@lobehub/chat 1.92.3 → 1.93.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +25 -0
- package/README.md +8 -8
- package/README.zh-CN.md +8 -8
- package/changelog/v1.json +9 -0
- package/docs/development/database-schema.dbml +51 -1
- package/locales/ar/modelProvider.json +4 -0
- package/locales/ar/models.json +64 -34
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/modelProvider.json +4 -0
- package/locales/bg-BG/models.json +64 -34
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/modelProvider.json +4 -0
- package/locales/de-DE/models.json +64 -34
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/modelProvider.json +4 -0
- package/locales/en-US/models.json +64 -34
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/modelProvider.json +4 -0
- package/locales/es-ES/models.json +64 -34
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/modelProvider.json +4 -0
- package/locales/fa-IR/models.json +64 -34
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/modelProvider.json +4 -0
- package/locales/fr-FR/models.json +64 -34
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/modelProvider.json +4 -0
- package/locales/it-IT/models.json +64 -34
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/modelProvider.json +4 -0
- package/locales/ja-JP/models.json +64 -34
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/modelProvider.json +4 -0
- package/locales/ko-KR/models.json +64 -34
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/modelProvider.json +4 -0
- package/locales/nl-NL/models.json +64 -34
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/modelProvider.json +4 -0
- package/locales/pl-PL/models.json +64 -34
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/modelProvider.json +4 -0
- package/locales/pt-BR/models.json +64 -34
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/modelProvider.json +4 -0
- package/locales/ru-RU/models.json +63 -33
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/modelProvider.json +4 -0
- package/locales/tr-TR/models.json +64 -34
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/modelProvider.json +4 -0
- package/locales/vi-VN/models.json +64 -34
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/modelProvider.json +4 -0
- package/locales/zh-CN/models.json +59 -29
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/modelProvider.json +4 -0
- package/locales/zh-TW/models.json +64 -34
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +1 -1
- package/src/app/[variants]/(main)/settings/provider/features/ProviderConfig/index.tsx +16 -0
- package/src/config/modelProviders/openai.ts +3 -1
- package/src/database/client/migrations.json +25 -0
- package/src/database/migrations/0025_add_provider_config.sql +1 -0
- package/src/database/migrations/meta/0025_snapshot.json +5703 -0
- package/src/database/migrations/meta/_journal.json +7 -0
- package/src/database/models/__tests__/aiProvider.test.ts +2 -0
- package/src/database/models/aiProvider.ts +5 -2
- package/src/database/repositories/tableViewer/index.test.ts +1 -1
- package/src/database/schemas/_helpers.ts +5 -1
- package/src/database/schemas/aiInfra.ts +5 -1
- package/src/libs/model-runtime/openai/index.ts +21 -2
- package/src/libs/model-runtime/types/chat.ts +6 -9
- package/src/libs/model-runtime/utils/openaiCompatibleFactory/index.ts +79 -5
- package/src/libs/model-runtime/utils/openaiHelpers.test.ts +145 -1
- package/src/libs/model-runtime/utils/openaiHelpers.ts +59 -0
- package/src/libs/model-runtime/utils/streams/openai/__snapshots__/responsesStream.test.ts.snap +193 -0
- package/src/libs/model-runtime/utils/streams/openai/index.ts +2 -0
- package/src/libs/model-runtime/utils/streams/{openai.test.ts → openai/openai.test.ts} +1 -1
- package/src/libs/model-runtime/utils/streams/{openai.ts → openai/openai.ts} +5 -5
- package/src/libs/model-runtime/utils/streams/openai/responsesStream.test.ts +826 -0
- package/src/libs/model-runtime/utils/streams/openai/responsesStream.ts +166 -0
- package/src/libs/model-runtime/utils/streams/protocol.ts +4 -1
- package/src/libs/model-runtime/utils/streams/utils.ts +20 -0
- package/src/libs/model-runtime/utils/usageConverter.ts +59 -0
- package/src/locales/default/modelProvider.ts +4 -0
- package/src/services/__tests__/chat.test.ts +27 -0
- package/src/services/chat.ts +8 -2
- package/src/store/aiInfra/slices/aiProvider/selectors.ts +11 -0
- package/src/types/aiProvider.ts +13 -1
@@ -230,6 +230,9 @@
|
|
230
230
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
231
231
|
"description": "DeepSeek-R1 یک مدل استنتاجی مبتنی بر یادگیری تقویتی (RL) است که مشکلات تکرار و خوانایی را در مدل حل میکند. قبل از RL، DeepSeek-R1 دادههای شروع سرد را معرفی کرده و عملکرد استنتاج را بهینهسازی کرده است. این مدل در وظایف ریاضی، کد و استنتاج با OpenAI-o1 عملکرد مشابهی دارد و از طریق روشهای آموزشی به دقت طراحی شده، عملکرد کلی را بهبود میبخشد."
|
232
232
|
},
|
233
|
+
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
234
|
+
"description": "DeepSeek-R1 مدلی استدلالی مبتنی بر یادگیری تقویتی (RL) که مشکلات تکراری بودن و خوانایی مدل را حل کرده است. پیش از RL، DeepSeek-R1 دادههای شروع سرد را معرفی کرد تا عملکرد استدلال را بهبود بخشد. این مدل در ریاضیات، کد نویسی و وظایف استدلال عملکردی مشابه OpenAI-o1 دارد و با روشهای آموزشی دقیق، اثر کلی را ارتقاء داده است."
|
235
|
+
},
|
233
236
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
234
237
|
"description": "DeepSeek-R1-Distill-Qwen-1.5B مدلی است که از Qwen2.5-Math-1.5B از طریق دستیابی به دانش (Knowledge Distillation) به دست آمده است. این مدل با استفاده از 800,000 نمونه انتخابی تولید شده توسط DeepSeek-R1 آموزش داده شده و در چندین تست استاندارد عملکرد خوبی نشان داده است. به عنوان یک مدل سبک، در MATH-500 دقت 83.9٪ را کسب کرده، در AIME 2024 نرخ موفقیت 28.9٪ داشته و در CodeForces نمره 954 به دست آورده که نشاندهنده توانایی استنتاج فراتر از حجم پارامترهای آن است."
|
235
238
|
},
|
@@ -422,8 +425,8 @@
|
|
422
425
|
"THUDM/glm-4-9b-chat": {
|
423
426
|
"description": "نسخه منبع باز GLM-4 9B، تجربه گفتگوی بهینهشده برای برنامههای مکالمه را ارائه میدهد."
|
424
427
|
},
|
425
|
-
"
|
426
|
-
"description": "
|
428
|
+
"Tongyi-Zhiwen/QwenLong-L1-32B": {
|
429
|
+
"description": "QwenLong-L1-32B نخستین مدل بزرگ استدلال با زمینه طولانی است که با یادگیری تقویتی آموزش دیده و به طور خاص برای وظایف استدلال متون طولانی بهینه شده است. این مدل با چارچوب یادگیری تقویتی توسعه تدریجی زمینه، انتقال پایدار از زمینه کوتاه به بلند را محقق ساخته است. در هفت آزمون معیار پرسش و پاسخ اسناد طولانی، QwenLong-L1-32B از مدلهای پیشرو مانند OpenAI-o3-mini و Qwen3-235B-A22B پیشی گرفته و عملکردی مشابه Claude-3.7-Sonnet-Thinking دارد. این مدل در استدلال ریاضی، استدلال منطقی و استدلال چندمرحلهای مهارت ویژهای دارد."
|
427
430
|
},
|
428
431
|
"Yi-34B-Chat": {
|
429
432
|
"description": "Yi-1.5-34B با حفظ تواناییهای زبان عمومی عالی مدلهای قبلی خود، از طریق آموزش افزایشی 500 میلیارد توکن با کیفیت بالا، به طور قابل توجهی تواناییهای منطقی ریاضی و کدنویسی را افزایش داده است."
