@lobehub/chat 1.84.23 → 1.84.24
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +25 -0
- package/changelog/v1.json +9 -0
- package/locales/ar/hotkey.json +4 -0
- package/locales/ar/models.json +55 -13
- package/locales/ar/providers.json +0 -3
- package/locales/bg-BG/hotkey.json +4 -0
- package/locales/bg-BG/models.json +55 -13
- package/locales/bg-BG/providers.json +0 -3
- package/locales/de-DE/hotkey.json +4 -0
- package/locales/de-DE/models.json +55 -13
- package/locales/de-DE/providers.json +0 -3
- package/locales/en-US/hotkey.json +4 -0
- package/locales/en-US/models.json +55 -13
- package/locales/en-US/providers.json +0 -3
- package/locales/es-ES/hotkey.json +4 -0
- package/locales/es-ES/models.json +55 -13
- package/locales/es-ES/providers.json +0 -3
- package/locales/fa-IR/hotkey.json +4 -0
- package/locales/fa-IR/models.json +55 -13
- package/locales/fa-IR/providers.json +0 -3
- package/locales/fr-FR/hotkey.json +4 -0
- package/locales/fr-FR/models.json +55 -13
- package/locales/fr-FR/providers.json +0 -3
- package/locales/it-IT/hotkey.json +4 -0
- package/locales/it-IT/models.json +55 -13
- package/locales/it-IT/providers.json +0 -3
- package/locales/ja-JP/hotkey.json +4 -0
- package/locales/ja-JP/models.json +55 -13
- package/locales/ja-JP/providers.json +0 -3
- package/locales/ko-KR/hotkey.json +4 -0
- package/locales/ko-KR/models.json +55 -13
- package/locales/ko-KR/providers.json +0 -3
- package/locales/nl-NL/hotkey.json +4 -0
- package/locales/nl-NL/models.json +55 -13
- package/locales/nl-NL/providers.json +0 -3
- package/locales/pl-PL/hotkey.json +4 -0
- package/locales/pl-PL/models.json +55 -13
- package/locales/pl-PL/providers.json +0 -3
- package/locales/pt-BR/hotkey.json +4 -0
- package/locales/pt-BR/models.json +55 -13
- package/locales/pt-BR/providers.json +0 -3
- package/locales/ru-RU/hotkey.json +4 -0
- package/locales/ru-RU/models.json +55 -13
- package/locales/ru-RU/providers.json +0 -3
- package/locales/tr-TR/hotkey.json +4 -0
- package/locales/tr-TR/models.json +55 -13
- package/locales/tr-TR/providers.json +0 -3
- package/locales/vi-VN/hotkey.json +4 -0
- package/locales/vi-VN/models.json +55 -13
- package/locales/vi-VN/providers.json +0 -3
- package/locales/zh-CN/hotkey.json +4 -0
- package/locales/zh-CN/models.json +55 -13
- package/locales/zh-CN/providers.json +0 -3
- package/locales/zh-TW/hotkey.json +4 -0
- package/locales/zh-TW/models.json +55 -13
- package/locales/zh-TW/providers.json +0 -3
- package/package.json +1 -1
- package/src/const/hotkeys.ts +7 -0
- package/src/const/url.ts +1 -1
- package/src/features/User/UserPanel/useMenu.tsx +2 -1
- package/src/locales/default/hotkey.ts +4 -0
- package/src/services/__tests__/_url.test.ts +23 -0
- package/src/types/hotkey.ts +1 -0
@@ -71,6 +71,9 @@
|
|
71
71
|
"DeepSeek-V3": {
|
72
72
|
"description": "DeepSeek-V3 یک مدل MoE است که توسط شرکت DeepSeek توسعه یافته است. نتایج ارزیابیهای متعدد DeepSeek-V3 از مدلهای متن باز دیگر مانند Qwen2.5-72B و Llama-3.1-405B فراتر رفته و از نظر عملکرد با مدلهای بسته جهانی برتر مانند GPT-4o و Claude-3.5-Sonnet برابری میکند."
|
73
73
|
},
|
74
|
+
"Doubao-1.5-thinking-pro-m": {
|
75
|
+
"description": "Doubao-1.5 مدل جدید تفکر عمیق (نسخه m دارای قابلیت استدلال عمیق چندرسانهای بومی است) است که در زمینههای تخصصی مانند ریاضیات، برنامهنویسی، استدلال علمی و همچنین وظایف عمومی مانند نوشتن خلاقانه عملکرد برجستهای دارد و در چندین معیار معتبر مانند AIME 2024، Codeforces، GPQA به سطح اول صنعت دست یافته یا نزدیک شده است. این مدل از پنجره زمینه 128k و خروجی 16k پشتیبانی میکند."
|
76
|
+
},
|
74
77
|
"Doubao-1.5-vision-pro": {
|
75
78
|
"description": "Doubao-1.5-vision-pro مدل بزرگ چندرسانهای بهروز شده است که از شناسایی تصاویر با هر وضوح و نسبت ابعاد بسیار طولانی پشتیبانی میکند و تواناییهای استدلال بصری، شناسایی مستندات، درک اطلاعات جزئی و پیروی از دستورات را تقویت میکند."
|
76
79
|
},
|
@@ -293,6 +296,21 @@
|
|
293
296
|
"Qwen/Qwen2.5-VL-72B-Instruct": {
|
294
297
|
"description": "Qwen2.5-VL مدل زبان و تصویر از سری Qwen2.5 است. این مدل در جنبههای مختلف بهبود یافته است: دارای توانایی تحلیل بصری قویتر، قادر به تشخیص اشیاء رایج، تحلیل متن، نمودارها و طرحبندی است؛ به عنوان یک عامل بصری میتواند استدلال کند و به طور پویا ابزارها را هدایت کند؛ از توانایی درک ویدیوهای طولانیتر از یک ساعت و شناسایی رویدادهای کلیدی برخوردار است؛ قادر به مکانیابی دقیق اشیاء در تصویر با تولید جعبههای مرزی یا نقاط است؛ و توانایی تولید خروجیهای ساختاریافته، به ویژه برای دادههای اسکن شده مانند فاکتورها و جداول را دارد."
