を提供します。"
424
427
  },
425
- "Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
426
- "description": "Qwen2.5-72B-InstructはAlibaba Cloudが発表した最新の大規模言語モデルシリーズの一つです。この72Bモデルはコーディングや数学などの分野で顕著な能力の改善を持っています。このモデルは29以上の言語をカバーする多言語サポートも提供しており、中国語、英語などが含まれています。モデルは指示の遵守、構造化データの理解、特にJSONのような構造化出力の生成において顕著な向上を示しています。"
428
+ "Tongyi-Zhiwen/QwenLong-L1-32B": {
429
+ "description": "QwenLong-L1-32Bは強化学習で訓練された初の長文コンテキスト大型推論モデル(LRM)で、長文推論タスクに特化して最適化されています。段階的なコンテキスト拡張強化学習フレームワークにより、短文から長文への安定した移行を実現。7つの長文ドキュメントQAベンチマークでOpenAI-o3-miniやQwen3-235B-A22Bなどのフラッグシップモデルを上回り、Claude-3.7-Sonnet-Thinkingに匹敵する性能を示します。数学推論、論理推論、多段推論などの複雑なタスクに特に優れています。"
427
430
  },
428
431
  "Yi-34B-Chat": {
429
432
  "description": "Yi-1.5-34Bは、元のシリーズモデルの優れた汎用言語能力を維持しつつ、5000億の高品質トークンを増分トレーニングすることで、数学的論理とコーディング能力を大幅に向上させました。"
@@ -734,6 +737,12 @@
734
737
  "deepseek-ai/DeepSeek-R1": {
735
738
  "description": "DeepSeek-R1は、強化学習(RL)駆動の推論モデルであり、モデル内の繰り返しと可読性の問題を解決します。RLの前に、DeepSeek-R1はコールドスタートデータを導入し、推論性能をさらに最適化しました。数学、コード、推論タスクにおいてOpenAI-o1と同等のパフォーマンスを発揮し、精巧に設計されたトレーニング手法によって全体的な効果を向上させました。"
736
739
  },
740
+ "deepseek-ai/DeepSeek-R1-0528": {
741
+ "description": "DeepSeek R1は、増強された計算資源と後訓練過程で導入されたアルゴリズム最適化機構を活用し、その推論および推断能力の深さを著しく向上させました。本モデルは数学、プログラミング、一般論理などの各種ベンチマーク評価で優れた成績を示し、全体性能はO3やGemini 2.5 Proなどの先進モデルに近づいています。"
742
+ },
743
+ "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B": {
744
+ "description": "DeepSeek-R1-0528-Qwen3-8BはDeepSeek-R1-0528モデルの思考連鎖をQwen3 8B Baseに蒸留して得られたモデルです。オープンソースモデル中で最先端(SOTA)の性能を達成し、AIME 2024テストでQwen3 8Bを10%上回り、Qwen3-235B-thinkingの性能レベルに達しています。数学推論、プログラミング、汎用論理など複数のベンチマークで優れた成績を示し、Qwen3-8Bと同じアーキテクチャながらDeepSeek-R1-0528のトークナイザー設定を共有しています。"
745
+ },
737
746
  "deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
738
747
  "description": "DeepSeek-R1蒸留モデルで、強化学習とコールドスタートデータを通じて推論性能を最適化し、オープンソースモデルがマルチタスクの基準を刷新しました。"
739
748
  },
@@ -836,9 +845,6 @@
836
845
  "deepseek-v3-0324": {
837
846
  "description": "DeepSeek-V3-0324は671BパラメータのMoEモデルであり、プログラミングと技術能力、文脈理解、長文処理において優れた性能を発揮します。"
838
847
  },
839
- "deepseek/deepseek-chat": {
840
- "description": "汎用性とコード能力を融合させた新しいオープンソースモデルで、元のChatモデルの汎用対話能力とCoderモデルの強力なコード処理能力を保持しつつ、人間の好みにより良く整合しています。さらに、DeepSeek-V2.5は執筆タスク、指示の遵守などの多くの面で大幅な向上を実現しました。"
