@lobehub/chat 1.84.9 → 1.84.11
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +54 -0
- package/apps/desktop/electron.vite.config.ts +3 -0
- package/changelog/v1.json +18 -0
- package/locales/ar/components.json +2 -1
- package/locales/ar/models.json +63 -0
- package/locales/bg-BG/components.json +2 -1
- package/locales/bg-BG/models.json +63 -0
- package/locales/de-DE/components.json +2 -1
- package/locales/de-DE/models.json +63 -0
- package/locales/en-US/components.json +2 -1
- package/locales/en-US/models.json +63 -0
- package/locales/es-ES/components.json +2 -1
- package/locales/es-ES/models.json +63 -0
- package/locales/fa-IR/components.json +2 -1
- package/locales/fa-IR/models.json +63 -0
- package/locales/fr-FR/components.json +2 -1
- package/locales/fr-FR/models.json +63 -0
- package/locales/it-IT/components.json +2 -1
- package/locales/it-IT/models.json +63 -0
- package/locales/ja-JP/components.json +2 -1
- package/locales/ja-JP/models.json +63 -0
- package/locales/ko-KR/components.json +2 -1
- package/locales/ko-KR/models.json +63 -0
- package/locales/nl-NL/components.json +2 -1
- package/locales/nl-NL/models.json +63 -0
- package/locales/pl-PL/components.json +2 -1
- package/locales/pl-PL/models.json +63 -0
- package/locales/pt-BR/components.json +2 -1
- package/locales/pt-BR/models.json +63 -0
- package/locales/ru-RU/components.json +2 -1
- package/locales/ru-RU/models.json +63 -0
- package/locales/tr-TR/components.json +2 -1
- package/locales/tr-TR/models.json +63 -0
- package/locales/vi-VN/components.json +2 -1
- package/locales/vi-VN/models.json +63 -0
- package/locales/zh-CN/components.json +2 -1
- package/locales/zh-CN/models.json +63 -0
- package/locales/zh-TW/components.json +2 -1
- package/locales/zh-TW/models.json +63 -0
- package/package.json +2 -2
- package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ChatInput/Mobile/index.tsx +1 -1
- package/src/app/[variants]/(main)/chat/(workspace)/@topic/features/Header.tsx +5 -1
- package/src/app/[variants]/(main)/chat/settings/page.tsx +1 -0
- package/src/app/[variants]/(main)/settings/_layout/Desktop/index.tsx +4 -1
- package/src/app/[variants]/(main)/settings/provider/(detail)/ollama/CheckError.tsx +4 -2
- package/src/app/[variants]/(main)/settings/provider/(detail)/ollama/Container.tsx +2 -2
- package/src/app/[variants]/(main)/settings/provider/ProviderMenu/index.tsx +1 -0
- package/src/components/FileParsingStatus/index.tsx +1 -7
- package/src/components/ModelSelect/index.tsx +2 -2
- package/src/config/aiModels/siliconcloud.ts +89 -7
- package/src/config/modelProviders/google.ts +16 -0
- package/src/features/ChatInput/ActionBar/{Clear.tsx → Clear/index.tsx} +3 -2
- package/src/features/ChatInput/ActionBar/History/Controls.tsx +72 -0
- package/src/features/ChatInput/ActionBar/History/index.tsx +46 -0
- package/src/features/ChatInput/ActionBar/Knowledge/index.tsx +31 -25
- package/src/features/ChatInput/ActionBar/Knowledge/{Dropdown.tsx → useControls.tsx} +20 -40
- package/src/features/ChatInput/ActionBar/Model/ControlsForm.tsx +8 -1
- package/src/features/ChatInput/ActionBar/Model/index.tsx +27 -19
- package/src/features/ChatInput/ActionBar/Params/{ParamsControls.tsx → Controls.tsx} +9 -9
- package/src/features/ChatInput/ActionBar/Params/index.tsx +17 -20
- package/src/features/ChatInput/{STT → ActionBar/STT}/common.tsx +1 -0
- package/src/features/ChatInput/ActionBar/Search/{SwitchPanel.tsx → Controls.tsx} +12 -11
- package/src/features/ChatInput/ActionBar/Search/index.tsx +20 -25
- package/src/features/ChatInput/ActionBar/Token/TokenTag.tsx +1 -1
- package/src/features/ChatInput/ActionBar/Tools/ToolItem.tsx +15 -6
- package/src/features/ChatInput/ActionBar/Tools/index.tsx +26 -18
- package/src/features/ChatInput/ActionBar/Tools/{Dropdown.tsx → useControls.tsx} +38 -63
- package/src/features/ChatInput/ActionBar/Upload/ServerMode.tsx +10 -11
- package/src/features/ChatInput/ActionBar/components/Action.tsx +90 -0
- package/src/features/ChatInput/{components → ActionBar/components}/ActionDropdown.tsx +4 -4
- package/src/features/ChatInput/{components → ActionBar/components}/ActionPopover.tsx +5 -4
- package/src/features/ChatInput/ActionBar/{Knowledge/ListItem.tsx → components/CheckbokWithLoading.tsx} +14 -12
- package/src/features/ChatInput/ActionBar/config.ts +1 -1
- package/src/features/Conversation/Actions/Error.tsx +10 -2
- package/src/features/Conversation/Error/OllamaBizError/index.tsx +2 -2
- package/src/features/Conversation/Error/index.tsx +3 -10
- package/src/features/KnowledgeBaseModal/AssignKnowledgeBase/Loading.tsx +1 -1
- package/src/features/ModelSwitchPanel/index.tsx +18 -5
- package/src/features/{Conversation/Error/OllamaDesktopSetupGuide/index.tsx → OllamaSetupGuide/Desktop.tsx} +25 -20
- package/src/features/OllamaSetupGuide/index.tsx +17 -0
- package/src/features/ShareModal/ShareImage/ChatList/index.tsx +1 -1
- package/src/features/ShareModal/ShareImage/Preview.tsx +2 -2
- package/src/features/ShareModal/ShareImage/index.tsx +8 -6
- package/src/hooks/useImgToClipboard.ts +4 -1
- package/src/layout/GlobalProvider/Locale.tsx +0 -8
- package/src/libs/agent-runtime/siliconcloud/index.ts +17 -1
- package/src/locales/default/components.ts +1 -0
- package/src/utils/server/auth.ts +6 -0
- package/src/features/ChatInput/ActionBar/History.tsx +0 -78
- package/src/features/Conversation/Error/OllamaBizError/SetupGuide.tsx +0 -14
- /package/src/features/ChatInput/{STT → ActionBar/STT}/browser.tsx +0 -0
- /package/src/features/ChatInput/{STT → ActionBar/STT}/index.tsx +0 -0
- /package/src/features/ChatInput/{STT → ActionBar/STT}/openai.tsx +0 -0
@@ -1841,6 +1841,33 @@
|
|
1841
1841
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1842
1842
|
"description": "Poderoso modelo de código de tamaño mediano, que soporta longitudes de contexto de 32K, experto en programación multilingüe."
|
1843
1843
|
},
|
1844
|
+
"qwen/qwen3-14b": {
|
1845
|
+
"description": "Qwen3-14B es un modelo de lenguaje causal denso de 14.8 mil millones de parámetros en la serie Qwen3, diseñado para razonamiento complejo y diálogos eficientes. Soporta un cambio sin problemas entre un modo de 'pensamiento' para tareas de matemáticas, programación y razonamiento lógico, y un modo 'no reflexivo' para diálogos generales. Este modelo ha sido ajustado para seguir instrucciones, utilizar herramientas de agentes, escribir creativamente y realizar tareas multilingües en más de 100 idiomas y dialectos. Maneja de forma nativa un contexto de 32K tokens y se puede expandir a 131K tokens utilizando extensiones basadas en YaRN."
|
1846
|
+
},
|
1847
|
+
"qwen/qwen3-14b:free": {
|
1848
|
+
"description": "Qwen3-14B es un modelo de lenguaje causal denso de 14.8 mil millones de parámetros en la serie Qwen3, diseñado para razonamiento complejo y diálogos eficientes. Soporta un cambio sin problemas entre un modo de 'pensamiento' para tareas de matemáticas, programación y razonamiento lógico, y un modo 'no reflexivo' para diálogos generales. Este modelo ha sido ajustado para seguir instrucciones, utilizar herramientas de agentes, escribir creativamente y realizar tareas multilingües en más de 100 idiomas y dialectos. Maneja de forma nativa un contexto de 32K tokens y se puede expandir a 131K tokens utilizando extensiones basadas en YaRN."
|
1849
|
+
},
|
1850
|
+
"qwen/qwen3-235b-a22b": {
|
1851
|
+
"description": "Qwen3-235B-A22B es un modelo de mezcla de expertos (MoE) de 235B parámetros desarrollado por Qwen, que activa 22B parámetros en cada pasada hacia adelante. Soporta un cambio sin problemas entre un modo de 'pensamiento' para razonamiento complejo, matemáticas y tareas de código, y un modo 'no reflexivo' para eficiencia en diálogos generales. Este modelo demuestra una fuerte capacidad de razonamiento, soporte multilingüe (más de 100 idiomas y dialectos), y habilidades avanzadas de seguimiento de instrucciones y llamadas a herramientas de agentes. Maneja de forma nativa una ventana de contexto de 32K tokens y se puede expandir a 131K tokens utilizando extensiones basadas en YaRN."
|
1852
|
+
},
|
1853
|
+
"qwen/qwen3-235b-a22b:free": {
|
1854
|
+
"description": "Qwen3-235B-A22B es un modelo de mezcla de expertos (MoE) de 235B parámetros desarrollado por Qwen, que activa 22B parámetros en cada pasada hacia adelante. Soporta un cambio sin problemas entre un modo de 'pensamiento' para razonamiento complejo, matemáticas y tareas de código, y un modo 'no reflexivo' para eficiencia en diálogos generales. Este modelo demuestra una fuerte capacidad de razonamiento, soporte multilingüe (más de 100 idiomas y dialectos), y habilidades avanzadas de seguimiento de instrucciones y llamadas a herramientas de agentes. Maneja de forma nativa una ventana de contexto de 32K tokens y se puede expandir a 131K tokens utilizando extensiones basadas en YaRN."
|
1855
|
+
},
|
1856
|
+
"qwen/qwen3-30b-a3b": {
|
1857
|
+
"description": "Qwen3 es la última generación de la serie de modelos de lenguaje Qwen, con una arquitectura de mezcla densa y de expertos (MoE), que destaca en razonamiento, soporte multilingüe y tareas avanzadas de agentes. Su capacidad única para cambiar sin problemas entre un modo de pensamiento para razonamiento complejo y un modo no reflexivo para diálogos eficientes garantiza un rendimiento versátil y de alta calidad.\n\nQwen3 supera significativamente a modelos anteriores como QwQ y Qwen2.5, ofreciendo capacidades excepcionales en matemáticas, codificación, razonamiento de sentido común, escritura creativa y diálogos interactivos. La variante Qwen3-30B-A3B contiene 30.5 mil millones de parámetros (3.3 mil millones de parámetros activados), 48 capas, 128 expertos (activando 8 por tarea) y admite un contexto de hasta 131K tokens (usando YaRN), estableciendo un nuevo estándar para modelos de código abierto."