|
295
298
|
},
|
299
|
+
"Qwen/Qwen3-14B": {
|
300
|
+
"description": "Qwen3 یک مدل بزرگ جدید با تواناییهای بهبود یافته است که در استدلال، عمومی، نمایندگی و چند زبانی به سطح پیشرفته صنعت دست یافته و از تغییر حالت تفکر پشتیبانی میکند."
|
301
|
+
},
|
302
|
+
"Qwen/Qwen3-235B-A22B": {
|
303
|
+
"description": "Qwen3 یک مدل بزرگ جدید با تواناییهای بهبود یافته است که در استدلال، عمومی، نمایندگی و چند زبانی به سطح پیشرفته صنعت دست یافته و از تغییر حالت تفکر پشتیبانی میکند."
|
304
|
+
},
|
305
|
+
"Qwen/Qwen3-30B-A3B": {
|
306
|
+
"description": "Qwen3 یک مدل بزرگ جدید با تواناییهای بهبود یافته است که در استدلال، عمومی، نمایندگی و چند زبانی به سطح پیشرفته صنعت دست یافته و از تغییر حالت تفکر پشتیبانی میکند."
|
307
|
+
},
|
308
|
+
"Qwen/Qwen3-32B": {
|
309
|
+
"description": "Qwen3 یک مدل بزرگ جدید با تواناییهای بهبود یافته است که در استدلال، عمومی، نمایندگی و چند زبانی به سطح پیشرفته صنعت دست یافته و از تغییر حالت تفکر پشتیبانی میکند."
|
310
|
+
},
|
311
|
+
"Qwen/Qwen3-8B": {
|
312
|
+
"description": "Qwen3 یک مدل بزرگ جدید با تواناییهای بهبود یافته است که در استدلال، عمومی، نمایندگی و چند زبانی به سطح پیشرفته صنعت دست یافته و از تغییر حالت تفکر پشتیبانی میکند."
|
313
|
+
},
|
296
314
|
"Qwen2-72B-Instruct": {
|
297
315
|
"description": "Qwen2 جدیدترین سری مدلهای Qwen است که از 128k زمینه پشتیبانی میکند. در مقایسه با بهترین مدلهای متنباز فعلی، Qwen2-72B در درک زبان طبیعی، دانش، کد، ریاضی و چندزبانگی به طور قابل توجهی از مدلهای پیشرو فعلی فراتر رفته است."
|
298
316
|
},
|
@@ -398,9 +416,6 @@
|
|
398
416
|
"THUDM/glm-4-9b-chat": {
|
399
417
|
"description": "نسخه منبع باز GLM-4 9B، تجربه گفتگوی بهینهشده برای برنامههای مکالمه را ارائه میدهد."
|
400
418
|
},
|
401
|
-
"TeleAI/TeleChat2": {
|
402
|
-
"description": "مدل بزرگ TeleChat2 توسط China Telecom از صفر تا یک به طور مستقل توسعه یافته و یک مدل معنایی تولیدی است که از قابلیتهایی مانند پرسش و پاسخ دایرهالمعارف، تولید کد و تولید متن طولانی پشتیبانی میکند و خدمات مشاوره گفتگویی را به کاربران ارائه میدهد. این مدل قادر به تعامل گفتگویی با کاربران، پاسخ به سوالات و کمک به خلاقیت است و به طور کارآمد و راحت به کاربران در دستیابی به اطلاعات، دانش و الهام کمک میکند. این مدل در زمینههای مشکلات توهم، تولید متن طولانی و درک منطقی عملکرد خوبی دارد."
|
403
|
-
},
|
404
419
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
405
420
|
"description": "Qwen2.5-72B-Instruct یکی از جدیدترین سری مدلهای زبانی بزرگ منتشر شده توسط Alibaba Cloud است. این مدل 72B در زمینههای کدنویسی و ریاضی دارای تواناییهای بهبود یافته قابل توجهی است. این مدل همچنین از پشتیبانی چند زبانه برخوردار است و بیش از 29 زبان از جمله چینی و انگلیسی را پوشش میدهد. این مدل در پیروی از دستورات، درک دادههای ساختاری و تولید خروجیهای ساختاری (به ویژه JSON) به طور قابل توجهی بهبود یافته است."
|
406
421
|
},
|
@@ -800,6 +815,12 @@
|
|
800
815
|
"deepseek/deepseek-chat": {
|
801
816
|
"description": "مدل متنباز جدیدی که تواناییهای عمومی و کدنویسی را ترکیب میکند. این مدل نه تنها توانایی گفتگوی عمومی مدل Chat و قدرت پردازش کد مدل Coder را حفظ کرده است، بلکه به ترجیحات انسانی نیز بهتر همسو شده است. علاوه بر این، DeepSeek-V2.5 در وظایف نوشتاری، پیروی از دستورات و سایر جنبهها نیز بهبودهای قابل توجهی داشته است."
|
802
817
|
},
|
818
|
+
"deepseek/deepseek-chat-v3-0324": {
|
819
|
+
"description": "DeepSeek V3 یک مدل ترکیبی متخصص با 685B پارامتر است و جدیدترین نسخه از سری مدلهای چت پرچمدار تیم DeepSeek میباشد.\n\nاین مدل از [DeepSeek V3](/deepseek/deepseek-chat-v3) به ارث برده و در انواع وظایف عملکرد عالی از خود نشان میدهد."
|
820
|
+
},
|
821
|
+
"deepseek/deepseek-chat-v3-0324:free": {
|
822
|
+
"description": "DeepSeek V3 یک مدل ترکیبی متخصص با 685B پارامتر است و جدیدترین نسخه از سری مدلهای چت پرچمدار تیم DeepSeek میباشد.\n\nاین مدل از [DeepSeek V3](/deepseek/deepseek-chat-v3) به ارث برده و در انواع وظایف عملکرد عالی از خود نشان میدهد."
|
823
|
+
},
|
803
824
|
"deepseek/deepseek-r1": {
|
804
825
|
"description": "DeepSeek-R1 با وجود دادههای برچسبگذاری شده بسیار کم، توانایی استدلال مدل را به طرز چشمگیری افزایش میدهد. قبل از ارائه پاسخ نهایی، مدل ابتدا یک زنجیره تفکر را تولید میکند تا دقت پاسخ نهایی را افزایش دهد."