841
- },
842
848
  "deepseek/deepseek-chat-v3-0324": {
843
849
  "description": "DeepSeek V3は、685Bパラメータの専門的な混合モデルであり、DeepSeekチームのフラッグシップチャットモデルシリーズの最新のイテレーションです。\n\nこれは、[DeepSeek V3](/deepseek/deepseek-chat-v3)モデルを継承し、さまざまなタスクで優れたパフォーマンスを発揮します。"
844
850
  },
@@ -848,6 +854,12 @@
848
854
  "deepseek/deepseek-r1": {
849
855
  "description": "DeepSeek-R1は、わずかなラベル付きデータしかない状況で、モデルの推論能力を大幅に向上させました。最終的な回答を出力する前に、モデルは思考の連鎖を出力し、最終的な答えの正確性を向上させます。"
850
856
  },
857
+ "deepseek/deepseek-r1-0528": {
858
+ "description": "DeepSeek-R1は極めて少ないラベル付きデータでモデルの推論能力を大幅に向上させました。最終回答を出力する前に、モデルは思考の連鎖を出力し、最終答えの正確性を高めます。"
859
+ },
860
+ "deepseek/deepseek-r1-0528:free": {
861
+ "description": "DeepSeek-R1は極めて少ないラベル付きデータでモデルの推論能力を大幅に向上させました。最終回答を出力する前に、モデルは思考の連鎖を出力し、最終答えの正確性を高めます。"
862
+ },
851
863
  "deepseek/deepseek-r1-distill-llama-70b": {
852
864
  "description": "DeepSeek R1 Distill Llama 70BはLlama3.3 70Bに基づく大規模言語モデルで、DeepSeek R1の出力を微調整に利用し、大規模な最前線モデルと同等の競争力のある性能を実現しています。"
853
865
  },
@@ -1262,6 +1274,9 @@
1262
1274
  "gpt-4o-mini-realtime-preview": {
1263
1275
  "description": "GPT-4o-miniリアルタイムバージョン、音声とテキストのリアルタイム入力と出力をサポート"
1264
1276
  },
1277
+ "gpt-4o-mini-search-preview": {
1278
+ "description": "GPT-4o mini検索プレビュー版は、ウェブ検索クエリの理解と実行に特化して訓練されたモデルで、Chat Completions APIを使用しています。トークン料金に加え、ウェブ検索クエリはツール呼び出しごとに料金が発生します。"
1279
+ },
1265
1280
  "gpt-4o-mini-tts": {
1266
1281
  "description": "GPT-4o mini TTS は、GPT-4o mini に基づくテキスト音声合成モデルで、高品質な音声生成を低コストで提供します。"
1267
1282
  },
@@ -1274,6 +1289,9 @@
1274
1289
  "gpt-4o-realtime-preview-2024-12-17": {
1275
1290
  "description": "GPT-4oリアルタイムバージョン、音声とテキストのリアルタイム入力と出力をサポート"
1276
1291
  },
1292
+ "gpt-4o-search-preview": {
1293
+ "description": "GPT-4o検索プレビュー版は、ウェブ検索クエリの理解と実行に特化して訓練されたモデルで、Chat Completions APIを使用しています。トークン料金に加え、ウェブ検索クエリはツール呼び出しごとに料金が発生します。"
1294
+ },
1277
1295
  "grok-2-1212": {
1278
1296
  "description": "このモデルは、精度、指示の遵守、そして多言語能力において改善されています。"
1279
1297
  },
@@ -1307,6 +1325,9 @@
1307
1325
  "hunyuan-large-longcontext": {
1308
1326
  "description": "文書要約や文書問答などの長文タスクを得意とし、一般的なテキスト生成タスクの処理能力も備えている。長文の分析と生成において優れたパフォーマンスを発揮し、複雑で詳細な長文内容の処理要求に効果的に対応できる。"
