@lobehub/chat 1.84.9 → 1.84.11
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +54 -0
- package/apps/desktop/electron.vite.config.ts +3 -0
- package/changelog/v1.json +18 -0
- package/locales/ar/components.json +2 -1
- package/locales/ar/models.json +63 -0
- package/locales/bg-BG/components.json +2 -1
- package/locales/bg-BG/models.json +63 -0
- package/locales/de-DE/components.json +2 -1
- package/locales/de-DE/models.json +63 -0
- package/locales/en-US/components.json +2 -1
- package/locales/en-US/models.json +63 -0
- package/locales/es-ES/components.json +2 -1
- package/locales/es-ES/models.json +63 -0
- package/locales/fa-IR/components.json +2 -1
- package/locales/fa-IR/models.json +63 -0
- package/locales/fr-FR/components.json +2 -1
- package/locales/fr-FR/models.json +63 -0
- package/locales/it-IT/components.json +2 -1
- package/locales/it-IT/models.json +63 -0
- package/locales/ja-JP/components.json +2 -1
- package/locales/ja-JP/models.json +63 -0
- package/locales/ko-KR/components.json +2 -1
- package/locales/ko-KR/models.json +63 -0
- package/locales/nl-NL/components.json +2 -1
- package/locales/nl-NL/models.json +63 -0
- package/locales/pl-PL/components.json +2 -1
- package/locales/pl-PL/models.json +63 -0
- package/locales/pt-BR/components.json +2 -1
- package/locales/pt-BR/models.json +63 -0
- package/locales/ru-RU/components.json +2 -1
- package/locales/ru-RU/models.json +63 -0
- package/locales/tr-TR/components.json +2 -1
- package/locales/tr-TR/models.json +63 -0
- package/locales/vi-VN/components.json +2 -1
- package/locales/vi-VN/models.json +63 -0
- package/locales/zh-CN/components.json +2 -1
- package/locales/zh-CN/models.json +63 -0
- package/locales/zh-TW/components.json +2 -1
- package/locales/zh-TW/models.json +63 -0
- package/package.json +2 -2
- package/src/app/[variants]/(main)/chat/(workspace)/@conversation/features/ChatInput/Mobile/index.tsx +1 -1
- package/src/app/[variants]/(main)/chat/(workspace)/@topic/features/Header.tsx +5 -1
- package/src/app/[variants]/(main)/chat/settings/page.tsx +1 -0
- package/src/app/[variants]/(main)/settings/_layout/Desktop/index.tsx +4 -1
- package/src/app/[variants]/(main)/settings/provider/(detail)/ollama/CheckError.tsx +4 -2
- package/src/app/[variants]/(main)/settings/provider/(detail)/ollama/Container.tsx +2 -2
- package/src/app/[variants]/(main)/settings/provider/ProviderMenu/index.tsx +1 -0
- package/src/components/FileParsingStatus/index.tsx +1 -7
- package/src/components/ModelSelect/index.tsx +2 -2
- package/src/config/aiModels/siliconcloud.ts +89 -7
- package/src/config/modelProviders/google.ts +16 -0
- package/src/features/ChatInput/ActionBar/{Clear.tsx → Clear/index.tsx} +3 -2
- package/src/features/ChatInput/ActionBar/History/Controls.tsx +72 -0
- package/src/features/ChatInput/ActionBar/History/index.tsx +46 -0
- package/src/features/ChatInput/ActionBar/Knowledge/index.tsx +31 -25
- package/src/features/ChatInput/ActionBar/Knowledge/{Dropdown.tsx → useControls.tsx} +20 -40
- package/src/features/ChatInput/ActionBar/Model/ControlsForm.tsx +8 -1
- package/src/features/ChatInput/ActionBar/Model/index.tsx +27 -19
- package/src/features/ChatInput/ActionBar/Params/{ParamsControls.tsx → Controls.tsx} +9 -9
- package/src/features/ChatInput/ActionBar/Params/index.tsx +17 -20
- package/src/features/ChatInput/{STT → ActionBar/STT}/common.tsx +1 -0
- package/src/features/ChatInput/ActionBar/Search/{SwitchPanel.tsx → Controls.tsx} +12 -11
- package/src/features/ChatInput/ActionBar/Search/index.tsx +20 -25
- package/src/features/ChatInput/ActionBar/Token/TokenTag.tsx +1 -1
- package/src/features/ChatInput/ActionBar/Tools/ToolItem.tsx +15 -6
- package/src/features/ChatInput/ActionBar/Tools/index.tsx +26 -18
- package/src/features/ChatInput/ActionBar/Tools/{Dropdown.tsx → useControls.tsx} +38 -63
- package/src/features/ChatInput/ActionBar/Upload/ServerMode.tsx +10 -11
- package/src/features/ChatInput/ActionBar/components/Action.tsx +90 -0
- package/src/features/ChatInput/{components → ActionBar/components}/ActionDropdown.tsx +4 -4
- package/src/features/ChatInput/{components → ActionBar/components}/ActionPopover.tsx +5 -4
- package/src/features/ChatInput/ActionBar/{Knowledge/ListItem.tsx → components/CheckbokWithLoading.tsx} +14 -12
- package/src/features/ChatInput/ActionBar/config.ts +1 -1
- package/src/features/Conversation/Actions/Error.tsx +10 -2
- package/src/features/Conversation/Error/OllamaBizError/index.tsx +2 -2
- package/src/features/Conversation/Error/index.tsx +3 -10
- package/src/features/KnowledgeBaseModal/AssignKnowledgeBase/Loading.tsx +1 -1
- package/src/features/ModelSwitchPanel/index.tsx +18 -5
- package/src/features/{Conversation/Error/OllamaDesktopSetupGuide/index.tsx → OllamaSetupGuide/Desktop.tsx} +25 -20
- package/src/features/OllamaSetupGuide/index.tsx +17 -0
- package/src/features/ShareModal/ShareImage/ChatList/index.tsx +1 -1
- package/src/features/ShareModal/ShareImage/Preview.tsx +2 -2
- package/src/features/ShareModal/ShareImage/index.tsx +8 -6
- package/src/hooks/useImgToClipboard.ts +4 -1
- package/src/layout/GlobalProvider/Locale.tsx +0 -8
- package/src/libs/agent-runtime/siliconcloud/index.ts +17 -1
- package/src/locales/default/components.ts +1 -0
- package/src/utils/server/auth.ts +6 -0
- package/src/features/ChatInput/ActionBar/History.tsx +0 -78
- package/src/features/Conversation/Error/OllamaBizError/SetupGuide.tsx +0 -14
- /package/src/features/ChatInput/{STT → ActionBar/STT}/browser.tsx +0 -0
- /package/src/features/ChatInput/{STT → ActionBar/STT}/index.tsx +0 -0
- /package/src/features/ChatInput/{STT → ActionBar/STT}/openai.tsx +0 -0
package/CHANGELOG.md
CHANGED
@@ -2,6 +2,60 @@
|
|
2
2
|
|
3
3
|
# Changelog
|
4
4
|
|
5
|
+
### [Version 1.84.11](https://github.com/lobehub/lobe-chat/compare/v1.84.10...v1.84.11)
|
6
|
+
|
7
|
+
<sup>Released on **2025-04-30**</sup>
|
8
|
+
|
9
|
+
#### 💄 Styles
|
10
|
+
|
11
|
+
- **misc**: Allow copy/edit when generate error.
|
12
|
+
|
13
|
+
<br/>
|
14
|
+
|
15
|
+
<details>
|
16
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
17
|
+
|
18
|
+
#### Styles
|
19
|
+
|
20
|
+
- **misc**: Allow copy/edit when generate error, closes [#7664](https://github.com/lobehub/lobe-chat/issues/7664) ([f518650](https://github.com/lobehub/lobe-chat/commit/f518650))
|
21
|
+
|
22
|
+
</details>
|
23
|
+
|
24
|
+
<div align="right">
|
25
|
+
|
26
|
+
[](#readme-top)
|
27
|
+
|
28
|
+
</div>
|
29
|
+
|
30
|
+
### [Version 1.84.10](https://github.com/lobehub/lobe-chat/compare/v1.84.9...v1.84.10)
|
31
|
+
|
32
|
+
<sup>Released on **2025-04-30**</sup>
|
33
|
+
|
34
|
+
#### 💄 Styles
|
35
|
+
|
36
|
+
- **misc**: Add Gemini 2.5 Pro Experimental model, Add siliconflow Qwen3 & support thinking params, Arrange model tags neatly, Update mobile style and fix issues problem, update ollama checker.