|
1858
|
+
},
|
1859
|
+
"qwen/qwen3-30b-a3b:free": {
|
1860
|
+
"description": "Qwen3 es la última generación de la serie de modelos de lenguaje Qwen, con una arquitectura de mezcla densa y de expertos (MoE), que destaca en razonamiento, soporte multilingüe y tareas avanzadas de agentes. Su capacidad única para cambiar sin problemas entre un modo de pensamiento para razonamiento complejo y un modo no reflexivo para diálogos eficientes garantiza un rendimiento versátil y de alta calidad.\n\nQwen3 supera significativamente a modelos anteriores como QwQ y Qwen2.5, ofreciendo capacidades excepcionales en matemáticas, codificación, razonamiento de sentido común, escritura creativa y diálogos interactivos. La variante Qwen3-30B-A3B contiene 30.5 mil millones de parámetros (3.3 mil millones de parámetros activados), 48 capas, 128 expertos (activando 8 por tarea) y admite un contexto de hasta 131K tokens (usando YaRN), estableciendo un nuevo estándar para modelos de código abierto."
|
1861
|
+
},
|
1862
|
+
"qwen/qwen3-32b": {
|
1863
|
+
"description": "Qwen3-32B es un modelo de lenguaje causal denso de 32.8 mil millones de parámetros en la serie Qwen3, optimizado para razonamiento complejo y diálogos eficientes. Soporta un cambio sin problemas entre un modo de 'pensamiento' para tareas de matemáticas, codificación y razonamiento lógico, y un modo 'no reflexivo' para diálogos más rápidos y generales. Este modelo muestra un rendimiento robusto en seguir instrucciones, utilizar herramientas de agentes, escribir creativamente y realizar tareas multilingües en más de 100 idiomas y dialectos. Maneja de forma nativa un contexto de 32K tokens y se puede expandir a 131K tokens utilizando extensiones basadas en YaRN."
|
1864
|
+
},
|
1865
|
+
"qwen/qwen3-32b:free": {
|
1866
|
+
"description": "Qwen3-32B es un modelo de lenguaje causal denso de 32.8 mil millones de parámetros en la serie Qwen3, optimizado para razonamiento complejo y diálogos eficientes. Soporta un cambio sin problemas entre un modo de 'pensamiento' para tareas de matemáticas, codificación y razonamiento lógico, y un modo 'no reflexivo' para diálogos más rápidos y generales. Este modelo muestra un rendimiento robusto en seguir instrucciones, utilizar herramientas de agentes, escribir creativamente y realizar tareas multilingües en más de 100 idiomas y dialectos. Maneja de forma nativa un contexto de 32K tokens y se puede expandir a 131K tokens utilizando extensiones basadas en YaRN."
|
1867
|
+
},
|
1868
|
+
"qwen/qwen3-8b:free": {
|
1869
|
+
"description": "Qwen3-8B es un modelo de lenguaje causal denso de 8.2 mil millones de parámetros en la serie Qwen3, diseñado para tareas intensivas en razonamiento y diálogos eficientes. Soporta un cambio sin problemas entre un modo de 'pensamiento' para matemáticas, codificación y razonamiento lógico, y un modo 'no reflexivo' para diálogos generales. Este modelo ha sido ajustado para seguir instrucciones, integrar agentes, escribir creativamente y utilizar más de 100 idiomas y dialectos. Soporta de forma nativa una ventana de contexto de 32K tokens y se puede expandir a 131K tokens a través de YaRN."
|
1870
|
+
},
|
1844
1871
|
"qwen2": {
|
1845
1872
|
"description": "Qwen2 es el nuevo modelo de lenguaje a gran escala de Alibaba, que ofrece un rendimiento excepcional para satisfacer diversas necesidades de aplicación."
|
1846
1873
|
},
|
@@ -1925,6 +1952,30 @@
|
|
1925
1952
|
"qwen2:72b": {
|
1926
1953
|
"description": "Qwen2 es el nuevo modelo de lenguaje a gran escala de Alibaba, que ofrece un rendimiento excepcional para satisfacer diversas necesidades de aplicación."
|
1927
1954
|
},
|
1955
|
+
"qwen3-0.6b": {
|
1956
|
+
"description": "Qwen3 es un modelo de nueva generación con capacidades significativamente mejoradas, alcanzando niveles líderes en la industria en razonamiento, generalidad, agentes y multilingüismo, y soporta el cambio de modo de pensamiento."
|
1957
|
+
},
|
1958
|
+
"qwen3-1.7b": {
|
1959
|
+
"description": "Qwen3 es un modelo de nueva generación con capacidades significativamente mejoradas, alcanzando niveles líderes en la industria en razonamiento, generalidad, agentes y multilingüismo, y soporta el cambio de modo de pensamiento."
|
1960
|
+
},
|
1961
|
+
"qwen3-14b": {
|
1962
|
+
"description": "Qwen3 es un modelo de nueva generación con capacidades significativamente mejoradas, alcanzando niveles líderes en la industria en razonamiento, generalidad, agentes y multilingüismo, y soporta el cambio de modo de pensamiento."
|
1963
|
+
},
|
1964
|
+
"qwen3-235b-a22b": {
|
1965
|
+
"description": "Qwen3 es un modelo de nueva generación con capacidades significativamente mejoradas, alcanzando niveles líderes en la industria en razonamiento, generalidad, agentes y multilingüismo, y soporta el cambio de modo de pensamiento."
|
1966
|
+
},
|
1967
|
+
"qwen3-30b-a3b": {
|
1968
|
+
"description": "Qwen3 es un modelo de nueva generación con capacidades significativamente mejoradas, alcanzando niveles líderes en la industria en razonamiento, generalidad, agentes y multilingüismo, y soporta el cambio de modo de pensamiento."
|
1969
|
+
},
|
1970
|
+
"qwen3-32b": {
|
1971
|
+
"description": "Qwen3 es un modelo de nueva generación con capacidades significativamente mejoradas, alcanzando niveles líderes en la industria en razonamiento, generalidad, agentes y multilingüismo, y soporta el cambio de modo de pensamiento."
|
1972
|
+
},
|
1973
|
+
"qwen3-4b": {
|
1974
|
+
"description": "Qwen3 es un modelo de nueva generación con capacidades significativamente mejoradas, alcanzando niveles líderes en la industria en razonamiento, generalidad, agentes y multilingüismo, y soporta el cambio de modo de pensamiento."
|
1975
|
+
},
|
1976
|
+
"qwen3-8b": {
|
1977
|
+
"description": "Qwen3 es un modelo de nueva generación con capacidades significativamente mejoradas, alcanzando niveles líderes en la industria en razonamiento, generalidad, agentes y multilingüismo, y soporta el cambio de modo de pensamiento."
|
1978
|
+
},
|
1928
1979
|
"qwq": {
|
1929
1980
|
"description": "QwQ es un modelo de investigación experimental que se centra en mejorar la capacidad de razonamiento de la IA."
|
1930
1981
|
},
|
@@ -2027,6 +2078,18 @@
|
|
2027
2078
|
"thudm/glm-4-9b-chat": {
|
2028
2079
|
"description": "Versión de código abierto de la última generación del modelo preentrenado GLM-4 lanzado por Zhizhu AI."
|
2029
2080
|
},
|
2081
|
+
"thudm/glm-4-9b:free": {
|
2082
|
+
"description": "GLM-4-9B-0414 es un modelo de lenguaje de 9B parámetros en la serie GLM-4 desarrollado por THUDM. GLM-4-9B-0414 utiliza las mismas estrategias de aprendizaje por refuerzo y alineación que su modelo correspondiente de 32B, logrando un alto rendimiento en relación con su tamaño, lo que lo hace adecuado para implementaciones con recursos limitados que aún requieren una fuerte capacidad de comprensión y generación de lenguaje."
|
2083
|
+
},
|
2084
|
+
"thudm/glm-z1-9b:free": {
|
2085
|
+
"description": "GLM-Z1-9B-0414 es un modelo de lenguaje de 9B parámetros en la serie GLM-4 desarrollado por THUDM. Utiliza técnicas inicialmente aplicadas al modelo GLM-Z1 más grande, incluyendo aprendizaje por refuerzo extendido, alineación de clasificación por pares y entrenamiento para tareas intensivas en razonamiento como matemáticas, código y lógica. A pesar de su menor tamaño, muestra un rendimiento robusto en tareas de razonamiento general y supera a muchos modelos de código abierto en su nivel de pesos."
|
2086
|
+
},
|
2087
|
+
"thudm/glm-z1-rumination-32b": {
|
2088
|
+
"description": "THUDM: GLM Z1 Rumination 32B es un modelo de razonamiento profundo de 32B parámetros en la serie GLM-4-Z1, optimizado para tareas complejas y abiertas que requieren un pensamiento prolongado. Se basa en glm-4-32b-0414, añadiendo una fase adicional de aprendizaje por refuerzo y estrategias de alineación multietapa, introduciendo una capacidad de 'reflexión' diseñada para simular el procesamiento cognitivo extendido. Esto incluye razonamiento iterativo, análisis de múltiples saltos y flujos de trabajo mejorados por herramientas, como búsqueda, recuperación y síntesis consciente de citas.\n\nEste modelo destaca en escritura de investigación, análisis comparativo y preguntas complejas. Soporta llamadas a funciones para primitivos de búsqueda y navegación (`search`, `click`, `open`, `finish`), lo que permite su uso en tuberías de agentes. El comportamiento reflexivo está moldeado por un control cíclico de múltiples rondas con mecanismos de recompensa basados en reglas y decisiones retrasadas, y se basa en marcos de investigación profunda como el stack de alineación interno de OpenAI. Esta variante es adecuada para escenarios que requieren profundidad en lugar de velocidad."
|
2089
|
+
},
|
2090
|
+
"tngtech/deepseek-r1t-chimera:free": {
|
2091
|
+
"description": "DeepSeek-R1T-Chimera se crea combinando DeepSeek-R1 y DeepSeek-V3 (0324), fusionando la capacidad de razonamiento de R1 con las mejoras de eficiencia de tokens de V3. Se basa en la arquitectura DeepSeek-MoE Transformer y está optimizado para tareas generales de generación de texto.\n\nEste modelo combina los pesos preentrenados de los dos modelos fuente para equilibrar el rendimiento en razonamiento, eficiencia y tareas de seguimiento de instrucciones. Se publica bajo la licencia MIT, destinado a fines de investigación y comerciales."
