@lobehub/chat 1.84.9 → 1.84.11

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (93) hide show
  1. package/CHANGELOG.md +54 -0
  2. package/apps/desktop/electron.vite.config.ts +3 -0
  3. package/changelog/v1.json +18 -0
  4. package/locales/ar/components.json +2 -1
  5. package/locales/ar/models.json +63 -0
  6. package/locales/bg-BG/components.json +2 -1
  7. package/locales/bg-BG/models.json +63 -0
  8. package/locales/de-DE/components.json +2 -1
  9. package/locales/de-DE/models.json +63 -0
  10. package/locales/en-US/components.json +2 -1
  11. package/locales/en-US/models.json +63 -0
  12. package/locales/es-ES/components.json +2 -1
  13. package/locales/es-ES/models.json +63 -0
  14. package/locales/fa-IR/components.json +2 -1
  15. package/locales/fa-IR/models.json +63 -0
  16. package/locales/fr-FR/components.json +2 -1
  17. package/locales/fr-FR/models.json +63 -0
  18. package/locales/it-IT/components.json +2 -1
  19. package/locales/it-IT/models.json +63 -0
  20. package/locales/ja-JP/components.json +2 -1
  21. package/locales/ja-JP/models.json +63 -0
  22. package/locales/ko-KR/components.json +2 -1
  23. package/locales/ko-KR/models.json +63 -0
  24. package/locales/nl-NL/components.json +2 -1
  25. package/locales/nl-NL/models.json +63 -0
  26. package/locales/pl-PL/components.json +2 -1
  27. package/locales/pl-PL/models.json +63 -0
  28. package/locales/pt-BR/components.json +2 -1
  29. package/locales/pt-BR/models.json +63 -0
  30. package/locales/ru-RU/components.json +2 -1
  31. package/locales/ru-RU/models.json +63 -0
  32. package/locales/tr-TR/components.json +2 -1
  33. package/locales/tr-TR/models.json +63 -0
  34. package/locales/vi-VN/components.json +2 -1
  35. package/locales/vi-VN/models.json +63 -0
  36. package/locales/zh-CN/components.json +2 -1
  37. package/locales/zh-CN/models.json +63 -0
  38. package/locales/zh-TW/components.json +2 -1
  39. package/locales/zh-TW/models.json +63 -0
  40. package/package.json +2 -2
  41. package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ChatInput/Mobile/index.tsx +1 -1
  42. package/src/app/[variants]/(main)/chat/(workspace)/@topic/features/Header.tsx +5 -1
  43. package/src/app/[variants]/(main)/chat/settings/page.tsx +1 -0
  44. package/src/app/[variants]/(main)/settings/_layout/Desktop/index.tsx +4 -1
  45. package/src/app/[variants]/(main)/settings/provider/(detail)/ollama/CheckError.tsx +4 -2
  46. package/src/app/[variants]/(main)/settings/provider/(detail)/ollama/Container.tsx +2 -2
  47. package/src/app/[variants]/(main)/settings/provider/ProviderMenu/index.tsx +1 -0
  48. package/src/components/FileParsingStatus/index.tsx +1 -7
  49. package/src/components/ModelSelect/index.tsx +2 -2
  50. package/src/config/aiModels/siliconcloud.ts +89 -7
  51. package/src/config/modelProviders/google.ts +16 -0
  52. package/src/features/ChatInput/ActionBar/{Clear.tsx → Clear/index.tsx} +3 -2
  53. package/src/features/ChatInput/ActionBar/History/Controls.tsx +72 -0
  54. package/src/features/ChatInput/ActionBar/History/index.tsx +46 -0
  55. package/src/features/ChatInput/ActionBar/Knowledge/index.tsx +31 -25
  56. package/src/features/ChatInput/ActionBar/Knowledge/{Dropdown.tsx → useControls.tsx} +20 -40
  57. package/src/features/ChatInput/ActionBar/Model/ControlsForm.tsx +8 -1
  58. package/src/features/ChatInput/ActionBar/Model/index.tsx +27 -19
  59. package/src/features/ChatInput/ActionBar/Params/{ParamsControls.tsx → Controls.tsx} +9 -9
  60. package/src/features/ChatInput/ActionBar/Params/index.tsx +17 -20
  61. package/src/features/ChatInput/{STT → ActionBar/STT}/common.tsx +1 -0
  62. package/src/features/ChatInput/ActionBar/Search/{SwitchPanel.tsx → Controls.tsx} +12 -11
  63. package/src/features/ChatInput/ActionBar/Search/index.tsx +20 -25
  64. package/src/features/ChatInput/ActionBar/Token/TokenTag.tsx +1 -1
  65. package/src/features/ChatInput/ActionBar/Tools/ToolItem.tsx +15 -6
  66. package/src/features/ChatInput/ActionBar/Tools/index.tsx +26 -18
  67. package/src/features/ChatInput/ActionBar/Tools/{Dropdown.tsx → useControls.tsx} +38 -63
  68. package/src/features/ChatInput/ActionBar/Upload/ServerMode.tsx +10 -11
  69. package/src/features/ChatInput/ActionBar/components/Action.tsx +90 -0
  70. package/src/features/ChatInput/{components → ActionBar/components}/ActionDropdown.tsx +4 -4
  71. package/src/features/ChatInput/{components → ActionBar/components}/ActionPopover.tsx +5 -4
  72. package/src/features/ChatInput/ActionBar/{Knowledge/ListItem.tsx → components/CheckbokWithLoading.tsx} +14 -12
  73. package/src/features/ChatInput/ActionBar/config.ts +1 -1
  74. package/src/features/Conversation/Actions/Error.tsx +10 -2
  75. package/src/features/Conversation/Error/OllamaBizError/index.tsx +2 -2
  76. package/src/features/Conversation/Error/index.tsx +3 -10
  77. package/src/features/KnowledgeBaseModal/AssignKnowledgeBase/Loading.tsx +1 -1
  78. package/src/features/ModelSwitchPanel/index.tsx +18 -5
  79. package/src/features/{Conversation/Error/OllamaDesktopSetupGuide/index.tsx → OllamaSetupGuide/Desktop.tsx} +25 -20
  80. package/src/features/OllamaSetupGuide/index.tsx +17 -0
  81. package/src/features/ShareModal/ShareImage/ChatList/index.tsx +1 -1
  82. package/src/features/ShareModal/ShareImage/Preview.tsx +2 -2
  83. package/src/features/ShareModal/ShareImage/index.tsx +8 -6
  84. package/src/hooks/useImgToClipboard.ts +4 -1
  85. package/src/layout/GlobalProvider/Locale.tsx +0 -8
  86. package/src/libs/agent-runtime/siliconcloud/index.ts +17 -1
  87. package/src/locales/default/components.ts +1 -0
  88. package/src/utils/server/auth.ts +6 -0
  89. package/src/features/ChatInput/ActionBar/History.tsx +0 -78
  90. package/src/features/Conversation/Error/OllamaBizError/SetupGuide.tsx +0 -14
  91. /package/src/features/ChatInput/{STT → ActionBar/STT}/browser.tsx +0 -0
  92. /package/src/features/ChatInput/{STT → ActionBar/STT}/index.tsx +0 -0
  93. /package/src/features/ChatInput/{STT → ActionBar/STT}/openai.tsx +0 -0
@@ -1841,6 +1841,33 @@
1841
1841
  "qwen/qwen2.5-coder-7b-instruct": {
1842
1842
  "description": "Güçlü orta ölçekli kod modeli, 32K bağlam uzunluğunu destekler, çok dilli programlama konusunda uzmandır."
1843
1843
  },
1844
+ "qwen/qwen3-14b": {
1845
+ "description": "Qwen3-14B, Qwen3 serisindeki yoğun 14.8 milyar parametreli nedensel dil modelidir ve karmaşık akıl yürütme ve etkili diyalog için tasarlanmıştır. Matematik, programlama ve mantık akıl yürütme gibi görevler için 'düşünme' modu ile genel diyalog için 'düşünmeme' modu arasında sorunsuz geçiş yapmayı destekler. Bu model, talimat takibi, ajan araç kullanımı, yaratıcı yazım ve 100'den fazla dil ve lehçede çok dilli görevler için ince ayar yapılmıştır. 32K token bağlamını yerel olarak işler ve YaRN tabanlı genişletme ile 131K token'a kadar genişletilebilir."
1846
+ },
1847
+ "qwen/qwen3-14b:free": {
1848
+ "description": "Qwen3-14B, Qwen3 serisindeki yoğun 14.8 milyar parametreli nedensel dil modelidir ve karmaşık akıl yürütme ve etkili diyalog için tasarlanmıştır. Matematik, programlama ve mantık akıl yürütme gibi görevler için 'düşünme' modu ile genel diyalog için 'düşünmeme' modu arasında sorunsuz geçiş yapmayı destekler. Bu model, talimat takibi, ajan araç kullanımı, yaratıcı yazım ve 100'den fazla dil ve lehçede çok dilli görevler için ince ayar yapılmıştır. 32K token bağlamını yerel olarak işler ve YaRN tabanlı genişletme ile 131K token'a kadar genişletilebilir."