1309
1327
  },
1328
+ "hunyuan-large-vision": {
1329
+ "description": "本モデルは画像と言語の理解シナリオに適しており、混元Largeを基に訓練された視覚言語大規模モデルです。任意の解像度の複数画像+テキスト入力をサポートし、テキスト生成を行います。画像と言語の理解関連タスクに注力し、多言語の画像と言語理解能力が著しく向上しています。"
1330
+ },
1310
1331
  "hunyuan-lite": {
1311
1332
  "description": "MOE構造にアップグレードされ、コンテキストウィンドウは256kで、NLP、コード、数学、業界などの多くの評価セットで多くのオープンソースモデルをリードしています。"
1312
1333
  },
@@ -1331,18 +1352,15 @@
1331
1352
  "hunyuan-t1-20250321": {
1332
1353
  "description": "モデルの文理科能力を全面的に構築し、長文情報のキャッチ能力が高いです。さまざまな難易度の数学、論理推論、科学、コードなどの科学問題に対する推論解答をサポートします。"
1333
1354
  },
1355
+ "hunyuan-t1-20250403": {
1356
+ "description": "プロジェクトレベルのコード生成能力を向上させる;テキスト生成の執筆品質を向上させる;テキスト理解のトピックにおける多段階対話、ToB指示の遵守および語彙理解能力を向上させる;繁体字と簡体字の混在、及び中英混在の出力問題を最適化する。"
1357
+ },
1334
1358
  "hunyuan-t1-latest": {
1335
1359
  "description": "業界初の超大規模Hybrid-Transformer-Mamba推論モデルであり、推論能力を拡張し、超高速なデコード速度を実現し、人間の好みにさらに整合します。"
1336
1360
  },
1337
1361
  "hunyuan-t1-vision": {
1338
1362
  "description": "混元多モーダル理解の深層思考モデルで、多モーダルのネイティブ長思考チェーンをサポートし、さまざまな画像推論シナリオに優れています。理系の難問においては速思考モデルよりも包括的に向上しています。"
1339
1363
  },
1340
- "hunyuan-translation": {
1341
- "description": "中国語、英語、日本語、フランス語、ポルトガル語、スペイン語、トルコ語、ロシア語、アラビア語、韓国語、イタリア語、ドイツ語、ベトナム語、マレー語、インドネシア語の15言語の相互翻訳をサポートし、多シーン翻訳評価セットに基づく自動評価COMETスコアを使用して、十数の一般的な言語間の翻訳能力が市場の同規模モデルを全体的に上回っています。"
1342
- },
1343
- "hunyuan-translation-lite": {
1344
- "description": "混元翻訳モデルは自然言語の対話式翻訳をサポートし、中国語、英語、日本語、フランス語、ポルトガル語、スペイン語、トルコ語、ロシア語、アラビア語、韓国語、イタリア語、ドイツ語、ベトナム語、マレー語、インドネシア語の15言語の相互翻訳をサポートしています。"
1345
- },
1346
1364
  "hunyuan-turbo": {
1347
1365
  "description": "混元の新世代大規模言語モデルのプレビュー版で、全く新しい混合専門家モデル(MoE)構造を採用し、hunyuan-proに比べて推論効率が向上し、パフォーマンスも強化されています。"
1348
1366
  },
@@ -1355,8 +1373,11 @@
1355
1373
  "hunyuan-turbo-vision": {
1356
1374
  "description": "混元の次世代視覚言語フラッグシップ大モデルで、全く新しい混合専門家モデル(MoE)構造を採用し、画像とテキストの理解に関連する基礎認識、コンテンツ作成、知識問答、分析推論などの能力が前世代モデルに比べて全面的に向上。"
1357
1375
  },
1358
- "hunyuan-turbos-20250226": {
1359
- "description": "hunyuan-TurboS pv2.1.2固定バージョンの事前トレーニングベースのトークン数がアップグレードされました。数学、論理、コードなどの思考能力が向上し、中国語と英語の一般的な体験効果が向上しました。テキスト作成、テキスト理解、知識質問、雑談などが含まれます。"
1376
+ "hunyuan-turbos-20250313": {