|
2092
|
+
},
|
2030
2093
|
"togethercomputer/StripedHyena-Nous-7B": {
|
2031
2094
|
"description": "StripedHyena Nous (7B) proporciona una capacidad de cálculo mejorada a través de estrategias y arquitecturas de modelos eficientes."
|
2032
2095
|
},
|
@@ -88,7 +88,8 @@
|
|
88
88
|
"emptyModel": "هیچ مدلی فعال نیست، لطفاً به تنظیمات بروید و آن را فعال کنید",
|
89
89
|
"emptyProvider": "هیچ ارائهدهندهای فعال نیست، لطفاً به تنظیمات بروید و آن را فعال کنید",
|
90
90
|
"goToSettings": "به تنظیمات بروید",
|
91
|
-
"provider": "ارائهدهنده"
|
91
|
+
"provider": "ارائهدهنده",
|
92
|
+
"title": "مدل"
|
92
93
|
},
|
93
94
|
"OllamaSetupGuide": {
|
94
95
|
"action": {
|
@@ -1841,6 +1841,33 @@
|
|
1841
1841
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1842
1842
|
"description": "مدل کد قدرتمند و متوسط که از طول زمینه 32K پشتیبانی میکند و در برنامهنویسی چند زبانه مهارت دارد."
|
1843
1843
|
},
|
1844
|
+
"qwen/qwen3-14b": {
|
1845
|
+
"description": "Qwen3-14B یک مدل زبان علّی با ۱۴.۸ میلیارد پارامتر در سری Qwen3 است که به طور خاص برای استدلال پیچیده و مکالمات کارآمد طراحی شده است. این مدل از جابجایی بیوقفه بین حالت «تفکر» برای وظایف ریاضی، برنامهنویسی و استدلال منطقی و حالت «غیرتفکری» برای مکالمات عمومی پشتیبانی میکند. این مدل به طور خاص برای پیروی از دستورات، استفاده از ابزارهای نمایندگی، نوشتن خلاق و انجام وظایف چند زبانه در بیش از ۱۰۰ زبان و گویش مختلف تنظیم شده است. این مدل به طور بومی از ۳۲K توکن زمینه پشتیبانی میکند و میتواند با استفاده از گسترش مبتنی بر YaRN به ۱۳۱K توکن گسترش یابد."
|
1846
|
+
},
|
1847
|
+
"qwen/qwen3-14b:free": {
|
1848
|
+
"description": "Qwen3-14B یک مدل زبان علّی با ۱۴.۸ میلیارد پارامتر در سری Qwen3 است که به طور خاص برای استدلال پیچیده و مکالمات کارآمد طراحی شده است. این مدل از جابجایی بیوقفه بین حالت «تفکر» برای وظایف ریاضی، برنامهنویسی و استدلال منطقی و حالت «غیرتفکری» برای مکالمات عمومی پشتیبانی میکند. این مدل به طور خاص برای پیروی از دستورات، استفاده از ابزارهای نمایندگی، نوشتن خلاق و انجام وظایف چند زبانه در بیش از ۱۰۰ زبان و گویش مختلف تنظیم شده است. این مدل به طور بومی از ۳۲K توکن زمینه پشتیبانی میکند و میتواند با استفاده از گسترش مبتنی بر YaRN به ۱۳۱K توکن گسترش یابد."
|
1849
|
+
},
|
1850
|
+
"qwen/qwen3-235b-a22b": {
|
1851
|
+
"description": "Qwen3-235B-A22B یک مدل متخصص ترکیبی (MoE) با ۲۳۵B پارامتر است که توسط Qwen توسعه یافته و در هر بار انتقال رو به جلو ۲۲B پارامتر فعال میشود. این مدل از جابجایی بیوقفه بین حالت «تفکر» برای استدلال پیچیده، ریاضیات و وظایف کدنویسی و حالت «غیرتفکری» برای کارایی مکالمات عمومی پشتیبانی میکند. این مدل تواناییهای استدلال قوی، پشتیبانی چند زبانه (بیش از ۱۰۰ زبان و گویش)، پیروی از دستورات پیشرفته و توانایی فراخوانی ابزارهای نمایندگی را نشان میدهد. این مدل به طور بومی از پنجره زمینه ۳۲K توکن پشتیبانی میکند و میتواند با استفاده از گسترش مبتنی بر YaRN به ۱۳۱K توکن گسترش یابد."
|
1852
|
+
},
|
1853
|
+
"qwen/qwen3-235b-a22b:free": {
|
1854
|
+
"description": "Qwen3-235B-A22B یک مدل متخصص ترکیبی (MoE) با ۲۳۵B پارامتر است که توسط Qwen توسعه یافته و در هر بار انتقال رو به جلو ۲۲B پارامتر فعال میشود. این مدل از جابجایی بیوقفه بین حالت «تفکر» برای استدلال پیچیده، ریاضیات و وظایف کدنویسی و حالت «غیرتفکری» برای کارایی مکالمات عمومی پشتیبانی میکند. این مدل تواناییهای استدلال قوی، پشتیبانی چند زبانه (بیش از ۱۰۰ زبان و گویش)، پیروی از دستورات پیشرفته و توانایی فراخوانی ابزارهای نمایندگی را نشان میدهد. این مدل به طور بومی از پنجره زمینه ۳۲K توکن پشتیبانی میکند و میتواند با استفاده از گسترش مبتنی بر YaRN به ۱۳۱K توکن گسترش یابد."
|
1855
|
+
},
|
1856
|
+
"qwen/qwen3-30b-a3b": {
|
1857
|
+
"description": "Qwen3 نسل جدیدی از سری مدلهای زبان بزرگ Qwen است که دارای معماری ترکیبی فشرده و متخصص (MoE) میباشد و در زمینه استدلال، پشتیبانی چند زبانه و وظایف پیشرفته نمایشی عالی دارد. توانایی منحصر به فرد آن در جابجایی بیوقفه بین حالتهای تفکر برای استدلال پیچیده و حالتهای غیرتفکری برای مکالمات کارآمد، عملکرد چندمنظوره و با کیفیت بالا را تضمین میکند.\n\nQwen3 به طور قابل توجهی از مدلهای قبلی مانند QwQ و Qwen2.5 برتر است و تواناییهای فوقالعادهای در ریاضیات، کدنویسی، استدلال عمومی، نوشتن خلاق و مکالمات تعاملی ارائه میدهد. واریانت Qwen3-30B-A3B شامل ۳۰.۵ میلیارد پارامتر (۳.۳ میلیارد پارامتر فعال)، ۴۸ لایه، ۱۲۸ متخصص (که هر کدام ۸ مورد را فعال میکنند) است و از زمینه ۱۳۱K توکن پشتیبانی میکند (با استفاده از YaRN) و استاندارد جدیدی برای مدلهای متنباز تعیین میکند."
|
1858
|
+
},
|
1859
|
+
"qwen/qwen3-30b-a3b:free": {
|
1860
|
+
"description": "Qwen3 نسل جدیدی از سری مدلهای زبان بزرگ Qwen است که دارای معماری ترکیبی فشرده و متخصص (MoE) میباشد و در زمینه استدلال، پشتیبانی چند زبانه و وظایف پیشرفته نمایشی عالی دارد. توانایی منحصر به فرد آن در جابجایی بیوقفه بین حالتهای تفکر برای استدلال پیچیده و حالتهای غیرتفکری برای مکالمات کارآمد، عملکرد چندمنظوره و با کیفیت بالا را تضمین میکند.\n\nQwen3 به طور قابل توجهی از مدلهای قبلی مانند QwQ و Qwen2.5 برتر است و تواناییهای فوقالعادهای در ریاضیات، کدنویسی، استدلال عمومی، نوشتن خلاق و مکالمات تعاملی ارائه میدهد. واریانت Qwen3-30B-A3B شامل ۳۰.۵ میلیارد پارامتر (۳.۳ میلیارد پارامتر فعال)، ۴۸ لایه، ۱۲۸ متخصص (که هر کدام ۸ مورد را فعال میکنند) است و از زمینه ۱۳۱K توکن پشتیبانی میکند (با استفاده از YaRN) و استاندارد جدیدی برای مدلهای متنباز تعیین میکند."
|
1861
|
+
},
|
1862
|
+
"qwen/qwen3-32b": {
|
1863
|
+
"description": "Qwen3-32B یک مدل زبان علّی با ۳۲.۸ میلیارد پارامتر در سری Qwen3 است که به طور خاص برای استدلال پیچیده و مکالمات کارآمد بهینهسازی شده است. این مدل از جابجایی بیوقفه بین حالت «تفکر» برای وظایف ریاضی، کدنویسی و استدلال منطقی و حالت «غیرتفکری» برای مکالمات سریع و عمومی پشتیبانی میکند. این مدل در پیروی از دستورات، استفاده از ابزارهای نمایندگی، نوشتن خلاق و انجام وظایف چند زبانه در بیش از ۱۰۰ زبان و گویش مختلف عملکرد قوی دارد. این مدل به طور بومی از ۳۲K توکن زمینه پشتیبانی میکند و میتواند با استفاده از گسترش مبتنی بر YaRN به ۱۳۱K توکن گسترش یابد."
|
1864
|
+
},
|
1865
|
+
"qwen/qwen3-32b:free": {
|
1866
|
+
"description": "Qwen3-32B یک مدل زبان علّی با ۳۲.۸ میلیارد پارامتر در سری Qwen3 است که به طور خاص برای استدلال پیچیده و مکالمات کارآمد بهینهسازی شده است. این مدل از جابجایی بیوقفه بین حالت «تفکر» برای وظایف ریاضی، کدنویسی و استدلال منطقی و حالت «غیرتفکری» برای مکالمات سریع و عمومی پشتیبانی میکند. این مدل در پیروی از دستورات، استفاده از ابزارهای نمایندگی، نوشتن خلاق و انجام وظایف چند زبانه در بیش از ۱۰۰ زبان و گویش مختلف عملکرد قوی دارد. این مدل به طور بومی از ۳۲K توکن زمینه پشتیبانی میکند و میتواند با استفاده از گسترش مبتنی بر YaRN به ۱۳۱K توکن گسترش یابد."
|
1867
|
+
},
|
1868
|
+
"qwen/qwen3-8b:free": {
|
1869
|
+
"description": "Qwen3-8B یک مدل زبان علّی با ۸.۲ میلیارد پارامتر در سری Qwen3 است که به طور خاص برای وظایف استدلال فشرده و مکالمات کارآمد طراحی شده است. این مدل از جابجایی بیوقفه بین حالت «تفکر» برای ریاضیات، کدنویسی و استدلال منطقی و حالت «غیرتفکری» برای مکالمات عمومی پشتیبانی میکند. این مدل به طور خاص برای پیروی از دستورات، ادغام نمایندگی، نوشتن خلاق و استفاده چند زبانه در بیش از ۱۰۰ زبان و گویش مختلف تنظیم شده است. این مدل به طور بومی از پنجره زمینه ۳۲K توکن پشتیبانی میکند و میتواند از طریق YaRN به ۱۳۱K توکن گسترش یابد."