1849
+ },
1850
+ "qwen/qwen3-235b-a22b": {
1851
+ "description": "Qwen3-235B-A22B, Qwen tarafından geliştirilen 235B parametreli uzman karışımı (MoE) modelidir ve her ileri geçişte 22B parametreyi etkinleştirir. Karmaşık akıl yürütme, matematik ve kod görevleri için 'düşünme' modu ile genel diyalog verimliliği için 'düşünmeme' modu arasında sorunsuz geçiş yapmayı destekler. Bu model, güçlü akıl yürütme yetenekleri, çok dilli destek (100'den fazla dil ve lehçe), ileri düzey talimat takibi ve ajan araç çağırma yetenekleri sergiler. 32K token bağlam penceresini yerel olarak işler ve YaRN tabanlı genişletme ile 131K token'a kadar genişletilebilir."
1852
+ },
1853
+ "qwen/qwen3-235b-a22b:free": {
1854
+ "description": "Qwen3-235B-A22B, Qwen tarafından geliştirilen 235B parametreli uzman karışımı (MoE) modelidir ve her ileri geçişte 22B parametreyi etkinleştirir. Karmaşık akıl yürütme, matematik ve kod görevleri için 'düşünme' modu ile genel diyalog verimliliği için 'düşünmeme' modu arasında sorunsuz geçiş yapmayı destekler. Bu model, güçlü akıl yürütme yetenekleri, çok dilli destek (100'den fazla dil ve lehçe), ileri düzey talimat takibi ve ajan araç çağırma yetenekleri sergiler. 32K token bağlam penceresini yerel olarak işler ve YaRN tabanlı genişletme ile 131K token'a kadar genişletilebilir."
1855
+ },
1856
+ "qwen/qwen3-30b-a3b": {
1857
+ "description": "Qwen3, Qwen büyük dil modeli serisinin en son neslidir ve yoğun ve uzman karışımı (MoE) mimarisi ile akıl yürütme, çok dilli destek ve ileri düzey görevlerde mükemmel performans sergilemektedir. Karmaşık akıl yürütme düşünce modu ile etkili diyalog için düşünmeden geçiş yapma yeteneği, çok yönlü ve yüksek kaliteli performansı garanti eder.\n\nQwen3, QwQ ve Qwen2.5 gibi önceki modellere kıyasla önemli ölçüde daha üstündür ve matematik, kodlama, genel bilgi akıl yürütme, yaratıcı yazım ve etkileşimli diyalog yetenekleri sunar. Qwen3-30B-A3B varyantı, 30.5 milyar parametre (3.3 milyar etkin parametre), 48 katman, 128 uzman (her görevde 8 etkin) içerir ve 131K token bağlamını destekler (YaRN kullanarak), açık kaynaklı modeller için yeni bir standart belirler."
1858
+ },
1859
+ "qwen/qwen3-30b-a3b:free": {
1860
+ "description": "Qwen3, Qwen büyük dil modeli serisinin en son neslidir ve yoğun ve uzman karışımı (MoE) mimarisi ile akıl yürütme, çok dilli destek ve ileri düzey görevlerde mükemmel performans sergilemektedir. Karmaşık akıl yürütme düşünce modu ile etkili diyalog için düşünmeden geçiş yapma yeteneği, çok yönlü ve yüksek kaliteli performansı garanti eder.\n\nQwen3, QwQ ve Qwen2.5 gibi önceki modellere kıyasla önemli ölçüde daha üstündür ve matematik, kodlama, genel bilgi akıl yürütme, yaratıcı yazım ve etkileşimli diyalog yetenekleri sunar. Qwen3-30B-A3B varyantı, 30.5 milyar parametre (3.3 milyar etkin parametre), 48 katman, 128 uzman (her görevde 8 etkin) içerir ve 131K token bağlamını destekler (YaRN kullanarak), açık kaynaklı modeller için yeni bir standart belirler."
1861
+ },
1862
+ "qwen/qwen3-32b": {
1863
+ "description": "Qwen3-32B, Qwen3 serisindeki yoğun 32.8 milyar parametreli nedensel dil modelidir ve karmaşık akıl yürütme ve etkili diyalog için optimize edilmiştir. Matematik, kodlama ve mantık akıl yürütme gibi görevler için 'düşünme' modu ile daha hızlı, genel diyalog için 'düşünmeme' modu arasında sorunsuz geçiş yapmayı destekler. Bu model, talimat takibi, ajan araç kullanımı, yaratıcı yazım ve 100'den fazla dil ve lehçede çok dilli görevlerde güçlü performans sergiler. 32K token bağlamını yerel olarak işler ve YaRN tabanlı genişletme ile 131K token'a kadar genişletilebilir."
1864
+ },
1865
+ "qwen/qwen3-32b:free": {
1866
+ "description": "Qwen3-32B, Qwen3 serisindeki yoğun 32.8 milyar parametreli nedensel dil modelidir ve karmaşık akıl yürütme ve etkili diyalog için optimize edilmiştir. Matematik, kodlama ve mantık akıl yürütme gibi görevler için 'düşünme' modu ile daha hızlı, genel diyalog için 'düşünmeme' modu arasında sorunsuz geçiş yapmayı destekler. Bu model, talimat takibi, ajan araç kullanımı, yaratıcı yazım ve 100'den fazla dil ve lehçede çok dilli görevlerde güçlü performans sergiler. 32K token bağlamını yerel olarak işler ve YaRN tabanlı genişletme ile 131K token'a kadar genişletilebilir."
1867
+ },
1868
+ "qwen/qwen3-8b:free": {
1869
+ "description": "Qwen3-8B, Qwen3 serisindeki yoğun 8.2 milyar parametreli nedensel dil modelidir ve akıl yürütme yoğun görevler ve etkili diyalog için tasarlanmıştır. Matematik, kodlama ve mantık akıl yürütme için 'düşünme' modu ile genel diyalog için 'düşünmeme' modu arasında sorunsuz geçiş yapmayı destekler. Bu model, talimat takibi, ajan entegrasyonu, yaratıcı yazım ve 100'den fazla dil ve lehçede çok dilli kullanım için ince ayar yapılmıştır. 32K token bağlam penceresini yerel olarak destekler ve YaRN aracılığıyla 131K token'a genişletilebilir."
1870
+ },
1844
1871
  "qwen2": {
1845
1872
  "description": "Qwen2, Alibaba'nın yeni nesil büyük ölçekli dil modelidir, mükemmel performans ile çeşitli uygulama ihtiyaçlarını destekler."
1846
1873
  },
@@ -1925,6 +1952,30 @@
1925
1952
  "qwen2:72b": {
1926
1953
  "description": "Qwen2, Alibaba'nın yeni nesil büyük ölçekli dil modelidir, mükemmel performans ile çeşitli uygulama ihtiyaçlarını destekler."
1927
1954
  },
1955
+ "qwen3-0.6b": {
1956
+ "description": "Qwen3, akıl yürütme, genel, Ajan ve çok dilli gibi birçok temel yetenekte endüstri lideri seviyesine ulaşan yeni nesil bir modeldir ve düşünme modu geçişini destekler."
1957
+ },
1958
+ "qwen3-1.7b": {
1959
+ "description": "Qwen3, akıl yürütme, genel, Ajan ve çok dilli gibi birçok temel yetenekte endüstri lideri seviyesine ulaşan yeni nesil bir modeldir ve düşünme modu geçişini destekler."
1960
+ },
1961
+ "qwen3-14b": {
1962
+ "description": "Qwen3, akıl yürütme, genel, Ajan ve çok dilli gibi birçok temel yetenekte endüstri lideri seviyesine ulaşan yeni nesil bir modeldir ve düşünme modu geçişini destekler."
1963
+ },
1964
+ "qwen3-235b-a22b": {
1965
+ "description": "Qwen3, akıl yürütme, genel, Ajan ve çok dilli gibi birçok temel yetenekte endüstri lideri seviyesine ulaşan yeni nesil bir modeldir ve düşünme modu geçişini destekler."
1966
+ },
1967
+ "qwen3-30b-a3b": {
1968
+ "description": "Qwen3, akıl yürütme, genel, Ajan ve çok dilli gibi birçok temel yetenekte endüstri lideri seviyesine ulaşan yeni nesil bir modeldir ve düşünme modu geçişini destekler."
1969
+ },
1970
+ "qwen3-32b": {
1971
+ "description": "Qwen3, akıl yürütme, genel, Ajan ve çok dilli gibi birçok temel yetenekte endüstri lideri seviyesine ulaşan yeni nesil bir modeldir ve düşünme modu geçişini destekler."
1972
+ },
1973
+ "qwen3-4b": {
1974
+ "description": "Qwen3, akıl yürütme, genel, Ajan ve çok dilli gibi birçok temel yetenekte endüstri lideri seviyesine ulaşan yeni nesil bir modeldir ve düşünme modu geçişini destekler."
1975
+ },
1976
+ "qwen3-8b": {
1977
+ "description": "Qwen3, akıl yürütme, genel, Ajan ve çok dilli gibi birçok temel yetenekte endüstri lideri seviyesine ulaşan yeni nesil bir modeldir ve düşünme modu geçişini destekler."
1978
+ },
1928
1979
  "qwq": {
1929
1980
  "description": "QwQ, AI akıl yürütme yeteneklerini artırmaya odaklanan deneysel bir araştırma modelidir."