|
805
826
|
},
|
@@ -851,9 +872,6 @@
|
|
851
872
|
"doubao-1.5-thinking-pro": {
|
852
873
|
"description": "مدل تفکر عمیق جدید Doubao-1.5، در زمینههای تخصصی مانند ریاضیات، برنامهنویسی، استدلال علمی و همچنین در وظایف عمومی مانند نوشتن خلاقانه عملکرد برجستهای دارد و در معیارهای معتبر مانند AIME 2024، Codeforces و GPQA به سطح اول صنعت نزدیک یا در آن قرار دارد. از پنجره زمینه 128k و خروجی 16k پشتیبانی میکند."
|
853
874
|
},
|
854
|
-
"doubao-1.5-thinking-pro-vision": {
|
855
|
-
"description": "مدل تفکر عمیق جدید Doubao-1.5، در زمینههای تخصصی مانند ریاضیات، برنامهنویسی، استدلال علمی و همچنین در وظایف عمومی مانند نوشتن خلاقانه عملکرد برجستهای دارد و در معیارهای معتبر مانند AIME 2024، Codeforces و GPQA به سطح اول صنعت نزدیک یا در آن قرار دارد. از پنجره زمینه 128k و خروجی 16k پشتیبانی میکند."
|
856
|
-
},
|
857
875
|
"doubao-1.5-vision-lite": {
|
858
876
|
"description": "Doubao-1.5-vision-lite مدل بزرگ چندرسانهای بهروز شده است که از شناسایی تصاویر با هر وضوح و نسبت ابعاد بسیار طولانی پشتیبانی میکند و تواناییهای استدلال بصری، شناسایی مستندات، درک اطلاعات جزئی و پیروی از دستورات را تقویت میکند. از پنجره متن 128k و حداکثر طول خروجی 16k توکن پشتیبانی میکند."
|
859
877
|
},
|
@@ -995,9 +1013,6 @@
|
|
995
1013
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
996
1014
|
"description": "Gemini 2.0 Flash Exp جدیدترین مدل AI چندرسانهای آزمایشی گوگل است که دارای ویژگیهای نسل بعدی، سرعت فوقالعاده، فراخوانی ابزار بومی و تولید چندرسانهای است."
|
997
1015
|
},
|
998
|
-
"gemini-2.0-pro-exp-02-05": {
|
999
|
-
"description": "Gemini 2.0 Pro Experimental جدیدترین مدل AI چندرسانهای آزمایشی گوگل است که نسبت به نسخههای قبلی خود بهبود کیفیت قابل توجهی داشته است، به ویژه در زمینه دانش جهانی، کد و متنهای طولانی."
|
1000
|
-
},
|
1001
1016
|
"gemini-2.5-flash-preview-04-17": {
|
1002
1017
|
"description": "پیشنمایش فلش Gemini 2.5 مدل با بهترین قیمت و کیفیت گوگل است که امکانات جامع و کاملی را ارائه میدهد."
|
1003
1018
|
},
|
@@ -1007,6 +1022,9 @@
|
|
1007
1022
|
"gemini-2.5-pro-preview-03-25": {
|
1008
1023
|
"description": "پیشنمایش Gemini 2.5 Pro مدل پیشرفته تفکر گوگل است که قادر به استدلال در مورد کد، ریاضیات و مسائل پیچیده در زمینه STEM میباشد و همچنین میتواند با استفاده از تحلیل زمینهای طولانی، مجموعههای داده بزرگ، کتابخانههای کد و مستندات را بررسی کند."
|
1009
1024
|
},
|
1025
|
+
"gemini-2.5-pro-preview-05-06": {
|
1026
|
+
"description": "Gemini 2.5 Pro Preview مدل پیشرفته تفکر گوگل است که قادر به استدلال در مورد کد، ریاضیات و مسائل پیچیده در زمینه STEM میباشد و میتواند با استفاده از تحلیل زمینهای طولانی، مجموعههای داده بزرگ، کتابخانههای کد و مستندات را بررسی کند."
|
1027
|
+
},
|
1010
1028
|
"gemma-7b-it": {
|
1011
1029
|
"description": "Gemma 7B برای پردازش وظایف کوچک و متوسط مناسب است و از نظر هزینه مؤثر است."
|
1012
1030
|
},
|
@@ -1091,8 +1109,17 @@
|
|
1091
1109
|
"google/gemini-2.0-flash-001": {
|
1092
1110
|
"description": "Gemini 2.0 Flash ویژگیها و بهبودهای نسل بعدی را ارائه میدهد، از جمله سرعت عالی، استفاده از ابزارهای بومی، تولید چندرسانهای و پنجره متن 1M توکن."
|
1093
1111
|
},
|
1094
|
-
"google/gemini-2.0-
|
1095
|
-
"description": "Gemini 2.0
|
1112
|
+
"google/gemini-2.0-flash-exp:free": {
|
1113
|
+
"description": "Gemini 2.0 Flash Experimental جدیدترین مدل هوش مصنوعی چندرسانهای آزمایشی گوگل است که نسبت به نسخههای قبلی خود بهبود کیفیت قابل توجهی دارد، به ویژه در زمینه دانش جهانی، کد و زمینههای طولانی."