|
1870
|
+
},
|
1844
1871
|
"qwen2": {
|
1845
1872
|
"description": "Qwen2 مدل زبان بزرگ نسل جدید علیبابا است که با عملکرد عالی از نیازهای متنوع کاربردی پشتیبانی میکند."
|
1846
1873
|
},
|
@@ -1925,6 +1952,30 @@
|
|
1925
1952
|
"qwen2:72b": {
|
1926
1953
|
"description": "Qwen2 مدل زبان بزرگ نسل جدید علیبابا است که با عملکرد عالی از نیازهای متنوع کاربردی پشتیبانی میکند."
|
1927
1954
|
},
|
1955
|
+
"qwen3-0.6b": {
|
1956
|
+
"description": "Qwen3 یک مدل جدید نسل جدید با تواناییهای به طور قابل توجهی بهبود یافته است که در استدلال، عمومی، نمایندگی و چند زبانه در چندین توانایی کلیدی به سطح پیشرفته صنعت دست یافته و از جابجایی حالت تفکر پشتیبانی میکند."
|
1957
|
+
},
|
1958
|
+
"qwen3-1.7b": {
|
1959
|
+
"description": "Qwen3 یک مدل جدید نسل جدید با تواناییهای به طور قابل توجهی بهبود یافته است که در استدلال، عمومی، نمایندگی و چند زبانه در چندین توانایی کلیدی به سطح پیشرفته صنعت دست یافته و از جابجایی حالت تفکر پشتیبانی میکند."
|
1960
|
+
},
|
1961
|
+
"qwen3-14b": {
|
1962
|
+
"description": "Qwen3 یک مدل جدید نسل جدید با تواناییهای به طور قابل توجهی بهبود یافته است که در استدلال، عمومی، نمایندگی و چند زبانه در چندین توانایی کلیدی به سطح پیشرفته صنعت دست یافته و از جابجایی حالت تفکر پشتیبانی میکند."
|
1963
|
+
},
|
1964
|
+
"qwen3-235b-a22b": {
|
1965
|
+
"description": "Qwen3 یک مدل جدید نسل جدید با تواناییهای به طور قابل توجهی بهبود یافته است که در استدلال، عمومی، نمایندگی و چند زبانه در چندین توانایی کلیدی به سطح پیشرفته صنعت دست یافته و از جابجایی حالت تفکر پشتیبانی میکند."
|
1966
|
+
},
|
1967
|
+
"qwen3-30b-a3b": {
|
1968
|
+
"description": "Qwen3 یک مدل جدید نسل جدید با تواناییهای به طور قابل توجهی بهبود یافته است که در استدلال، عمومی، نمایندگی و چند زبانه در چندین توانایی کلیدی به سطح پیشرفته صنعت دست یافته و از جابجایی حالت تفکر پشتیبانی میکند."
|
1969
|
+
},
|
1970
|
+
"qwen3-32b": {
|
1971
|
+
"description": "Qwen3 یک مدل جدید نسل جدید با تواناییهای به طور قابل توجهی بهبود یافته است که در استدلال، عمومی، نمایندگی و چند زبانه در چندین توانایی کلیدی به سطح پیشرفته صنعت دست یافته و از جابجایی حالت تفکر پشتیبانی میکند."
|
1972
|
+
},
|
1973
|
+
"qwen3-4b": {
|
1974
|
+
"description": "Qwen3 یک مدل جدید نسل جدید با تواناییهای به طور قابل توجهی بهبود یافته است که در استدلال، عمومی، نمایندگی و چند زبانه در چندین توانایی کلیدی به سطح پیشرفته صنعت دست یافته و از جابجایی حالت تفکر پشتیبانی میکند."
|
1975
|
+
},
|
1976
|
+
"qwen3-8b": {
|
1977
|
+
"description": "Qwen3 یک مدل جدید نسل جدید با تواناییهای به طور قابل توجهی بهبود یافته است که در استدلال، عمومی، نمایندگی و چند زبانه در چندین توانایی کلیدی به سطح پیشرفته صنعت دست یافته و از جابجایی حالت تفکر پشتیبانی میکند."
|
1978
|
+
},
|
1928
1979
|
"qwq": {
|
1929
1980
|
"description": "QwQ یک مدل تحقیقاتی تجربی است که بر بهبود توانایی استدلال AI تمرکز دارد."
|
1930
1981
|
},
|
@@ -2027,6 +2078,18 @@
|
|
2027
2078
|
"thudm/glm-4-9b-chat": {
|
2028
2079
|
"description": "نسخه متن باز جدیدترین نسل مدلهای پیشآموزش GLM-4 منتشر شده توسط Zhizhu AI."
|
2029
2080
|
},
|
2081
|
+
"thudm/glm-4-9b:free": {
|
2082
|
+
"description": "GLM-4-9B-0414 یک مدل زبان با ۹۰ میلیارد پارامتر در سری GLM-4 است که توسط THUDM توسعه یافته است. GLM-4-9B-0414 از همان استراتژیهای تقویت یادگیری و همراستایی که برای مدل بزرگتر ۳۲B خود استفاده میشود، استفاده میکند و نسبت به اندازه خود عملکرد بالایی را ارائه میدهد و برای استقرار در منابع محدود که هنوز به تواناییهای قوی در درک و تولید زبان نیاز دارند، مناسب است."
|
2083
|
+
},
|
2084
|
+
"thudm/glm-z1-9b:free": {
|
2085
|
+
"description": "GLM-Z1-9B-0414 یک مدل زبان با ۹B پارامتر در سری GLM-4 است که توسط THUDM توسعه یافته است. این مدل از تکنیکهایی که در ابتدا برای مدل بزرگتر GLM-Z1 استفاده شده بود، شامل تقویت یادگیری گسترشیافته، همراستایی رتبهبندی جفت و آموزش برای وظایف استدلال فشرده مانند ریاضیات، کدنویسی و منطق استفاده میکند. با وجود اندازه کوچکتر، این مدل در وظایف استدلال عمومی عملکرد قوی دارد و در سطح وزن خود از بسیاری از مدلهای متنباز برتر است."
|
2086
|
+
},
|
2087
|
+
"thudm/glm-z1-rumination-32b": {
|
2088
|
+
"description": "THUDM: GLM Z1 Rumination 32B یک مدل عمیق استدلال با ۳۲B پارامتر در سری GLM-4-Z1 است که برای وظایف پیچیده و باز که نیاز به تفکر طولانی دارند بهینهسازی شده است. این مدل بر اساس glm-4-32b-0414 ساخته شده و مراحل تقویت یادگیری اضافی و استراتژیهای همراستایی چند مرحلهای را اضافه کرده است و توانایی «تفکر» را که به شبیهسازی پردازش شناختی گسترش یافته طراحی شده است، معرفی میکند. این شامل استدلال تکراری، تحلیل چندپرش و جریانهای کاری تقویتشده با ابزارهایی مانند جستجو، بازیابی و ترکیب آگاهانه است.\n\nاین مدل در نوشتن تحقیقاتی، تحلیل مقایسهای و پرسش و پاسخ پیچیده عملکرد عالی دارد. این مدل از فراخوانی توابع برای جستجو و ناوبری (جستجو، کلیک، باز کردن، اتمام) پشتیبانی میکند و میتواند در لولههای نمایندگی استفاده شود. رفتار تفکری توسط کنترل چند دوری با پاداشهای مبتنی بر قوانین و مکانیزم تصمیمگیری تأخیری شکل میگیرد و به عنوان مرجع از چارچوبهای عمیق تحقیقاتی مانند انباشت همراستایی داخلی OpenAI استفاده میشود. این واریانت برای صحنههایی که نیاز به عمق به جای سرعت دارند مناسب است."
|
2089
|
+
},
|
2090
|
+
"tngtech/deepseek-r1t-chimera:free": {
|
2091
|
+
"description": "DeepSeek-R1T-Chimera با ترکیب DeepSeek-R1 و DeepSeek-V3 (۰۳۲۴) ایجاد شده است و توانایی استدلال R1 و بهبود کارایی توکن V3 را ترکیب میکند. این مدل بر اساس معماری DeepSeek-MoE Transformer ساخته شده و برای وظایف تولید متن عمومی بهینهسازی شده است.\n\nاین مدل وزنهای پیشآموزش دو مدل منبع را ترکیب میکند تا عملکرد استدلال، کارایی و پیروی از دستورات را متعادل کند. این مدل تحت مجوز MIT منتشر شده و برای استفادههای تحقیقاتی و تجاری طراحی شده است."
|
2092
|
+
},
|
2030
2093
|
"togethercomputer/StripedHyena-Nous-7B": {
|
2031
2094
|
"description": "StripedHyena Nous (7B) با استفاده از استراتژیها و معماری مدل کارآمد، توان محاسباتی بهبودیافتهای را ارائه میدهد."
|
2032
2095
|
},
|
@@ -88,7 +88,8 @@
|
|
88
88
|
"emptyModel": "Aucun modèle activé. Veuillez vous rendre dans les paramètres pour l'activer.",
|
89
89
|
"emptyProvider": "Aucun fournisseur activé, veuillez aller dans les paramètres pour l'activer",
|
90
90
|
"goToSettings": "Aller aux paramètres",
|
91
|
-
"provider": "Fournisseur"
|
91
|
+
"provider": "Fournisseur",
|
92
|
+
"title": "Modèle"
|
92
93
|
},
|
93
94
|
"OllamaSetupGuide": {
|
94
95
|
"action": {
|
@@ -1841,6 +1841,33 @@
|
|
1841
1841
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1842
1842
|
"description": "Modèle de code puissant de taille moyenne, prenant en charge une longueur de contexte de 32K, spécialisé dans la programmation multilingue."
|
1843
1843
|
},
|
1844
|
+
"qwen/qwen3-14b": {
|
1845
|
+
"description": "Qwen3-14B est un modèle de langage causal dense de 14 milliards de paramètres dans la série Qwen3, conçu pour un raisonnement complexe et des dialogues efficaces. Il permet un passage sans effort entre un mode de pensée pour des tâches telles que les mathématiques, la programmation et le raisonnement logique, et un mode non-pensant pour des dialogues généraux. Ce modèle a été affiné pour le suivi des instructions, l'utilisation d'outils d'agents, l'écriture créative et des tâches multilingues dans plus de 100 langues et dialectes. Il gère nativement un contexte de 32K tokens et peut être étendu à 131K tokens via une extension basée sur YaRN."