1930
1981
  },
@@ -2027,6 +2078,18 @@
2027
2078
  "thudm/glm-4-9b-chat": {
2028
2079
  "description": "Zhi Pu AI tarafından yayınlanan GLM-4 serisinin en son nesil ön eğitim modelinin açık kaynak versiyonudur."
2029
2080
  },
2081
+ "thudm/glm-4-9b:free": {
2082
+ "description": "GLM-4-9B-0414, THUDM tarafından geliştirilen GLM-4 serisinin 9 milyar parametreli dil modelidir. GLM-4-9B-0414, daha büyük 32B karşılık gelen model ile aynı güçlendirilmiş öğrenme ve hizalama stratejilerini kullanarak eğitilmiştir ve ölçeğine göre yüksek performans sergileyerek hala güçlü dil anlama ve üretim yeteneklerine ihtiyaç duyan kaynak sınırlı dağıtımlar için uygundur."
2083
+ },
2084
+ "thudm/glm-z1-9b:free": {
2085
+ "description": "GLM-Z1-9B-0414, THUDM tarafından geliştirilen GLM-4 serisinin 9B parametreli dil modelidir. Daha büyük GLM-Z1 modeline uygulanan teknikleri içermekte olup, güçlendirilmiş öğrenme, çift sıralama hizalaması ve matematik, kodlama ve mantık gibi akıl yürütme yoğun görevler için eğitim almıştır. Daha küçük olmasına rağmen, genel akıl yürütme görevlerinde güçlü performans sergilemekte ve ağırlık seviyesinde birçok açık kaynak modelinden daha üstündür."
2086
+ },
2087
+ "thudm/glm-z1-rumination-32b": {
2088
+ "description": "THUDM: GLM Z1 Rumination 32B, GLM-4-Z1 serisinin 32B parametreli derin akıl yürütme modelidir ve uzun süre düşünmeyi gerektiren karmaşık, açık uçlu görevler için optimize edilmiştir. glm-4-32b-0414 temel alınarak geliştirilmiş ve ek güçlendirilmiş öğrenme aşamaları ve çok aşamalı hizalama stratejileri eklenmiştir; genişletilmiş bilişsel işleme simüle etmek için 'düşünme' yeteneği getirilmiştir. Bu, yinelemeli akıl yürütme, çok adımlı analiz ve arama, alma ve alıntı bilincine sahip sentez gibi araç artırma iş akışlarını içerir.\n\nBu model, araştırma yazımı, karşılaştırmalı analiz ve karmaşık soru-cevap konularında mükemmel performans sergiler. Arama ve navigasyon ilkelere (`search`, `click`, `open`, `finish`) yönelik işlev çağrılarını destekler, böylece ajan tabanlı boru hatlarında kullanılabilir. Düşünme davranışı, kural tabanlı ödüller ve gecikmeli karar verme mekanizması ile çok turlu döngü kontrolü ile şekillendirilir ve OpenAI iç hizalama yığını gibi derin araştırma çerçevelerine göre değerlendirilir. Bu varyant, derinlik gerektiren senaryolar için uygundur."
2089
+ },
2090
+ "tngtech/deepseek-r1t-chimera:free": {
2091
+ "description": "DeepSeek-R1T-Chimera, DeepSeek-R1 ve DeepSeek-V3 (0324) birleştirilerek oluşturulmuştur ve R1'in akıl yürütme yetenekleri ile V3'ün token verimliliği iyileştirmelerini bir araya getirir. DeepSeek-MoE Transformer mimarisine dayanır ve genel metin üretim görevleri için optimize edilmiştir.\n\nBu model, iki kaynak modelin önceden eğitilmiş ağırlıklarını birleştirerek akıl yürütme, verimlilik ve talimat takibi görevlerinin performansını dengelemektedir. MIT lisansı altında yayımlanmış olup, araştırma ve ticari kullanım için tasarlanmıştır."
2092
+ },
2030
2093
  "togethercomputer/StripedHyena-Nous-7B": {
2031
2094
  "description": "StripedHyena Nous (7B), etkili stratejiler ve model mimarisi ile artırılmış hesaplama yetenekleri sunar."
2032
2095
  },
@@ -88,7 +88,8 @@
88
88
  "emptyModel": "Không có mô hình nào được kích hoạt, vui lòng điều chỉnh trong cài đặt",
89
89
  "emptyProvider": "Không có nhà cung cấp nào được kích hoạt, vui lòng vào cài đặt để bật",
90
90
  "goToSettings": "Đi đến cài đặt",
91
- "provider": "Nhà cung cấp"
91
+ "provider": "Nhà cung cấp",
92
+ "title": "Mô hình"
92
93
  },
93
94
  "OllamaSetupGuide": {
94
95
  "action": {
@@ -1841,6 +1841,33 @@
1841
1841
  "qwen/qwen2.5-coder-7b-instruct": {
1842
1842
  "description": "Mô hình mã mạnh mẽ cỡ trung, hỗ trợ độ dài ngữ cảnh 32K, xuất sắc trong lập trình đa ngôn ngữ."
1843
1843
  },
1844
+ "qwen/qwen3-14b": {
1845
+ "description": "Qwen3-14B là một mô hình ngôn ngữ nguyên nhân dày đặc với 14,8 tỷ tham số trong dòng Qwen3, được thiết kế cho suy luận phức tạp và đối thoại hiệu quả. Nó hỗ trợ chuyển đổi liền mạch giữa chế độ \"suy nghĩ\" cho các nhiệm vụ như toán học, lập trình và suy luận logic với chế độ \"không suy nghĩ\" cho đối thoại thông thường. Mô hình này đã được tinh chỉnh để sử dụng cho việc tuân theo chỉ dẫn, sử dụng công cụ đại lý, viết sáng tạo và các nhiệm vụ đa ngôn ngữ trên hơn 100 ngôn ngữ và phương ngữ. Nó xử lý ngữ cảnh 32K token một cách tự nhiên và có thể mở rộng lên 131K token bằng cách sử dụng mở rộng dựa trên YaRN."
1846
+ },
1847
+ "qwen/qwen3-14b:free": {
1848
+ "description": "Qwen3-14B là một mô hình ngôn ngữ nguyên nhân dày đặc với 14,8 tỷ tham số trong dòng Qwen3, được thiết kế cho suy luận phức tạp và đối thoại hiệu quả. Nó hỗ trợ chuyển đổi liền mạch giữa chế độ \"suy nghĩ\" cho các nhiệm vụ như toán học, lập trình và suy luận logic với chế độ \"không suy nghĩ\" cho đối thoại thông thường. Mô hình này đã được tinh chỉnh để sử dụng cho việc tuân theo chỉ dẫn, sử dụng công cụ đại lý, viết sáng tạo và các nhiệm vụ đa ngôn ngữ trên hơn 100 ngôn ngữ và phương ngữ. Nó xử lý ngữ cảnh 32K token một cách tự nhiên và có thể mở rộng lên 131K token bằng cách sử dụng mở rộng dựa trên YaRN."
1849
+ },
1850
+ "qwen/qwen3-235b-a22b": {
1851
+ "description": "Qwen3-235B-A22B là mô hình hỗn hợp chuyên gia (MoE) với 235B tham số được phát triển bởi Qwen, kích hoạt 22B tham số mỗi lần truyền tiến. Nó hỗ trợ chuyển đổi liền mạch giữa chế độ \"suy nghĩ\" cho suy luận phức tạp, toán học và các nhiệm vụ mã với chế độ \"không suy nghĩ\" cho hiệu suất đối thoại thông thường. Mô hình này thể hiện khả năng suy luận mạnh mẽ, hỗ trợ đa ngôn ngữ (hơn 100 ngôn ngữ và phương ngữ), tuân theo chỉ dẫn nâng cao và khả năng gọi công cụ đại lý. Nó xử lý cửa sổ ngữ cảnh 32K token một cách tự nhiên và có thể mở rộng lên 131K token bằng cách sử dụng mở rộng dựa trên YaRN."
1852
+ },
1853
+ "qwen/qwen3-235b-a22b:free": {
1854
+ "description": "Qwen3-235B-A22B là mô hình hỗn hợp chuyên gia (MoE) với 235B tham số được phát triển bởi Qwen, kích hoạt 22B tham số mỗi lần truyền tiến. Nó hỗ trợ chuyển đổi liền mạch giữa chế độ \"suy nghĩ\" cho suy luận phức tạp, toán học và các nhiệm vụ mã với chế độ \"không suy nghĩ\" cho hiệu suất đối thoại thông thường. Mô hình này thể hiện khả năng suy luận mạnh mẽ, hỗ trợ đa ngôn ngữ (hơn 100 ngôn ngữ và phương ngữ), tuân theo chỉ dẫn nâng cao và khả năng gọi công cụ đại lý. Nó xử lý cửa sổ ngữ cảnh 32K token một cách tự nhiên và có thể mở rộng lên 131K token bằng cách sử dụng mở rộng dựa trên YaRN."