|
37
|
+
|
38
|
+
<br/>
|
39
|
+
|
40
|
+
<details>
|
41
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
42
|
+
|
43
|
+
#### Styles
|
44
|
+
|
45
|
+
- **misc**: Add Gemini 2.5 Pro Experimental model, closes [#7631](https://github.com/lobehub/lobe-chat/issues/7631) ([d318c82](https://github.com/lobehub/lobe-chat/commit/d318c82))
|
46
|
+
- **misc**: Add siliconflow Qwen3 & support thinking params, closes [#7647](https://github.com/lobehub/lobe-chat/issues/7647) ([ba83871](https://github.com/lobehub/lobe-chat/commit/ba83871))
|
47
|
+
- **misc**: Arrange model tags neatly, closes [#7651](https://github.com/lobehub/lobe-chat/issues/7651) ([44132ff](https://github.com/lobehub/lobe-chat/commit/44132ff))
|
48
|
+
- **misc**: Update mobile style and fix issues problem, closes [#7636](https://github.com/lobehub/lobe-chat/issues/7636) ([436a735](https://github.com/lobehub/lobe-chat/commit/436a735))
|
49
|
+
- **misc**: Update ollama checker, closes [#7650](https://github.com/lobehub/lobe-chat/issues/7650) ([321fd2b](https://github.com/lobehub/lobe-chat/commit/321fd2b))
|
50
|
+
|
51
|
+
</details>
|
52
|
+
|
53
|
+
<div align="right">
|
54
|
+
|
55
|
+
[](#readme-top)
|
56
|
+
|
57
|
+
</div>
|
58
|
+
|
5
59
|
### [Version 1.84.9](https://github.com/lobehub/lobe-chat/compare/v1.84.8...v1.84.9)
|
6
60
|
|
7
61
|
<sup>Released on **2025-04-30**</sup>
|
@@ -4,6 +4,7 @@ import { resolve } from 'node:path';
|
|
4
4
|
|
5
5
|
dotenv.config();
|
6
6
|
|
7
|
+
const isDev = process.env.NODE_ENV === 'development';
|
7
8
|
const updateChannel = process.env.UPDATE_CHANNEL;
|
8
9
|
console.log(`[electron-vite.config.ts] Detected UPDATE_CHANNEL: ${updateChannel}`); // 添加日志确认
|
9
10
|
|
@@ -11,6 +12,7 @@ export default defineConfig({
|
|
11
12
|
main: {
|
12
13
|
build: {
|
13
14
|
outDir: 'dist/main',
|
15
|
+
sourcemap: isDev,
|
14
16
|
},
|
15
17
|
// 这里是关键:在构建时进行文本替换
|
16
18
|
define: {
|
@@ -29,6 +31,7 @@ export default defineConfig({
|
|
29
31
|
preload: {
|
30
32
|
build: {
|
31
33
|
outDir: 'dist/preload',
|
34
|
+
sourcemap: isDev,
|
32
35
|
},
|
33
36
|
plugins: [externalizeDepsPlugin({})],
|
34
37
|
resolve: {
|
package/changelog/v1.json
CHANGED
@@ -1,4 +1,22 @@
|
|
1
1
|
[
|
2
|
+
{
|
3
|
+
"children": {
|
4
|
+
"improvements": [
|
5
|
+
"Allow copy/edit when generate error."
|
6
|
+
]
|
7
|
+
},
|
8
|
+
"date": "2025-04-30",
|
9
|
+
"version": "1.84.11"
|
10
|
+
},
|
11
|
+
{
|
12
|
+
"children": {
|
13
|
+
"improvements": [
|
14
|
+
"Add Gemini 2.5 Pro Experimental model, Add siliconflow Qwen3 & support thinking params, Arrange model tags neatly, Update mobile style and fix issues problem, update ollama checker."
|
15
|
+
]
|
16
|
+
},
|
17
|
+
"date": "2025-04-30",
|
18
|
+
"version": "1.84.10"
|
19
|
+
},
|
2
20
|
{
|
3
21
|
"children": {
|
4
22
|
"fixes": [
|
@@ -88,7 +88,8 @@
|
|
88
88
|
"emptyModel": "لا توجد نماذج ممكن تمكينها، يرجى الانتقال إلى الإعدادات لتمكينها",
|
89
89
|
"emptyProvider": "لا توجد مزودات مفعلة، يرجى الذهاب إلى الإعدادات لتفعيلها",
|
90
90
|
"goToSettings": "اذهب إلى الإعدادات",
|
91
|
-
"provider": "مزود"
|
91
|
+
"provider": "مزود",
|
92
|
+
"title": "نموذج"
|
92
93
|
},
|
93
94
|
"OllamaSetupGuide": {
|
94
95
|
"action": {
|
package/locales/ar/models.json
CHANGED
@@ -1841,6 +1841,33 @@
|
|
1841
1841
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1842
1842
|
"description": "نموذج قوي للبرمجة متوسطة الحجم، يدعم طول سياق يصل إلى 32K، بارع في البرمجة متعددة اللغات."
|
1843
1843
|
},
|
1844
|
+
"qwen/qwen3-14b": {
|
1845
|
+
"description": "Qwen3-14B هو نموذج لغوي سببي مكثف يحتوي على 14.8 مليار معلمة، مصمم للاستدلال المعقد والحوار الفعال. يدعم التبديل بسلاسة بين نمط \"التفكير\" المستخدم في الرياضيات، والبرمجة، والاستدلال المنطقي، ونمط \"غير التفكير\" المستخدم في الحوار العام. تم ضبط هذا النموذج ليكون مناسبًا للامتثال للتعليمات، واستخدام أدوات الوكلاء، والكتابة الإبداعية، واستخدامه عبر أكثر من 100 لغة ولهجة. يدعم بشكل أصلي معالجة 32K رمز، ويمكن توسيعها باستخدام التمديد القائم على YaRN إلى 131K رمز."
|
1846
|
+
},
|
1847
|
+
"qwen/qwen3-14b:free": {
|
1848
|
+
"description": "Qwen3-14B هو نموذج لغوي سببي مكثف يحتوي على 14.8 مليار معلمة، مصمم للاستدلال المعقد والحوار الفعال. يدعم التبديل بسلاسة بين نمط \"التفكير\" المستخدم في الرياضيات، والبرمجة، والاستدلال المنطقي، ونمط \"غير التفكير\" المستخدم في الحوار العام. تم ضبط هذا النموذج ليكون مناسبًا للامتثال للتعليمات، واستخدام أدوات الوكلاء، والكتابة الإبداعية، واستخدامه عبر أكثر من 100 لغة ولهجة. يدعم بشكل أصلي معالجة 32K رمز، ويمكن توسيعها باستخدام التمديد القائم على YaRN إلى 131K رمز."
|
1849
|
+
},
|
1850
|
+
"qwen/qwen3-235b-a22b": {
|
1851
|
+
"description": "Qwen3-235B-A22B هو نموذج مختلط خبير (MoE) يحتوي على 235 مليار معلمة تم تطويره بواسطة Qwen، حيث يتم تنشيط 22 مليار معلمة في كل تمرير للأمام. يدعم التبديل بسلاسة بين نمط \"التفكير\" المستخدم في الاستدلال المعقد، والرياضيات، ومهام البرمجة، ونمط \"غير التفكير\" المستخدم في الحوار العام. يظهر هذا النموذج قدرات استدلال قوية، ودعمًا للغات المتعددة (أكثر من 100 لغة ولهجة)، وقدرات متقدمة في الامتثال للتعليمات واستدعاء أدوات الوكلاء. يدعم بشكل أصلي معالجة نافذة سياق من 32K رمز، ويمكن توسيعها باستخدام التمديد القائم على YaRN إلى 131K رمز."
|
1852
|
+
},
|
1853
|
+
"qwen/qwen3-235b-a22b:free": {
|
1854
|
+
"description": "Qwen3-235B-A22B هو نموذج مختلط خبير (MoE) يحتوي على 235 مليار معلمة تم تطويره بواسطة Qwen، حيث يتم تنشيط 22 مليار معلمة في كل تمرير للأمام. يدعم التبديل بسلاسة بين نمط \"التفكير\" المستخدم في الاستدلال المعقد، والرياضيات، ومهام البرمجة، ونمط \"غير التفكير\" المستخدم في الحوار العام. يظهر هذا النموذج قدرات استدلال قوية، ودعمًا للغات المتعددة (أكثر من 100 لغة ولهجة)، وقدرات متقدمة في الامتثال للتعليمات واستدعاء أدوات الوكلاء. يدعم بشكل أصلي معالجة نافذة سياق من 32K رمز، ويمكن توسيعها باستخدام التمديد القائم على YaRN إلى 131K رمز."
|
1855
|
+
},
|
1856
|
+
"qwen/qwen3-30b-a3b": {
|
1857
|
+
"description": "Qwen3 هو الجيل الأحدث من سلسلة نماذج اللغة الكبيرة Qwen، ويتميز بهيكل مختلط مكثف وخبير (MoE)، حيث يظهر أداءً ممتازًا في الاستدلال، ودعم اللغات المتعددة، والمهام المتقدمة. تضمن قدرته الفريدة على التبديل بسلاسة بين نمط التفكير المعقد ونمط الحوار الفعال أداءً متعدد الاستخدامات وعالي الجودة.\n\nيتفوق Qwen3 بشكل ملحوظ على النماذج السابقة مثل QwQ وQwen2.5، حيث يقدم قدرات استثنائية في الرياضيات، والترميز، والاستدلال العام، والكتابة الإبداعية، والحوار التفاعلي. يحتوي نموذج Qwen3-30B-A3B على 30.5 مليار معلمة (3.3 مليار معلمة نشطة)، و48 طبقة، و128 خبيرًا (يتم تنشيط 8 لكل مهمة)، ويدعم حتى 131K من سياق الرموز (باستخدام YaRN)، مما يضع معيارًا جديدًا للنماذج مفتوحة المصدر."