|
1114
|
+
},
|
1115
|
+
"google/gemini-2.5-flash-preview": {
|
1116
|
+
"description": "Gemini 2.5 Flash مدل اصلی پیشرفته گوگل است که به طور خاص برای استدلال پیشرفته، کدنویسی، ریاضیات و وظایف علمی طراحی شده است. این مدل دارای قابلیت «تفکر» داخلی است که به آن اجازه میدهد پاسخهایی با دقت بالاتر و پردازش زمینهای دقیقتری ارائه دهد.\n\nتوجه: این مدل دارای دو واریانت است: تفکر و غیرتفکر. قیمتگذاری خروجی بسته به فعال بودن قابلیت تفکر به طور قابل توجهی متفاوت است. اگر شما واریانت استاندارد (بدون پسوند «:thinking») را انتخاب کنید، مدل به وضوح از تولید توکنهای تفکر اجتناب خواهد کرد.\n\nبرای استفاده از قابلیت تفکر و دریافت توکنهای تفکر، شما باید واریانت «:thinking» را انتخاب کنید که منجر به قیمتگذاری بالاتر خروجی تفکر خواهد شد.\n\nعلاوه بر این، Gemini 2.5 Flash میتواند از طریق پارامتر «حداکثر تعداد توکنهای استدلال» پیکربندی شود، همانطور که در مستندات توضیح داده شده است (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1117
|
+
},
|
1118
|
+
"google/gemini-2.5-flash-preview:thinking": {
|
1119
|
+
"description": "Gemini 2.5 Flash مدل اصلی پیشرفته گوگل است که به طور خاص برای استدلال پیشرفته، کدنویسی، ریاضیات و وظایف علمی طراحی شده است. این مدل دارای قابلیت «تفکر» داخلی است که به آن اجازه میدهد پاسخهایی با دقت بالاتر و پردازش زمینهای دقیقتری ارائه دهد.\n\nتوجه: این مدل دارای دو واریانت است: تفکر و غیرتفکر. قیمتگذاری خروجی بسته به فعال بودن قابلیت تفکر به طور قابل توجهی متفاوت است. اگر شما واریانت استاندارد (بدون پسوند «:thinking») را انتخاب کنید، مدل به وضوح از تولید توکنهای تفکر اجتناب خواهد کرد.\n\nبرای استفاده از قابلیت تفکر و دریافت توکنهای تفکر، شما باید واریانت «:thinking» را انتخاب کنید که منجر به قیمتگذاری بالاتر خروجی تفکر خواهد شد.\n\nعلاوه بر این، Gemini 2.5 Flash میتواند از طریق پارامتر «حداکثر تعداد توکنهای استدلال» پیکربندی شود، همانطور که در مستندات توضیح داده شده است (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1120
|
+
},
|
1121
|
+
"google/gemini-2.5-pro-preview-03-25": {
|
1122
|
+
"description": "Gemini 2.5 Pro مدل هوش مصنوعی پیشرفته گوگل است که به طور خاص برای استدلال پیشرفته، کدنویسی، ریاضیات و وظایف علمی طراحی شده است. این مدل دارای قابلیت «تفکر» است که به آن اجازه میدهد پاسخها را با دقت بالاتر و پردازش زمینهای دقیقتری استدلال کند. Gemini 2.5 Pro در چندین آزمون معیار عملکرد برتر را به دست آورده است، از جمله رتبه اول در جدول LMArena، که نشاندهنده همراستایی برتر با ترجیحات انسانی و توانایی حل مسائل پیچیده است."
|
1096
1123
|
},
|
1097
1124
|
"google/gemini-flash-1.5": {
|
1098
1125
|
"description": "Gemini 1.5 Flash قابلیت پردازش چندوجهی بهینهشده را ارائه میدهد و برای انواع سناریوهای پیچیده مناسب است."
|
@@ -1592,6 +1619,9 @@
|
|
1592
1619
|
"mistral-large-latest": {
|
1593
1620
|
"description": "Mistral Large یک مدل بزرگ پرچمدار است که در انجام وظایف چندزبانه، استدلال پیچیده و تولید کد مهارت دارد و انتخابی ایدهآل برای کاربردهای سطح بالا است."
|
1594
1621
|
},
|
1622
|
+
"mistral-medium-latest": {
|
1623
|
+
"description": "Mistral Medium 3 با هزینه 8 برابری، عملکرد پیشرفتهای را ارائه میدهد و به طور اساسی استقرارهای شرکتی را سادهتر میکند."
|
1624
|
+
},
|
1595
1625
|
"mistral-nemo": {
|
1596
1626
|
"description": "Mistral Nemo توسط Mistral AI و NVIDIA بهطور مشترک عرضه شده است و یک مدل ۱۲ میلیاردی با کارایی بالا میباشد."
|
1597
1627
|
},
|
@@ -1763,8 +1793,8 @@
|
|
1763
1793
|
"qvq-72b-preview": {
|
1764
1794
|
"description": "مدل QVQ یک مدل تحقیقاتی تجربی است که توسط تیم Qwen توسعه یافته و بر بهبود توانایی استدلال بصری، بهویژه در زمینه استدلال ریاضی تمرکز دارد."
|
1765
1795
|
},
|
1766
|
-
"qvq-max": {
|
1767
|
-
"description": "مدل استدلال بصری QVQ
|
1796
|
+
"qvq-max-latest": {
|
1797
|
+
"description": "مدل استدلال بصری QVQ، ورودیهای بصری و خروجیهای زنجیره تفکر را پشتیبانی میکند و در ریاضیات، برنامهنویسی، تحلیل بصری، خلاقیت و وظایف عمومی عملکرد بهتری از خود نشان میدهد."
|
1768
1798
|
},
|
1769
1799
|
"qwen-coder-plus-latest": {
|
1770
1800
|
"description": "مدل کد Qwen با قابلیتهای جامع."
|
@@ -2075,12 +2105,24 @@
|
|
2075
2105
|
"text-embedding-3-small": {
|
2076
2106
|
"description": "مدل جدید و کارآمد Embedding، مناسب برای جستجوی دانش، کاربردهای RAG و سایر سناریوها."
|
2077
2107
|
},
|
2108
|
+
"thudm/glm-4-32b": {
|
2109
|
+
"description": "GLM-4-32B-0414 یک مدل زبان با وزنهای باز 32B دو زبانه (چینی و انگلیسی) است که برای تولید کد، فراخوانی توابع و وظایف نمایندگی بهینهسازی شده است. این مدل بر روی 15T دادههای با کیفیت بالا و دادههای استدلال مجدد پیشآموزش شده و با همراستایی ترجیحات انسانی، نمونهبرداری رد و یادگیری تقویتی بهبود یافته است. این مدل در استدلال پیچیده، تولید آثار و وظایف خروجی ساختاری عملکرد عالی از خود نشان میدهد و در چندین آزمون معیار به عملکردی معادل با GPT-4o و DeepSeek-V3-0324 دست یافته است."