|
1846
|
+
},
|
1847
|
+
"qwen/qwen3-14b:free": {
|
1848
|
+
"description": "Qwen3-14B est un modèle de langage causal dense de 14 milliards de paramètres dans la série Qwen3, conçu pour un raisonnement complexe et des dialogues efficaces. Il permet un passage sans effort entre un mode de pensée pour des tâches telles que les mathématiques, la programmation et le raisonnement logique, et un mode non-pensant pour des dialogues généraux. Ce modèle a été affiné pour le suivi des instructions, l'utilisation d'outils d'agents, l'écriture créative et des tâches multilingues dans plus de 100 langues et dialectes. Il gère nativement un contexte de 32K tokens et peut être étendu à 131K tokens via une extension basée sur YaRN."
|
1849
|
+
},
|
1850
|
+
"qwen/qwen3-235b-a22b": {
|
1851
|
+
"description": "Qwen3-235B-A22B est un modèle de mélange d'experts (MoE) de 235 milliards de paramètres développé par Qwen, activant 22 milliards de paramètres à chaque passage avant. Il permet un passage sans effort entre un mode de pensée pour des tâches complexes de raisonnement, de mathématiques et de code, et un mode non-pensant pour une efficacité dans les dialogues généraux. Ce modèle démontre de solides capacités de raisonnement, un support multilingue (plus de 100 langues et dialectes), un suivi avancé des instructions et des capacités d'appel d'outils d'agents. Il gère nativement une fenêtre de contexte de 32K tokens et peut être étendu à 131K tokens via une extension basée sur YaRN."
|
1852
|
+
},
|
1853
|
+
"qwen/qwen3-235b-a22b:free": {
|
1854
|
+
"description": "Qwen3-235B-A22B est un modèle de mélange d'experts (MoE) de 235 milliards de paramètres développé par Qwen, activant 22 milliards de paramètres à chaque passage avant. Il permet un passage sans effort entre un mode de pensée pour des tâches complexes de raisonnement, de mathématiques et de code, et un mode non-pensant pour une efficacité dans les dialogues généraux. Ce modèle démontre de solides capacités de raisonnement, un support multilingue (plus de 100 langues et dialectes), un suivi avancé des instructions et des capacités d'appel d'outils d'agents. Il gère nativement une fenêtre de contexte de 32K tokens et peut être étendu à 131K tokens via une extension basée sur YaRN."
|
1855
|
+
},
|
1856
|
+
"qwen/qwen3-30b-a3b": {
|
1857
|
+
"description": "Qwen3 est la dernière génération de la série de modèles de langage Qwen, dotée d'une architecture dense et de mélange d'experts (MoE), offrant d'excellentes performances en matière de raisonnement, de support multilingue et de tâches avancées d'agent. Sa capacité unique à passer sans effort entre un mode de pensée pour le raisonnement complexe et un mode non-pensant pour des dialogues efficaces garantit des performances polyvalentes et de haute qualité.\n\nQwen3 surpasse de manière significative les modèles précédents tels que QwQ et Qwen2.5, offrant des capacités exceptionnelles en mathématiques, en codage, en raisonnement de bon sens, en écriture créative et en dialogue interactif. La variante Qwen3-30B-A3B contient 30,5 milliards de paramètres (3,3 milliards de paramètres activés), 48 couches, 128 experts (8 activés par tâche) et prend en charge un contexte allant jusqu'à 131K tokens (utilisant YaRN), établissant une nouvelle norme pour les modèles open source."
|
1858
|
+
},
|
1859
|
+
"qwen/qwen3-30b-a3b:free": {
|
1860
|
+
"description": "Qwen3 est la dernière génération de la série de modèles de langage Qwen, dotée d'une architecture dense et de mélange d'experts (MoE), offrant d'excellentes performances en matière de raisonnement, de support multilingue et de tâches avancées d'agent. Sa capacité unique à passer sans effort entre un mode de pensée pour le raisonnement complexe et un mode non-pensant pour des dialogues efficaces garantit des performances polyvalentes et de haute qualité.\n\nQwen3 surpasse de manière significative les modèles précédents tels que QwQ et Qwen2.5, offrant des capacités exceptionnelles en mathématiques, en codage, en raisonnement de bon sens, en écriture créative et en dialogue interactif. La variante Qwen3-30B-A3B contient 30,5 milliards de paramètres (3,3 milliards de paramètres activés), 48 couches, 128 experts (8 activés par tâche) et prend en charge un contexte allant jusqu'à 131K tokens (utilisant YaRN), établissant une nouvelle norme pour les modèles open source."
|
1861
|
+
},
|
1862
|
+
"qwen/qwen3-32b": {
|
1863
|
+
"description": "Qwen3-32B est un modèle de langage causal dense de 32 milliards de paramètres dans la série Qwen3, optimisé pour un raisonnement complexe et des dialogues efficaces. Il permet un passage sans effort entre un mode de pensée pour des tâches telles que les mathématiques, le codage et le raisonnement logique, et un mode non-pensant pour des dialogues plus rapides et généraux. Ce modèle montre de solides performances dans le suivi des instructions, l'utilisation d'outils d'agents, l'écriture créative et des tâches multilingues dans plus de 100 langues et dialectes. Il gère nativement un contexte de 32K tokens et peut être étendu à 131K tokens via une extension basée sur YaRN."
|
1864
|
+
},
|
1865
|
+
"qwen/qwen3-32b:free": {
|
1866
|
+
"description": "Qwen3-32B est un modèle de langage causal dense de 32 milliards de paramètres dans la série Qwen3, optimisé pour un raisonnement complexe et des dialogues efficaces. Il permet un passage sans effort entre un mode de pensée pour des tâches telles que les mathématiques, le codage et le raisonnement logique, et un mode non-pensant pour des dialogues plus rapides et généraux. Ce modèle montre de solides performances dans le suivi des instructions, l'utilisation d'outils d'agents, l'écriture créative et des tâches multilingues dans plus de 100 langues et dialectes. Il gère nativement un contexte de 32K tokens et peut être étendu à 131K tokens via une extension basée sur YaRN."
|
1867
|
+
},
|
1868
|
+
"qwen/qwen3-8b:free": {
|
1869
|
+
"description": "Qwen3-8B est un modèle de langage causal dense de 8 milliards de paramètres dans la série Qwen3, conçu pour des tâches intensives en raisonnement et des dialogues efficaces. Il permet un passage sans effort entre un mode de pensée pour les mathématiques, le codage et le raisonnement logique, et un mode non-pensant pour des dialogues généraux. Ce modèle a été affiné pour le suivi des instructions, l'intégration d'agents, l'écriture créative et l'utilisation multilingue dans plus de 100 langues et dialectes. Il prend en charge nativement une fenêtre de contexte de 32K tokens et peut être étendu à 131K tokens via YaRN."
|
1870
|
+
},
|
1844
1871
|
"qwen2": {
|
1845
1872
|
"description": "Qwen2 est le nouveau modèle de langage à grande échelle d'Alibaba, offrant d'excellentes performances pour des besoins d'application diversifiés."
|
1846
1873
|
},
|
@@ -1925,6 +1952,30 @@
|
|
1925
1952
|
"qwen2:72b": {
|
1926
1953
|
"description": "Qwen2 est le nouveau modèle de langage à grande échelle d'Alibaba, offrant d'excellentes performances pour des besoins d'application diversifiés."
|
1927
1954
|
},
|
1955
|
+
"qwen3-0.6b": {
|
1956
|
+
"description": "Qwen3 est un modèle de nouvelle génération avec des capacités considérablement améliorées, atteignant des niveaux de pointe dans plusieurs compétences clés telles que le raisonnement, l'universalité, l'agent et le multilingue, tout en prenant en charge le changement de mode de pensée."
|
1957
|
+
},
|
1958
|
+
"qwen3-1.7b": {
|
1959
|
+
"description": "Qwen3 est un modèle de nouvelle génération avec des capacités considérablement améliorées, atteignant des niveaux de pointe dans plusieurs compétences clés telles que le raisonnement, l'universalité, l'agent et le multilingue, tout en prenant en charge le changement de mode de pensée."
|
1960
|
+
},
|
1961
|
+
"qwen3-14b": {
|
1962
|
+
"description": "Qwen3 est un modèle de nouvelle génération avec des capacités considérablement améliorées, atteignant des niveaux de pointe dans plusieurs compétences clés telles que le raisonnement, l'universalité, l'agent et le multilingue, tout en prenant en charge le changement de mode de pensée."
|
1963
|
+
},
|
1964
|
+
"qwen3-235b-a22b": {
|
1965
|
+
"description": "Qwen3 est un modèle de nouvelle génération avec des capacités considérablement améliorées, atteignant des niveaux de pointe dans plusieurs compétences clés telles que le raisonnement, l'universalité, l'agent et le multilingue, tout en prenant en charge le changement de mode de pensée."
|
1966
|
+
},
|
1967
|
+
"qwen3-30b-a3b": {
|
1968
|
+
"description": "Qwen3 est un modèle de nouvelle génération avec des capacités considérablement améliorées, atteignant des niveaux de pointe dans plusieurs compétences clés telles que le raisonnement, l'universalité, l'agent et le multilingue, tout en prenant en charge le changement de mode de pensée."
|
1969
|
+
},
|
1970
|
+
"qwen3-32b": {
|
1971
|
+
"description": "Qwen3 est un modèle de nouvelle génération avec des capacités considérablement améliorées, atteignant des niveaux de pointe dans plusieurs compétences clés telles que le raisonnement, l'universalité, l'agent et le multilingue, tout en prenant en charge le changement de mode de pensée."
|
1972
|
+
},
|
1973
|
+
"qwen3-4b": {
|
1974
|
+
"description": "Qwen3 est un modèle de nouvelle génération avec des capacités considérablement améliorées, atteignant des niveaux de pointe dans plusieurs compétences clés telles que le raisonnement, l'universalité, l'agent et le multilingue, tout en prenant en charge le changement de mode de pensée."
|
1975
|
+
},
|
1976
|
+
"qwen3-8b": {
|
1977
|
+
"description": "Qwen3 est un modèle de nouvelle génération avec des capacités considérablement améliorées, atteignant des niveaux de pointe dans plusieurs compétences clés telles que le raisonnement, l'universalité, l'agent et le multilingue, tout en prenant en charge le changement de mode de pensée."
|
1978
|
+
},
|
1928
1979
|
"qwq": {
|
1929
1980
|
"description": "QwQ est un modèle de recherche expérimental, axé sur l'amélioration des capacités de raisonnement de l'IA."
|
1930
1981
|
},
|
@@ -2027,6 +2078,18 @@
|
|
2027
2078
|
"thudm/glm-4-9b-chat": {
|
2028
2079
|
"description": "Version open source de la dernière génération de modèles pré-entraînés de la série GLM-4 publiée par Zhizhu AI."