|
1858
|
+
},
|
1859
|
+
"qwen/qwen3-30b-a3b:free": {
|
1860
|
+
"description": "Qwen3 هو الجيل الأحدث من سلسلة نماذج اللغة الكبيرة Qwen، ويتميز بهيكل مختلط مكثف وخبير (MoE)، حيث يظهر أداءً ممتازًا في الاستدلال، ودعم اللغات المتعددة، والمهام المتقدمة. تضمن قدرته الفريدة على التبديل بسلاسة بين نمط التفكير المعقد ونمط الحوار الفعال أداءً متعدد الاستخدامات وعالي الجودة.\n\nيتفوق Qwen3 بشكل ملحوظ على النماذج السابقة مثل QwQ وQwen2.5، حيث يقدم قدرات استثنائية في الرياضيات، والترميز، والاستدلال العام، والكتابة الإبداعية، والحوار التفاعلي. يحتوي نموذج Qwen3-30B-A3B على 30.5 مليار معلمة (3.3 مليار معلمة نشطة)، و48 طبقة، و128 خبيرًا (يتم تنشيط 8 لكل مهمة)، ويدعم حتى 131K من سياق الرموز (باستخدام YaRN)، مما يضع معيارًا جديدًا للنماذج مفتوحة المصدر."
|
1861
|
+
},
|
1862
|
+
"qwen/qwen3-32b": {
|
1863
|
+
"description": "Qwen3-32B هو نموذج لغوي سببي مكثف يحتوي على 32.8 مليار معلمة، تم تحسينه للاستدلال المعقد والحوار الفعال. يدعم التبديل بسلاسة بين نمط \"التفكير\" المستخدم في الرياضيات والترميز والاستدلال المنطقي، ونمط \"غير التفكير\" المستخدم في الحوار العام الأسرع. يظهر هذا النموذج أداءً قويًا في الامتثال للتعليمات، واستخدام أدوات الوكلاء، والكتابة الإبداعية، واستخدامه عبر أكثر من 100 لغة ولهجة. يدعم بشكل أصلي معالجة 32K رمز، ويمكن توسيعها باستخدام التمديد القائم على YaRN إلى 131K رمز."
|
1864
|
+
},
|
1865
|
+
"qwen/qwen3-32b:free": {
|
1866
|
+
"description": "Qwen3-32B هو نموذج لغوي سببي مكثف يحتوي على 32.8 مليار معلمة، تم تحسينه للاستدلال المعقد والحوار الفعال. يدعم التبديل بسلاسة بين نمط \"التفكير\" المستخدم في الرياضيات والترميز والاستدلال المنطقي، ونمط \"غير التفكير\" المستخدم في الحوار العام الأسرع. يظهر هذا النموذج أداءً قويًا في الامتثال للتعليمات، واستخدام أدوات الوكلاء، والكتابة الإبداعية، واستخدامه عبر أكثر من 100 لغة ولهجة. يدعم بشكل أصلي معالجة 32K رمز، ويمكن توسيعها باستخدام التمديد القائم على YaRN إلى 131K رمز."
|
1867
|
+
},
|
1868
|
+
"qwen/qwen3-8b:free": {
|
1869
|
+
"description": "Qwen3-8B هو نموذج لغوي سببي مكثف يحتوي على 8.2 مليار معلمة، مصمم للمهام التي تتطلب استدلالًا مكثفًا والحوار الفعال. يدعم التبديل بسلاسة بين نمط \"التفكير\" المستخدم في الرياضيات والترميز والاستدلال المنطقي، ونمط \"غير التفكير\" المستخدم في الحوار العام. تم ضبط هذا النموذج ليكون مناسبًا للامتثال للتعليمات، ودمج الوكلاء، والكتابة الإبداعية، واستخدامه عبر أكثر من 100 لغة ولهجة. يدعم بشكل أصلي نافذة سياق من 32K رمز، ويمكن توسيعها إلى 131K رمز عبر YaRN."
|
1870
|
+
},
|
1844
1871
|
"qwen2": {
|
1845
1872
|
"description": "Qwen2 هو نموذج لغوي كبير من الجيل الجديد من Alibaba، يدعم أداءً ممتازًا لتلبية احتياجات التطبيقات المتنوعة."
|
1846
1873
|
},
|
@@ -1925,6 +1952,30 @@
|
|
1925
1952
|
"qwen2:72b": {
|
1926
1953
|
"description": "Qwen2 هو نموذج لغوي كبير من الجيل الجديد من Alibaba، يدعم أداءً ممتازًا لتلبية احتياجات التطبيقات المتنوعة."
|
1927
1954
|
},
|
1955
|
+
"qwen3-0.6b": {
|
1956
|
+
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الصناعة في الاستدلال، والعموم، والوكلاء، واللغات المتعددة، ويدعم التبديل بين أنماط التفكير."
|
1957
|
+
},
|
1958
|
+
"qwen3-1.7b": {
|
1959
|
+
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الصناعة في الاستدلال، والعموم، والوكلاء، واللغات المتعددة، ويدعم التبديل بين أنماط التفكير."
|
1960
|
+
},
|
1961
|
+
"qwen3-14b": {
|
1962
|
+
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الصناعة في الاستدلال، والعموم، والوكلاء، واللغات المتعددة، ويدعم التبديل بين أنماط التفكير."
|
1963
|
+
},
|
1964
|
+
"qwen3-235b-a22b": {
|
1965
|
+
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الصناعة في الاستدلال، والعموم، والوكلاء، واللغات المتعددة، ويدعم التبديل بين أنماط التفكير."
|
1966
|
+
},
|
1967
|
+
"qwen3-30b-a3b": {
|
1968
|
+
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الصناعة في الاستدلال، والعموم، والوكلاء، واللغات المتعددة، ويدعم التبديل بين أنماط التفكير."
|
1969
|
+
},
|
1970
|
+
"qwen3-32b": {
|
1971
|
+
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الصناعة في الاستدلال، والعموم، والوكلاء، واللغات المتعددة، ويدعم التبديل بين أنماط التفكير."
|
1972
|
+
},
|
1973
|
+
"qwen3-4b": {
|
1974
|
+
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الصناعة في الاستدلال، والعموم، والوكلاء، واللغات المتعددة، ويدعم التبديل بين أنماط التفكير."
|
1975
|
+
},
|
1976
|
+
"qwen3-8b": {
|
1977
|
+
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الصناعة في الاستدلال، والعموم، والوكلاء، واللغات المتعددة، ويدعم التبديل بين أنماط التفكير."
|
1978
|
+
},
|
1928
1979
|
"qwq": {
|
1929
1980
|
"description": "QwQ هو نموذج بحث تجريبي يركز على تحسين قدرات الاستدلال للذكاء الاصطناعي."
|
1930
1981
|
},
|
@@ -2027,6 +2078,18 @@
|
|
2027
2078
|
"thudm/glm-4-9b-chat": {
|
2028
2079
|
"description": "الإصدار المفتوح من الجيل الأحدث من نموذج GLM-4 الذي أطلقته Zhizhu AI."
|
2029
2080
|
},
|
2081
|
+
"thudm/glm-4-9b:free": {
|
2082
|
+
"description": "GLM-4-9B-0414 هو نموذج لغوي يحتوي على 9 مليار معلمة من سلسلة GLM-4 التي تم تطويرها بواسطة THUDM. يستخدم GLM-4-9B-0414 نفس استراتيجيات تعزيز التعلم والتوافق المستخدمة في النموذج المقابل الأكبر 32B، مما يحقق أداءً عاليًا بالنسبة لحجمه، مما يجعله مناسبًا للنشر في البيئات المحدودة الموارد التي لا تزال تتطلب قدرات قوية في فهم اللغة وتوليدها."
|
2083
|
+
},
|
2084
|
+
"thudm/glm-z1-9b:free": {
|
2085
|
+
"description": "GLM-Z1-9B-0414 هو نموذج لغوي يحتوي على 9 مليار معلمة من سلسلة GLM-4 التي تم تطويرها بواسطة THUDM. يستخدم تقنيات تم تطبيقها في الأصل على نموذج GLM-Z1 الأكبر، بما في ذلك تعزيز التعلم الموسع، والتوافق القائم على الترتيب الثنائي، والتدريب على المهام التي تتطلب استدلالًا مكثفًا مثل الرياضيات، والترميز، والمنطق. على الرغم من حجمه الأصغر، إلا أنه يظهر أداءً قويًا في المهام العامة للاستدلال، ويتفوق على العديد من النماذج مفتوحة المصدر في مستوى وزنه."
|
2086
|
+
},
|
2087
|
+
"thudm/glm-z1-rumination-32b": {
|
2088
|
+
"description": "THUDM: GLM Z1 Rumination 32B هو نموذج استدلال عميق يحتوي على 32 مليار معلمة من سلسلة GLM-4-Z1، تم تحسينه للمهام المعقدة والمفتوحة التي تتطلب تفكيرًا طويل الأمد. يعتمد على glm-4-32b-0414، ويضيف مراحل تعزيز التعلم الإضافية واستراتيجيات التوافق متعددة المراحل، ويقدم قدرة \"التفكير\" المصممة لمحاكاة معالجة الإدراك الموسع. يشمل ذلك الاستدلال التكراري، والتحليل متعدد القفزات، وسير العمل المعزز بالأدوات مثل البحث، والاسترجاع، والتوليف المدرك للاقتباسات.\n\nيظهر هذا النموذج أداءً ممتازًا في الكتابة البحثية، والتحليل المقارن، والأسئلة المعقدة. يدعم استدعاء الوظائف المستخدمة في البحث والتنقل (مثل `search`، `click`، `open`، `finish`)، مما يسمح باستخدامه في أنابيب الوكلاء. يتم تشكيل سلوك التفكير من خلال مكافآت قائمة على القواعد وآلية اتخاذ القرار المتأخرة، ويتم قياسه باستخدام أطر بحث عميقة مثل كومة التوافق الداخلية لـ OpenAI. هذا المتغير مناسب للسيناريوهات التي تتطلب عمقًا بدلاً من السرعة."