|
2110
|
+
},
|
2111
|
+
"thudm/glm-4-32b:free": {
|
2112
|
+
"description": "GLM-4-32B-0414 یک مدل زبان با وزنهای باز 32B دو زبانه (چینی و انگلیسی) است که برای تولید کد، فراخوانی توابع و وظایف نمایندگی بهینهسازی شده است. این مدل بر روی 15T دادههای با کیفیت بالا و دادههای استدلال مجدد پیشآموزش شده و با همراستایی ترجیحات انسانی، نمونهبرداری رد و یادگیری تقویتی بهبود یافته است. این مدل در استدلال پیچیده، تولید آثار و وظایف خروجی ساختاری عملکرد عالی از خود نشان میدهد و در چندین آزمون معیار به عملکردی معادل با GPT-4o و DeepSeek-V3-0324 دست یافته است."
|
2113
|
+
},
|
2078
2114
|
"thudm/glm-4-9b-chat": {
|
2079
2115
|
"description": "نسخه متن باز جدیدترین نسل مدلهای پیشآموزش GLM-4 منتشر شده توسط Zhizhu AI."
|
2080
2116
|
},
|
2081
2117
|
"thudm/glm-4-9b:free": {
|
2082
2118
|
"description": "GLM-4-9B-0414 یک مدل زبان با ۹۰ میلیارد پارامتر در سری GLM-4 است که توسط THUDM توسعه یافته است. GLM-4-9B-0414 از همان استراتژیهای تقویت یادگیری و همراستایی که برای مدل بزرگتر ۳۲B خود استفاده میشود، استفاده میکند و نسبت به اندازه خود عملکرد بالایی را ارائه میدهد و برای استقرار در منابع محدود که هنوز به تواناییهای قوی در درک و تولید زبان نیاز دارند، مناسب است."
|
2083
2119
|
},
|
2120
|
+
"thudm/glm-z1-32b": {
|
2121
|
+
"description": "GLM-Z1-32B-0414 یک واریانت تقویتشده استدلال GLM-4-32B است که به طور خاص برای حل مسائل عمیق ریاضی، منطقی و کد محور طراحی شده است. این مدل از یادگیری تقویتی گسترشیافته (وظیفهمحور و مبتنی بر ترجیحات جفتی عمومی) برای بهبود عملکرد در وظایف پیچیده چند مرحلهای استفاده میکند. نسبت به مدل پایه GLM-4-32B، Z1 به طور قابل توجهی تواناییهای استدلال ساختاری و حوزههای رسمی را افزایش میدهد.\n\nاین مدل از طریق مهندسی نشانهگذاری، مراحل «تفکر» را تحمیل میکند و برای خروجیهای طولانی، انسجام بهبودیافتهای را فراهم میکند. این مدل برای جریانهای کاری نمایندگی بهینهسازی شده و از زمینههای طولانی (از طریق YaRN)، فراخوانی ابزار JSON و پیکربندی نمونهبرداری دقیق برای استدلال پایدار پشتیبانی میکند. این مدل برای مواردی که نیاز به تفکر عمیق، استدلال چند مرحلهای یا استنتاج رسمی دارند، بسیار مناسب است."
|
2122
|
+
},
|
2123
|
+
"thudm/glm-z1-32b:free": {
|
2124
|
+
"description": "GLM-Z1-32B-0414 یک واریانت تقویتشده استدلال GLM-4-32B است که به طور خاص برای حل مسائل عمیق ریاضی، منطقی و کد محور طراحی شده است. این مدل از یادگیری تقویتی گسترشیافته (وظیفهمحور و مبتنی بر ترجیحات جفتی عمومی) برای بهبود عملکرد در وظایف پیچیده چند مرحلهای استفاده میکند. نسبت به مدل پایه GLM-4-32B، Z1 به طور قابل توجهی تواناییهای استدلال ساختاری و حوزههای رسمی را افزایش میدهد.\n\nاین مدل از طریق مهندسی نشانهگذاری، مراحل «تفکر» را تحمیل میکند و برای خروجیهای طولانی، انسجام بهبودیافتهای را فراهم میکند. این مدل برای جریانهای کاری نمایندگی بهینهسازی شده و از زمینههای طولانی (از طریق YaRN)، فراخوانی ابزار JSON و پیکربندی نمونهبرداری دقیق برای استدلال پایدار پشتیبانی میکند. این مدل برای مواردی که نیاز به تفکر عمیق، استدلال چند مرحلهای یا استنتاج رسمی دارند، بسیار مناسب است."
|
2125
|
+
},
|
2084
2126
|
"thudm/glm-z1-9b:free": {
|
2085
2127
|
"description": "GLM-Z1-9B-0414 یک مدل زبان با ۹B پارامتر در سری GLM-4 است که توسط THUDM توسعه یافته است. این مدل از تکنیکهایی که در ابتدا برای مدل بزرگتر GLM-Z1 استفاده شده بود، شامل تقویت یادگیری گسترشیافته، همراستایی رتبهبندی جفت و آموزش برای وظایف استدلال فشرده مانند ریاضیات، کدنویسی و منطق استفاده میکند. با وجود اندازه کوچکتر، این مدل در وظایف استدلال عمومی عملکرد قوی دارد و در سطح وزن خود از بسیاری از مدلهای متنباز برتر است."
|
2086
2128
|
},
|
@@ -29,9 +29,6 @@
|
|
29
29
|
"deepseek": {
|
30
30
|
"description": "DeepSeek یک شرکت متمرکز بر تحقیق و کاربرد فناوری هوش مصنوعی است. مدل جدید آن، DeepSeek-V2.5، تواناییهای مکالمه عمومی و پردازش کد را ترکیب کرده و در زمینههایی مانند همترازی با ترجیحات انسانی، وظایف نوشتاری و پیروی از دستورات بهبود قابل توجهی داشته است."
|
31
31
|
},
|
32
|
-
"doubao": {
|
33
|
-
"description": "مدل بزرگ خودساخته شده توسط بایتدANCE. با تأیید در بیش از 50 سناریوی تجاری داخلی بایتدANCE، با استفاده روزانه از تریلیونها توکن، به طور مداوم بهبود یافته و تواناییهای چندگانهای را ارائه میدهد تا تجربههای تجاری غنی را با کیفیت مدل بالا برای شرکتها ایجاد کند."