1855
+ },
1856
+ "qwen/qwen3-30b-a3b": {
1857
+ "description": "Qwen3 là thế hệ mới nhất trong dòng mô hình ngôn ngữ lớn Qwen, với kiến trúc hỗn hợp chuyên gia (MoE) dày đặc, thể hiện xuất sắc trong suy luận, hỗ trợ đa ngôn ngữ và các nhiệm vụ đại lý nâng cao. Khả năng chuyển đổi liền mạch giữa chế độ suy nghĩ cho suy luận phức tạp và chế độ không suy nghĩ cho đối thoại hiệu quả đảm bảo hiệu suất đa chức năng và chất lượng cao.\n\nQwen3 vượt trội hơn hẳn các mô hình trước như QwQ và Qwen2.5, cung cấp khả năng toán học, lập trình, suy luận thông thường, viết sáng tạo và đối thoại tương tác xuất sắc. Biến thể Qwen3-30B-A3B chứa 30,5 tỷ tham số (3,3 tỷ tham số kích hoạt), 48 lớp, 128 chuyên gia (mỗi nhiệm vụ kích hoạt 8), và hỗ trợ ngữ cảnh lên đến 131K token (sử dụng YaRN), thiết lập tiêu chuẩn mới cho các mô hình mã nguồn mở."
1858
+ },
1859
+ "qwen/qwen3-30b-a3b:free": {
1860
+ "description": "Qwen3 là thế hệ mới nhất trong dòng mô hình ngôn ngữ lớn Qwen, với kiến trúc hỗn hợp chuyên gia (MoE) dày đặc, thể hiện xuất sắc trong suy luận, hỗ trợ đa ngôn ngữ và các nhiệm vụ đại lý nâng cao. Khả năng chuyển đổi liền mạch giữa chế độ suy nghĩ cho suy luận phức tạp và chế độ không suy nghĩ cho đối thoại hiệu quả đảm bảo hiệu suất đa chức năng và chất lượng cao.\n\nQwen3 vượt trội hơn hẳn các mô hình trước như QwQ và Qwen2.5, cung cấp khả năng toán học, lập trình, suy luận thông thường, viết sáng tạo và đối thoại tương tác xuất sắc. Biến thể Qwen3-30B-A3B chứa 30,5 tỷ tham số (3,3 tỷ tham số kích hoạt), 48 lớp, 128 chuyên gia (mỗi nhiệm vụ kích hoạt 8), và hỗ trợ ngữ cảnh lên đến 131K token (sử dụng YaRN), thiết lập tiêu chuẩn mới cho các mô hình mã nguồn mở."
1861
+ },
1862
+ "qwen/qwen3-32b": {
1863
+ "description": "Qwen3-32B là một mô hình ngôn ngữ nguyên nhân dày đặc với 32,8 tỷ tham số trong dòng Qwen3, được tối ưu hóa cho suy luận phức tạp và đối thoại hiệu quả. Nó hỗ trợ chuyển đổi liền mạch giữa chế độ \"suy nghĩ\" cho các nhiệm vụ như toán học, lập trình và suy luận logic với chế độ \"không suy nghĩ\" cho đối thoại nhanh hơn và thông thường. Mô hình này thể hiện hiệu suất mạnh mẽ trong việc tuân theo chỉ dẫn, sử dụng công cụ đại lý, viết sáng tạo và các nhiệm vụ đa ngôn ngữ trên hơn 100 ngôn ngữ và phương ngữ. Nó xử lý ngữ cảnh 32K token một cách tự nhiên và có thể mở rộng lên 131K token bằng cách sử dụng mở rộng dựa trên YaRN."
1864
+ },
1865
+ "qwen/qwen3-32b:free": {
1866
+ "description": "Qwen3-32B là một mô hình ngôn ngữ nguyên nhân dày đặc với 32,8 tỷ tham số trong dòng Qwen3, được tối ưu hóa cho suy luận phức tạp và đối thoại hiệu quả. Nó hỗ trợ chuyển đổi liền mạch giữa chế độ \"suy nghĩ\" cho các nhiệm vụ như toán học, lập trình và suy luận logic với chế độ \"không suy nghĩ\" cho đối thoại nhanh hơn và thông thường. Mô hình này thể hiện hiệu suất mạnh mẽ trong việc tuân theo chỉ dẫn, sử dụng công cụ đại lý, viết sáng tạo và các nhiệm vụ đa ngôn ngữ trên hơn 100 ngôn ngữ và phương ngữ. Nó xử lý ngữ cảnh 32K token một cách tự nhiên và có thể mở rộng lên 131K token bằng cách sử dụng mở rộng dựa trên YaRN."
1867
+ },
1868
+ "qwen/qwen3-8b:free": {
1869
+ "description": "Qwen3-8B là một mô hình ngôn ngữ nguyên nhân dày đặc với 8,2 tỷ tham số trong dòng Qwen3, được thiết kế cho các nhiệm vụ yêu cầu suy luận dày đặc và đối thoại hiệu quả. Nó hỗ trợ chuyển đổi liền mạch giữa chế độ \"suy nghĩ\" cho toán học, lập trình và suy luận logic với chế độ \"không suy nghĩ\" cho đối thoại thông thường. Mô hình này đã được tinh chỉnh để sử dụng cho việc tuân theo chỉ dẫn, tích hợp đại lý, viết sáng tạo và sử dụng đa ngôn ngữ trên hơn 100 ngôn ngữ và phương ngữ. Nó hỗ trợ cửa sổ ngữ cảnh 32K token và có thể mở rộng lên 131K token thông qua YaRN."
1870
+ },
1844
1871
  "qwen2": {
1845
1872
  "description": "Qwen2 là mô hình ngôn ngữ quy mô lớn thế hệ mới của Alibaba, hỗ trợ các nhu cầu ứng dụng đa dạng với hiệu suất xuất sắc."
1846
1873
  },
@@ -1925,6 +1952,30 @@
1925
1952
  "qwen2:72b": {
1926
1953
  "description": "Qwen2 là mô hình ngôn ngữ quy mô lớn thế hệ mới của Alibaba, hỗ trợ các nhu cầu ứng dụng đa dạng với hiệu suất xuất sắc."
1927
1954
  },
1955
+ "qwen3-0.6b": {
1956
+ "description": "Qwen3 là một mô hình lớn thế hệ mới với khả năng vượt trội, đạt được trình độ hàng đầu trong nhiều khả năng cốt lõi như suy luận, tổng quát, đại lý và đa ngôn ngữ, đồng thời hỗ trợ chuyển đổi chế độ suy nghĩ."
1957
+ },
1958
+ "qwen3-1.7b": {
1959
+ "description": "Qwen3 là một mô hình lớn thế hệ mới với khả năng vượt trội, đạt được trình độ hàng đầu trong nhiều khả năng cốt lõi như suy luận, tổng quát, đại lý và đa ngôn ngữ, đồng thời hỗ trợ chuyển đổi chế độ suy nghĩ."
1960
+ },
1961
+ "qwen3-14b": {
1962
+ "description": "Qwen3 là một mô hình lớn thế hệ mới với khả năng vượt trội, đạt được trình độ hàng đầu trong nhiều khả năng cốt lõi như suy luận, tổng quát, đại lý và đa ngôn ngữ, đồng thời hỗ trợ chuyển đổi chế độ suy nghĩ."
1963
+ },
1964
+ "qwen3-235b-a22b": {
1965
+ "description": "Qwen3 là một mô hình lớn thế hệ mới với khả năng vượt trội, đạt được trình độ hàng đầu trong nhiều khả năng cốt lõi như suy luận, tổng quát, đại lý và đa ngôn ngữ, đồng thời hỗ trợ chuyển đổi chế độ suy nghĩ."
1966
+ },
1967
+ "qwen3-30b-a3b": {
1968
+ "description": "Qwen3 là một mô hình lớn thế hệ mới với khả năng vượt trội, đạt được trình độ hàng đầu trong nhiều khả năng cốt lõi như suy luận, tổng quát, đại lý và đa ngôn ngữ, đồng thời hỗ trợ chuyển đổi chế độ suy nghĩ."
1969
+ },
1970
+ "qwen3-32b": {
1971
+ "description": "Qwen3 là một mô hình lớn thế hệ mới với khả năng vượt trội, đạt được trình độ hàng đầu trong nhiều khả năng cốt lõi như suy luận, tổng quát, đại lý và đa ngôn ngữ, đồng thời hỗ trợ chuyển đổi chế độ suy nghĩ."
1972
+ },
1973
+ "qwen3-4b": {
1974
+ "description": "Qwen3 là một mô hình lớn thế hệ mới với khả năng vượt trội, đạt được trình độ hàng đầu trong nhiều khả năng cốt lõi như suy luận, tổng quát, đại lý và đa ngôn ngữ, đồng thời hỗ trợ chuyển đổi chế độ suy nghĩ."
1975
+ },
1976
+ "qwen3-8b": {
1977
+ "description": "Qwen3 là một mô hình lớn thế hệ mới với khả năng vượt trội, đạt được trình độ hàng đầu trong nhiều khả năng cốt lõi như suy luận, tổng quát, đại lý và đa ngôn ngữ, đồng thời hỗ trợ chuyển đổi chế độ suy nghĩ."
1978
+ },
1928
1979
  "qwq": {
1929
1980
  "description": "QwQ là một mô hình nghiên cứu thử nghiệm, tập trung vào việc nâng cao khả năng suy luận của AI."