|
2089
|
+
},
|
2090
|
+
"tngtech/deepseek-r1t-chimera:free": {
|
2091
|
+
"description": "تم إنشاء DeepSeek-R1T-Chimera من خلال دمج DeepSeek-R1 وDeepSeek-V3 (0324)، حيث يجمع بين قدرات الاستدلال لـ R1 وتحسين كفاءة الرموز لـ V3. يعتمد على هيكل DeepSeek-MoE Transformer، وتم تحسينه لمهام توليد النصوص العامة.\n\nيجمع هذا النموذج بين أوزان ما قبل التدريب من النموذجين المصدرين لتحقيق توازن بين الأداء في الاستدلال، والكفاءة، ومهام الامتثال للتعليمات. يتم إصداره بموجب ترخيص MIT، ويهدف للاستخدام في الأبحاث والأغراض التجارية."
|
2092
|
+
},
|
2030
2093
|
"togethercomputer/StripedHyena-Nous-7B": {
|
2031
2094
|
"description": "StripedHyena Nous (7B) يوفر قدرة حسابية معززة من خلال استراتيجيات فعالة وهندسة نموذجية."
|
2032
2095
|
},
|
@@ -88,7 +88,8 @@
|
|
88
88
|
"emptyModel": "Няма активирани модели, моля, посетете настройките и ги активирайте",
|
89
89
|
"emptyProvider": "Няма активиран доставчик на услуги, моля, отидете в настройките, за да го активирате",
|
90
90
|
"goToSettings": "Отидете в настройките",
|
91
|
-
"provider": "Доставчик"
|
91
|
+
"provider": "Доставчик",
|
92
|
+
"title": "Модел"
|
92
93
|
},
|
93
94
|
"OllamaSetupGuide": {
|
94
95
|
"action": {
|
@@ -1841,6 +1841,33 @@
|
|
1841
1841
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1842
1842
|
"description": "Мощен среден модел за код, поддържащ 32K дължина на контекста, специализиран в многоезично програмиране."
|
1843
1843
|
},
|
1844
|
+
"qwen/qwen3-14b": {
|
1845
|
+
"description": "Qwen3-14B е плътен езиков модел с 14.8 милиарда параметри от серията Qwen3, проектиран за сложни разсъждения и ефективен диалог. Той поддържа безпроблемно преминаване между режим на \"разсъждение\" за математика, програмиране и логическо разсъждение и режим на \"неразсъждение\" за общи разговори. Моделът е фино настроен за следване на инструкции, използване на инструменти за агенти, креативно писане и многоезични задачи на над 100 езика и диалекта. Той нативно обработва контекст от 32K токена и може да бъде разширен до 131K токена с помощта на разширение, базирано на YaRN."
|
1846
|
+
},
|
1847
|
+
"qwen/qwen3-14b:free": {
|
1848
|
+
"description": "Qwen3-14B е плътен езиков модел с 14.8 милиарда параметри от серията Qwen3, проектиран за сложни разсъждения и ефективен диалог. Той поддържа безпроблемно преминаване между режим на \"разсъждение\" за математика, програмиране и логическо разсъждение и режим на \"неразсъждение\" за общи разговори. Моделът е фино настроен за следване на инструкции, използване на инструменти за агенти, креативно писане и многоезични задачи на над 100 езика и диалекта. Той нативно обработва контекст от 32K токена и може да бъде разширен до 131K токена с помощта на разширение, базирано на YaRN."
|
1849
|
+
},
|
1850
|
+
"qwen/qwen3-235b-a22b": {
|
1851
|
+
"description": "Qwen3-235B-A22B е модел с 235B параметри, разработен от Qwen, с експертна смесена (MoE) архитектура, активираща 22B параметри при всяко напредване. Той поддържа безпроблемно преминаване между режим на \"разсъждение\" за сложни разсъждения, математика и кодиране и режим на \"неразсъждение\" за ефективен общ диалог. Моделът демонстрира силни способности за разсъждение, многоезична поддръжка (над 100 езика и диалекта), напреднало следване на инструкции и способности за извикване на инструменти за агенти. Той нативно обработва контекстен прозорец от 32K токена и може да бъде разширен до 131K токена с помощта на разширение, базирано на YaRN."
|
1852
|
+
},
|
1853
|
+
"qwen/qwen3-235b-a22b:free": {
|
1854
|
+
"description": "Qwen3-235B-A22B е модел с 235B параметри, разработен от Qwen, с експертна смесена (MoE) архитектура, активираща 22B параметри при всяко напредване. Той поддържа безпроблемно преминаване между режим на \"разсъждение\" за сложни разсъждения, математика и кодиране и режим на \"неразсъждение\" за ефективен общ диалог. Моделът демонстрира силни способности за разсъждение, многоезична поддръжка (над 100 езика и диалекта), напреднало следване на инструкции и способности за извикване на инструменти за агенти. Той нативно обработва контекстен прозорец от 32K токена и може да бъде разширен до 131K токена с помощта на разширение, базирано на YaRN."
|
1855
|
+
},
|
1856
|
+
"qwen/qwen3-30b-a3b": {
|
1857
|
+
"description": "Qwen3 е най-новото поколение от серията големи езикови модели Qwen, с плътна и експертна смесена (MoE) архитектура, която показва отлични резултати в области като разсъждение, многоезична поддръжка и сложни задачи за агенти. Уникалната му способност да преминава безпроблемно между режим на разсъждение за сложни логически задачи и режим на неразсъждение за ефективен диалог осигурява многофункционална и висококачествена производителност.\n\nQwen3 значително надминава предишни модели като QwQ и Qwen2.5, предоставяйки изключителни способности в математиката, програмирането, общото разсъждение, креативното писане и интерактивния диалог. Вариантът Qwen3-30B-A3B съдържа 30.5 милиарда параметри (3.3 милиарда активни параметри), 48 слоя, 128 експерти (активирани по 8 за всяка задача) и поддържа контекст до 131K токена (с използване на YaRN), задавайки нов стандарт за отворени модели."
|
1858
|
+
},
|
1859
|
+
"qwen/qwen3-30b-a3b:free": {
|
1860
|
+
"description": "Qwen3 е най-новото поколение от серията големи езикови модели Qwen, с плътна и експертна смесена (MoE) архитектура, която показва отлични резултати в области като разсъждение, многоезична поддръжка и сложни задачи за агенти. Уникалната му способност да преминава безпроблемно между режим на разсъждение за сложни логически задачи и режим на неразсъждение за ефективен диалог осигурява многофункционална и висококачествена производителност.\n\nQwen3 значително надминава предишни модели като QwQ и Qwen2.5, предоставяйки изключителни способности в математиката, програмирането, общото разсъждение, креативното писане и интерактивния диалог. Вариантът Qwen3-30B-A3B съдържа 30.5 милиарда параметри (3.3 милиарда активни параметри), 48 слоя, 128 експерти (активирани по 8 за всяка задача) и поддържа контекст до 131K токена (с използване на YaRN), задавайки нов стандарт за отворени модели."
|
1861
|
+
},
|
1862
|
+
"qwen/qwen3-32b": {
|
1863
|
+
"description": "Qwen3-32B е плътен езиков модел с 32.8 милиарда параметри от серията Qwen3, оптимизиран за сложни разсъждения и ефективен диалог. Той поддържа безпроблемно преминаване между режим на \"разсъждение\" за математика, програмиране и логическо разсъждение и режим на \"неразсъждение\" за по-бързи и общи разговори. Моделът показва силна производителност в следването на инструкции, използването на инструменти за агенти, креативно писане и многоезични задачи на над 100 езика и диалекта. Той нативно обработва контекст от 32K токена и може да бъде разширен до 131K токена с помощта на разширение, базирано на YaRN."
|
1864
|
+
},
|
1865
|
+
"qwen/qwen3-32b:free": {
|
1866
|
+
"description": "Qwen3-32B е плътен езиков модел с 32.8 милиарда параметри от серията Qwen3, оптимизиран за сложни разсъждения и ефективен диалог. Той поддържа безпроблемно преминаване между режим на \"разсъждение\" за математика, програмиране и логическо разсъждение и режим на \"неразсъждение\" за по-бързи и общи разговори. Моделът показва силна производителност в следването на инструкции, използването на инструменти за агенти, креативно писане и многоезични задачи на над 100 езика и диалекта. Той нативно обработва контекст от 32K токена и може да бъде разширен до 131K токена с помощта на разширение, базирано на YaRN."
|
1867
|
+
},
|
1868
|
+
"qwen/qwen3-8b:free": {
|
1869
|
+
"description": "Qwen3-8B е плътен езиков модел с 8.2 милиарда параметри от серията Qwen3, проектиран за задачи с интензивно разсъждение и ефективен диалог. Той поддържа безпроблемно преминаване между режим на \"разсъждение\" за математика, програмиране и логическо разсъждение и режим на \"неразсъждение\" за общи разговори. Моделът е фино настроен за следване на инструкции, интеграция на агенти, креативно писане и многоезично използване на над 100 езика и диалекта. Той нативно поддържа контекстен прозорец от 32K токена и може да бъде разширен до 131K токена чрез YaRN."
|
1870
|
+
},
|
1844
1871
|
"qwen2": {
|
1845
1872
|
"description": "Qwen2 е новото поколение голям езиков модел на Alibaba, предлагащ отлична производителност за разнообразни приложения."
|
1846
1873
|
},
|
@@ -1925,6 +1952,30 @@
|
|
1925
1952
|
"qwen2:72b": {
|
1926
1953
|
"description": "Qwen2 е новото поколение голям езиков модел на Alibaba, предлагащ отлична производителност за разнообразни приложения."