|
@@ -734,6 +737,12 @@
|
|
734
737
|
"deepseek-ai/DeepSeek-R1": {
|
735
738
|
"description": "DeepSeek-R1 یک مدل استنتاجی مبتنی بر یادگیری تقویتی (RL) است که به مشکلات تکرار و خوانایی در مدل پرداخته است. قبل از RL، DeepSeek-R1 دادههای شروع سرد را معرفی کرد و عملکرد استنتاج را بهینهتر کرد. این مدل در وظایف ریاضی، کدنویسی و استنتاج با OpenAI-o1 عملکرد مشابهی دارد و با استفاده از روشهای آموزشی به دقت طراحی شده، کیفیت کلی را بهبود بخشیده است."
|
736
739
|
},
|
740
|
+
"deepseek-ai/DeepSeek-R1-0528": {
|
741
|
+
"description": "DeepSeek R1 با بهرهگیری از منابع محاسباتی افزوده و مکانیزمهای بهینهسازی الگوریتمی در فرایند پسآموزش، عمق توانایی استدلال و استنتاج خود را به طور قابل توجهی افزایش داده است. این مدل در ارزیابیهای معیار مختلف از جمله ریاضیات، برنامهنویسی و منطق عمومی عملکرد برجستهای دارد. عملکرد کلی آن اکنون به مدلهای پیشرو مانند O3 و Gemini 2.5 Pro نزدیک شده است."
|
742
|
+
},
|
743
|
+
"deepseek-ai/DeepSeek-R1-0528-Qwen3-8B": {
|
744
|
+
"description": "DeepSeek-R1-0528-Qwen3-8B مدلی است که از تقطیر زنجیره فکری مدل DeepSeek-R1-0528 به Qwen3 8B Base به دست آمده است. این مدل در میان مدلهای متنباز به عملکرد پیشرفته (SOTA) دست یافته و در آزمون AIME 2024، 10٪ بهتر از Qwen3 8B عمل کرده و به سطح عملکرد Qwen3-235B-thinking رسیده است. این مدل در استدلال ریاضی، برنامهنویسی و منطق عمومی در چندین آزمون معیار عملکرد برجستهای دارد. ساختار آن مشابه Qwen3-8B است اما از پیکربندی توکنایزر DeepSeek-R1-0528 بهره میبرد."
|
745
|
+
},
|
737
746
|
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
|
738
747
|
"description": "مدل تقطیر DeepSeek-R1 که با استفاده از یادگیری تقویتی و دادههای شروع سرد عملکرد استدلال را بهینهسازی کرده و مدلهای متنباز را به روز کرده است."
|
739
748
|
},
|
@@ -836,9 +845,6 @@
|
|
836
845
|
"deepseek-v3-0324": {
|
837
846
|
"description": "DeepSeek-V3-0324 یک مدل MoE با ۶۷۱ میلیارد پارامتر است که در زمینههای برنامهنویسی و تواناییهای فنی، درک زمینه و پردازش متنهای طولانی برتری دارد."
|
838
847
|
},
|
839
|
-
"deepseek/deepseek-chat": {
|
840
|
-
"description": "مدل متنباز جدیدی که تواناییهای عمومی و کدنویسی را ترکیب میکند. این مدل نه تنها توانایی گفتگوی عمومی مدل Chat و قدرت پردازش کد مدل Coder را حفظ کرده است، بلکه به ترجیحات انسانی نیز بهتر همسو شده است. علاوه بر این، DeepSeek-V2.5 در وظایف نوشتاری، پیروی از دستورات و سایر جنبهها نیز بهبودهای قابل توجهی داشته است."
|
841
|
-
},
|
842
848
|
"deepseek/deepseek-chat-v3-0324": {
|
843
849
|
"description": "DeepSeek V3 یک مدل ترکیبی متخصص با 685B پارامتر است و جدیدترین نسخه از سری مدلهای چت پرچمدار تیم DeepSeek میباشد.\n\nاین مدل از [DeepSeek V3](/deepseek/deepseek-chat-v3) به ارث برده و در انواع وظایف عملکرد عالی از خود نشان میدهد."
|
844
850
|
},
|
@@ -848,6 +854,12 @@
|
|
848
854
|
"deepseek/deepseek-r1": {
|
849
855
|
"description": "DeepSeek-R1 با وجود دادههای برچسبگذاری شده بسیار کم، توانایی استدلال مدل را به طرز چشمگیری افزایش میدهد. قبل از ارائه پاسخ نهایی، مدل ابتدا یک زنجیره تفکر را تولید میکند تا دقت پاسخ نهایی را افزایش دهد."
|
850
856
|
},
|
857
|
+
"deepseek/deepseek-r1-0528": {
|
858
|
+
"description": "DeepSeek-R1 با داشتن دادههای برچسبخورده بسیار محدود، توانایی استدلال مدل را به طور چشمگیری افزایش داده است. قبل از ارائه پاسخ نهایی، مدل ابتدا یک زنجیره فکری را تولید میکند تا دقت پاسخ نهایی را بهبود بخشد."
|
859
|
+
},
|
860
|
+
"deepseek/deepseek-r1-0528:free": {
|
861
|
+
"description": "DeepSeek-R1 با داشتن دادههای برچسبخورده بسیار محدود، توانایی استدلال مدل را به طور چشمگیری افزایش داده است. قبل از ارائه پاسخ نهایی، مدل ابتدا یک زنجیره فکری را تولید میکند تا دقت پاسخ نهایی را بهبود بخشد."
|
862
|
+
},
|
851
863
|
"deepseek/deepseek-r1-distill-llama-70b": {
|
852
864
|
"description": "DeepSeek R1 Distill Llama 70B یک مدل زبان بزرگ مبتنی بر Llama3.3 70B است که با استفاده از تنظیمات DeepSeek R1 به عملکرد رقابتی معادل مدلهای پیشرفته بزرگ دست یافته است."
|
853
865
|
},
|
@@ -1262,6 +1274,9 @@
|
|
1262
1274
|
"gpt-4o-mini-realtime-preview": {
|
1263
1275
|
"description": "نسخه زنده GPT-4o-mini، پشتیبانی از ورودی و خروجی صوتی و متنی به صورت زنده."
|
1264
1276
|
},
|
1277
|
+
"gpt-4o-mini-search-preview": {
|
1278
|
+
"description": "نسخه پیشنمایش جستجوی GPT-4o mini مدلی است که به طور خاص برای درک و اجرای پرسشهای جستجوی وب آموزش دیده است و از API تکمیل چت استفاده میکند. علاوه بر هزینه توکنها، هر پرسش جستجوی وب بر اساس هر بار فراخوانی ابزار هزینه دریافت میکند."
|
1279
|
+
},
|
1265
1280
|
"gpt-4o-mini-tts": {
|
1266
1281
|
"description": "GPT-4o mini TTS یک مدل تبدیل متن به گفتار است که بر اساس GPT-4o mini ساخته شده است و با قیمت پایین تری از GPT-4o mini ارائه میدهد."
|
1267
1282
|
},
|
@@ -1274,6 +1289,9 @@
|
|
1274
1289
|
"gpt-4o-realtime-preview-2024-12-17": {
|
1275
1290
|
"description": "نسخه زنده GPT-4o، پشتیبانی از ورودی و خروجی صوتی و متنی به صورت زنده."
|
1276
1291
|
},
|
1292
|
+
"gpt-4o-search-preview": {
|
1293
|
+
"description": "نسخه پیشنمایش جستجوی GPT-4o مدلی است که به طور خاص برای درک و اجرای پرسشهای جستجوی وب آموزش دیده است و از API تکمیل چت استفاده میکند. علاوه بر هزینه توکنها، هر پرسش جستجوی وب بر اساس هر بار فراخوانی ابزار هزینه دریافت میکند."
|
1294
|
+
},
|
1277
1295
|
"grok-2-1212": {
|
1278
1296
|
"description": "این مدل در دقت، پیروی از دستورات و توانایی چند زبانه بهبود یافته است."