1930
1981
  },
@@ -2027,6 +2078,18 @@
2027
2078
  "thudm/glm-4-9b-chat": {
2028
2079
  "description": "Phiên bản mã nguồn mở của thế hệ mô hình tiền huấn luyện GLM-4 mới nhất được phát hành bởi Zhiyu AI."
2029
2080
  },
2081
+ "thudm/glm-4-9b:free": {
2082
+ "description": "GLM-4-9B-0414 là mô hình ngôn ngữ 9 tỷ tham số trong dòng GLM-4 được phát triển bởi THUDM. GLM-4-9B-0414 sử dụng cùng một chiến lược học tăng cường và căn chỉnh như mô hình tương ứng lớn hơn 32B, đạt được hiệu suất cao so với quy mô của nó, khiến nó phù hợp cho các triển khai hạn chế tài nguyên nhưng vẫn cần khả năng hiểu và tạo ngôn ngữ mạnh mẽ."
2083
+ },
2084
+ "thudm/glm-z1-9b:free": {
2085
+ "description": "GLM-Z1-9B-0414 là mô hình ngôn ngữ 9B trong dòng GLM-4 được phát triển bởi THUDM. Nó áp dụng các kỹ thuật ban đầu được sử dụng cho mô hình GLM-Z1 lớn hơn, bao gồm học tăng cường mở rộng, căn chỉnh xếp hạng cặp và đào tạo cho các nhiệm vụ yêu cầu suy luận dày đặc như toán học, mã và logic. Mặc dù quy mô nhỏ hơn, nhưng nó thể hiện hiệu suất mạnh mẽ trong các nhiệm vụ suy luận tổng quát và vượt trội hơn nhiều mô hình mã nguồn mở ở cấp độ trọng số của nó."
2086
+ },
2087
+ "thudm/glm-z1-rumination-32b": {
2088
+ "description": "THUDM: GLM Z1 Rumination 32B là mô hình suy luận sâu với 32B tham số trong dòng GLM-4-Z1, được tối ưu hóa cho các nhiệm vụ phức tạp, mở cần suy nghĩ lâu dài. Nó được xây dựng trên nền tảng glm-4-32b-0414, tăng cường thêm giai đoạn học tăng cường và chiến lược căn chỉnh đa giai đoạn, giới thiệu khả năng \"phản tư\" nhằm mô phỏng quá trình xử lý nhận thức mở rộng. Điều này bao gồm suy luận lặp đi lặp lại, phân tích đa bước và quy trình làm việc tăng cường công cụ như tìm kiếm, truy xuất và tổng hợp nhận thức trích dẫn.\n\nMô hình này thể hiện xuất sắc trong viết nghiên cứu, phân tích so sánh và câu hỏi phức tạp. Nó hỗ trợ gọi hàm cho các nguyên ngữ tìm kiếm và điều hướng (`search`, `click`, `open`, `finish`), cho phép sử dụng trong quy trình đại lý. Hành vi phản tư được hình thành bởi các phần thưởng dựa trên quy tắc và cơ chế quyết định trì hoãn trong kiểm soát vòng lặp đa vòng, và được chuẩn hóa theo các khung nghiên cứu sâu như ngăn xếp căn chỉnh nội bộ của OpenAI. Biến thể này phù hợp cho các tình huống cần độ sâu hơn là tốc độ."
2089
+ },
2090
+ "tngtech/deepseek-r1t-chimera:free": {
2091
+ "description": "DeepSeek-R1T-Chimera được tạo ra bằng cách kết hợp DeepSeek-R1 và DeepSeek-V3 (0324), kết hợp khả năng suy luận của R1 và cải tiến hiệu quả token của V3. Nó dựa trên kiến trúc DeepSeek-MoE Transformer và được tối ưu hóa cho các nhiệm vụ tạo văn bản tổng quát.\n\nMô hình này kết hợp trọng số tiền huấn luyện của hai mô hình nguồn để cân bằng hiệu suất trong suy luận, hiệu quả và các nhiệm vụ tuân theo chỉ dẫn. Nó được phát hành theo giấy phép MIT, nhằm mục đích sử dụng cho nghiên cứu và thương mại."
2092
+ },
2030
2093
  "togethercomputer/StripedHyena-Nous-7B": {
2031
2094
  "description": "StripedHyena Nous (7B) cung cấp khả năng tính toán nâng cao thông qua chiến lược và kiến trúc mô hình hiệu quả."
2032
2095
  },
@@ -88,7 +88,8 @@
88
88
  "emptyModel": "没有启用的模型,请前往设置开启",
89
89
  "emptyProvider": "没有启用的服务商,请前往设置开启",
90
90
  "goToSettings": "前往设置",
91
- "provider": "服务商"
91
+ "provider": "服务商",
92
+ "title": "模型"
92
93
  },
93
94
  "OllamaSetupGuide": {
94
95
  "action": {
@@ -1841,6 +1841,33 @@
1841
1841
  "qwen/qwen2.5-coder-7b-instruct": {
1842
1842
  "description": "强大的中型代码模型,支持 32K 上下文长度,擅长多语言编程。"
1843
1843
  },
1844
+ "qwen/qwen3-14b": {
1845
+ "description": "Qwen3-14B 是 Qwen3 系列中一个密集的 148 亿参数因果语言模型,专为复杂推理和高效对话而设计。它支持在用于数学、编程和逻辑推理等任务的“思考”模式与用于通用对话的“非思考”模式之间无缝切换。该模型经过微调,可用于指令遵循、代理工具使用、创意写作以及跨 100 多种语言和方言的多语言任务。它原生处理 32K 令牌上下文,并可使用基于 YaRN 的扩展扩展到 131K 令牌。"
1846
+ },
1847
+ "qwen/qwen3-14b:free": {
1848
+ "description": "Qwen3-14B 是 Qwen3 系列中一个密集的 148 亿参数因果语言模型,专为复杂推理和高效对话而设计。它支持在用于数学、编程和逻辑推理等任务的“思考”模式与用于通用对话的“非思考”模式之间无缝切换。该模型经过微调,可用于指令遵循、代理工具使用、创意写作以及跨 100 多种语言和方言的多语言任务。它原生处理 32K 令牌上下文,并可使用基于 YaRN 的扩展扩展到 131K 令牌。"
1849
+ },
1850
+ "qwen/qwen3-235b-a22b": {
1851
+ "description": "Qwen3-235B-A22B 是由 Qwen 开发的 235B 参数专家混合 (MoE) 模型,每次前向传递激活 22B 参数。它支持在用于复杂推理、数学和代码任务的“思考”模式与用于一般对话效率的“非思考”模式之间无缝切换。该模型展示了强大的推理能力、多语言支持(100 多种语言和方言)、高级指令遵循和代理工具调用能力。它原生处理 32K 令牌上下文窗口,并使用基于 YaRN 的扩展扩展到 131K 令牌。"
1852
+ },
1853
+ "qwen/qwen3-235b-a22b:free": {
1854
+ "description": "Qwen3-235B-A22B 是由 Qwen 开发的 235B 参数专家混合 (MoE) 模型,每次前向传递激活 22B 参数。它支持在用于复杂推理、数学和代码任务的“思考”模式与用于一般对话效率的“非思考”模式之间无缝切换。该模型展示了强大的推理能力、多语言支持(100 多种语言和方言)、高级指令遵循和代理工具调用能力。它原生处理 32K 令牌上下文窗口,并使用基于 YaRN 的扩展扩展到 131K 令牌。"
1855
+ },
1856
+ "qwen/qwen3-30b-a3b": {
1857
+ "description": "Qwen3 是 Qwen 大型语言模型系列的最新一代,具有密集和专家混合 (MoE) 架构,在推理、多语言支持和高级代理任务方面表现出色。其在复杂推理的思考模式和高效对话的非思考模式之间无缝切换的独特能力确保了多功能、高质量的性能。\n\nQwen3 显著优于 QwQ 和 Qwen2.5 等先前模型,提供卓越的数学、编码、常识推理、创意写作和交互式对话能力。Qwen3-30B-A3B 变体包含 305 亿个参数(33 亿个激活参数)、48 层、128 个专家(每个任务激活 8 个),并支持高达 131K 令牌上下文(使用 YaRN),为开源模型树立了新标准。"
1858
+ },
1859
+ "qwen/qwen3-30b-a3b:free": {
1860
+ "description": "Qwen3 是 Qwen 大型语言模型系列的最新一代,具有密集和专家混合 (MoE) 架构,在推理、多语言支持和高级代理任务方面表现出色。其在复杂推理的思考模式和高效对话的非思考模式之间无缝切换的独特能力确保了多功能、高质量的性能。\n\nQwen3 显著优于 QwQ 和 Qwen2.5 等先前模型,提供卓越的数学、编码、常识推理、创意写作和交互式对话能力。Qwen3-30B-A3B 变体包含 305 亿个参数(33 亿个激活参数)、48 层、128 个专家(每个任务激活 8 个),并支持高达 131K 令牌上下文(使用 YaRN),为开源模型树立了新标准。"
1861
+ },
1862
+ "qwen/qwen3-32b": {
1863