|
1927
1954
|
},
|
1955
|
+
"qwen3-0.6b": {
|
1956
|
+
"description": "Qwen3 е ново поколение модел с значително подобрени способности, който достига водещо ниво в индустрията в области като разсъждение, общо използване, агенти и многоезичност, и поддържа превключване на режимите на разсъждение."
|
1957
|
+
},
|
1958
|
+
"qwen3-1.7b": {
|
1959
|
+
"description": "Qwen3 е ново поколение модел с значително подобрени способности, който достига водещо ниво в индустрията в области като разсъждение, общо използване, агенти и многоезичност, и поддържа превключване на режимите на разсъждение."
|
1960
|
+
},
|
1961
|
+
"qwen3-14b": {
|
1962
|
+
"description": "Qwen3 е ново поколение модел с значително подобрени способности, който достига водещо ниво в индустрията в области като разсъждение, общо използване, агенти и многоезичност, и поддържа превключване на режимите на разсъждение."
|
1963
|
+
},
|
1964
|
+
"qwen3-235b-a22b": {
|
1965
|
+
"description": "Qwen3 е ново поколение модел с значително подобрени способности, който достига водещо ниво в индустрията в области като разсъждение, общо използване, агенти и многоезичност, и поддържа превключване на режимите на разсъждение."
|
1966
|
+
},
|
1967
|
+
"qwen3-30b-a3b": {
|
1968
|
+
"description": "Qwen3 е ново поколение модел с значително подобрени способности, който достига водещо ниво в индустрията в области като разсъждение, общо използване, агенти и многоезичност, и поддържа превключване на режимите на разсъждение."
|
1969
|
+
},
|
1970
|
+
"qwen3-32b": {
|
1971
|
+
"description": "Qwen3 е ново поколение модел с значително подобрени способности, който достига водещо ниво в индустрията в области като разсъждение, общо използване, агенти и многоезичност, и поддържа превключване на режимите на разсъждение."
|
1972
|
+
},
|
1973
|
+
"qwen3-4b": {
|
1974
|
+
"description": "Qwen3 е ново поколение модел с значително подобрени способности, който достига водещо ниво в индустрията в области като разсъждение, общо използване, агенти и многоезичност, и поддържа превключване на режимите на разсъждение."
|
1975
|
+
},
|
1976
|
+
"qwen3-8b": {
|
1977
|
+
"description": "Qwen3 е ново поколение модел с значително подобрени способности, който достига водещо ниво в индустрията в области като разсъждение, общо използване, агенти и многоезичност, и поддържа превключване на режимите на разсъждение."
|
1978
|
+
},
|
1928
1979
|
"qwq": {
|
1929
1980
|
"description": "QwQ е експериментален изследователски модел, който се фокусира върху подобряване на AI разсъдъчните способности."
|
1930
1981
|
},
|
@@ -2027,6 +2078,18 @@
|
|
2027
2078
|
"thudm/glm-4-9b-chat": {
|
2028
2079
|
"description": "GLM-4 е последната версия на предварително обучен модел от серията, публикувана от Zhizhu AI."
|
2029
2080
|
},
|
2081
|
+
"thudm/glm-4-9b:free": {
|
2082
|
+
"description": "GLM-4-9B-0414 е езиков модел с 9 милиарда параметри от серията GLM-4, разработен от THUDM. GLM-4-9B-0414 използва същите стратегии за усилено обучение и подравняване, които се прилагат за по-голямата му 32B версия, за да постигне висока производителност в съотношение с размера си, което го прави подходящ за внедряване с ограничени ресурси, което все пак изисква силни способности за разбиране и генериране на език."
|
2083
|
+
},
|
2084
|
+
"thudm/glm-z1-9b:free": {
|
2085
|
+
"description": "GLM-Z1-9B-0414 е езиков модел с 9B параметри от серията GLM-4, разработен от THUDM. Той прилага технологии, първоначално използвани в по-големия GLM-Z1 модел, включително разширено усилено обучение, подравняване на двойки и обучение за интензивни разсъждения в области като математика, кодиране и логика. Въпреки по-малкия си размер, той показва силна производителност в общите задачи за разсъждение и надминава много от отворените модели на нивото на теглата."
|
2086
|
+
},
|
2087
|
+
"thudm/glm-z1-rumination-32b": {
|
2088
|
+
"description": "THUDM: GLM Z1 Rumination 32B е дълбок разсъдъчен модел с 32B параметри от серията GLM-4-Z1, оптимизиран за сложни, отворени задачи, изискващи дълго разсъждение. Той е построен на основата на glm-4-32b-0414, с добавени допълнителни етапи на усилено обучение и многостепенни стратегии за подравняване, въвеждайки \"разсъждателни\" способности, предназначени да симулират разширена когнитивна обработка. Това включва итеративно разсъждение, многократен анализ и работни потоци, подобрени с инструменти, като търсене, извличане и синтез с осведоменост за цитати.\n\nМоделът показва отлични резултати в изследователското писане, сравнителния анализ и сложните въпроси и отговори. Той поддържа извиквания на функции за търсене и навигация (\"search\", \"click\", \"open\", \"finish\"), което позволява използването му в агенти. Разсъждателното поведение се контролира от многократни цикли с базирани на правила награди и механизми за забавено вземане на решения, с референтни рамки за дълбоки изследвания, като вътрешния стек за подравняване на OpenAI. Този вариант е подходящ за сценарии, изискващи дълбочина, а не скорост."
|
2089
|
+
},
|
2090
|
+
"tngtech/deepseek-r1t-chimera:free": {
|
2091
|
+
"description": "DeepSeek-R1T-Chimera е създаден чрез комбиниране на DeepSeek-R1 и DeepSeek-V3 (0324), съчетавайки разсъдъчните способности на R1 и подобренията в ефективността на токените на V3. Той е базиран на архитектурата DeepSeek-MoE Transformer и е оптимизиран за общи задачи по генериране на текст.\n\nМоделът комбинира предварително обучените тегла на двата източника, за да балансира производителността в разсъжденията, ефективността и задачите за следване на инструкции. Той е публикуван под MIT лиценз и е предназначен за изследователски и търговски цели."
|
2092
|
+
},
|
2030
2093
|
"togethercomputer/StripedHyena-Nous-7B": {
|
2031
2094
|
"description": "StripedHyena Nous (7B) предлага подобрена изчислителна мощ чрез ефективни стратегии и архитектура на модела."
|
2032
2095
|
},
|
@@ -88,7 +88,8 @@
|
|
88
88
|
"emptyModel": "Kein aktiviertes Modell. Bitte gehen Sie zu den Einstellungen, um es zu aktivieren.",
|
89
89
|
"emptyProvider": "Es sind keine aktiven Anbieter vorhanden, bitte gehen Sie zu den Einstellungen, um sie zu aktivieren",
|
90
90
|
"goToSettings": "Zu den Einstellungen gehen",
|
91
|
-
"provider": "Anbieter"
|
91
|
+
"provider": "Anbieter",
|
92
|
+
"title": "Modell"
|
92
93
|
},
|
93
94
|
"OllamaSetupGuide": {
|
94
95
|
"action": {
|
@@ -1841,6 +1841,33 @@
|
|
1841
1841
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1842
1842
|
"description": "Leistungsstarkes, mittelgroßes Codierungsmodell, das 32K Kontextlängen unterstützt und in der mehrsprachigen Programmierung versiert ist."
|
1843
1843
|
},
|
1844
|
+
"qwen/qwen3-14b": {
|
1845
|
+
"description": "Qwen3-14B ist ein kompaktes, 14,8 Milliarden Parameter umfassendes kausales Sprachmodell aus der Qwen3-Serie, das speziell für komplexe Inferenz und effiziente Dialoge entwickelt wurde. Es unterstützt den nahtlosen Wechsel zwischen dem \"Denk\"-Modus für Mathematik, Programmierung und logische Inferenz und dem \"Nicht-Denk\"-Modus für allgemeine Gespräche. Dieses Modell wurde feinabgestimmt und kann für die Befolgung von Anweisungen, die Nutzung von Agentenwerkzeugen, kreatives Schreiben sowie mehrsprachige Aufgaben in über 100 Sprachen und Dialekten verwendet werden. Es verarbeitet nativ 32K Token-Kontext und kann mithilfe von YaRN auf 131K Token erweitert werden."
|
1846
|
+
},
|
1847
|
+
"qwen/qwen3-14b:free": {
|
1848
|
+
"description": "Qwen3-14B ist ein kompaktes, 14,8 Milliarden Parameter umfassendes kausales Sprachmodell aus der Qwen3-Serie, das speziell für komplexe Inferenz und effiziente Dialoge entwickelt wurde. Es unterstützt den nahtlosen Wechsel zwischen dem \"Denk\"-Modus für Mathematik, Programmierung und logische Inferenz und dem \"Nicht-Denk\"-Modus für allgemeine Gespräche. Dieses Modell wurde feinabgestimmt und kann für die Befolgung von Anweisungen, die Nutzung von Agentenwerkzeugen, kreatives Schreiben sowie mehrsprachige Aufgaben in über 100 Sprachen und Dialekten verwendet werden. Es verarbeitet nativ 32K Token-Kontext und kann mithilfe von YaRN auf 131K Token erweitert werden."