|
1279
1297
|
},
|
@@ -1307,6 +1325,9 @@
|
|
1307
1325
|
"hunyuan-large-longcontext": {
|
1308
1326
|
"description": "متخصص در پردازش وظایف متنی طولانی مانند خلاصهسازی اسناد و پرسش و پاسخ اسنادی، همچنین توانایی پردازش وظایف تولید متن عمومی را دارد. در تحلیل و تولید متنهای طولانی عملکرد فوقالعادهای دارد و میتواند بهطور مؤثر به نیازهای پیچیده و دقیق پردازش محتوای طولانی پاسخ دهد."
|
1309
1327
|
},
|
1328
|
+
"hunyuan-large-vision": {
|
1329
|
+
"description": "این مدل برای سناریوهای درک تصویر و متن مناسب است، یک مدل بزرگ زبان-بینایی مبتنی بر Hunyuan Large است که از ورودی چند تصویر با هر رزولوشن به همراه متن پشتیبانی میکند و محتوای متنی تولید میکند. تمرکز بر وظایف مرتبط با درک تصویر و متن دارد و در توانایی درک چندزبانه تصویر و متن بهبود قابل توجهی یافته است."
|
1330
|
+
},
|
1310
1331
|
"hunyuan-lite": {
|
1311
1332
|
"description": "به ساختار MOE ارتقا یافته است، پنجره متنی 256k دارد و در چندین مجموعه ارزیابی در زمینههای NLP، کد، ریاضیات و صنایع از بسیاری از مدلهای متنباز پیشی گرفته است."
|
1312
1333
|
},
|
@@ -1331,18 +1352,15 @@
|
|
1331
1352
|
"hunyuan-t1-20250321": {
|
1332
1353
|
"description": "مدلهای تواناییهای علمی و انسانی را به طور کامل ایجاد میکند و توانایی بالایی در ضبط اطلاعات متنی طولانی دارد. از استدلال برای پاسخ به مسائل علمی مختلف با درجات سختی متفاوت در ریاضیات/منطق/علم/کد و غیره پشتیبانی میکند."
|
1333
1354
|
},
|
1355
|
+
"hunyuan-t1-20250403": {
|
1356
|
+
"description": "افزایش توانایی تولید کد در سطح پروژه؛ بهبود کیفیت نوشتار تولید متن؛ ارتقاء توانایی درک موضوعات چندمرحلهای، پیروی از دستورات tob و درک واژگان؛ بهینهسازی مشکلات خروجی ترکیبی از زبانهای ساده و سنتی و همچنین ترکیب چینی و انگلیسی."
|
1357
|
+
},
|
1334
1358
|
"hunyuan-t1-latest": {
|
1335
1359
|
"description": "اولین مدل استدلال هیبریدی-ترنسفورمر-مامبا با مقیاس فوقالعاده بزرگ در صنعت، که توانایی استدلال را گسترش میدهد و سرعت رمزگشایی فوقالعادهای دارد و به طور بیشتری با ترجیحات انسانی همراستا میشود."
|
1336
1360
|
},
|
1337
1361
|
"hunyuan-t1-vision": {
|
1338
1362
|
"description": "مدل تفکر عمیق چندرسانهای Hunyuan که از زنجیره تفکر بلند بومی چندرسانهای پشتیبانی میکند، در پردازش انواع سناریوهای استدلال تصویری مهارت دارد و در مسائل علمی نسبت به مدل تفکر سریع بهبود قابل توجهی دارد."
|
1339
1363
|
},
|
1340
|
-
"hunyuan-translation": {
|
1341
|
-
"description": "از ۱۵ زبان شامل چینی، انگلیسی، ژاپنی، فرانسوی، پرتغالی، اسپانیایی، ترکی، روسی، عربی، کرهای، ایتالیایی، آلمانی، ویتنامی، مالایی و اندونزیایی پشتیبانی میکند و به طور خودکار با استفاده از مجموعه ارزیابی ترجمه چند صحنهای، امتیاز COMET را ارزیابی میکند. در توانایی ترجمه متقابل در بیش از ده زبان رایج، به طور کلی از مدلهای هممقیاس در بازار برتر است."
|
1342
|
-
},
|
1343
|
-
"hunyuan-translation-lite": {
|
1344
|
-
"description": "مدل ترجمه هویوان از ترجمه گفتگویی زبان طبیعی پشتیبانی میکند؛ از ۱۵ زبان شامل چینی، انگلیسی، ژاپنی، فرانسوی، پرتغالی، اسپانیایی، ترکی، روسی، عربی، کرهای، ایتالیایی، آلمانی، ویتنامی، مالایی و اندونزیایی پشتیبانی میکند."
|
1345
|
-
},
|
1346
1364
|
"hunyuan-turbo": {
|
1347
1365
|
"description": "نسخه پیشنمایش مدل زبان بزرگ نسل جدید HunYuan که از ساختار مدل متخصص ترکیبی (MoE) جدید استفاده میکند. در مقایسه با hunyuan-pro، کارایی استنتاج سریعتر و عملکرد بهتری دارد."
|
1348
1366
|
},
|
@@ -1355,8 +1373,11 @@
|
|
1355
1373
|
"hunyuan-turbo-vision": {
|
1356
1374
|
"description": "مدل بزرگ زبان بصری نسل جدید Hunyuan، با استفاده از ساختار جدید مدلهای متخصص ترکیبی (MoE)، در تواناییهای مربوط به درک تصویر و متن، خلق محتوا، پرسش و پاسخ دانش و تحلیل استدلال نسبت به مدلهای نسل قبلی بهطور جامع بهبود یافته است."
|
1357
1375
|
},
|
1358
|
-
"hunyuan-turbos-
|
1359
|
-
"description": "
|
1376
|
+
"hunyuan-turbos-20250313": {
|
1377
|
+
"description": "یکسانسازی سبک مراحل حل مسائل ریاضی، تقویت پرسش و پاسخ چندمرحلهای ریاضی. بهینهسازی سبک پاسخ در تولید متن، حذف حس مصنوعی هوش مصنوعی و افزودن زیبایی ادبی."
|
1378
|
+
},
|
1379
|
+
"hunyuan-turbos-20250416": {
|
1380
|
+
"description": "ارتقاء پایه پیشآموزش، تقویت توانایی درک و پیروی از دستورات پایه؛ تقویت مهارتهای علوم پایه مانند ریاضیات، کد نویسی، منطق و علوم؛ بهبود کیفیت نوشتار خلاقانه، درک متن، دقت ترجمه و پاسخ به سوالات دانش؛ تقویت تواناییهای عاملهای حوزههای مختلف، با تمرکز ویژه بر درک گفتگوی چندمرحلهای."
|
1360
1381
|
},
|
1361
1382
|
"hunyuan-turbos-latest": {
|
1362
1383
|
"description": "hunyuan-TurboS آخرین نسخه مدل بزرگ پرچمدار مختلط است که دارای توانایی تفکر قویتر و تجربه بهتری است."
|
@@ -1364,8 +1385,8 @@
|
|
1364
1385
|
"hunyuan-turbos-longtext-128k-20250325": {
|
1365
1386
|
"description": "این مدل در پردازش وظایف متنی طولانی مانند خلاصهسازی و پرسش و پاسخ مستندات مهارت دارد و همچنین توانایی پردازش وظایف تولید متن عمومی را دارد. در تحلیل و تولید متنهای طولانی عملکرد فوقالعادهای دارد و میتواند بهطور مؤثر به نیازهای پیچیده و دقیق پردازش محتوای طولانی پاسخ دهد."
|
1366
1387
|
},
|
1367
|
-
"hunyuan-turbos-
|
1368
|
-
"description": "
|
1388
|
+
"hunyuan-turbos-role-plus": {
|
1389
|
+
"description": "جدیدترین مدل نقشآفرینی Hunyuan، مدل نقشآفرینی تنظیمشده رسمی Hunyuan است که بر اساس مدل Hunyuan و دادههای سناریوی نقشآفرینی آموزش افزایشی دیده است و در سناریوهای نقشآفرینی عملکرد پایه بهتری دارد."
|
1369
1390
|
},
|
1370
1391
|
"hunyuan-vision": {
|
1371
1392
|
"description": "جدیدترین مدل چندوجهی هونیوان، پشتیبانی از ورودی تصویر + متن برای تولید محتوای متنی."