+ "description": "Qwen3-32B 是 Qwen3 系列中一个密集的 328 亿参数因果语言模型,针对复杂推理和高效对话进行了优化。它支持在用于数学、编码和逻辑推理等任务的“思考”模式与用于更快、通用对话的“非思考”模式之间无缝切换。该模型在指令遵循、代理工具使用、创意写作以及跨 100 多种语言和方言的多语言任务中表现出强大的性能。它原生处理 32K 令牌上下文,并可使用基于 YaRN 的扩展扩展到 131K 令牌。"
1864
+ },
1865
+ "qwen/qwen3-32b:free": {
1866
+ "description": "Qwen3-32B 是 Qwen3 系列中一个密集的 328 亿参数因果语言模型,针对复杂推理和高效对话进行了优化。它支持在用于数学、编码和逻辑推理等任务的“思考”模式与用于更快、通用对话的“非思考”模式之间无缝切换。该模型在指令遵循、代理工具使用、创意写作以及跨 100 多种语言和方言的多语言任务中表现出强大的性能。它原生处理 32K 令牌上下文,并可使用基于 YaRN 的扩展扩展到 131K 令牌。"
1867
+ },
1868
+ "qwen/qwen3-8b:free": {
1869
+ "description": "Qwen3-8B 是 Qwen3 系列中一个密集的 82 亿参数因果语言模型,专为推理密集型任务和高效对话而设计。它支持在用于数学、编码和逻辑推理的“思考”模式与用于一般对话的“非思考”模式之间无缝切换。该模型经过微调,可用于指令遵循、代理集成、创意写作以及跨 100 多种语言和方言的多语言使用。它原生支持 32K 令牌上下文窗口,并可通过 YaRN 扩展到 131K 令牌。"
1870
+ },
1844
1871
  "qwen2": {
1845
1872
  "description": "Qwen2 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。"
1846
1873
  },
@@ -1925,6 +1952,30 @@
1925
1952
  "qwen2:72b": {
1926
1953
  "description": "Qwen2 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。"
1927
1954
  },
1955
+ "qwen3-0.6b": {
1956
+ "description": "Qwen3是一款能力大幅提升的新一代通义千问大模型,在推理、通用、Agent和多语言等多个核心能力上均达到业界领先水平,并支持思考模式切换。"
1957
+ },
1958
+ "qwen3-1.7b": {
1959
+ "description": "Qwen3是一款能力大幅提升的新一代通义千问大模型,在推理、通用、Agent和多语言等多个核心能力上均达到业界领先水平,并支持思考模式切换。"
1960
+ },
1961
+ "qwen3-14b": {
1962
+ "description": "Qwen3是一款能力大幅提升的新一代通义千问大模型,在推理、通用、Agent和多语言等多个核心能力上均达到业界领先水平,并支持思考模式切换。"
1963
+ },
1964
+ "qwen3-235b-a22b": {
1965
+ "description": "Qwen3是一款能力大幅提升的新一代通义千问大模型,在推理、通用、Agent和多语言等多个核心能力上均达到业界领先水平,并支持思考模式切换。"
1966
+ },
1967
+ "qwen3-30b-a3b": {
1968
+ "description": "Qwen3是一款能力大幅提升的新一代通义千问大模型,在推理、通用、Agent和多语言等多个核心能力上均达到业界领先水平,并支持思考模式切换。"
1969
+ },
1970
+ "qwen3-32b": {
1971
+ "description": "Qwen3是一款能力大幅提升的新一代通义千问大模型,在推理、通用、Agent和多语言等多个核心能力上均达到业界领先水平,并支持思考模式切换。"
1972
+ },
1973
+ "qwen3-4b": {
1974
+ "description": "Qwen3是一款能力大幅提升的新一代通义千问大模型,在推理、通用、Agent和多语言等多个核心能力上均达到业界领先水平,并支持思考模式切换。"
1975
+ },
1976
+ "qwen3-8b": {
1977
+ "description": "Qwen3是一款能力大幅提升的新一代通义千问大模型,在推理、通用、Agent和多语言等多个核心能力上均达到业界领先水平,并支持思考模式切换。"
1978
+ },
1928
1979
  "qwq": {
1929
1980
  "description": "QwQ 是 Qwen 系列的推理模型。与传统的指令调优模型相比,QwQ 具备思考和推理的能力,能够在下游任务中,尤其是困难问题上,显著提升性能。QwQ-32B 是中型推理模型,能够在与最先进的推理模型(如 DeepSeek-R1、o1-mini)竞争时取得可观的表现。"
1930
1981
  },
@@ -2027,6 +2078,18 @@
2027
2078
  "thudm/glm-4-9b-chat": {
2028
2079
  "description": "智谱AI发布的GLM-4系列最新一代预训练模型的开源版本。"
2029
2080
  },
2081
+ "thudm/glm-4-9b:free": {
2082
+ "description": "GLM-4-9B-0414 是 THUDM 开发的 GLM-4 系列中的 90 亿参数语言模型。GLM-4-9B-0414 使用与其较大的 32B 对应模型相同的强化学习和对齐策略进行训练,相对于其规模实现了高性能,使其适用于仍需要强大语言理解和生成能力的资源受限部署。"
2083
+ },
2084
+ "thudm/glm-z1-9b:free": {
2085
+ "description": "GLM-Z1-9B-0414 是由 THUDM 开发的 GLM-4 系列中的 9B 参数语言模型。它采用了最初应用于更大 GLM-Z1 模型的技术,包括扩展强化学习、成对排名对齐以及对数学、代码和逻辑等推理密集型任务的训练。尽管其规模较小,但它在通用推理任务上表现出强大的性能,并在其权重级别中优于许多开源模型。"
2086
+ },
2087
+ "thudm/glm-z1-rumination-32b": {
2088
+ "description": "THUDM: GLM Z1 Rumination 32B 是 GLM-4-Z1 系列中的 32B 参数深度推理模型,针对需要长时间思考的复杂、开放式任务进行了优化。它建立在 glm-4-32b-0414 的基础上,增加了额外的强化学习阶段和多阶段对齐策略,引入了旨在模拟扩展认知处理的“反思”能力。这包括迭代推理、多跳分析和工具增强的工作流程,例如搜索、检索和引文感知合成。\n\n该模型在研究式写作、比较分析和复杂问答方面表现出色。它支持用于搜索和导航原语(`search`、`click`、`open`、`finish`)的函数调用,从而可以在代理式管道中使用。反思行为由具有基于规则的奖励塑造和延迟决策机制的多轮循环控制,并以 OpenAI 内部对齐堆栈等深度研究框架为基准。此变体适用于需要深度而非速度的场景。"
2089
+ },
2090
+ "tngtech/deepseek-r1t-chimera:free": {
2091
+ "description": "DeepSeek-R1T-Chimera 通过合并 DeepSeek-R1 和 DeepSeek-V3 (0324) 创建,结合了 R1 的推理能力和 V3 的令牌效率改进。它基于 DeepSeek-MoE Transformer 架构,并针对通用文本生成任务进行了优化。\n\n该模型合并了两个源模型的预训练权重,以平衡推理、效率和指令遵循任务的性能。它根据 MIT 许可证发布,旨在用于研究和商业用途。"
2092
+ },
2030
2093
  "togethercomputer/StripedHyena-Nous-7B": {
2031
2094
  "description": "StripedHyena Nous (7B) 通过高效的策略和模型架构,提供增强的计算能力。"
2032
2095
  },
@@ -88,7 +88,8 @@
88
88
  "emptyModel": "沒有啟用的模型,請前往設定開啟",
89
89
  "emptyProvider": "沒有啟用的服務商,請前往設定開啟",
90
90
  "goToSettings": "前往設定",
91
- "provider": "提供商"
91
+ "provider": "提供商",
92
+ "title": "模型"
92
93
  },
93
94
  "OllamaSetupGuide": {
94
95
  "action": {
@@ -1841,6 +1841,33 @@
1841
1841
  "qwen/qwen2.5-coder-7b-instruct": {
1842
1842
  "description": "強大的中型代碼模型,支持 32K 上下文長度,擅長多語言編程。"
1843
1843
  },
1844
+ "qwen/qwen3-14b": {
1845
+ "description": "Qwen3-14B 是 Qwen3 系列中一個密集的 148 億參數因果語言模型,專為複雜推理和高效對話而設計。它支持在用於數學、編程和邏輯推理等任務的「思考」模式與用於通用對話的「非思考」模式之間無縫切換。該模型經過微調,可用於指令遵循、代理工具使用、創意寫作以及跨 100 多種語言和方言的多語言任務。它原生處理 32K 令牌上下文,並可使用基於 YaRN 的擴展擴展到 131K 令牌。"
1846
+ },
1847
+ "qwen/qwen3-14b:free": {
1848
+ "description": "Qwen3-14B 是 Qwen3 系列中一個密集的 148 億參數因果語言模型,專為複雜推理和高效對話而設計。它支持在用於數學、編程和邏輯推理等任務的「思考」模式與用於通用對話的「非思考」模式之間無縫切換。該模型經過微調,可用於指令遵循、代理工具使用、創意寫作以及跨 100 多種語言和方言的多語言任務。它原生處理 32K 令牌上下文,並可使用基於 YaRN 的擴展擴展到 131K 令牌。"
1849
+ },
1850
+ "qwen/qwen3-235b-a22b": {
1851
+ "description": "Qwen3-235B-A22B 是由 Qwen 開發的 235B 參數專家混合 (MoE) 模型,每次前向傳遞激活 22B 參數。它支持在用於複雜推理、數學和代碼任務的「思考」模式與用於一般對話效率的「非思考」模式之間無縫切換。該模型展示了強大的推理能力、多語言支持(100 多種語言和方言)、高級指令遵循和代理工具調用能力。它原生處理 32K 令牌上下文窗口,並使用基於 YaRN 的擴展擴展到 131K 令牌。"
1852
+ },
1853
+ "qwen/qwen3-235b-a22b:free": {
1854
+ "description": "Qwen3-235B-A22B 是由 Qwen 開發的 235B 參數專家混合 (MoE) 模型,每次前向傳遞激活 22B 參數。它支持在用於複雜推理、數學和代碼任務的「思考」模式與用於一般對話效率的「非思考」模式之間無縫切換。該模型展示了強大的推理能力、多語言支持(100 多種語言和方言)、高級指令遵循和代理工具調用能力。它原生處理 32K 令牌上下文窗口,並使用基於 YaRN 的擴展擴展到 131K 令牌。"
1855
+ },
1856
+ "qwen/qwen3-30b-a3b": {
1857