|
34
|
-
},
|
35
32
|
"fireworksai": {
|
36
33
|
"description": "Fireworks AI یک ارائهدهنده پیشرو در خدمات مدلهای زبان پیشرفته است که بر فراخوانی توابع و پردازش چندوجهی تمرکز دارد. جدیدترین مدل آن، Firefunction V2، بر اساس Llama-3 ساخته شده و برای فراخوانی توابع، مکالمه و پیروی از دستورات بهینهسازی شده است. مدل زبان تصویری FireLLaVA-13B از ورودیهای ترکیبی تصویر و متن پشتیبانی میکند. سایر مدلهای قابل توجه شامل سری Llama و سری Mixtral هستند که پشتیبانی کارآمدی از پیروی دستورات چندزبانه و تولید ارائه میدهند."
|
37
34
|
},
|
@@ -35,6 +35,10 @@
|
|
35
35
|
"desc": "Faire apparaître la barre de recherche principale de la page actuelle",
|
36
36
|
"title": "Rechercher"
|
37
37
|
},
|
38
|
+
"showApp": {
|
39
|
+
"desc": "Ouvrir rapidement la fenêtre principale de l'application",
|
40
|
+
"title": "Afficher la fenêtre principale"
|
41
|
+
},
|
38
42
|
"switchAgent": {
|
39
43
|
"desc": "Changer d'assistant fixé dans la barre latérale en maintenant Ctrl et en appuyant sur un chiffre de 0 à 9",
|
40
44
|
"title": "Changer rapidement d'assistant"
|
@@ -71,6 +71,9 @@
|
|
71
71
|
"DeepSeek-V3": {
|
72
72
|
"description": "DeepSeek-V3 est un modèle MoE développé en interne par la société DeepSeek. Les performances de DeepSeek-V3 surpassent celles d'autres modèles open source tels que Qwen2.5-72B et Llama-3.1-405B, et se mesurent à la performance des modèles fermés de pointe au monde comme GPT-4o et Claude-3.5-Sonnet."
|
73
73
|
},
|
74
|
+
"Doubao-1.5-thinking-pro-m": {
|
75
|
+
"description": "Doubao-1.5 est un nouveau modèle de pensée profonde (version m avec des capacités de raisonnement multimodal natif), qui excelle dans des domaines spécialisés tels que les mathématiques, la programmation, le raisonnement scientifique et des tâches générales comme l'écriture créative, atteignant ou se rapprochant des niveaux de pointe dans plusieurs benchmarks autorisés tels que AIME 2024, Codeforces, GPQA. Prend en charge une fenêtre de contexte de 128k et une sortie de 16k."
|
76
|
+
},
|
74
77
|
"Doubao-1.5-vision-pro": {
|
75
78
|
"description": "Doubao-1.5-vision-pro est un modèle multimodal de nouvelle génération, prenant en charge la reconnaissance d'images à n'importe quelle résolution et rapport d'aspect extrême, améliorant les capacités de raisonnement visuel, de reconnaissance de documents, de compréhension des informations détaillées et de respect des instructions."
|
76
79
|
},
|
@@ -293,6 +296,21 @@
|
|
293
296
|
"Qwen/Qwen2.5-VL-72B-Instruct": {
|
294
297
|
"description": "Qwen2.5-VL est le modèle de langage visuel de la série Qwen2.5. Ce modèle présente des améliorations significatives à plusieurs égards : il possède une meilleure compréhension visuelle, capable de reconnaître des objets courants, d'analyser du texte, des graphiques et des mises en page ; en tant qu'agent visuel, il peut raisonner et guider dynamiquement l'utilisation d'outils ; il prend en charge la compréhension de vidéos longues de plus d'une heure et capture les événements clés ; il peut localiser avec précision des objets dans une image en générant des cadres de délimitation ou des points ; il prend en charge la génération de sorties structurées, particulièrement adaptée aux données scannées comme les factures et les tableaux."
|
295
298
|
},
|
299
|
+
"Qwen/Qwen3-14B": {
|
300
|
+
"description": "Qwen3 est un nouveau modèle de Tongyi Qianwen avec des capacités considérablement améliorées, atteignant des niveaux de pointe dans plusieurs compétences clés telles que le raisonnement, l'agent et le multilingue, et prenant en charge le changement de mode de pensée."
|
301
|
+
},
|
302
|
+
"Qwen/Qwen3-235B-A22B": {
|
303
|
+
"description": "Qwen3 est un nouveau modèle de Tongyi Qianwen avec des capacités considérablement améliorées, atteignant des niveaux de pointe dans plusieurs compétences clés telles que le raisonnement, l'agent et le multilingue, et prenant en charge le changement de mode de pensée."
|
304
|
+
},
|
305
|
+
"Qwen/Qwen3-30B-A3B": {
|
306
|
+
"description": "Qwen3 est un nouveau modèle de Tongyi Qianwen avec des capacités considérablement améliorées, atteignant des niveaux de pointe dans plusieurs compétences clés telles que le raisonnement, l'agent et le multilingue, et prenant en charge le changement de mode de pensée."
|
307
|
+
},
|
308
|
+
"Qwen/Qwen3-32B": {
|
309
|
+
"description": "Qwen3 est un nouveau modèle de Tongyi Qianwen avec des capacités considérablement améliorées, atteignant des niveaux de pointe dans plusieurs compétences clés telles que le raisonnement, l'agent et le multilingue, et prenant en charge le changement de mode de pensée."
|
310
|
+
},
|
311
|
+
"Qwen/Qwen3-8B": {
|
312
|
+
"description": "Qwen3 est un nouveau modèle de Tongyi Qianwen avec des capacités considérablement améliorées, atteignant des niveaux de pointe dans plusieurs compétences clés telles que le raisonnement, l'agent et le multilingue, et prenant en charge le changement de mode de pensée."
|
313
|
+
},
|
296
314
|
"Qwen2-72B-Instruct": {
|
297
315
|
"description": "Qwen2 est la dernière série du modèle Qwen, prenant en charge un contexte de 128k. Comparé aux meilleurs modèles open source actuels, Qwen2-72B surpasse de manière significative les modèles leaders dans des domaines tels que la compréhension du langage naturel, les connaissances, le code, les mathématiques et le multilinguisme."
|
298
316
|
},
|
@@ -398,9 +416,6 @@
|
|
398
416
|
"THUDM/glm-4-9b-chat": {
|
399
417
|
"description": "GLM-4 9B est une version open source, offrant une expérience de dialogue optimisée pour les applications de conversation."