|
@@ -1886,11 +1907,14 @@
|
|
1886
1907
|
"qvq-72b-preview": {
|
1887
1908
|
"description": "مدل QVQ یک مدل تحقیقاتی تجربی است که توسط تیم Qwen توسعه یافته و بر بهبود توانایی استدلال بصری، بهویژه در زمینه استدلال ریاضی تمرکز دارد."
|
1888
1909
|
},
|
1889
|
-
"qvq-max
|
1890
|
-
"description": "مدل استدلال
|
1910
|
+
"qvq-max": {
|
1911
|
+
"description": "مدل استدلال بینایی QVQ Tongyi Qianwen که از ورودیهای بینایی و خروجی زنجیره فکری پشتیبانی میکند و در ریاضیات، برنامهنویسی، تحلیل بینایی، خلاقیت و وظایف عمومی تواناییهای قویتری نشان میدهد."
|
1912
|
+
},
|
1913
|
+
"qwen-coder-plus": {
|
1914
|
+
"description": "مدل کد نویسی Tongyi Qianwen."
|
1891
1915
|
},
|
1892
|
-
"qwen-coder-
|
1893
|
-
"description": "مدل کد
|
1916
|
+
"qwen-coder-turbo": {
|
1917
|
+
"description": "مدل کد نویسی Tongyi Qianwen."
|
1894
1918
|
},
|
1895
1919
|
"qwen-coder-turbo-latest": {
|
1896
1920
|
"description": "مدل کدنویسی تونگی چیانون."
|
@@ -1898,41 +1922,44 @@
|
|
1898
1922
|
"qwen-long": {
|
1899
1923
|
"description": "مدل زبانی بسیار بزرگ Tongyi Qianwen که از متنهای طولانی و همچنین قابلیت مکالمه در چندین سناریو مانند اسناد طولانی و چندین سند پشتیبانی میکند."
|
1900
1924
|
},
|
1925
|
+
"qwen-math-plus": {
|
1926
|
+
"description": "مدل ریاضی Tongyi Qianwen که به طور خاص برای حل مسائل ریاضی طراحی شده است."
|
1927
|
+
},
|
1901
1928
|
"qwen-math-plus-latest": {
|
1902
1929
|
"description": "مدل ریاضی Qwen یک مدل زبانی است که به طور خاص برای حل مسائل ریاضی طراحی شده است."
|
1903
1930
|
},
|
1931
|
+
"qwen-math-turbo": {
|
1932
|
+
"description": "مدل ریاضی Tongyi Qianwen که به طور خاص برای حل مسائل ریاضی طراحی شده است."
|
1933
|
+
},
|
1904
1934
|
"qwen-math-turbo-latest": {
|
1905
1935
|
"description": "مدل ریاضی Qwen Math Turbo یک مدل زبانی است که به طور خاص برای حل مسائل ریاضی طراحی شده است."
|
1906
1936
|
},
|
1907
1937
|
"qwen-max": {
|
1908
1938
|
"description": "مدل زبان بسیار بزرگ و با ظرفیت Qwen با توانایی پشتیبانی از ورودی زبانهای مختلف مانند چینی و انگلیسی، در حال حاضر مدل API پشت نسخه محصول Qwen 2.5 است."
|
1909
1939
|
},
|
1910
|
-
"qwen-
|
1911
|
-
"description": "
|
1912
|
-
},
|
1913
|
-
"qwen-omni-turbo-latest": {
|
1914
|
-
"description": "مدلهای سری Qwen-Omni از ورودی دادههای چندگانه شامل ویدیو، صدا، تصویر و متن پشتیبانی میکنند و خروجیهای صوتی و متنی تولید میکنند."
|
1940
|
+
"qwen-omni-turbo": {
|
1941
|
+
"description": "مدلهای سری Qwen-Omni از ورودیهای چندرسانهای مختلف از جمله ویدئو، صدا، تصویر و متن پشتیبانی میکنند و خروجی صوتی و متنی ارائه میدهند."
|
1915
1942
|
},
|
1916
1943
|
"qwen-plus": {
|
1917
1944
|
"description": "مدل زبان بسیار بزرگ Qwen در نسخه تقویت شده، از ورودی زبانهای مختلف مانند چینی و انگلیسی پشتیبانی میکند."
|
1918
1945
|
},
|
1919
|
-
"qwen-plus-latest": {
|
1920
|
-
"description": "نسخه تقویتشده مدل زبانی بسیار بزرگ Tongyi Qianwen، پشتیبانی از ورودی به زبانهای چینی، انگلیسی و سایر زبانها."
|
1921
|
-
},
|
1922
1946
|
"qwen-turbo": {
|
1923
1947
|
"description": "مدل زبان بسیار بزرگ Qwen، از ورودی زبانهای مختلف مانند چینی و انگلیسی پشتیبانی میکند."
|
1924
1948
|
},
|
1925
|
-
"qwen-turbo-latest": {
|
1926
|
-
"description": "مدل زبانی بسیار بزرگ Tongyi Qianwen که از ورودیهای زبانهای مختلف مانند چینی، انگلیسی و غیره پشتیبانی میکند."
|
1927
|
-
},
|
1928
1949
|
"qwen-vl-chat-v1": {
|
1929
1950
|
"description": "مدل Qwen-VL از روشهای تعاملی انعطافپذیر پشتیبانی میکند، از جمله قابلیتهای چندتصویری، پرسش و پاسخ چندمرحلهای و خلاقیت."
|
1930
1951
|
},
|
1952
|
+
"qwen-vl-max": {
|
1953
|
+
"description": "مدل بزرگ زبان-بینایی فوقالعاده بزرگ Tongyi Qianwen. نسبت به نسخه تقویتشده، توانایی استدلال بینایی و پیروی از دستورات را مجدداً ارتقاء داده و سطح بالاتری از ادراک و شناخت بینایی را ارائه میدهد."
|
1954
|
+
},
|
1931
1955
|
"qwen-vl-max-latest": {
|
1932
1956
|
"description": "مدل زبان بصری فوقالعاده بزرگ Qwen-VL. در مقایسه با نسخه تقویتشده، توانایی استدلال بصری و پیروی از دستورات را دوباره بهبود میبخشد و سطح بالاتری از ادراک و شناخت بصری را ارائه میدهد."
|
1933
1957
|
},
|
1934
|
-
"qwen-vl-ocr
|
1935
|
-
"description": "مدل
|
1958
|
+
"qwen-vl-ocr": {
|
1959
|
+
"description": "مدل اختصاصی استخراج متن Tongyi Qianwen OCR که بر استخراج متن از تصاویر اسناد، جداول، سوالات و دستنوشتهها تمرکز دارد. این مدل قادر به شناسایی چندین زبان است که شامل چینی، انگلیسی، فرانسوی، ژاپنی، کرهای، آلمانی، روسی، ایتالیایی، ویتنامی و عربی میباشد."
|
1960
|
+
},
|
1961
|
+
"qwen-vl-plus": {
|
1962
|
+
"description": "نسخه تقویتشده مدل بزرگ زبان-بینایی Tongyi Qianwen. توانایی شناسایی جزئیات و تشخیص متن را به طور چشمگیری افزایش داده و از تصاویر با رزولوشن بیش از یک میلیون پیکسل و نسبت ابعاد دلخواه پشتیبانی میکند."
|
1936
1963
|
},
|
1937
1964
|
"qwen-vl-plus-latest": {
|
1938
1965
|
"description": "نسخه تقویتشده مدل زبان تصویری بزرگ تونگی چیانون. بهبود قابل توجه در توانایی تشخیص جزئیات و شناسایی متن، پشتیبانی از وضوح بیش از یک میلیون پیکسل و تصاویر با هر نسبت طول به عرض."
|
@@ -2021,6 +2048,9 @@
|
|
2021
2048
|
"qwen2.5-coder-1.5b-instruct": {
|
2022
2049
|
"description": "نسخه متنباز مدل کد Qwen."