1377
+ "description": "数学問題解決のステップスタイルを統一し、数学の多段階問答を強化。テキスト創作において回答スタイルを最適化し、AIらしさを排除し、文采を増加。"
1378
+ },
1379
+ "hunyuan-turbos-20250416": {
1380
+ "description": "事前学習基盤のアップグレードにより、基盤の指示理解および遵守能力を強化;整合フェーズで数学、コード、論理、科学などの理系能力を強化;文芸創作の執筆品質、テキスト理解、翻訳精度、知識問答などの文系能力を向上;各分野のエージェント能力を強化し、特に多段階対話理解能力を重点的に強化。"
1360
1381
  },
1361
1382
  "hunyuan-turbos-latest": {
1362
1383
  "description": "hunyuan-TurboS混元フラッグシップ大モデルの最新バージョンで、より強力な思考能力と優れた体験効果を備えています。"
@@ -1364,8 +1385,8 @@
1364
1385
  "hunyuan-turbos-longtext-128k-20250325": {
1365
1386
  "description": "文書要約や文書質問応答などの長文タスクを得意とし、一般的なテキスト生成タスクにも対応可能です。長文の分析と生成に優れ、複雑で詳細な長文内容の処理ニーズに効果的に対応します。"
1366
1387
  },
1367
- "hunyuan-turbos-vision": {
1368
- "description": "このモデルは画像とテキストの理解シーンに適しており、混元の最新のturbosに基づく次世代の視覚言語フラッグシップモデルで、画像に基づくエンティティ認識、知識質問応答、コピーライティング、写真解決などのタスクに焦点を当てており、前の世代のモデルに比べて全体的に向上しています。"
1388
+ "hunyuan-turbos-role-plus": {
1389
+ "description": "混元の最新ロールプレイングモデルで、混元公式による精調整訓練を経たロールプレイングモデルです。混元モデルを基にロールプレイングシナリオのデータセットで追加訓練されており、ロールプレイングシナリオでより良い基礎性能を持ちます。"
1369
1390
  },
1370
1391
  "hunyuan-vision": {
1371
1392
  "description": "混元の最新のマルチモーダルモデルで、画像とテキストの入力をサポートし、テキストコンテンツを生成します。"
@@ -1886,11 +1907,14 @@
1886
1907
  "qvq-72b-preview": {
1887
1908
  "description": "QVQモデルはQwenチームによって開発された実験的研究モデルで、視覚推論能力の向上に特化しており、特に数学推論の分野で優れた性能を発揮。"
1888
1909
  },
1889
- "qvq-max-latest": {
1890
- "description": "通義千問QVQ視覚推論モデルは、視覚入力と思考連鎖出力をサポートし、数学、プログラミング、視覚分析、創作、一般的なタスクにおいてより強力な能力を発揮します。"
1910
+ "qvq-max": {
1911
+ "description": "通義千問QVQ視覚推論モデルで、視覚入力と思考連鎖出力をサポートし、数学、プログラミング、視覚分析、創作および汎用タスクにおいてより強力な能力を発揮します。"
1912
+ },
1913
+ "qwen-coder-plus": {
1914
+ "description": "通義千問コードモデルです。"
1891
1915
  },
1892
- "qwen-coder-plus-latest": {
1893
- "description": "通義千問コードモデル。"
1916
+ "qwen-coder-turbo": {
1917
+ "description": "通義千問コードモデルです。"
1894
1918
  },
1895
1919
  "qwen-coder-turbo-latest": {
1896
1920
  "description": "通義千問のコードモデルです。"
@@ -1898,41 +1922,44 @@
1898
1922
  "qwen-long": {
1899
1923
  "description": "通義千問超大規模言語モデルで、長文コンテキストや長文書、複数文書に基づく対話機能をサポートしています。"
1900
1924
  },
1925
+ "qwen-math-plus": {
1926
+ "description": "通義千問数学モデルは数学問題解決に特化した言語モデルです。"