|
400
418
|
},
|
401
|
-
"TeleAI/TeleChat2": {
|
402
|
-
"description": "Le grand modèle TeleChat2 est un modèle sémantique génératif développé de manière autonome par China Telecom, prenant en charge des fonctionnalités telles que les questions-réponses encyclopédiques, la génération de code et la génération de longs textes, fournissant des services de consultation par dialogue aux utilisateurs, capable d'interagir avec les utilisateurs, de répondre à des questions, d'assister à la création, et d'aider efficacement et commodément les utilisateurs à obtenir des informations, des connaissances et de l'inspiration. Le modèle montre de bonnes performances sur des problèmes d'hallucination, la génération de longs textes et la compréhension logique."
|
403
|
-
},
|
404
419
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
405
420
|
"description": "Qwen2.5-72B-Instruct est l'un des derniers modèles de langage à grande échelle publiés par Alibaba Cloud. Ce modèle 72B présente des capacités considérablement améliorées dans des domaines tels que le codage et les mathématiques. Le modèle offre également un support multilingue, couvrant plus de 29 langues, y compris le chinois et l'anglais. Il a montré des améliorations significatives dans le suivi des instructions, la compréhension des données structurées et la génération de sorties structurées (en particulier JSON)."
|
406
421
|
},
|
@@ -800,6 +815,12 @@
|
|
800
815
|
"deepseek/deepseek-chat": {
|
801
816
|
"description": "Un nouveau modèle open source fusionnant des capacités générales et de codage, qui non seulement conserve les capacités de dialogue général du modèle Chat d'origine et la puissante capacité de traitement de code du modèle Coder, mais s'aligne également mieux sur les préférences humaines. De plus, DeepSeek-V2.5 a également réalisé des améliorations significatives dans plusieurs domaines tels que les tâches d'écriture et le suivi d'instructions."
|
802
817
|
},
|
818
|
+
"deepseek/deepseek-chat-v3-0324": {
|
819
|
+
"description": "DeepSeek V3 est un modèle hybride d'experts avec 685B de paramètres, représentant la dernière itération de la série de modèles de chat phare de l'équipe DeepSeek.\n\nIl hérite du modèle [DeepSeek V3](/deepseek/deepseek-chat-v3) et excelle dans diverses tâches."
|
820
|
+
},
|
821
|
+
"deepseek/deepseek-chat-v3-0324:free": {
|
822
|
+
"description": "DeepSeek V3 est un modèle hybride d'experts avec 685B de paramètres, représentant la dernière itération de la série de modèles de chat phare de l'équipe DeepSeek.\n\nIl hérite du modèle [DeepSeek V3](/deepseek/deepseek-chat-v3) et excelle dans diverses tâches."
|
823
|
+
},
|
803
824
|
"deepseek/deepseek-r1": {
|
804
825
|
"description": "DeepSeek-R1 améliore considérablement les capacités de raisonnement du modèle avec très peu de données annotées. Avant de fournir la réponse finale, le modèle génère d'abord une chaîne de pensée pour améliorer l'exactitude de la réponse finale."
|
805
826
|
},
|
@@ -851,9 +872,6 @@
|
|
851
872
|
"doubao-1.5-thinking-pro": {
|
852
873
|
"description": "Le modèle de réflexion approfondie Doubao-1.5, entièrement nouveau, se distingue dans des domaines spécialisés tels que les mathématiques, la programmation, le raisonnement scientifique, ainsi que dans des tâches générales comme l'écriture créative. Il atteint ou se rapproche du niveau de premier plan de l'industrie sur plusieurs références de renom telles que AIME 2024, Codeforces, GPQA. Il prend en charge une fenêtre de contexte de 128k et une sortie de 16k."
|
853
874
|
},
|
854
|
-
"doubao-1.5-thinking-pro-vision": {
|
855
|
-
"description": "Le modèle de réflexion approfondie Doubao-1.5, entièrement nouveau, se distingue dans des domaines spécialisés tels que les mathématiques, la programmation, le raisonnement scientifique, ainsi que dans des tâches générales comme l'écriture créative. Il atteint ou se rapproche du niveau de premier plan de l'industrie sur plusieurs références de renom telles que AIME 2024, Codeforces, GPQA. Il prend en charge une fenêtre de contexte de 128k et une sortie de 16k."
|
856
|
-
},
|
857
875
|
"doubao-1.5-vision-lite": {
|
858
876
|
"description": "Doubao-1.5-vision-lite est un modèle multimodal de nouvelle génération, prenant en charge la reconnaissance d'images à n'importe quelle résolution et rapport d'aspect extrême, améliorant les capacités de raisonnement visuel, de reconnaissance de documents, de compréhension des informations détaillées et de respect des instructions. Il prend en charge une fenêtre de contexte de 128k, avec une longueur de sortie maximale de 16k tokens."
|
859
877
|
},
|
@@ -995,9 +1013,6 @@
|
|
995
1013
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
996
1014
|
"description": "Gemini 2.0 Flash Exp est le dernier modèle d'IA multimodal expérimental de Google, doté de caractéristiques de nouvelle génération, d'une vitesse exceptionnelle, d'appels d'outils natifs et de génération multimodale."
|
997
1015
|
},
|
998
|
-
"gemini-2.0-pro-exp-02-05": {
|
999
|
-
"description": "Gemini 2.0 Pro Experimental est le dernier modèle AI multimodal expérimental de Google, offrant une amélioration de la qualité par rapport aux versions précédentes, en particulier pour les connaissances générales, le code et les longs contextes."
|
1000
|
-
},
|
1001
1016
|
"gemini-2.5-flash-preview-04-17": {
|
1002
1017
|
"description": "Gemini 2.5 Flash Preview est le modèle le plus rentable de Google, offrant des fonctionnalités complètes."
|
1003
1018
|
},
|
@@ -1007,6 +1022,9 @@
|
|
1007
1022
|
"gemini-2.5-pro-preview-03-25": {
|
1008
1023
|
"description": "Gemini 2.5 Pro Preview est le modèle de pensée le plus avancé de Google, capable de raisonner sur des problèmes complexes en code, mathématiques et domaines STEM, ainsi que d'analyser de grands ensembles de données, bibliothèques de code et documents en utilisant un long contexte."