|
2023
2050
|
},
|
2051
|
+
"qwen2.5-coder-14b-instruct": {
|
2052
|
+
"description": "نسخه متنباز مدل کد نویسی Tongyi Qianwen."
|
2053
|
+
},
|
2024
2054
|
"qwen2.5-coder-32b-instruct": {
|
2025
2055
|
"description": "نسخه متن باز مدل کد Qwen."
|
2026
2056
|
},
|
@@ -2111,8 +2141,8 @@
|
|
2111
2141
|
"qwq-32b-preview": {
|
2112
2142
|
"description": "مدل QwQ یک مدل تحقیقاتی تجربی است که توسط تیم Qwen توسعه یافته و بر تقویت توانایی استدلال AI تمرکز دارد."
|
2113
2143
|
},
|
2114
|
-
"qwq-plus
|
2115
|
-
"description": "مدل
|
2144
|
+
"qwq-plus": {
|
2145
|
+
"description": "مدل استدلال QwQ مبتنی بر مدل Qwen2.5 است که با یادگیری تقویتی توانایی استدلال مدل را به طور قابل توجهی افزایش داده است. شاخصهای اصلی مدل در ریاضیات و کد نویسی (AIME 24/25، LiveCodeBench) و برخی شاخصهای عمومی (IFEval، LiveBench و غیره) به سطح نسخه کامل DeepSeek-R1 رسیدهاند."
|
2116
2146
|
},
|
2117
2147
|
"qwq_32b": {
|
2118
2148
|
"description": "مدل استدلالی با اندازه متوسط از سری Qwen. نسبت به مدلهای معمولی تنظیمشده بر اساس دستورات، QwQ که دارای تواناییهای تفکر و استدلال است، در وظایف پاییندستی، بهویژه در حل مسائل دشوار، میتواند عملکرد را بهطور قابل توجهی افزایش دهد."
|
@@ -71,6 +71,9 @@
|
|
71
71
|
"mistral": {
|
72
72
|
"description": "Mistral مدلهای پیشرفته عمومی، تخصصی و پژوهشی را ارائه میدهد که به طور گسترده در زمینههای استدلال پیچیده، وظایف چندزبانه، تولید کد و غیره کاربرد دارند. از طریق رابط فراخوانی عملکرد، کاربران میتوانند قابلیتهای سفارشی را برای تحقق برنامههای خاص ادغام کنند."
|
73
73
|
},
|
74
|
+
"modelscope": {
|
75
|
+
"description": "ModelScope یک پلتفرم مدل به عنوان سرویس است که توسط علیبابا کلود ارائه شده و مدلهای هوش مصنوعی متنوع و خدمات استنتاج را فراهم میکند."
|
76
|
+
},
|
74
77
|
"moonshot": {
|
75
78
|
"description": "Moonshot یک پلتفرم متنباز است که توسط شرکت فناوری Beijing Dark Side of the Moon ارائه شده است. این پلتفرم مدلهای مختلف پردازش زبان طبیعی را ارائه میدهد و در زمینههای گستردهای از جمله، اما نه محدود به، تولید محتوا، تحقیقات علمی، توصیههای هوشمند، تشخیص پزشکی و غیره کاربرد دارد و از پردازش متون طولانی و وظایف پیچیده تولید پشتیبانی میکند."
|
76
79
|
},
|
@@ -208,6 +208,10 @@
|
|
208
208
|
"title": "Utiliser le mode de requête client"
|
209
209
|
},
|
210
210
|
"helpDoc": "Guide de configuration",
|
211
|
+
"responsesApi": {
|
212
|
+
"desc": "Utilise la nouvelle norme de format de requête d'OpenAI, débloquant des fonctionnalités avancées telles que les chaînes de pensée",
|
213
|
+
"title": "Utiliser la norme Responses API"
|
214
|
+
},
|
211
215
|
"waitingForMore": "D'autres modèles sont en <1>planification d'intégration</1>, restez à l'écoute"
|
212
216
|
},
|
213
217
|
"createNew": {
|
@@ -230,6 +230,9 @@
|
|
230
230
|
"Pro/deepseek-ai/DeepSeek-R1": {
|
231
231
|
"description": "DeepSeek-R1 est un modèle d'inférence piloté par l'apprentissage par renforcement (RL), qui résout les problèmes de répétition et de lisibilité dans le modèle. Avant le RL, DeepSeek-R1 a introduit des données de démarrage à froid, optimisant encore les performances d'inférence. Il se compare à OpenAI-o1 dans les tâches mathématiques, de code et d'inférence, et améliore l'ensemble des performances grâce à des méthodes d'entraînement soigneusement conçues."
|
232
232
|
},
|
233
|
+
"Pro/deepseek-ai/DeepSeek-R1-0120": {
|
234
|
+
"description": "DeepSeek-R1 est un modèle de raisonnement piloté par apprentissage par renforcement (RL), résolvant les problèmes de répétitivité et de lisibilité dans les modèles. Avant le RL, DeepSeek-R1 a introduit des données de démarrage à froid pour optimiser davantage les performances de raisonnement. Il offre des performances comparables à OpenAI-o1 en mathématiques, code et tâches de raisonnement, avec une amélioration globale grâce à une méthode d’entraînement soigneusement conçue."
|
235
|
+
},
|
233
236
|
"Pro/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B": {
|
234
237
|
"description": "DeepSeek-R1-Distill-Qwen-1.5B est un modèle obtenu par distillation de connaissances à partir de Qwen2.5-Math-1.5B. Ce modèle a été affiné à l'aide de 800 000 échantillons sélectionnés générés par DeepSeek-R1, démontrant des performances remarquables sur plusieurs benchmarks. En tant que modèle léger, il atteint une précision de 83,9 % sur MATH-500, un taux de réussite de 28,9 % sur AIME 2024 et un score de 954 sur CodeForces, révélant des capacités de raisonnement dépassant sa taille paramétrique."
|
235
238
|
},
|
@@ -422,8 +425,8 @@
|
|
422
425
|
"THUDM/glm-4-9b-chat": {
|
423
426
|
"description": "GLM-4 9B est une version open source, offrant une expérience de dialogue optimisée pour les applications de conversation."
|
424
427
|
},
|
425
|
-
"
|
426
|
-
"description": "
|
428
|
+
"Tongyi-Zhiwen/QwenLong-L1-32B": {
|
429
|
+
"description": "QwenLong-L1-32B est le premier grand modèle de raisonnement à long contexte (LRM) entraîné par renforcement, optimisé pour les tâches de raisonnement sur de longs textes. Ce modèle utilise un cadre d’apprentissage par renforcement à extension progressive du contexte, assurant une transition stable du court au long contexte. Sur sept benchmarks de questions-réponses à long contexte, QwenLong-L1-32B dépasse les modèles phares tels que OpenAI-o3-mini et Qwen3-235B-A22B, avec des performances comparables à Claude-3.7-Sonnet-Thinking. Il excelle particulièrement dans les tâches complexes de raisonnement mathématique, logique et multi-sauts."
|
427
430
|
},
|
428
431
|
"Yi-34B-Chat": {
|
429
432
|
"description": "Yi-1.5-34B, tout en maintenant les excellentes capacités linguistiques générales de la série originale, a considérablement amélioré ses compétences en logique mathématique et en codage grâce à un entraînement incrémental sur 500 milliards de tokens de haute qualité."
|
@@ -734,6 +737,12 @@
|
|
734
737
|
"deepseek-ai/DeepSeek-R1": {
|
735
738
|
"description": "DeepSeek-R1 est un modèle d'inférence alimenté par l'apprentissage par renforcement (RL), qui résout les problèmes de répétitivité et de lisibilité dans le modèle. Avant le RL, DeepSeek-R1 a introduit des données de démarrage à froid, optimisant ainsi les performances d'inférence. Il se compare à OpenAI-o1 en matière de tâches mathématiques, de code et d'inférence, et améliore l'efficacité globale grâce à des méthodes d'entraînement soigneusement conçues."