|
1849
|
+
},
|
1850
|
+
"qwen/qwen3-235b-a22b": {
|
1851
|
+
"description": "Qwen3-235B-A22B ist ein 235B Parameter Expertenmischungsmodell (MoE), das von Qwen entwickelt wurde und bei jedem Vorwärtsdurchlauf 22B Parameter aktiviert. Es unterstützt den nahtlosen Wechsel zwischen dem \"Denk\"-Modus für komplexe Inferenz, Mathematik und Programmieraufgaben und dem \"Nicht-Denk\"-Modus für allgemeine Gespräche. Dieses Modell zeigt starke Inferenzfähigkeiten, mehrsprachige Unterstützung (über 100 Sprachen und Dialekte), fortgeschrittene Befolgung von Anweisungen und die Nutzung von Agentenwerkzeugen. Es verarbeitet nativ ein Kontextfenster von 32K Token und kann mithilfe von YaRN auf 131K Token erweitert werden."
|
1852
|
+
},
|
1853
|
+
"qwen/qwen3-235b-a22b:free": {
|
1854
|
+
"description": "Qwen3-235B-A22B ist ein 235B Parameter Expertenmischungsmodell (MoE), das von Qwen entwickelt wurde und bei jedem Vorwärtsdurchlauf 22B Parameter aktiviert. Es unterstützt den nahtlosen Wechsel zwischen dem \"Denk\"-Modus für komplexe Inferenz, Mathematik und Programmieraufgaben und dem \"Nicht-Denk\"-Modus für allgemeine Gespräche. Dieses Modell zeigt starke Inferenzfähigkeiten, mehrsprachige Unterstützung (über 100 Sprachen und Dialekte), fortgeschrittene Befolgung von Anweisungen und die Nutzung von Agentenwerkzeugen. Es verarbeitet nativ ein Kontextfenster von 32K Token und kann mithilfe von YaRN auf 131K Token erweitert werden."
|
1855
|
+
},
|
1856
|
+
"qwen/qwen3-30b-a3b": {
|
1857
|
+
"description": "Qwen3 ist die neueste Generation der Qwen großen Sprachmodellreihe, die über eine dichte und Expertenmischung (MoE) Architektur verfügt und in den Bereichen Inferenz, mehrsprachige Unterstützung und anspruchsvolle Agentenaufgaben hervorragende Leistungen zeigt. Ihre einzigartige Fähigkeit, nahtlos zwischen komplexen Denkmodi und effizienten Dialogmodi zu wechseln, gewährleistet eine vielseitige und qualitativ hochwertige Leistung.\n\nQwen3 übertrifft deutlich frühere Modelle wie QwQ und Qwen2.5 und bietet herausragende Fähigkeiten in Mathematik, Programmierung, allgemeinem Wissen, kreativem Schreiben und interaktiven Dialogen. Die Variante Qwen3-30B-A3B enthält 30,5 Milliarden Parameter (3,3 Milliarden aktivierte Parameter), 48 Schichten, 128 Experten (jeweils 8 aktivierte für jede Aufgabe) und unterstützt bis zu 131K Token-Kontext (unter Verwendung von YaRN), was einen neuen Standard für Open-Source-Modelle setzt."
|
1858
|
+
},
|
1859
|
+
"qwen/qwen3-30b-a3b:free": {
|
1860
|
+
"description": "Qwen3 ist die neueste Generation der Qwen großen Sprachmodellreihe, die über eine dichte und Expertenmischung (MoE) Architektur verfügt und in den Bereichen Inferenz, mehrsprachige Unterstützung und anspruchsvolle Agentenaufgaben hervorragende Leistungen zeigt. Ihre einzigartige Fähigkeit, nahtlos zwischen komplexen Denkmodi und effizienten Dialogmodi zu wechseln, gewährleistet eine vielseitige und qualitativ hochwertige Leistung.\n\nQwen3 übertrifft deutlich frühere Modelle wie QwQ und Qwen2.5 und bietet herausragende Fähigkeiten in Mathematik, Programmierung, allgemeinem Wissen, kreativem Schreiben und interaktiven Dialogen. Die Variante Qwen3-30B-A3B enthält 30,5 Milliarden Parameter (3,3 Milliarden aktivierte Parameter), 48 Schichten, 128 Experten (jeweils 8 aktivierte für jede Aufgabe) und unterstützt bis zu 131K Token-Kontext (unter Verwendung von YaRN), was einen neuen Standard für Open-Source-Modelle setzt."
|
1861
|
+
},
|
1862
|
+
"qwen/qwen3-32b": {
|
1863
|
+
"description": "Qwen3-32B ist ein kompaktes, 32,8 Milliarden Parameter umfassendes kausales Sprachmodell aus der Qwen3-Serie, das für komplexe Inferenz und effiziente Dialoge optimiert wurde. Es unterstützt den nahtlosen Wechsel zwischen dem \"Denk\"-Modus für Mathematik, Programmierung und logische Inferenz und dem \"Nicht-Denk\"-Modus für schnellere, allgemeine Gespräche. Dieses Modell zeigt starke Leistungen in der Befolgung von Anweisungen, der Nutzung von Agentenwerkzeugen, kreativem Schreiben sowie mehrsprachigen Aufgaben in über 100 Sprachen und Dialekten. Es verarbeitet nativ 32K Token-Kontext und kann mithilfe von YaRN auf 131K Token erweitert werden."
|
1864
|
+
},
|
1865
|
+
"qwen/qwen3-32b:free": {
|
1866
|
+
"description": "Qwen3-32B ist ein kompaktes, 32,8 Milliarden Parameter umfassendes kausales Sprachmodell aus der Qwen3-Serie, das für komplexe Inferenz und effiziente Dialoge optimiert wurde. Es unterstützt den nahtlosen Wechsel zwischen dem \"Denk\"-Modus für Mathematik, Programmierung und logische Inferenz und dem \"Nicht-Denk\"-Modus für schnellere, allgemeine Gespräche. Dieses Modell zeigt starke Leistungen in der Befolgung von Anweisungen, der Nutzung von Agentenwerkzeugen, kreativem Schreiben sowie mehrsprachigen Aufgaben in über 100 Sprachen und Dialekten. Es verarbeitet nativ 32K Token-Kontext und kann mithilfe von YaRN auf 131K Token erweitert werden."
|
1867
|
+
},
|
1868
|
+
"qwen/qwen3-8b:free": {
|
1869
|
+
"description": "Qwen3-8B ist ein kompaktes, 8,2 Milliarden Parameter umfassendes kausales Sprachmodell aus der Qwen3-Serie, das speziell für inferenzintensive Aufgaben und effiziente Dialoge entwickelt wurde. Es unterstützt den nahtlosen Wechsel zwischen dem \"Denk\"-Modus für Mathematik, Programmierung und logische Inferenz und dem \"Nicht-Denk\"-Modus für allgemeine Gespräche. Dieses Modell wurde feinabgestimmt und kann für die Befolgung von Anweisungen, die Integration von Agenten, kreatives Schreiben sowie die mehrsprachige Nutzung in über 100 Sprachen und Dialekten verwendet werden. Es unterstützt nativ ein Kontextfenster von 32K Token und kann über YaRN auf 131K Token erweitert werden."
|
1870
|
+
},
|
1844
1871
|
"qwen2": {
|
1845
1872
|
"description": "Qwen2 ist das neue große Sprachmodell von Alibaba, das mit hervorragender Leistung eine Vielzahl von Anwendungsanforderungen unterstützt."
|
1846
1873
|
},
|
@@ -1925,6 +1952,30 @@
|
|
1925
1952
|
"qwen2:72b": {
|
1926
1953
|
"description": "Qwen2 ist das neue große Sprachmodell von Alibaba, das mit hervorragender Leistung eine Vielzahl von Anwendungsanforderungen unterstützt."
|
1927
1954
|
},
|
1955
|
+
"qwen3-0.6b": {
|
1956
|
+
"description": "Qwen3 ist ein neues, leistungsstarkes Modell der nächsten Generation, das in den Bereichen Inferenz, Allgemeinwissen, Agenten und Mehrsprachigkeit erhebliche Fortschritte erzielt hat und den Wechsel zwischen Denkmodi unterstützt."
|
1957
|
+
},
|
1958
|
+
"qwen3-1.7b": {
|
1959
|
+
"description": "Qwen3 ist ein neues, leistungsstarkes Modell der nächsten Generation, das in den Bereichen Inferenz, Allgemeinwissen, Agenten und Mehrsprachigkeit erhebliche Fortschritte erzielt hat und den Wechsel zwischen Denkmodi unterstützt."
|
1960
|
+
},
|
1961
|
+
"qwen3-14b": {
|
1962
|
+
"description": "Qwen3 ist ein neues, leistungsstarkes Modell der nächsten Generation, das in den Bereichen Inferenz, Allgemeinwissen, Agenten und Mehrsprachigkeit erhebliche Fortschritte erzielt hat und den Wechsel zwischen Denkmodi unterstützt."
|
1963
|
+
},
|
1964
|
+
"qwen3-235b-a22b": {
|
1965
|
+
"description": "Qwen3 ist ein neues, leistungsstarkes Modell der nächsten Generation, das in den Bereichen Inferenz, Allgemeinwissen, Agenten und Mehrsprachigkeit erhebliche Fortschritte erzielt hat und den Wechsel zwischen Denkmodi unterstützt."
|
1966
|
+
},
|
1967
|
+
"qwen3-30b-a3b": {
|
1968
|
+
"description": "Qwen3 ist ein neues, leistungsstarkes Modell der nächsten Generation, das in den Bereichen Inferenz, Allgemeinwissen, Agenten und Mehrsprachigkeit erhebliche Fortschritte erzielt hat und den Wechsel zwischen Denkmodi unterstützt."