+ "description": "Qwen3 是 Qwen 大型語言模型系列的最新一代,具有密集和專家混合 (MoE) 架構,在推理、多語言支持和高級代理任務方面表現出色。其在複雜推理的思考模式和高效對話的非思考模式之間無縫切換的獨特能力確保了多功能、高品質的性能。\n\nQwen3 顯著優於 QwQ 和 Qwen2.5 等先前模型,提供卓越的數學、編碼、常識推理、創意寫作和互動對話能力。Qwen3-30B-A3B 變體包含 305 億個參數(33 億個激活參數)、48 層、128 個專家(每個任務激活 8 個),並支持高達 131K 令牌上下文(使用 YaRN),為開源模型樹立了新標準。"
1858
+ },
1859
+ "qwen/qwen3-30b-a3b:free": {
1860
+ "description": "Qwen3 是 Qwen 大型語言模型系列的最新一代,具有密集和專家混合 (MoE) 架構,在推理、多語言支持和高級代理任務方面表現出色。其在複雜推理的思考模式和高效對話的非思考模式之間無縫切換的獨特能力確保了多功能、高品質的性能。\n\nQwen3 顯著優於 QwQ 和 Qwen2.5 等先前模型,提供卓越的數學、編碼、常識推理、創意寫作和互動對話能力。Qwen3-30B-A3B 變體包含 305 億個參數(33 億個激活參數)、48 層、128 個專家(每個任務激活 8 個),並支持高達 131K 令牌上下文(使用 YaRN),為開源模型樹立了新標準。"
1861
+ },
1862
+ "qwen/qwen3-32b": {
1863
+ "description": "Qwen3-32B 是 Qwen3 系列中一個密集的 328 億參數因果語言模型,針對複雜推理和高效對話進行了優化。它支持在用於數學、編碼和邏輯推理等任務的「思考」模式與用於更快、通用對話的「非思考」模式之間無縫切換。該模型在指令遵循、代理工具使用、創意寫作以及跨 100 多種語言和方言的多語言任務中表現出強大的性能。它原生處理 32K 令牌上下文,並可使用基於 YaRN 的擴展擴展到 131K 令牌。"
1864
+ },
1865
+ "qwen/qwen3-32b:free": {
1866
+ "description": "Qwen3-32B 是 Qwen3 系列中一個密集的 328 億參數因果語言模型,針對複雜推理和高效對話進行了優化。它支持在用於數學、編碼和邏輯推理等任務的「思考」模式與用於更快、通用對話的「非思考」模式之間無縫切換。該模型在指令遵循、代理工具使用、創意寫作以及跨 100 多種語言和方言的多語言任務中表現出強大的性能。它原生處理 32K 令牌上下文,並可使用基於 YaRN 的擴展擴展到 131K 令牌。"
1867
+ },
1868
+ "qwen/qwen3-8b:free": {
1869
+ "description": "Qwen3-8B 是 Qwen3 系列中一個密集的 82 億參數因果語言模型,專為推理密集型任務和高效對話而設計。它支持在用於數學、編碼和邏輯推理的「思考」模式與用於一般對話的「非思考」模式之間無縫切換。該模型經過微調,可用於指令遵循、代理集成、創意寫作以及跨 100 多種語言和方言的多語言使用。它原生支持 32K 令牌上下文窗口,並可通過 YaRN 擴展到 131K 令牌。"
1870
+ },
1844
1871
  "qwen2": {
1845
1872
  "description": "Qwen2 是阿里巴巴的新一代大規模語言模型,以優異的性能支持多元化的應用需求。"
1846
1873
  },
@@ -1925,6 +1952,30 @@
1925
1952
  "qwen2:72b": {
1926
1953
  "description": "Qwen2 是阿里巴巴的新一代大規模語言模型,以優異的性能支持多元化的應用需求。"
1927
1954
  },
1955
+ "qwen3-0.6b": {
1956
+ "description": "Qwen3是一款能力大幅提升的新一代通義千問大模型,在推理、通用、Agent和多語言等多個核心能力上均達到業界領先水平,並支持思考模式切換。"
1957
+ },
1958
+ "qwen3-1.7b": {
1959
+ "description": "Qwen3是一款能力大幅提升的新一代通義千問大模型,在推理、通用、Agent和多語言等多個核心能力上均達到業界領先水平,並支持思考模式切換。"
1960
+ },
1961
+ "qwen3-14b": {
1962
+ "description": "Qwen3是一款能力大幅提升的新一代通義千問大模型,在推理、通用、Agent和多語言等多個核心能力上均達到業界領先水平,並支持思考模式切換。"
1963
+ },
1964
+ "qwen3-235b-a22b": {
1965
+ "description": "Qwen3是一款能力大幅提升的新一代通義千問大模型,在推理、通用、Agent和多語言等多個核心能力上均達到業界領先水平,並支持思考模式切換。"
1966
+ },
1967
+ "qwen3-30b-a3b": {
1968
+ "description": "Qwen3是一款能力大幅提升的新一代通義千問大模型,在推理、通用、Agent和多語言等多個核心能力上均達到業界領先水平,並支持思考模式切換。"
1969
+ },
1970
+ "qwen3-32b": {
1971
+ "description": "Qwen3是一款能力大幅提升的新一代通義千問大模型,在推理、通用、Agent和多語言等多個核心能力上均達到業界領先水平,並支持思考模式切換。"
1972
+ },
1973
+ "qwen3-4b": {
1974
+ "description": "Qwen3是一款能力大幅提升的新一代通義千問大模型,在推理、通用、Agent和多語言等多個核心能力上均達到業界領先水平,並支持思考模式切換。"
1975
+ },
1976
+ "qwen3-8b": {
1977
+ "description": "Qwen3是一款能力大幅提升的新一代通義千問大模型,在推理、通用、Agent和多語言等多個核心能力上均達到業界領先水平,並支持思考模式切換。"
1978
+ },
1928
1979
  "qwq": {
1929
1980
  "description": "QwQ 是一個實驗研究模型,專注於提高 AI 推理能力。"
1930
1981
  },
@@ -2027,6 +2078,18 @@
2027
2078
  "thudm/glm-4-9b-chat": {
2028
2079
  "description": "智譜AI發布的GLM-4系列最新一代預訓練模型的開源版本。"
2029
2080
  },
2081
+ "thudm/glm-4-9b:free": {
2082
+ "description": "GLM-4-9B-0414 是 THUDM 開發的 GLM-4 系列中的 90 億參數語言模型。GLM-4-9B-0414 使用與其較大的 32B 對應模型相同的強化學習和對齊策略進行訓練,相對於其規模實現了高性能,使其適用於仍需要強大語言理解和生成能力的資源受限部署。"
2083
+ },
2084
+ "thudm/glm-z1-9b:free": {
2085
+ "description": "GLM-Z1-9B-0414 是由 THUDM 開發的 GLM-4 系列中的 9B 參數語言模型。它採用了最初應用於更大 GLM-Z1 模型的技術,包括擴展強化學習、成對排名對齊以及對數學、代碼和邏輯等推理密集型任務的訓練。儘管其規模較小,但它在通用推理任務上表現出強大的性能,並在其權重級別中優於許多開源模型。"
2086
+ },
2087
+ "thudm/glm-z1-rumination-32b": {
2088
+ "description": "THUDM: GLM Z1 Rumination 32B 是 GLM-4-Z1 系列中的 32B 參數深度推理模型,針對需要長時間思考的複雜、開放式任務進行了優化。它建立在 glm-4-32b-0414 的基礎上,增加了額外的強化學習階段和多階段對齊策略,引入了旨在模擬擴展認知處理的「反思」能力。這包括迭代推理、多跳分析和工具增強的工作流程,例如搜索、檢索和引文感知合成。\n\n該模型在研究式寫作、比較分析和複雜問答方面表現出色。它支持用於搜索和導航原語(`search`、`click`、`open`、`finish`)的函數調用,從而可以在代理式管道中使用。反思行為由具有基於規則的獎勵塑造和延遲決策機制的多輪循環控制,並以 OpenAI 內部對齊堆疊等深度研究框架為基準。此變體適用於需要深度而非速度的場景。"
2089
+ },
2090
+ "tngtech/deepseek-r1t-chimera:free": {
2091
+ "description": "DeepSeek-R1T-Chimera 透過合併 DeepSeek-R1 和 DeepSeek-V3 (0324) 創建,結合了 R1 的推理能力和 V3 的令牌效率改進。它基於 DeepSeek-MoE Transformer 架構,並針對通用文本生成任務進行了優化。\n\n該模型合併了兩個源模型的預訓練權重,以平衡推理、效率和指令遵循任務的性能。它根據 MIT 許可證發布,旨在用於研究和商業用途。"
2092
+ },
2030
2093
  "togethercomputer/StripedHyena-Nous-7B": {
2031
2094
  "description": "StripedHyena Nous (7B) 通過高效的策略和模型架構,提供增強的計算能力。"
2032
2095
  },
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@lobehub/chat",
3
- "version": "1.84.9",
3
+ "version": "1.84.11",
4
4
  "description": "Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
5
5
  "keywords": [
6
6
  "framework",
@@ -146,7 +146,7 @@
146
146
  "@lobehub/chat-plugins-gateway": "^1.9.0",
147
147
  "@lobehub/icons": "^2.0.0",
148
148
  "@lobehub/tts": "^2.0.0",
149
- "@lobehub/ui": "^2.0.6",
149
+ "@lobehub/ui": "^2.0.10",
150
150
  "@modelcontextprotocol/sdk": "^1.10.1",
151
151
  "@neondatabase/serverless": "^1.0.0",
152
152
  "@next/third-parties": "^15.3.0",
@@ -5,10 +5,10 @@ import { useTheme } from 'antd-style';
5
5
  import { TextAreaRef } from 'antd/es/input/TextArea';
6
6
  import { memo, useRef, useState } from 'react';
7
7
  import { Flexbox } from 'react-layout-kit';
8
+ import STT from 'src/features/ChatInput/ActionBar/STT';
8
9
 
9
10
  import ActionBar from '@/features/ChatInput/ActionBar';
10
11
  import { ActionKeys } from '@/features/ChatInput/ActionBar/config';
11
- import STT from '@/features/ChatInput/STT';
12
12
  import SaveTopic from '@/features/ChatInput/Topic';
13
13
  import { useSendMessage } from '@/features/ChatInput/useSend';
14
14