1927
+ },
1901
1928
  "qwen-math-plus-latest": {
1902
1929
  "description": "通義千問の数学モデルは、数学の問題解決に特化した言語モデルです。"
1903
1930
  },
1931
+ "qwen-math-turbo": {
1932
+ "description": "通義千問数学モデルは数学問題解決に特化した言語モデルです。"
1933
+ },
1904
1934
  "qwen-math-turbo-latest": {
1905
1935
  "description": "通義千問の数学モデルは、数学の問題解決に特化した言語モデルです。"
1906
1936
  },
1907
1937
  "qwen-max": {
1908
1938
  "description": "通義千問の千億レベルの超大規模言語モデルで、中国語、英語などさまざまな言語の入力をサポートしています。現在、通義千問2.5製品バージョンの背後にあるAPIモデルです。"
1909
1939
  },
1910
- "qwen-max-latest": {
1911
- "description": "通義千問の千億レベルの超大規模言語モデルで、中国語、英語などの異なる言語入力をサポートし、現在の通義千問2.5製品バージョンの背後にあるAPIモデルです。"
1912
- },
1913
- "qwen-omni-turbo-latest": {
1914
- "description": "Qwen-Omniシリーズモデルは、動画、音声、画像、テキストなどのさまざまなモダリティのデータを入力し、音声とテキストを出力することをサポートしています。"
1940
+ "qwen-omni-turbo": {
1941
+ "description": "Qwen-Omniシリーズモデルは、動画、音声、画像、テキストなど多様なモーダルの入力をサポートし、音声とテキストを出力します。"
1915
1942
  },
1916
1943
  "qwen-plus": {
1917
1944
  "description": "通義千問の超大規模言語モデルの強化版で、中国語、英語などさまざまな言語の入力をサポートしています。"
1918
1945
  },
1919
- "qwen-plus-latest": {
1920
- "description": "通義千問の超大規模言語モデルの強化版で、中国語、英語などの異なる言語入力をサポートしています。"
1921
- },
1922
1946
  "qwen-turbo": {
1923
1947
  "description": "通義千問の超大規模言語モデルで、中国語、英語などさまざまな言語の入力をサポートしています。"
1924
1948
  },
1925
- "qwen-turbo-latest": {
1926
- "description": "通義千問の超大規模言語モデルで、中国語、英語などの異なる言語入力をサポートしています。"
1927
- },
1928
1949
  "qwen-vl-chat-v1": {
1929
1950
  "description": "通義千問VLは、複数の画像、多段階の質問応答、創作などの柔軟なインタラクション方式をサポートするモデルです。"
1930
1951
  },
1952
+ "qwen-vl-max": {
1953
+ "description": "通義千問超大規模視覚言語モデル。強化版と比較して視覚推論能力と指示遵守能力をさらに向上させ、より高い視覚認知レベルを提供します。"
1954
+ },
1931
1955
  "qwen-vl-max-latest": {
1932
1956
  "description": "通義千問の超大規模視覚言語モデル。強化版に比べて、視覚推論能力と指示遵守能力をさらに向上させ、より高い視覚認識と認知レベルを提供します。"
1933
1957
  },
1934
- "qwen-vl-ocr-latest": {
1935
- "description": "通義千問OCRは、文書、表、試験問題、手書き文字などの画像から文字を抽出する専用モデルです。多様な文字を認識でき、現在サポートされている言語は中国語、英語、フランス語、日本語、韓国語、ドイツ語、ロシア語、イタリア語、ベトナム語、アラビア語です。"
1958
+ "qwen-vl-ocr": {
1959
+ "description": "通義千問OCRは文字抽出に特化した専用モデルで、文書、表、試験問題、手書き文字などの画像からの文字抽出能力に注力しています。対応言語は中国語、英語、フランス語、日本語、韓国語、ドイツ語、ロシア語、イタリア語、ベトナム語、アラビア語です。"
1960
+ },
1961
+ "qwen-vl-plus": {
1962