|
2029
2080
|
},
|
2081
|
+
"thudm/glm-4-9b:free": {
|
2082
|
+
"description": "GLM-4-9B-0414 est un modèle de langage de 9 milliards de paramètres dans la série GLM-4 développé par THUDM. GLM-4-9B-0414 utilise les mêmes stratégies d'apprentissage par renforcement et d'alignement que son modèle correspondant de 32B, réalisant des performances élevées par rapport à sa taille, ce qui le rend adapté à des déploiements à ressources limitées nécessitant encore de solides capacités de compréhension et de génération de langage."
|
2083
|
+
},
|
2084
|
+
"thudm/glm-z1-9b:free": {
|
2085
|
+
"description": "GLM-Z1-9B-0414 est un modèle de langage de 9 milliards de paramètres dans la série GLM-4 développé par THUDM. Il utilise des techniques initialement appliquées à des modèles GLM-Z1 plus grands, y compris un apprentissage par renforcement étendu, un alignement par classement par paires et une formation pour des tâches intensives en raisonnement telles que les mathématiques, le codage et la logique. Bien que de taille plus petite, il montre de solides performances sur des tâches de raisonnement général et surpasse de nombreux modèles open source à son niveau de poids."
|
2086
|
+
},
|
2087
|
+
"thudm/glm-z1-rumination-32b": {
|
2088
|
+
"description": "THUDM : GLM Z1 Rumination 32B est un modèle de raisonnement profond de 32 milliards de paramètres dans la série GLM-4-Z1, optimisé pour des tâches complexes et ouvertes nécessitant une réflexion prolongée. Il est construit sur la base de glm-4-32b-0414, ajoutant une phase d'apprentissage par renforcement supplémentaire et une stratégie d'alignement multi-étapes, introduisant une capacité de \"réflexion\" destinée à simuler un traitement cognitif étendu. Cela inclut un raisonnement itératif, une analyse multi-sauts et des flux de travail améliorés par des outils, tels que la recherche, la récupération et la synthèse consciente des citations.\n\nCe modèle excelle dans l'écriture de recherche, l'analyse comparative et les questions complexes. Il prend en charge les appels de fonction pour les primitives de recherche et de navigation (`search`, `click`, `open`, `finish`), permettant son utilisation dans des pipelines d'agents. Le comportement de réflexion est façonné par un contrôle cyclique multi-tours avec des récompenses basées sur des règles et un mécanisme de décision différée, et est étalonné sur des cadres de recherche approfondie tels que la pile d'alignement interne d'OpenAI. Cette variante est adaptée aux scénarios nécessitant de la profondeur plutôt que de la vitesse."
|
2089
|
+
},
|
2090
|
+
"tngtech/deepseek-r1t-chimera:free": {
|
2091
|
+
"description": "DeepSeek-R1T-Chimera est créé en combinant DeepSeek-R1 et DeepSeek-V3 (0324), alliant la capacité de raisonnement de R1 et les améliorations d'efficacité des tokens de V3. Il est basé sur l'architecture DeepSeek-MoE Transformer et optimisé pour des tâches générales de génération de texte.\n\nCe modèle fusionne les poids pré-entraînés des deux modèles sources pour équilibrer les performances en raisonnement, en efficacité et en suivi des instructions. Il est publié sous la licence MIT, destiné à un usage de recherche et commercial."
|
2092
|
+
},
|
2030
2093
|
"togethercomputer/StripedHyena-Nous-7B": {
|
2031
2094
|
"description": "StripedHyena Nous (7B) offre une capacité de calcul améliorée grâce à des stratégies et une architecture de modèle efficaces."
|
2032
2095
|
},
|
@@ -88,7 +88,8 @@
|
|
88
88
|
"emptyModel": "Nessun modello attivo. Vai alle impostazioni per attivarne uno.",
|
89
89
|
"emptyProvider": "Nessun fornitore attivo, vai alle impostazioni per attivarlo",
|
90
90
|
"goToSettings": "Vai alle impostazioni",
|
91
|
-
"provider": "Provider"
|
91
|
+
"provider": "Provider",
|
92
|
+
"title": "Modello"
|
92
93
|
},
|
93
94
|
"OllamaSetupGuide": {
|
94
95
|
"action": {
|
@@ -1841,6 +1841,33 @@
|
|
1841
1841
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1842
1842
|
"description": "Potente modello di codice di medie dimensioni, supporta una lunghezza di contesto di 32K, specializzato in programmazione multilingue."
|
1843
1843
|
},
|
1844
|
+
"qwen/qwen3-14b": {
|
1845
|
+
"description": "Qwen3-14B è un modello linguistico causale denso con 14,8 miliardi di parametri della serie Qwen3, progettato per ragionamenti complessi e dialoghi efficienti. Supporta un passaggio senza soluzione di continuità tra modalità di 'pensiero' per compiti di matematica, programmazione e ragionamento logico e modalità 'non di pensiero' per dialoghi generali. Questo modello è stato ottimizzato per seguire istruzioni, utilizzo di strumenti per agenti, scrittura creativa e compiti multilingue in oltre 100 lingue e dialetti. Gestisce nativamente un contesto di 32K token e può essere esteso a 131K token utilizzando estensioni basate su YaRN."
|
1846
|
+
},
|
1847
|
+
"qwen/qwen3-14b:free": {
|
1848
|
+
"description": "Qwen3-14B è un modello linguistico causale denso con 14,8 miliardi di parametri della serie Qwen3, progettato per ragionamenti complessi e dialoghi efficienti. Supporta un passaggio senza soluzione di continuità tra modalità di 'pensiero' per compiti di matematica, programmazione e ragionamento logico e modalità 'non di pensiero' per dialoghi generali. Questo modello è stato ottimizzato per seguire istruzioni, utilizzo di strumenti per agenti, scrittura creativa e compiti multilingue in oltre 100 lingue e dialetti. Gestisce nativamente un contesto di 32K token e può essere esteso a 131K token utilizzando estensioni basate su YaRN."
|
1849
|
+
},
|
1850
|
+
"qwen/qwen3-235b-a22b": {
|
1851
|
+
"description": "Qwen3-235B-A22B è un modello esperto a miscelazione (MoE) con 235 miliardi di parametri sviluppato da Qwen, attivando 22 miliardi di parametri ad ogni passaggio in avanti. Supporta un passaggio senza soluzione di continuità tra modalità di 'pensiero' per ragionamenti complessi, matematica e compiti di codifica e modalità 'non di pensiero' per dialoghi generali. Questo modello dimostra forti capacità di ragionamento, supporto multilingue (in oltre 100 lingue e dialetti), avanzate capacità di seguire istruzioni e chiamate a strumenti per agenti. Gestisce nativamente una finestra di contesto di 32K token e può essere esteso a 131K token utilizzando estensioni basate su YaRN."
|
1852
|
+
},
|
1853
|
+
"qwen/qwen3-235b-a22b:free": {
|
1854
|
+
"description": "Qwen3-235B-A22B è un modello esperto a miscelazione (MoE) con 235 miliardi di parametri sviluppato da Qwen, attivando 22 miliardi di parametri ad ogni passaggio in avanti. Supporta un passaggio senza soluzione di continuità tra modalità di 'pensiero' per ragionamenti complessi, matematica e compiti di codifica e modalità 'non di pensiero' per dialoghi generali. Questo modello dimostra forti capacità di ragionamento, supporto multilingue (in oltre 100 lingue e dialetti), avanzate capacità di seguire istruzioni e chiamate a strumenti per agenti. Gestisce nativamente una finestra di contesto di 32K token e può essere esteso a 131K token utilizzando estensioni basate su YaRN."
|
1855
|
+
},
|
1856
|
+
"qwen/qwen3-30b-a3b": {
|
1857
|
+
"description": "Qwen3 è l'ultima generazione della serie di modelli linguistici Qwen, con un'architettura a miscelazione esperta (MoE) densa, che eccelle in inferenza, supporto multilingue e compiti avanzati. La sua capacità unica di passare senza soluzione di continuità tra modalità di pensiero per il ragionamento complesso e modalità non di pensiero per dialoghi efficienti garantisce prestazioni multifunzionali e di alta qualità.\n\nQwen3 supera significativamente i modelli precedenti come QwQ e Qwen2.5, offrendo prestazioni eccezionali in matematica, codifica, ragionamento di buon senso, scrittura creativa e dialoghi interattivi. La variante Qwen3-30B-A3B contiene 30,5 miliardi di parametri (3,3 miliardi di parametri attivati), 48 strati, 128 esperti (8 attivati per compito) e supporta un contesto di fino a 131K token (utilizzando YaRN), stabilendo un nuovo standard per i modelli open source."
|
1858
|
+
},
|
1859
|
+
"qwen/qwen3-30b-a3b:free": {
|
1860
|
+
"description": "Qwen3 è l'ultima generazione della serie di modelli linguistici Qwen, con un'architettura a miscelazione esperta (MoE) densa, che eccelle in inferenza, supporto multilingue e compiti avanzati. La sua capacità unica di passare senza soluzione di continuità tra modalità di pensiero per il ragionamento complesso e modalità non di pensiero per dialoghi efficienti garantisce prestazioni multifunzionali e di alta qualità.\n\nQwen3 supera significativamente i modelli precedenti come QwQ e Qwen2.5, offrendo prestazioni eccezionali in matematica, codifica, ragionamento di buon senso, scrittura creativa e dialoghi interattivi. La variante Qwen3-30B-A3B contiene 30,5 miliardi di parametri (3,3 miliardi di parametri attivati), 48 strati, 128 esperti (8 attivati per compito) e supporta un contesto di fino a 131K token (utilizzando YaRN), stabilendo un nuovo standard per i modelli open source."
|
1861
|
+
},
|
1862
|
+
"qwen/qwen3-32b": {
|
1863
|
+
"description": "Qwen3-32B è un modello linguistico causale denso con 32,8 miliardi di parametri della serie Qwen3, ottimizzato per ragionamenti complessi e dialoghi efficienti. Supporta un passaggio senza soluzione di continuità tra modalità di 'pensiero' per compiti di matematica, codifica e ragionamento logico e modalità 'non di pensiero' per dialoghi più rapidi e generali. Questo modello mostra prestazioni robuste in seguire istruzioni, utilizzo di strumenti per agenti, scrittura creativa e compiti multilingue in oltre 100 lingue e dialetti. Gestisce nativamente un contesto di 32K token e può essere esteso a 131K token utilizzando estensioni basate su YaRN."
|
1864
|
+
},
|
1865
|
+
"qwen/qwen3-32b:free": {
|
1866
|
+
"description": "Qwen3-32B è un modello linguistico causale denso con 32,8 miliardi di parametri della serie Qwen3, ottimizzato per ragionamenti complessi e dialoghi efficienti. Supporta un passaggio senza soluzione di continuità tra modalità di 'pensiero' per compiti di matematica, codifica e ragionamento logico e modalità 'non di pensiero' per dialoghi più rapidi e generali. Questo modello mostra prestazioni robuste in seguire istruzioni, utilizzo di strumenti per agenti, scrittura creativa e compiti multilingue in oltre 100 lingue e dialetti. Gestisce nativamente un contesto di 32K token e può essere esteso a 131K token utilizzando estensioni basate su YaRN."