|
736
739
|
},
|
740
|
+
"deepseek-ai/DeepSeek-R1-0528": {
|
741
|
+
"description": "DeepSeek R1 améliore significativement la profondeur de ses capacités de raisonnement et d’inférence grâce à l’utilisation accrue des ressources de calcul et à l’introduction de mécanismes d’optimisation algorithmique durant la phase post-entraînement. Ce modèle excelle dans divers benchmarks, notamment en mathématiques, programmation et logique générale. Ses performances globales se rapprochent désormais des modèles de pointe tels que O3 et Gemini 2.5 Pro."
|
742
|
+
},
|
743
|
+
"deepseek-ai/DeepSeek-R1-0528-Qwen3-8B": {
|
744
|
+
"description": "DeepSeek-R1-0528-Qwen3-8B est un modèle obtenu par distillation de la chaîne de pensée du modèle DeepSeek-R1-0528 vers Qwen3 8B Base. Ce modèle atteint des performances de pointe (SOTA) parmi les modèles open source, surpassant Qwen3 8B de 10 % lors du test AIME 2024 et atteignant le niveau de performance de Qwen3-235B-thinking. Il excelle dans les benchmarks de raisonnement mathématique, programmation et logique générale, partageant la même architecture que Qwen3-8B mais utilisant la configuration de tokenizer de DeepSeek-R1-0528."
|
745
|
+
},
|
737
746
|
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
|
738
747
|
"description": "Le modèle distillé DeepSeek-R1 optimise les performances d'inférence grâce à l'apprentissage par renforcement et aux données de démarrage à froid, rafraîchissant les références multi-tâches des modèles open source."
|
739
748
|
},
|
@@ -836,9 +845,6 @@
|
|
836
845
|
"deepseek-v3-0324": {
|
837
846
|
"description": "DeepSeek-V3-0324 est un modèle MoE de 671 milliards de paramètres, se distinguant par ses capacités en programmation et en technique, ainsi que par sa compréhension du contexte et son traitement de longs textes."
|
838
847
|
},
|
839
|
-
"deepseek/deepseek-chat": {
|
840
|
-
"description": "Un nouveau modèle open source fusionnant des capacités générales et de codage, qui non seulement conserve les capacités de dialogue général du modèle Chat d'origine et la puissante capacité de traitement de code du modèle Coder, mais s'aligne également mieux sur les préférences humaines. De plus, DeepSeek-V2.5 a également réalisé des améliorations significatives dans plusieurs domaines tels que les tâches d'écriture et le suivi d'instructions."
|
841
|
-
},
|
842
848
|
"deepseek/deepseek-chat-v3-0324": {
|
843
849
|
"description": "DeepSeek V3 est un modèle hybride d'experts avec 685B de paramètres, représentant la dernière itération de la série de modèles de chat phare de l'équipe DeepSeek.\n\nIl hérite du modèle [DeepSeek V3](/deepseek/deepseek-chat-v3) et excelle dans diverses tâches."
|
844
850
|
},
|
@@ -848,6 +854,12 @@
|
|
848
854
|
"deepseek/deepseek-r1": {
|
849
855
|
"description": "DeepSeek-R1 améliore considérablement les capacités de raisonnement du modèle avec très peu de données annotées. Avant de fournir la réponse finale, le modèle génère d'abord une chaîne de pensée pour améliorer l'exactitude de la réponse finale."
|
850
856
|
},
|
857
|
+
"deepseek/deepseek-r1-0528": {
|
858
|
+
"description": "DeepSeek-R1 améliore considérablement les capacités de raisonnement du modèle avec très peu de données annotées. Avant de fournir la réponse finale, le modèle génère une chaîne de pensée pour améliorer la précision de la réponse."
|
859
|
+
},
|
860
|
+
"deepseek/deepseek-r1-0528:free": {
|
861
|
+
"description": "DeepSeek-R1 améliore considérablement les capacités de raisonnement du modèle avec très peu de données annotées. Avant de fournir la réponse finale, le modèle génère une chaîne de pensée pour améliorer la précision de la réponse."
|
862
|
+
},
|
851
863
|
"deepseek/deepseek-r1-distill-llama-70b": {
|
852
864
|
"description": "DeepSeek R1 Distill Llama 70B est un modèle de langage de grande taille basé sur Llama3.3 70B, qui utilise le fine-tuning des sorties de DeepSeek R1 pour atteindre des performances compétitives comparables aux grands modèles de pointe."
|
853
865
|
},
|
@@ -1262,6 +1274,9 @@
|
|
1262
1274
|
"gpt-4o-mini-realtime-preview": {
|
1263
1275
|
"description": "Version mini en temps réel de GPT-4o, prenant en charge les entrées et sorties audio et textuelles en temps réel."
|
1264
1276
|
},
|
1277
|
+
"gpt-4o-mini-search-preview": {
|
1278
|
+
"description": "La version préliminaire GPT-4o mini Search est un modèle spécialement entraîné pour comprendre et exécuter des requêtes de recherche web, utilisant l’API Chat Completions. En plus des frais de jetons, les requêtes de recherche web sont facturées par appel d’outil."
|
1279
|
+
},
|
1265
1280
|
"gpt-4o-mini-tts": {
|
1266
1281
|
"description": "GPT-4o mini TTS est un modèle de synthèse vocale basé sur GPT-4o mini, offrant une génération de voix de haute qualité à un coût plus faible."
|
1267
1282
|
},
|
@@ -1274,6 +1289,9 @@
|
|
1274
1289
|
"gpt-4o-realtime-preview-2024-12-17": {
|
1275
1290
|
"description": "Version en temps réel de GPT-4o, prenant en charge les entrées et sorties audio et textuelles en temps réel."
|
1276
1291
|
},
|
1292
|
+
"gpt-4o-search-preview": {
|
1293
|
+
"description": "La version préliminaire GPT-4o Search est un modèle spécialement entraîné pour comprendre et exécuter des requêtes de recherche web, utilisant l’API Chat Completions. En plus des frais de jetons, les requêtes de recherche web sont facturées par appel d’outil."
|
1294
|
+
},
|
1277
1295
|
"grok-2-1212": {
|
1278
1296
|
"description": "Ce modèle a été amélioré en termes de précision, de respect des instructions et de capacités multilingues."
|
1279
1297
|
},
|
@@ -1307,6 +1325,9 @@
|
|
1307
1325
|
"hunyuan-large-longcontext": {
|
1308
1326
|
"description": "Expert dans le traitement des tâches de longs documents telles que le résumé de documents et les questions-réponses sur des documents, tout en ayant également la capacité de traiter des tâches de génération de texte général. Il excelle dans l'analyse et la génération de longs textes, capable de répondre efficacement aux besoins de traitement de contenus longs complexes et détaillés."
|
1309
1327
|
},
|
1328
|
+
"hunyuan-large-vision": {
|
1329
|
+
"description": "Ce modèle est adapté aux scénarios de compréhension image-texte. Basé sur le modèle Hunyuan Large, il s’agit d’un grand modèle visuel-langage supportant l’entrée de plusieurs images à résolution arbitraire ainsi que du texte, générant du contenu textuel. Il se concentre sur les tâches liées à la compréhension image-texte et présente une amélioration significative des capacités multilingues dans ce domaine."
|
1330
|
+
},
|
1310
1331
|
"hunyuan-lite": {
|
1311
1332
|
"description": "Mise à niveau vers une structure MOE, avec une fenêtre contextuelle de 256k, en tête de nombreux modèles open source dans les évaluations NLP, code, mathématiques, industrie, etc."
|
1312
1333
|
},
|
@@ -1331,18 +1352,15 @@
|
|
1331
1352
|
"hunyuan-t1-20250321": {
|
1332
1353
|
"description": "Modèle complet construit pour les capacités en sciences humaines et exactes, avec une forte capacité de capture d'informations dans de longs textes. Prend en charge le raisonnement pour répondre à divers problèmes scientifiques de mathématiques/logique/sciences/code, quel que soit leur niveau de difficulté."