|
1969
|
+
},
|
1970
|
+
"qwen3-32b": {
|
1971
|
+
"description": "Qwen3 ist ein neues, leistungsstarkes Modell der nächsten Generation, das in den Bereichen Inferenz, Allgemeinwissen, Agenten und Mehrsprachigkeit erhebliche Fortschritte erzielt hat und den Wechsel zwischen Denkmodi unterstützt."
|
1972
|
+
},
|
1973
|
+
"qwen3-4b": {
|
1974
|
+
"description": "Qwen3 ist ein neues, leistungsstarkes Modell der nächsten Generation, das in den Bereichen Inferenz, Allgemeinwissen, Agenten und Mehrsprachigkeit erhebliche Fortschritte erzielt hat und den Wechsel zwischen Denkmodi unterstützt."
|
1975
|
+
},
|
1976
|
+
"qwen3-8b": {
|
1977
|
+
"description": "Qwen3 ist ein neues, leistungsstarkes Modell der nächsten Generation, das in den Bereichen Inferenz, Allgemeinwissen, Agenten und Mehrsprachigkeit erhebliche Fortschritte erzielt hat und den Wechsel zwischen Denkmodi unterstützt."
|
1978
|
+
},
|
1928
1979
|
"qwq": {
|
1929
1980
|
"description": "QwQ ist ein experimentelles Forschungsmodell, das sich auf die Verbesserung der KI-Inferenzfähigkeiten konzentriert."
|
1930
1981
|
},
|
@@ -2027,6 +2078,18 @@
|
|
2027
2078
|
"thudm/glm-4-9b-chat": {
|
2028
2079
|
"description": "Die Open-Source-Version des neuesten vortrainierten Modells der GLM-4-Serie, das von Zhizhu AI veröffentlicht wurde."
|
2029
2080
|
},
|
2081
|
+
"thudm/glm-4-9b:free": {
|
2082
|
+
"description": "GLM-4-9B-0414 ist ein Sprachmodell mit 9 Milliarden Parametern aus der GLM-4-Serie, das von THUDM entwickelt wurde. GLM-4-9B-0414 verwendet die gleichen Verstärkungs- und Ausrichtungsstrategien wie das größere 32B-Modell und erzielt in Bezug auf seine Größe hohe Leistungen, was es für ressourcenbeschränkte Bereitstellungen geeignet macht, die dennoch starke Sprachverständnis- und Generierungsfähigkeiten erfordern."
|
2083
|
+
},
|
2084
|
+
"thudm/glm-z1-9b:free": {
|
2085
|
+
"description": "GLM-Z1-9B-0414 ist ein Sprachmodell mit 9B Parametern aus der GLM-4-Serie, das von THUDM entwickelt wurde. Es verwendet Techniken, die ursprünglich auf das größere GLM-Z1-Modell angewendet wurden, einschließlich erweiterten verstärkten Lernens, paarweiser Rangordnungsausrichtung und Training für inferenzintensive Aufgaben wie Mathematik, Programmierung und Logik. Trotz seiner kleineren Größe zeigt es starke Leistungen bei allgemeinen Inferenzaufgaben und übertrifft viele Open-Source-Modelle in Bezug auf seine Gewichtung."
|
2086
|
+
},
|
2087
|
+
"thudm/glm-z1-rumination-32b": {
|
2088
|
+
"description": "THUDM: GLM Z1 Rumination 32B ist ein tiefes Inferenzmodell mit 32B Parametern aus der GLM-4-Z1-Serie, das für komplexe, offene Aufgaben optimiert wurde, die langes Nachdenken erfordern. Es basiert auf glm-4-32b-0414 und hat zusätzliche Phasen des verstärkten Lernens und mehrstufige Ausrichtungsstrategien hinzugefügt, die die \"Reflexions\"-Fähigkeit einführen, die darauf abzielt, erweiterte kognitive Prozesse zu simulieren. Dazu gehören iterative Inferenz, mehrstufige Analysen und werkzeuggestützte Arbeitsabläufe wie Suche, Abruf und zitationsbewusste Synthese.\n\nDieses Modell zeigt hervorragende Leistungen in forschungsorientiertem Schreiben, vergleichender Analyse und komplexen Fragen und Antworten. Es unterstützt Funktionsaufrufe für Such- und Navigationsprimitiven (`search`, `click`, `open`, `finish`), sodass es in agentenbasierten Pipelines verwendet werden kann. Reflexionsverhalten wird durch ein mehrstufiges Regelbelohnungssystem und verzögerte Entscheidungsmechanismen geformt und wird an tiefen Forschungsrahmen wie dem internen Ausrichtungsstapel von OpenAI gemessen. Diese Variante eignet sich für Szenarien, die Tiefe statt Geschwindigkeit erfordern."
|
2089
|
+
},
|
2090
|
+
"tngtech/deepseek-r1t-chimera:free": {
|
2091
|
+
"description": "DeepSeek-R1T-Chimera wurde durch die Kombination von DeepSeek-R1 und DeepSeek-V3 (0324) erstellt und vereint die Inferenzfähigkeiten von R1 mit den Verbesserungen der Token-Effizienz von V3. Es basiert auf der DeepSeek-MoE Transformer-Architektur und wurde für allgemeine Textgenerierungsaufgaben optimiert.\n\nDieses Modell kombiniert die vortrainierten Gewichte der beiden Quellmodelle, um die Leistung in Inferenz, Effizienz und Befolgung von Anweisungen auszugleichen. Es wird unter der MIT-Lizenz veröffentlicht und ist für Forschungs- und kommerzielle Zwecke gedacht."
|
2092
|
+
},
|
2030
2093
|
"togethercomputer/StripedHyena-Nous-7B": {
|
2031
2094
|
"description": "StripedHyena Nous (7B) bietet durch effiziente Strategien und Modellarchitekturen verbesserte Rechenfähigkeiten."
|
2032
2095
|
},
|
@@ -88,7 +88,8 @@
|
|
88
88
|
"emptyModel": "No enabled model. Please go to settings to enable.",
|
89
89
|
"emptyProvider": "No enabled providers. Please go to settings to enable one.",
|
90
90
|
"goToSettings": "Go to settings",
|
91
|
-
"provider": "Provider"
|
91
|
+
"provider": "Provider",
|
92
|
+
"title": "Model"
|
92
93
|
},
|
93
94
|
"OllamaSetupGuide": {
|
94
95
|
"action": {
|
@@ -1841,6 +1841,33 @@
|
|
1841
1841
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1842
1842
|
"description": "A powerful medium-sized code model supporting 32K context length, proficient in multilingual programming."
|
1843
1843
|
},
|
1844
|
+
"qwen/qwen3-14b": {
|
1845
|
+
"description": "Qwen3-14B is a dense 14.8 billion parameter causal language model in the Qwen3 series, designed for complex reasoning and efficient dialogue. It supports seamless switching between a 'thinking' mode for tasks such as mathematics, programming, and logical reasoning, and a 'non-thinking' mode for general conversation. This model is fine-tuned for instruction following, agent tool usage, creative writing, and multilingual tasks across more than 100 languages and dialects. It natively handles a 32K token context and can be extended to 131K tokens using YaRN."
|
1846
|
+
},
|
1847
|
+
"qwen/qwen3-14b:free": {
|
1848
|
+
"description": "Qwen3-14B is a dense 14.8 billion parameter causal language model in the Qwen3 series, designed for complex reasoning and efficient dialogue. It supports seamless switching between a 'thinking' mode for tasks such as mathematics, programming, and logical reasoning, and a 'non-thinking' mode for general conversation. This model is fine-tuned for instruction following, agent tool usage, creative writing, and multilingual tasks across more than 100 languages and dialects. It natively handles a 32K token context and can be extended to 131K tokens using YaRN."
|
1849
|
+
},
|
1850
|
+
"qwen/qwen3-235b-a22b": {
|
1851
|
+
"description": "Qwen3-235B-A22B is a 235 billion parameter mixture of experts (MoE) model developed by Qwen, activating 22 billion parameters per forward pass. It supports seamless switching between a 'thinking' mode for complex reasoning, mathematics, and coding tasks, and a 'non-thinking' mode for general conversational efficiency. This model showcases strong reasoning capabilities, multilingual support (over 100 languages and dialects), advanced instruction following, and agent tool invocation capabilities. It natively handles a 32K token context window and can be extended to 131K tokens using YaRN."
|
1852
|
+
},
|
1853
|
+
"qwen/qwen3-235b-a22b:free": {
|
1854
|
+
"description": "Qwen3-235B-A22B is a 235 billion parameter mixture of experts (MoE) model developed by Qwen, activating 22 billion parameters per forward pass. It supports seamless switching between a 'thinking' mode for complex reasoning, mathematics, and coding tasks, and a 'non-thinking' mode for general conversational efficiency. This model showcases strong reasoning capabilities, multilingual support (over 100 languages and dialects), advanced instruction following, and agent tool invocation capabilities. It natively handles a 32K token context window and can be extended to 131K tokens using YaRN."
|
1855
|
+
},
|
1856
|
+
"qwen/qwen3-30b-a3b": {
|
1857
|
+
"description": "Qwen3 is the latest generation in the Qwen large language model series, featuring a dense and mixture of experts (MoE) architecture that excels in reasoning, multilingual support, and advanced agent tasks. Its unique ability to seamlessly switch between a thinking mode for complex reasoning and a non-thinking mode for efficient dialogue ensures versatile and high-quality performance.\n\nQwen3 significantly outperforms previous models such as QwQ and Qwen2.5, offering exceptional capabilities in mathematics, coding, common sense reasoning, creative writing, and interactive dialogue. The Qwen3-30B-A3B variant contains 30.5 billion parameters (3.3 billion active parameters), 48 layers, 128 experts (activating 8 for each task), and supports up to 131K token context (using YaRN), setting a new standard for open-source models."