+ "description": "通義千問大規模視覚言語モデルの強化版。細部認識能力と文字認識能力を大幅に向上させ、100万画素以上の解像度および任意の縦横比の画像をサポートします。"
1936
1963
  },
1937
1964
  "qwen-vl-plus-latest": {
1938
1965
  "description": "通義千問の大規模視覚言語モデルの強化版。詳細認識能力と文字認識能力を大幅に向上させ、100万ピクセル以上の解像度と任意のアスペクト比の画像をサポートします。"
@@ -2021,6 +2048,9 @@
2021
2048
  "qwen2.5-coder-1.5b-instruct": {
2022
2049
  "description": "通義千問コードモデルのオープンソース版です。"
2023
2050
  },
2051
+ "qwen2.5-coder-14b-instruct": {
2052
+ "description": "通義千問コードモデルのオープンソース版です。"
2053
+ },
2024
2054
  "qwen2.5-coder-32b-instruct": {
2025
2055
  "description": "通義千問コードモデルのオープンソース版。"
2026
2056
  },
@@ -2111,8 +2141,8 @@
2111
2141
  "qwq-32b-preview": {
2112
2142
  "description": "QwQモデルはQwenチームによって開発された実験的な研究モデルで、AIの推論能力を強化することに焦点を当てています。"
2113
2143
  },
2114
- "qwq-plus-latest": {
2115
- "description": "Qwen2.5モデルに基づいて訓練されたQwQ推論モデルは、強化学習を通じてモデルの推論能力を大幅に向上させました。モデルの数学コードなどのコア指標(AIME 24/25、LiveCodeBench)および一部の一般的な指標(IFEval、LiveBenchなど)は、DeepSeek-R1のフルバージョンに達しています。"
2144
+ "qwq-plus": {
2145
+ "description": "Qwen2.5モデルを基に訓練されたQwQ推論モデルで、強化学習によりモデルの推論能力を大幅に向上させました。数学やコードなどの主要指標(AIME 24/25、LiveCodeBench)および一部の汎用指標(IFEval、LiveBenchなど)はDeepSeek-R1フルスペック版の水準に達しています。"
2116
2146
  },
2117
2147
  "qwq_32b": {
2118
2148
  "description": "Qwenシリーズの中規模推論モデルです。従来の指示調整モデルと比較して、思考と推論能力を持つQwQは、特に難題を解決する際に下流タスクの性能を大幅に向上させることができます。"
@@ -71,6 +71,9 @@
71
71
  "mistral": {
72
72
  "description": "Mistralは、先進的な汎用、専門、研究型モデルを提供し、複雑な推論、多言語タスク、コード生成などの分野で広く使用されています。機能呼び出しインターフェースを通じて、ユーザーはカスタム機能を統合し、特定のアプリケーションを実現できます。"
73
73
  },
74
+ "modelscope": {
75
+ "description": "ModelScopeはアリババクラウドが提供するモデル・アズ・ア・サービスプラットフォームで、豊富なAIモデルと推論サービスを提供しています。"
76
+ },
74
77
  "moonshot": {
75
78
  "description": "Moonshotは、北京月之暗面科技有限公司が提供するオープンプラットフォームであり、さまざまな自然言語処理モデルを提供し、コンテンツ創作、学術研究、スマート推薦、医療診断などの広範な応用分野を持ち、長文処理や複雑な生成タスクをサポートしています。"
76
79
  },
@@ -208,6 +208,10 @@
208
208
  "title": "클라이언트 요청 모드 사용"
209
209
  },
210
210
  "helpDoc": "설정 가이드",
211
+ "responsesApi": {
212
+ "desc": "OpenAI의 최신 요청 형식 규격을 사용하여 사고 연결 등 고급 기능을 활성화합니다",
213
+ "title": "Responses API 규격 사용"
214
+ },
211
215
  "waitingForMore": "더 많은 모델이 <1>계획 중</1>입니다. 기대해 주세요"
212
216
  },
213
217
  "createNew": {