|
1333
1354
|
},
|
1355
|
+
"hunyuan-t1-20250403": {
|
1356
|
+
"description": "Amélioration des capacités de génération de code au niveau projet ; amélioration de la qualité de la rédaction générée ; amélioration de la compréhension multi-tours des sujets, de la conformité aux instructions toB et de la compréhension des mots ; optimisation des problèmes liés à la sortie mixte de caractères simplifiés/traditionnels et chinois/anglais."
|
1357
|
+
},
|
1334
1358
|
"hunyuan-t1-latest": {
|
1335
1359
|
"description": "Le premier modèle d'inférence Hybrid-Transformer-Mamba à grande échelle de l'industrie, qui étend les capacités d'inférence, offre une vitesse de décodage exceptionnelle et aligne davantage les préférences humaines."
|
1336
1360
|
},
|
1337
1361
|
"hunyuan-t1-vision": {
|
1338
1362
|
"description": "Modèle de réflexion profonde multimodal Hunyuan, supportant des chaînes de pensée natives multimodales longues, excellent dans divers scénarios d'inférence d'images, avec une amélioration globale par rapport aux modèles de pensée rapide dans les problèmes scientifiques."
|
1339
1363
|
},
|
1340
|
-
"hunyuan-translation": {
|
1341
|
-
"description": "Supporte la traduction entre le chinois et l'anglais, le japonais, le français, le portugais, l'espagnol, le turc, le russe, l'arabe, le coréen, l'italien, l'allemand, le vietnamien, le malais et l'indonésien, soit 15 langues au total, avec une évaluation automatisée basée sur le score COMET à partir d'un ensemble d'évaluation de traduction multi-scénarios, montrant une capacité de traduction globale supérieure à celle des modèles de taille similaire sur le marché."
|
1342
|
-
},
|
1343
|
-
"hunyuan-translation-lite": {
|
1344
|
-
"description": "Le modèle de traduction Hunyuan prend en charge la traduction en dialogue naturel ; il supporte la traduction entre le chinois et l'anglais, le japonais, le français, le portugais, l'espagnol, le turc, le russe, l'arabe, le coréen, l'italien, l'allemand, le vietnamien, le malais et l'indonésien, soit 15 langues au total."
|
1345
|
-
},
|
1346
1364
|
"hunyuan-turbo": {
|
1347
1365
|
"description": "Version préliminaire du nouveau modèle de langage de génération Hunyuan, utilisant une nouvelle structure de modèle d'experts mixtes (MoE), offrant une efficacité d'inférence plus rapide et de meilleures performances par rapport à Hunyuan-Pro."
|
1348
1366
|
},
|
@@ -1355,8 +1373,11 @@
|
|
1355
1373
|
"hunyuan-turbo-vision": {
|
1356
1374
|
"description": "Le nouveau modèle phare de langage visuel de Hunyuan de nouvelle génération, utilisant une toute nouvelle structure de modèle d'experts hybrides (MoE), avec des améliorations complètes par rapport à la génération précédente dans les capacités de reconnaissance de base, de création de contenu, de questions-réponses, et d'analyse et de raisonnement liés à la compréhension d'images et de textes."
|
1357
1375
|
},
|
1358
|
-
"hunyuan-turbos-
|
1359
|
-
"description": "
|
1376
|
+
"hunyuan-turbos-20250313": {
|
1377
|
+
"description": "Uniformisation du style des étapes de résolution mathématique, renforcement des questions-réponses mathématiques multi-tours. Optimisation du style de réponse en création textuelle, suppression de l’aspect « IA », ajout d’élégance littéraire."
|
1378
|
+
},
|
1379
|
+
"hunyuan-turbos-20250416": {
|
1380
|
+
"description": "Mise à niveau de la base pré-entraînée, renforçant la compréhension et la conformité aux instructions ; amélioration des compétences en mathématiques, code, logique et sciences durant la phase d’alignement ; amélioration de la qualité de la création littéraire, de la compréhension textuelle, de la précision des traductions et des réponses aux questions de culture générale ; renforcement des capacités des agents dans divers domaines, avec un accent particulier sur la compréhension des dialogues multi-tours."
|
1360
1381
|
},
|
1361
1382
|
"hunyuan-turbos-latest": {
|
1362
1383
|
"description": "hunyuan-TurboS est la dernière version du modèle phare Hunyuan, offrant une capacité de réflexion améliorée et une expérience utilisateur optimisée."
|
@@ -1364,8 +1385,8 @@
|
|
1364
1385
|
"hunyuan-turbos-longtext-128k-20250325": {
|
1365
1386
|
"description": "Expert dans le traitement de tâches de long texte telles que le résumé de documents et les questions-réponses, tout en ayant la capacité de gérer des tâches de génération de texte général. Il excelle dans l'analyse et la génération de longs textes, répondant efficacement aux besoins de traitement de contenus longs et complexes."
|
1366
1387
|
},
|
1367
|
-
"hunyuan-turbos-
|
1368
|
-
"description": "
|
1388
|
+
"hunyuan-turbos-role-plus": {
|
1389
|
+
"description": "Dernière version du modèle de jeu de rôle Hunyuan, finement ajusté par l’équipe officielle Hunyuan. Ce modèle est entraîné en supplément avec un jeu de données spécifique aux scénarios de jeu de rôle, offrant de meilleures performances de base dans ces contextes."
|
1369
1390
|
},
|
1370
1391
|
"hunyuan-vision": {
|
1371
1392
|
"description": "Dernier modèle multimodal Hunyuan, prenant en charge l'entrée d'images et de textes pour générer du contenu textuel."
|
@@ -1886,11 +1907,14 @@
|
|
1886
1907
|
"qvq-72b-preview": {
|
1887
1908
|
"description": "Le modèle QVQ est un modèle de recherche expérimental développé par l'équipe Qwen, axé sur l'amélioration des capacités de raisonnement visuel, en particulier dans le domaine du raisonnement mathématique."
|
1888
1909
|
},
|
1889
|
-
"qvq-max
|
1890
|
-
"description": "
|
1910
|
+
"qvq-max": {
|
1911
|
+
"description": "Modèle de raisonnement visuel QVQ de Tongyi Qianwen, supportant l’entrée visuelle et la sortie en chaîne de pensée, démontrant des capacités renforcées en mathématiques, programmation, analyse visuelle, création et tâches générales."
|
1912
|
+
},
|
1913
|
+
"qwen-coder-plus": {
|
1914
|
+
"description": "Modèle de code Tongyi Qianwen."
|
1891
1915
|
},
|
1892
|
-
"qwen-coder-
|
1893
|
-
"description": "Modèle de code
|
1916
|
+
"qwen-coder-turbo": {
|
1917
|
+
"description": "Modèle de code Tongyi Qianwen."
|
1894
1918
|
},
|
1895
1919
|
"qwen-coder-turbo-latest": {
|
1896
1920
|
"description": "Le modèle de code Tongyi Qwen."
|
@@ -1898,41 +1922,44 @@
|
|
1898
1922
|
"qwen-long": {
|
1899
1923
|
"description": "Qwen est un modèle de langage à grande échelle, prenant en charge un contexte de texte long, ainsi que des fonctionnalités de dialogue basées sur des documents longs et multiples."
|
1900
1924
|
},
|
1925
|
+
"qwen-math-plus": {
|
1926
|
+
"description": "Modèle mathématique Tongyi Qianwen spécialement conçu pour la résolution de problèmes mathématiques."
|
1927
|
+
},
|
1901
1928
|
"qwen-math-plus-latest": {
|
1902
1929
|
"description": "Le modèle de langage Tongyi Qwen pour les mathématiques, spécialement conçu pour résoudre des problèmes mathématiques."
|
1903
1930
|
},
|
1931
|
+
"qwen-math-turbo": {
|
1932
|
+
"description": "Modèle mathématique Tongyi Qianwen spécialement conçu pour la résolution de problèmes mathématiques."
|
1933
|
+
},
|
1904
1934
|
"qwen-math-turbo-latest": {
|
1905
1935
|
"description": "Le modèle de langage Tongyi Qwen pour les mathématiques, spécialement conçu pour résoudre des problèmes mathématiques."