|
1867
|
+
},
|
1868
|
+
"qwen/qwen3-8b:free": {
|
1869
|
+
"description": "Qwen3-8B è un modello linguistico causale denso con 8,2 miliardi di parametri della serie Qwen3, progettato per compiti intensivi di inferenza e dialoghi efficienti. Supporta un passaggio senza soluzione di continuità tra modalità di 'pensiero' per matematica, codifica e ragionamento logico e modalità 'non di pensiero' per dialoghi generali. Questo modello è stato ottimizzato per seguire istruzioni, integrazione di agenti, scrittura creativa e utilizzo multilingue in oltre 100 lingue e dialetti. Supporta nativamente una finestra di contesto di 32K token e può essere esteso a 131K token tramite YaRN."
|
1870
|
+
},
|
1844
1871
|
"qwen2": {
|
1845
1872
|
"description": "Qwen2 è la nuova generazione di modelli di linguaggio su larga scala di Alibaba, supporta prestazioni eccellenti per esigenze applicative diversificate."
|
1846
1873
|
},
|
@@ -1925,6 +1952,30 @@
|
|
1925
1952
|
"qwen2:72b": {
|
1926
1953
|
"description": "Qwen2 è la nuova generazione di modelli di linguaggio su larga scala di Alibaba, supporta prestazioni eccellenti per esigenze applicative diversificate."
|
1927
1954
|
},
|
1955
|
+
"qwen3-0.6b": {
|
1956
|
+
"description": "Qwen3 è un modello di nuova generazione con capacità notevolmente migliorate, raggiungendo livelli leader del settore in inferenza, generazione generale, agenti e multilinguismo, e supporta il passaggio tra modalità di pensiero."
|
1957
|
+
},
|
1958
|
+
"qwen3-1.7b": {
|
1959
|
+
"description": "Qwen3 è un modello di nuova generazione con capacità notevolmente migliorate, raggiungendo livelli leader del settore in inferenza, generazione generale, agenti e multilinguismo, e supporta il passaggio tra modalità di pensiero."
|
1960
|
+
},
|
1961
|
+
"qwen3-14b": {
|
1962
|
+
"description": "Qwen3 è un modello di nuova generazione con capacità notevolmente migliorate, raggiungendo livelli leader del settore in inferenza, generazione generale, agenti e multilinguismo, e supporta il passaggio tra modalità di pensiero."
|
1963
|
+
},
|
1964
|
+
"qwen3-235b-a22b": {
|
1965
|
+
"description": "Qwen3 è un modello di nuova generazione con capacità notevolmente migliorate, raggiungendo livelli leader del settore in inferenza, generazione generale, agenti e multilinguismo, e supporta il passaggio tra modalità di pensiero."
|
1966
|
+
},
|
1967
|
+
"qwen3-30b-a3b": {
|
1968
|
+
"description": "Qwen3 è un modello di nuova generazione con capacità notevolmente migliorate, raggiungendo livelli leader del settore in inferenza, generazione generale, agenti e multilinguismo, e supporta il passaggio tra modalità di pensiero."
|
1969
|
+
},
|
1970
|
+
"qwen3-32b": {
|
1971
|
+
"description": "Qwen3 è un modello di nuova generazione con capacità notevolmente migliorate, raggiungendo livelli leader del settore in inferenza, generazione generale, agenti e multilinguismo, e supporta il passaggio tra modalità di pensiero."
|
1972
|
+
},
|
1973
|
+
"qwen3-4b": {
|
1974
|
+
"description": "Qwen3 è un modello di nuova generazione con capacità notevolmente migliorate, raggiungendo livelli leader del settore in inferenza, generazione generale, agenti e multilinguismo, e supporta il passaggio tra modalità di pensiero."
|
1975
|
+
},
|
1976
|
+
"qwen3-8b": {
|
1977
|
+
"description": "Qwen3 è un modello di nuova generazione con capacità notevolmente migliorate, raggiungendo livelli leader del settore in inferenza, generazione generale, agenti e multilinguismo, e supporta il passaggio tra modalità di pensiero."
|
1978
|
+
},
|
1928
1979
|
"qwq": {
|
1929
1980
|
"description": "QwQ è un modello di ricerca sperimentale, focalizzato sul miglioramento delle capacità di ragionamento dell'IA."
|
1930
1981
|
},
|
@@ -2027,6 +2078,18 @@
|
|
2027
2078
|
"thudm/glm-4-9b-chat": {
|
2028
2079
|
"description": "La versione open source dell'ultima generazione del modello pre-addestrato GLM-4 rilasciato da Zhizhu AI."
|
2029
2080
|
},
|
2081
|
+
"thudm/glm-4-9b:free": {
|
2082
|
+
"description": "GLM-4-9B-0414 è un modello linguistico con 9 miliardi di parametri della serie GLM-4 sviluppato da THUDM. GLM-4-9B-0414 utilizza le stesse strategie di apprendimento rinforzato e allineamento del suo modello corrispondente più grande da 32B, raggiungendo alte prestazioni rispetto alle sue dimensioni, rendendolo adatto per implementazioni a risorse limitate che richiedono ancora forti capacità di comprensione e generazione del linguaggio."
|
2083
|
+
},
|
2084
|
+
"thudm/glm-z1-9b:free": {
|
2085
|
+
"description": "GLM-Z1-9B-0414 è un modello linguistico con 9 miliardi di parametri della serie GLM-4 sviluppato da THUDM. Utilizza tecniche inizialmente applicate a modelli GLM-Z1 più grandi, inclusi apprendimento rinforzato esteso, allineamento di ranking a coppie e addestramento per compiti di ragionamento intensivo come matematica, codifica e logica. Nonostante le sue dimensioni più piccole, mostra prestazioni robuste in compiti di ragionamento generali e supera molti modelli open source nel suo livello di pesi."
|
2086
|
+
},
|
2087
|
+
"thudm/glm-z1-rumination-32b": {
|
2088
|
+
"description": "THUDM: GLM Z1 Rumination 32B è un modello di inferenza profonda con 32 miliardi di parametri della serie GLM-4-Z1, ottimizzato per compiti complessi e aperti che richiedono un lungo periodo di riflessione. Si basa su glm-4-32b-0414, aggiungendo ulteriori fasi di apprendimento rinforzato e strategie di allineamento multi-fase, introducendo la capacità di 'riflessione' progettata per simulare un'elaborazione cognitiva estesa. Questo include ragionamento iterativo, analisi multi-salto e flussi di lavoro potenziati da strumenti, come ricerca, recupero e sintesi consapevole delle citazioni.\n\nQuesto modello eccelle nella scrittura di ricerca, analisi comparativa e domande complesse. Supporta chiamate di funzione per primari di ricerca e navigazione (`search`, `click`, `open`, `finish`), rendendolo utilizzabile in pipeline basate su agenti. Il comportamento di riflessione è modellato da un controllo ciclico multi-turno con premi basati su regole e meccanismi di decisione ritardata, e viene confrontato con framework di ricerca approfondita come l'allineamento interno di OpenAI. Questa variante è adatta per scenari che richiedono profondità piuttosto che velocità."
|
2089
|
+
},
|
2090
|
+
"tngtech/deepseek-r1t-chimera:free": {
|
2091
|
+
"description": "DeepSeek-R1T-Chimera è stato creato combinando DeepSeek-R1 e DeepSeek-V3 (0324), unendo le capacità di inferenza di R1 e i miglioramenti di efficienza dei token di V3. Si basa sull'architettura DeepSeek-MoE Transformer ed è ottimizzato per compiti generali di generazione di testo.\n\nQuesto modello combina i pesi pre-addestrati di due modelli sorgente per bilanciare le prestazioni in inferenza, efficienza e compiti di seguire istruzioni. È rilasciato sotto la licenza MIT, destinato a scopi di ricerca e commerciali."
|
2092
|
+
},
|
2030
2093
|
"togethercomputer/StripedHyena-Nous-7B": {
|
2031
2094
|
"description": "StripedHyena Nous (7B) offre capacità di calcolo potenziate attraverso strategie e architetture di modelli efficienti."