  import { useInitAgentConfig } from '@/hooks/useInitAgentConfig';
@@ -18,7 +18,7 @@ import { TopicDisplayMode } from '@/types/topic';
18
18
  import TopicSearchBar from './TopicSearchBar';
19
19
 
20
20
  const Header = memo(() => {
21
- const { t } = useTranslation('topic');
21
+ const { t } = useTranslation(['topic', 'common']);
22
22
  const [topicLength, removeUnstarredTopic, removeAllTopic] = useChatStore((s) => [
23
23
  topicSelectors.currentTopicLength(s),
24
24
  s.removeUnstarredTopic,
@@ -50,8 +50,10 @@ const Header = memo(() => {
50
50
  label: t('actions.removeUnstarred'),
51
51
  onClick: () => {
52
52
  modal.confirm({
53
+ cancelText: t('cancel', { ns: 'common' }),
53
54
  centered: true,
54
55
  okButtonProps: { danger: true },
56
+ okText: t('ok', { ns: 'common' }),
55
57
  onOk: removeUnstarredTopic,
56
58
  title: t('actions.confirmRemoveUnstarred'),
57
59
  });
@@ -64,8 +66,10 @@ const Header = memo(() => {
64
66
  label: t('actions.removeAll'),
65
67
  onClick: () => {
66
68
  modal.confirm({
69
+ cancelText: t('cancel', { ns: 'common' }),
67
70
  centered: true,
68
71
  okButtonProps: { danger: true },
72
+ okText: t('ok', { ns: 'common' }),
69
73
  onOk: removeAllTopic,
70
74
  title: t('actions.confirmRemoveAll'),
71
75
  });
@@ -38,6 +38,7 @@ const EditPage = memo(() => {
38
38
  <>
39
39
  <PageTitle title={t('header.sessionWithName', { name: title })} />
40
40
  <Tabs
41
+ activeKey={tab}
41
42
  compact
42
43
  items={cateItems as any}
43
44
  onChange={(value) => setTab(value as ChatSettingsTabs)}
@@ -11,6 +11,7 @@ import InitClientDB from '@/features/InitClientDB';
11
11
  import Footer from '@/features/Setting/Footer';
12
12
  import SettingContainer from '@/features/Setting/SettingContainer';
13
13
  import { useActiveSettingsKey } from '@/hooks/useActiveTabKey';
14
+ import { useProviderName } from '@/hooks/useProviderName';
14
15
  import { SettingsTabs } from '@/store/global/initialState';
15
16
 
16
17
  import { LayoutProps } from '../type';
@@ -27,6 +28,8 @@ const Layout = memo<LayoutProps>(({ children, category }) => {
27
28
  const theme = useTheme();
28
29
  const pathname = usePathname();
29
30
  const isSkip = SKIP_PATHS.some((path) => pathname.startsWith(path));
31
+ const isProvider = pathname.includes('/settings/provider/');
32
+ const providerName = useProviderName(activeKey);
30
33
 
31
34
  return (
32
35
  <Flexbox
@@ -43,7 +46,7 @@ const Layout = memo<LayoutProps>(({ children, category }) => {
43
46
  getContainer={() => ref.current}
44
47
  title={
45
48
  <>
46
- {t(`tab.${activeKey}`)}
49
+ {isProvider ? providerName : t(`tab.${activeKey}`)}
47
50
  {activeKey === SettingsTabs.Sync && <Tag color={'gold'}>{t('tab.experiment')}</Tag>}
48
51
  </>
49
52
  }
@@ -8,7 +8,7 @@ import Container from './Container';
8
8
 
9
9
  const loading = () => <Skeleton active style={{ width: 400 }} />;
10
10
 
11
- const OllamaSetupGuide = dynamic(() => import('@/components/OllamaSetupGuide'), {
11
+ const OllamaSetupGuide = dynamic(() => import('@/features/OllamaSetupGuide'), {
12
12
  loading,
13
13
  ssr: false,
14
14
  });
@@ -40,10 +40,12 @@ const CheckError = ({
40
40
  error?: ChatMessageError;
41
41
  setError: (error?: ChatMessageError) => void;
42
42
  }) => {
43
- const errorBody: OllamaErrorResponse = (error as any)?.body;
43
+ const errorBody: OllamaErrorResponse = error?.body;
44
44
 
45
45
  const errorMessage = errorBody.error?.message;
46
46
 
47
+ if (error?.type === 'OllamaServiceUnavailable') return <OllamaSetupGuide container={false} />;
48
+
47
49
  // error of not pull the model
48
50
  const unresolvedModel = errorMessage?.match(UNRESOLVED_MODEL_REGEXP)?.[1];
49
51
 
@@ -13,9 +13,9 @@ const useStyles = createStyles(({ css, token, responsive }) => ({
13
13
  container: css`
14
14
  position: relative;
15
15
 
16
- width: min(50vw, 600px);
16
+ width: 100%;
17
17
  padding-inline: 40px;
18
- border: 1px solid ${token.colorBorderBg};
18
+ border: 1px solid ${token.colorBorderSecondary};
19
19
  border-radius: 8px;
20
20
 
21
21
  background: ${token.colorBgContainer};
@@ -46,6 +46,7 @@ const Layout = memo(({ children, mobile }: ProviderMenuProps) => {
46
46
  justify={'space-between'}
47
47
  padding={'16px 12px 12px'}
48
48
  style={{
49
+ background: theme.colorBgLayout,
49
50
  position: 'sticky',
50
51
  top: 0,
51
52
  zIndex: 50,
@@ -57,13 +57,7 @@ const FileParsingStatus = memo<FileParsingStatusProps>(
57
57
  styles={{ root: { pointerEvents: 'none' } }}
58
58
  title={t('FileParsingStatus.chunks.status.processingTip')}
59
59
  >
60
- <Tag
61
- bordered={false}
62
- className={className}
63
- color={'processing'}
64
- icon={<Badge status={'processing'} />}
65
- style={{ display: 'flex', gap: 4 }}
66
- >
60
+ <Tag className={className} color={'processing'} icon={<Badge status={'processing'} />}>
67
61
  {t('FileParsingStatus.chunks.status.processing')}
68
62
  </Tag>
69
63
  </Tooltip>
@@ -31,12 +31,12 @@ const useStyles = createStyles(({ css, token }) => ({
31
31
  align-items: center;
32
32
  justify-content: center;
33
33
 
34
- width: 20px;
34
+ width: 20px !important;
35
35
  height: 20px;
36
36
  border-radius: 4px;
37
37
  `,
38
38
  token: css`
39
- width: 36px;
39
+ width: 36px !important;
40
40
  height: 20px;
41
41
  border-radius: 4px;
42
42