|
1906
1936
|
},
|
1907
1937
|
"qwen-max": {
|
1908
1938
|
"description": "Modèle de langage à grande échelle de niveau milliard Qwen, prenant en charge des entrées dans différentes langues telles que le chinois et l'anglais, représentant actuellement le modèle API derrière la version 2.5 de Qwen."
|
1909
1939
|
},
|
1910
|
-
"qwen-
|
1911
|
-
"description": "
|
1912
|
-
},
|
1913
|
-
"qwen-omni-turbo-latest": {
|
1914
|
-
"description": "La série de modèles Qwen-Omni prend en charge l'entrée de données multimodales, y compris vidéo, audio, images et texte, et produit des sorties audio et textuelles."
|
1940
|
+
"qwen-omni-turbo": {
|
1941
|
+
"description": "La série Qwen-Omni supporte l’entrée de données multimodales variées, incluant vidéo, audio, images et texte, et produit en sortie de l’audio et du texte."
|
1915
1942
|
},
|
1916
1943
|
"qwen-plus": {
|
1917
1944
|
"description": "Version améliorée du modèle de langage à grande échelle Qwen, prenant en charge des entrées dans différentes langues telles que le chinois et l'anglais."
|
1918
1945
|
},
|
1919
|
-
"qwen-plus-latest": {
|
1920
|
-
"description": "La version améliorée du modèle de langage à grande échelle Tongyi Qwen, prenant en charge des entrées en chinois, en anglais et dans d'autres langues."
|
1921
|
-
},
|
1922
1946
|
"qwen-turbo": {
|
1923
1947
|
"description": "Le modèle de langage à grande échelle Qwen, prenant en charge des entrées dans différentes langues telles que le chinois et l'anglais."
|
1924
1948
|
},
|
1925
|
-
"qwen-turbo-latest": {
|
1926
|
-
"description": "Le modèle de langage à grande échelle Tongyi Qwen, prenant en charge des entrées en chinois, en anglais et dans d'autres langues."
|
1927
|
-
},
|
1928
1949
|
"qwen-vl-chat-v1": {
|
1929
1950
|
"description": "Qwen VL prend en charge des modes d'interaction flexibles, y compris la capacité de poser des questions à plusieurs images, des dialogues multi-tours, et plus encore."
|
1930
1951
|
},
|
1952
|
+
"qwen-vl-max": {
|
1953
|
+
"description": "Modèle visuel-langage Tongyi Qianwen de très grande échelle. Par rapport à la version améliorée, il renforce encore les capacités de raisonnement visuel et de conformité aux instructions, offrant un niveau supérieur de perception et de cognition visuelle."
|
1954
|
+
},
|
1931
1955
|
"qwen-vl-max-latest": {
|
1932
1956
|
"description": "Modèle de langage visuel à très grande échelle Tongyi Qianwen. Par rapport à la version améliorée, il améliore encore les capacités de raisonnement visuel et de suivi des instructions, offrant un niveau de perception visuelle et de cognition plus élevé."
|
1933
1957
|
},
|
1934
|
-
"qwen-vl-ocr
|
1935
|
-
"description": "
|
1958
|
+
"qwen-vl-ocr": {
|
1959
|
+
"description": "Tongyi Qianwen OCR est un modèle spécialisé dans l’extraction de texte, focalisé sur les images de documents, tableaux, questions d’examen, écriture manuscrite, etc. Il peut reconnaître plusieurs langues, notamment : chinois, anglais, français, japonais, coréen, allemand, russe, italien, vietnamien et arabe."
|
1960
|
+
},
|
1961
|
+
"qwen-vl-plus": {
|
1962
|
+
"description": "Version améliorée du grand modèle visuel-langage Tongyi Qianwen. Amélioration significative des capacités de reconnaissance des détails et de reconnaissance optique de caractères, supportant des images à résolution supérieure à un million de pixels et des formats d’image de proportions arbitraires."
|
1936
1963
|
},
|
1937
1964
|
"qwen-vl-plus-latest": {
|
1938
1965
|
"description": "Version améliorée du modèle de langage visuel à grande échelle Tongyi Qianwen. Amélioration significative des capacités de reconnaissance des détails et de reconnaissance de texte, prenant en charge des résolutions d'image de plus d'un million de pixels et des rapports d'aspect de n'importe quelle taille."
|
@@ -2021,6 +2048,9 @@
|
|
2021
2048
|
"qwen2.5-coder-1.5b-instruct": {
|
2022
2049
|
"description": "Version open-source du modèle de code Qwen."
|
2023
2050
|
},
|
2051
|
+
"qwen2.5-coder-14b-instruct": {
|
2052
|
+
"description": "Version open source du modèle de code Tongyi Qianwen."
|
2053
|
+
},
|
2024
2054
|
"qwen2.5-coder-32b-instruct": {
|
2025
2055
|
"description": "Version open source du modèle de code Qwen universel."
|
2026
2056
|
},
|
@@ -2111,8 +2141,8 @@
|
|
2111
2141
|
"qwq-32b-preview": {
|
2112
2142
|
"description": "Le modèle QwQ est un modèle de recherche expérimental développé par l'équipe Qwen, axé sur l'amélioration des capacités de raisonnement de l'IA."
|
2113
2143
|
},
|
2114
|
-
"qwq-plus
|
2115
|
-
"description": "
|
2144
|
+
"qwq-plus": {
|
2145
|
+
"description": "Modèle d’inférence QwQ entraîné sur la base du modèle Qwen2.5, avec un renforcement par apprentissage qui améliore considérablement les capacités de raisonnement. Les indicateurs clés en mathématiques et code (AIME 24/25, LiveCodeBench) ainsi que certains indicateurs généraux (IFEval, LiveBench, etc.) atteignent le niveau complet de DeepSeek-R1."
|
2116
2146
|
},
|
2117
2147
|
"qwq_32b": {
|
2118
2148
|
"description": "Modèle de raisonnement de taille moyenne de la série Qwen. Comparé aux modèles d'ajustement d'instructions traditionnels, QwQ, avec ses capacités de réflexion et de raisonnement, peut considérablement améliorer les performances dans les tâches en aval, en particulier lors de la résolution de problèmes difficiles."
|
@@ -71,6 +71,9 @@
|
|
71
71
|
"mistral": {
|
72
72
|
"description": "Mistral propose des modèles avancés généraux, professionnels et de recherche, largement utilisés dans des domaines tels que le raisonnement complexe, les tâches multilingues et la génération de code. Grâce à une interface d'appel de fonction, les utilisateurs peuvent intégrer des fonctionnalités personnalisées pour des applications spécifiques."
|
73
73
|
},
|
74
|
+
"modelscope": {
|
75
|
+
"description": "ModelScope est une plateforme de modèles en tant que service lancée par Alibaba Cloud, offrant une riche gamme de modèles d'IA et de services d'inférence."
|
76
|
+
},
|
74
77
|
"moonshot": {
|
75
78
|
"description": "Moonshot est une plateforme open source lancée par Beijing Dark Side Technology Co., Ltd., offrant divers modèles de traitement du langage naturel, avec des applications dans des domaines variés, y compris mais sans s'y limiter, la création de contenu, la recherche académique, les recommandations intelligentes, le diagnostic médical, etc., prenant en charge le traitement de longs textes et des tâches de génération complexes."
|
76
79
|
},
|
@@ -208,6 +208,10 @@
|
|
208
208
|
"title": "Utilizza la modalità di richiesta client"
|
209
209
|
},
|
210
210
|
"helpDoc": "Guida alla configurazione",
|
211
|
+
"responsesApi": {
|
212
|
+
"desc": "Utilizza il nuovo formato di richiesta di OpenAI per sbloccare funzionalità avanzate come la catena di pensiero",
|
213
|
+
"title": "Utilizza lo standard Responses API"
|
214
|
+
},
|
211
215
|
"waitingForMore": "Altri modelli sono in fase di <1>implementazione</1>, resta sintonizzato"
|
212
216
|
},
|
213
217
|
"createNew": {
|