|
2032
2095
|
},
|
@@ -1841,6 +1841,33 @@
|
|
1841
1841
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1842
1842
|
"description": "強力な中型コードモデルで、32Kのコンテキスト長をサポートし、多言語プログラミングに優れています。"
|
1843
1843
|
},
|
1844
|
+
"qwen/qwen3-14b": {
|
1845
|
+
"description": "Qwen3-14BはQwen3シリーズの中で、148億パラメータの密な因果言語モデルであり、複雑な推論と効率的な対話のために設計されています。数学、プログラミング、論理推論などのタスクのための「思考」モードと一般的な対話のための「非思考」モードの間をシームレスに切り替えることができます。このモデルは微調整されており、指示の遵守、エージェントツールの使用、創造的な執筆、100以上の言語と方言にわたる多言語タスクに対応しています。32Kトークンのコンテキストをネイティブに処理し、YaRNベースの拡張を使用して131Kトークンに拡張可能です。"
|
1846
|
+
},
|
1847
|
+
"qwen/qwen3-14b:free": {
|
1848
|
+
"description": "Qwen3-14BはQwen3シリーズの中で、148億パラメータの密な因果言語モデルであり、複雑な推論と効率的な対話のために設計されています。数学、プログラミング、論理推論などのタスクのための「思考」モードと一般的な対話のための「非思考」モードの間をシームレスに切り替えることができます。このモデルは微調整されており、指示の遵守、エージェントツールの使用、創造的な執筆、100以上の言語と方言にわたる多言語タスクに対応しています。32Kトークンのコンテキストをネイティブに処理し、YaRNベースの拡張を使用して131Kトークンに拡張可能です。"
|
1849
|
+
},
|
1850
|
+
"qwen/qwen3-235b-a22b": {
|
1851
|
+
"description": "Qwen3-235B-A22BはQwenによって開発された235Bパラメータの専門家混合(MoE)モデルで、各前方伝播で22Bパラメータをアクティブ化します。複雑な推論、数学、コードタスクのための「思考」モードと、一般的な対話の効率のための「非思考」モードの間をシームレスに切り替えることができます。このモデルは強力な推論能力、100以上の言語と方言にわたる多言語サポート、高度な指示遵守、エージェントツール呼び出し能力を示しています。32Kトークンのコンテキストウィンドウをネイティブに処理し、YaRNベースの拡張を使用して131Kトークンに拡張可能です。"
|
1852
|
+
},
|
1853
|
+
"qwen/qwen3-235b-a22b:free": {
|
1854
|
+
"description": "Qwen3-235B-A22BはQwenによって開発された235Bパラメータの専門家混合(MoE)モデルで、各前方伝播で22Bパラメータをアクティブ化します。複雑な推論、数学、コードタスクのための「思考」モードと、一般的な対話の効率のための「非思考」モードの間をシームレスに切り替えることができます。このモデルは強力な推論能力、100以上の言語と方言にわたる多言語サポート、高度な指示遵守、エージェントツール呼び出し能力を示しています。32Kトークンのコンテキストウィンドウをネイティブに処理し、YaRNベースの拡張を使用して131Kトークンに拡張可能です。"
|
1855
|
+
},
|
1856
|
+
"qwen/qwen3-30b-a3b": {
|
1857
|
+
"description": "Qwen3はQwenの大規模言語モデルシリーズの最新世代で、密な専門家混合(MoE)アーキテクチャを持ち、推論、多言語サポート、高度なエージェントタスクにおいて優れた性能を発揮します。複雑な推論の思考モードと効率的な対話の非思考モードの間をシームレスに切り替える独自の能力により、多機能で高品質なパフォーマンスが保証されています。\n\nQwen3は、QwQやQwen2.5などの以前のモデルに対して大幅に優れており、卓越した数学、コーディング、常識推論、創造的な執筆、インタラクティブな対話能力を提供します。Qwen3-30B-A3Bバリアントは、305億のパラメータ(33億のアクティブパラメータ)、48層、128の専門家(各タスクで8つをアクティブ化)を含み、最大131Kトークンのコンテキストをサポート(YaRNを使用)し、オープンソースモデルの新たな基準を確立しています。"
|
1858
|
+
},
|
1859
|
+
"qwen/qwen3-30b-a3b:free": {
|
1860
|
+
"description": "Qwen3はQwenの大規模言語モデルシリーズの最新世代で、密な専門家混合(MoE)アーキテクチャを持ち、推論、多言語サポート、高度なエージェントタスクにおいて優れた性能を発揮します。複雑な推論の思考モードと効率的な対話の非思考モードの間をシームレスに切り替える独自の能力により、多機能で高品質なパフォーマンスが保証されています。\n\nQwen3は、QwQやQwen2.5などの以前のモデルに対して大幅に優れており、卓越した数学、コーディング、常識推論、創造的な執筆、インタラクティブな対話能力を提供します。Qwen3-30B-A3Bバリアントは、305億のパラメータ(33億のアクティブパラメータ)、48層、128の専門家(各タスクで8つをアクティブ化)を含み、最大131Kトークンのコンテキストをサポート(YaRNを使用)し、オープンソースモデルの新たな基準を確立しています。"
|
1861
|
+
},
|
1862
|
+
"qwen/qwen3-32b": {
|
1863
|
+
"description": "Qwen3-32BはQwen3シリーズの中で、328億パラメータの密な因果言語モデルであり、複雑な推論と効率的な対話のために最適化されています。数学、コーディング、論理推論などのタスクのための「思考」モードと、より迅速で一般的な対話のための「非思考」モードの間をシームレスに切り替えることができます。このモデルは指示の遵守、エージェントツールの使用、創造的な執筆、100以上の言語と方言にわたる多言語タスクにおいて強力な性能を発揮します。32Kトークンのコンテキストをネイティブに処理し、YaRNベースの拡張を使用して131Kトークンに拡張可能です。"
|
1864
|
+
},
|
1865
|
+
"qwen/qwen3-32b:free": {
|
1866
|
+
"description": "Qwen3-32BはQwen3シリーズの中で、328億パラメータの密な因果言語モデルであり、複雑な推論と効率的な対話のために最適化されています。数学、コーディング、論理推論などのタスクのための「思考」モードと、より迅速で一般的な対話のための「非思考」モードの間をシームレスに切り替えることができます。このモデルは指示の遵守、エージェントツールの使用、創造的な執筆、100以上の言語と方言にわたる多言語タスクにおいて強力な性能を発揮します。32Kトークンのコンテキストをネイティブに処理し、YaRNベースの拡張を使用して131Kトークンに拡張可能です。"
|
1867
|
+
},
|
1868
|
+
"qwen/qwen3-8b:free": {
|
1869
|
+
"description": "Qwen3-8BはQwen3シリーズの中で、82億パラメータの密な因果言語モデルであり、推論集約型タスクと効率的な対話のために設計されています。数学、コーディング、論理推論のための「思考」モードと一般的な対話のための「非思考」モードの間をシームレスに切り替えることができます。このモデルは微調整されており、指示の遵守、エージェント統合、創造的な執筆、100以上の言語と方言にわたる多言語使用に対応しています。32Kトークンのコンテキストウィンドウをネイティブにサポートし、YaRNを使用して131Kトークンに拡張可能です。"
|
1870
|
+
},
|
1844
1871
|
"qwen2": {
|
1845
1872
|
"description": "Qwen2は、Alibabaの新世代大規模言語モデルであり、優れた性能で多様なアプリケーションニーズをサポートします。"
|
1846
1873
|
},
|
@@ -1925,6 +1952,30 @@
|
|
1925
1952
|
"qwen2:72b": {
|
1926
1953
|
"description": "Qwen2は、Alibabaの新世代大規模言語モデルであり、優れた性能で多様なアプリケーションニーズをサポートします。"
|
1927
1954
|
},
|
1955
|
+
"qwen3-0.6b": {
|
1956
|
+
"description": "Qwen3は能力が大幅に向上した新世代の通義千問大モデルで、推論、一般、エージェント、多言語などの複数のコア能力において業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
|
1957
|
+
},
|
1958
|
+
"qwen3-1.7b": {
|
1959
|
+
"description": "Qwen3は能力が大幅に向上した新世代の通義千問大モデルで、推論、一般、エージェント、多言語などの複数のコア能力において業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
|
1960
|
+
},
|
1961
|
+
"qwen3-14b": {
|
1962
|
+
"description": "Qwen3は能力が大幅に向上した新世代の通義千問大モデルで、推論、一般、エージェント、多言語などの複数のコア能力において業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
|
1963
|
+
},
|
1964
|
+
"qwen3-235b-a22b": {
|
1965
|
+
"description": "Qwen3は能力が大幅に向上した新世代の通義千問大モデルで、推論、一般、エージェント、多言語などの複数のコア能力において業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
|
1966
|
+
},
|
1967
|
+
"qwen3-30b-a3b": {
|
1968
|
+
"description": "Qwen3は能力が大幅に向上した新世代の通義千問大モデルで、推論、一般、エージェント、多言語などの複数のコア能力において業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
|
1969
|
+
},
|
1970
|
+
"qwen3-32b": {
|
1971
|
+
"description": "Qwen3は能力が大幅に向上した新世代の通義千問大モデルで、推論、一般、エージェント、多言語などの複数のコア能力において業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
|
1972
|
+
},
|
1973
|
+
"qwen3-4b": {
|
1974
|
+
"description": "Qwen3は能力が大幅に向上した新世代の通義千問大モデルで、推論、一般、エージェント、多言語などの複数のコア能力において業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
|
1975
|
+
},
|
1976
|
+
"qwen3-8b": {
|
1977
|
+
"description": "Qwen3は能力が大幅に向上した新世代の通義千問大モデルで、推論、一般、エージェント、多言語などの複数のコア能力において業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
|
1978
|
+
},
|
1928
1979
|
"qwq": {
|
1929
1980
|
"description": "QwQはAIの推論能力を向上させることに特化した実験的研究モデルです。"
|
1930
1981
|
},
|
@@ -2027,6 +2078,18 @@
|
|
2027
2078
|
"thudm/glm-4-9b-chat": {
|
2028
2079
|
"description": "智谱AIが発表したGLM-4シリーズの最新世代の事前トレーニングモデルのオープンソース版です。"
|
2029
2080
|
},
|
2081
|
+
"thudm/glm-4-9b:free": {
|
2082
|
+
"description": "GLM-4-9B-0414はTHUDMによって開発されたGLM-4シリーズの90億パラメータの言語モデルです。GLM-4-9B-0414は、より大きな32B対応モデルと同じ強化学習と整合性戦略を使用してトレーニングされており、その規模に対して高性能を実現し、依然として強力な言語理解と生成能力を必要とするリソース制約のあるデプロイメントに適しています。"
|
2083
|
+
},
|
2084
|
+
"thudm/glm-z1-9b:free": {
|
2085
|
+
"description": "GLM-Z1-9B-0414はTHUDMによって開発されたGLM-4シリーズの9Bパラメータの言語モデルです。これは、より大きなGLM-Z1モデルに最初に適用された技術を採用しており、拡張強化学習、ペアランキング整合性、数学、コーディング、論理などの推論集約型タスクのトレーニングを含みます。規模は小さいものの、一般的な推論タスクにおいて強力な性能を発揮し、その重みレベルにおいて多くのオープンソースモデルを上回っています。"
|
2086
|
+
},
|
2087
|
+
"thudm/glm-z1-rumination-32b": {
|
2088
|
+
"description": "THUDM: GLM Z1 Rumination 32BはGLM-4-Z1シリーズの32Bパラメータの深い推論モデルで、長時間の思考を必要とする複雑でオープンなタスクに最適化されています。glm-4-32b-0414を基にしており、追加の強化学習段階と多段階の整合性戦略を追加し、拡張認知処理を模倣することを目的とした「反省」能力を導入しています。これには、反復推論、多段階分析、検索、取得、引用感知合成などのツール強化ワークフローが含まれます。\n\nこのモデルは研究型の執筆、比較分析、複雑な質問応答において優れた性能を発揮します。検索とナビゲーションの原語(`search`、`click`、`open`、`finish`)のための関数呼び出しをサポートし、エージェント式パイプラインで使用できるようにします。反省行動は、ルールベースの報酬形成と遅延意思決定メカニズムを持つ多ラウンドの循環制御によって形作られ、OpenAI内部の整合性スタックなどの深い研究フレームワークを基準としています。このバリアントは、速度よりも深さが必要なシナリオに適しています。"
|
2089
|
+
},
|
2090
|
+
"tngtech/deepseek-r1t-chimera:free": {
|
2091
|
+
"description": "DeepSeek-R1T-ChimeraはDeepSeek-R1とDeepSeek-V3(0324)を統合して作成され、R1の推論能力とV3のトークン効率の改善を組み合わせています。DeepSeek-MoE Transformerアーキテクチャに基づいており、一般的なテキスト生成タスクに最適化されています。\n\nこのモデルは、推論、効率、指示遵守タスクのパフォーマンスをバランスさせるために、2つのソースモデルの事前学習された重みを統合しています。MITライセンスの下でリリースされ、研究および商業用途に使用されることを目的としています。"
|
2092
|
+
},
|
2030
2093
|
"togethercomputer/StripedHyena-Nous-7B": {
|
2031
2094
|
"description": "StripedHyena Nous (7B)は、高効率の戦略とモデルアーキテクチャを通じて、強化された計算能力を提供します。"
|
2032
2095
|
},
|