|
1858
|
+
},
|
1859
|
+
"qwen/qwen3-30b-a3b:free": {
|
1860
|
+
"description": "Qwen3 is the latest generation in the Qwen large language model series, featuring a dense and mixture of experts (MoE) architecture that excels in reasoning, multilingual support, and advanced agent tasks. Its unique ability to seamlessly switch between a thinking mode for complex reasoning and a non-thinking mode for efficient dialogue ensures versatile and high-quality performance.\n\nQwen3 significantly outperforms previous models such as QwQ and Qwen2.5, offering exceptional capabilities in mathematics, coding, common sense reasoning, creative writing, and interactive dialogue. The Qwen3-30B-A3B variant contains 30.5 billion parameters (3.3 billion active parameters), 48 layers, 128 experts (activating 8 for each task), and supports up to 131K token context (using YaRN), setting a new standard for open-source models."
|
1861
|
+
},
|
1862
|
+
"qwen/qwen3-32b": {
|
1863
|
+
"description": "Qwen3-32B is a dense 32.8 billion parameter causal language model in the Qwen3 series, optimized for complex reasoning and efficient dialogue. It supports seamless switching between a 'thinking' mode for tasks such as mathematics, coding, and logical reasoning, and a 'non-thinking' mode for faster, general conversation. This model demonstrates strong performance in instruction following, agent tool usage, creative writing, and multilingual tasks across more than 100 languages and dialects. It natively handles a 32K token context and can be extended to 131K tokens using YaRN."
|
1864
|
+
},
|
1865
|
+
"qwen/qwen3-32b:free": {
|
1866
|
+
"description": "Qwen3-32B is a dense 32.8 billion parameter causal language model in the Qwen3 series, optimized for complex reasoning and efficient dialogue. It supports seamless switching between a 'thinking' mode for tasks such as mathematics, coding, and logical reasoning, and a 'non-thinking' mode for faster, general conversation. This model demonstrates strong performance in instruction following, agent tool usage, creative writing, and multilingual tasks across more than 100 languages and dialects. It natively handles a 32K token context and can be extended to 131K tokens using YaRN."
|
1867
|
+
},
|
1868
|
+
"qwen/qwen3-8b:free": {
|
1869
|
+
"description": "Qwen3-8B is a dense 8.2 billion parameter causal language model in the Qwen3 series, designed for reasoning-intensive tasks and efficient dialogue. It supports seamless switching between a 'thinking' mode for mathematics, coding, and logical reasoning, and a 'non-thinking' mode for general conversation. This model is fine-tuned for instruction following, agent integration, creative writing, and multilingual use across more than 100 languages and dialects. It natively supports a 32K token context window and can be extended to 131K tokens via YaRN."
|
1870
|
+
},
|
1844
1871
|
"qwen2": {
|
1845
1872
|
"description": "Qwen2 is Alibaba's next-generation large-scale language model, supporting diverse application needs with excellent performance."
|
1846
1873
|
},
|
@@ -1925,6 +1952,30 @@
|
|
1925
1952
|
"qwen2:72b": {
|
1926
1953
|
"description": "Qwen2 is Alibaba's next-generation large-scale language model, supporting diverse application needs with excellent performance."
|
1927
1954
|
},
|
1955
|
+
"qwen3-0.6b": {
|
1956
|
+
"description": "Qwen3 is a next-generation model with significantly enhanced capabilities, achieving industry-leading levels in reasoning, general tasks, agent functionality, and multilingual support, while also supporting mode switching."
|
1957
|
+
},
|
1958
|
+
"qwen3-1.7b": {
|
1959
|
+
"description": "Qwen3 is a next-generation model with significantly enhanced capabilities, achieving industry-leading levels in reasoning, general tasks, agent functionality, and multilingual support, while also supporting mode switching."
|
1960
|
+
},
|
1961
|
+
"qwen3-14b": {
|
1962
|
+
"description": "Qwen3 is a next-generation model with significantly enhanced capabilities, achieving industry-leading levels in reasoning, general tasks, agent functionality, and multilingual support, while also supporting mode switching."
|
1963
|
+
},
|
1964
|
+
"qwen3-235b-a22b": {
|
1965
|
+
"description": "Qwen3 is a next-generation model with significantly enhanced capabilities, achieving industry-leading levels in reasoning, general tasks, agent functionality, and multilingual support, while also supporting mode switching."
|
1966
|
+
},
|
1967
|
+
"qwen3-30b-a3b": {
|
1968
|
+
"description": "Qwen3 is a next-generation model with significantly enhanced capabilities, achieving industry-leading levels in reasoning, general tasks, agent functionality, and multilingual support, while also supporting mode switching."
|
1969
|
+
},
|
1970
|
+
"qwen3-32b": {
|
1971
|
+
"description": "Qwen3 is a next-generation model with significantly enhanced capabilities, achieving industry-leading levels in reasoning, general tasks, agent functionality, and multilingual support, while also supporting mode switching."
|
1972
|
+
},
|
1973
|
+
"qwen3-4b": {
|
1974
|
+
"description": "Qwen3 is a next-generation model with significantly enhanced capabilities, achieving industry-leading levels in reasoning, general tasks, agent functionality, and multilingual support, while also supporting mode switching."
|
1975
|
+
},
|
1976
|
+
"qwen3-8b": {
|
1977
|
+
"description": "Qwen3 is a next-generation model with significantly enhanced capabilities, achieving industry-leading levels in reasoning, general tasks, agent functionality, and multilingual support, while also supporting mode switching."
|
1978
|
+
},
|
1928
1979
|
"qwq": {
|
1929
1980
|
"description": "QwQ is an experimental research model focused on improving AI reasoning capabilities."
|
1930
1981
|
},
|
@@ -2027,6 +2078,18 @@
|
|
2027
2078
|
"thudm/glm-4-9b-chat": {
|
2028
2079
|
"description": "The open-source version of the latest generation pre-trained model from the GLM-4 series released by Zhiyuan AI."
|
2029
2080
|
},
|
2081
|
+
"thudm/glm-4-9b:free": {
|
2082
|
+
"description": "GLM-4-9B-0414 is a 9 billion parameter language model in the GLM-4 series developed by THUDM. GLM-4-9B-0414 is trained using the same reinforcement learning and alignment strategies as its larger 32B counterpart, achieving high performance relative to its scale, making it suitable for resource-constrained deployments that still require strong language understanding and generation capabilities."
|
2083
|
+
},
|
2084
|
+
"thudm/glm-z1-9b:free": {
|
2085
|
+
"description": "GLM-Z1-9B-0414 is a 9 billion parameter language model in the GLM-4 series developed by THUDM. It employs techniques initially applied to the larger GLM-Z1 model, including extended reinforcement learning, pairwise ranking alignment, and training for reasoning-intensive tasks such as mathematics, coding, and logic. Despite its smaller scale, it demonstrates strong performance on general reasoning tasks and outperforms many open-source models at its weight level."
|
2086
|
+
},
|
2087
|
+
"thudm/glm-z1-rumination-32b": {
|
2088
|
+
"description": "THUDM: GLM Z1 Rumination 32B is a deep reasoning model with 32 billion parameters in the GLM-4-Z1 series, optimized for complex, open-ended tasks that require prolonged thought. It builds upon glm-4-32b-0414, adding additional reinforcement learning stages and multi-stage alignment strategies, introducing a 'rumination' capability designed to simulate extended cognitive processing. This includes iterative reasoning, multi-hop analysis, and tool-enhanced workflows such as search, retrieval, and citation-aware synthesis.\n\nThe model excels in research-style writing, comparative analysis, and complex question answering. It supports function calls for search and navigation primitives (`search`, `click`, `open`, `finish`), allowing it to be used in agent-based pipelines. The rumination behavior is shaped by rule-based rewards and a delayed decision-making mechanism, controlled by multi-round cycles, benchmarked against deep research frameworks like OpenAI's internal alignment stack. This variant is suitable for scenarios requiring depth over speed."
|
2089
|
+
},
|
2090
|
+
"tngtech/deepseek-r1t-chimera:free": {
|
2091
|
+
"description": "DeepSeek-R1T-Chimera is created by merging DeepSeek-R1 and DeepSeek-V3 (0324), combining the reasoning capabilities of R1 with the token efficiency improvements of V3. It is based on the DeepSeek-MoE Transformer architecture and optimized for general text generation tasks.\n\nThis model merges the pre-trained weights of the two source models to balance performance in reasoning, efficiency, and instruction following tasks. It is released under the MIT license, intended for research and commercial use."
|
2092
|
+
},
|
2030
2093
|
"togethercomputer/StripedHyena-Nous-7B": {
|
2031
2094
|
"description": "StripedHyena Nous (7B) provides enhanced computational capabilities through efficient strategies and model architecture."
|
2032
2095
|
},
|
@@ -88,7 +88,8 @@
|
|
88
88
|
"emptyModel": "No hay modelos habilitados. Vaya a la configuración para habilitarlos.",
|
89
89
|
"emptyProvider": "No hay proveedores habilitados, por favor ve a la configuración para activarlos",
|
90
90
|
"goToSettings": "Ir a la configuración",
|
91
|
-
"provider": "Proveedor"
|
91
|
+
"provider": "Proveedor",
|
92
|
+
"title": "Modelo"
|
92
93
|
},
|
93
94
|
"OllamaSetupGuide": {
|
94
95
|
"action": {
|