|
1009
1024
|
},
|
1025
|
+
"gemini-2.5-pro-preview-05-06": {
|
1026
|
+
"description": "Gemini 2.5 Pro Preview est le modèle de pensée le plus avancé de Google, capable de raisonner sur des problèmes complexes dans les domaines du code, des mathématiques et des STEM, ainsi que d'analyser de grands ensembles de données, des bibliothèques de code et des documents en utilisant une analyse de long contexte."
|
1027
|
+
},
|
1010
1028
|
"gemma-7b-it": {
|
1011
1029
|
"description": "Gemma 7B est adapté au traitement de tâches de taille moyenne, alliant coût et efficacité."
|
1012
1030
|
},
|
@@ -1091,8 +1109,17 @@
|
|
1091
1109
|
"google/gemini-2.0-flash-001": {
|
1092
1110
|
"description": "Gemini 2.0 Flash propose des fonctionnalités et des améliorations de nouvelle génération, y compris une vitesse exceptionnelle, l'utilisation d'outils natifs, la génération multimodale et une fenêtre de contexte de 1M tokens."
|
1093
1111
|
},
|
1094
|
-
"google/gemini-2.0-
|
1095
|
-
"description": "Gemini 2.0
|
1112
|
+
"google/gemini-2.0-flash-exp:free": {
|
1113
|
+
"description": "Gemini 2.0 Flash Experimental est le dernier modèle d'IA multimodal expérimental de Google, offrant une amélioration de qualité par rapport aux versions précédentes, en particulier pour les connaissances générales, le code et les longs contextes."
|
1114
|
+
},
|
1115
|
+
"google/gemini-2.5-flash-preview": {
|
1116
|
+
"description": "Gemini 2.5 Flash est le modèle phare le plus avancé de Google, conçu pour des tâches de raisonnement avancé, de codage, de mathématiques et de sciences. Il comprend des capacités de 'pensée' intégrées, lui permettant de fournir des réponses avec une plus grande précision et un traitement contextuel détaillé.\n\nRemarque : ce modèle a deux variantes : pensée et non-pensée. La tarification de sortie varie considérablement en fonction de l'activation de la capacité de pensée. Si vous choisissez la variante standard (sans le suffixe ':thinking'), le modèle évitera explicitement de générer des jetons de pensée.\n\nPour tirer parti de la capacité de pensée et recevoir des jetons de pensée, vous devez choisir la variante ':thinking', ce qui entraînera une tarification de sortie de pensée plus élevée.\n\nDe plus, Gemini 2.5 Flash peut être configuré via le paramètre 'nombre maximal de jetons de raisonnement', comme décrit dans la documentation (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1117
|
+
},
|
1118
|
+
"google/gemini-2.5-flash-preview:thinking": {
|
1119
|
+
"description": "Gemini 2.5 Flash est le modèle phare le plus avancé de Google, conçu pour des tâches de raisonnement avancé, de codage, de mathématiques et de sciences. Il comprend des capacités de 'pensée' intégrées, lui permettant de fournir des réponses avec une plus grande précision et un traitement contextuel détaillé.\n\nRemarque : ce modèle a deux variantes : pensée et non-pensée. La tarification de sortie varie considérablement en fonction de l'activation de la capacité de pensée. Si vous choisissez la variante standard (sans le suffixe ':thinking'), le modèle évitera explicitement de générer des jetons de pensée.\n\nPour tirer parti de la capacité de pensée et recevoir des jetons de pensée, vous devez choisir la variante ':thinking', ce qui entraînera une tarification de sortie de pensée plus élevée.\n\nDe plus, Gemini 2.5 Flash peut être configuré via le paramètre 'nombre maximal de jetons de raisonnement', comme décrit dans la documentation (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1120
|
+
},
|
1121
|
+
"google/gemini-2.5-pro-preview-03-25": {
|
1122
|
+
"description": "Gemini 2.5 Pro est le modèle d'IA le plus avancé de Google, conçu pour des tâches de raisonnement avancé, de codage, de mathématiques et de sciences. Il utilise des capacités de 'pensée' qui lui permettent de raisonner avec une plus grande précision et un traitement contextuel détaillé. Gemini 2.5 Pro a obtenu des performances de premier plan dans plusieurs tests de référence, y compris la première place dans le classement LMArena, reflétant une excellente alignement des préférences humaines et des capacités de résolution de problèmes complexes."
|
1096
1123
|
},
|
1097
1124
|
"google/gemini-flash-1.5": {
|
1098
1125
|
"description": "Gemini 1.5 Flash propose des capacités de traitement multimodal optimisées, adaptées à divers scénarios de tâches complexes."
|
@@ -1592,6 +1619,9 @@
|
|
1592
1619
|
"mistral-large-latest": {
|
1593
1620
|
"description": "Mistral Large est le modèle phare, excellent pour les tâches multilingues, le raisonnement complexe et la génération de code, idéal pour des applications haut de gamme."
|
1594
1621
|
},
|
1622
|
+
"mistral-medium-latest": {
|
1623
|
+
"description": "Mistral Medium 3 offre des performances de pointe à un coût 8 fois inférieur et simplifie fondamentalement le déploiement en entreprise."
|
1624
|
+
},
|
1595
1625
|
"mistral-nemo": {
|
1596
1626
|
"description": "Mistral Nemo, développé en collaboration entre Mistral AI et NVIDIA, est un modèle de 12B à performance efficace."
|
1597
1627
|
},
|
@@ -1763,8 +1793,8 @@
|
|
1763
1793
|
"qvq-72b-preview": {
|
1764
1794
|
"description": "Le modèle QVQ est un modèle de recherche expérimental développé par l'équipe Qwen, axé sur l'amélioration des capacités de raisonnement visuel, en particulier dans le domaine du raisonnement mathématique."
|
1765
1795
|
},
|
1766
|
-
"qvq-max": {
|
1767
|
-
"description": "Le modèle de raisonnement visuel QVQ de Tongyi Qianwen prend en charge les entrées visuelles et les sorties de
|
1796
|
+
"qvq-max-latest": {
|
1797
|
+
"description": "Le modèle de raisonnement visuel QVQ de Tongyi Qianwen prend en charge les entrées visuelles et les sorties de chaîne de pensée, montrant des capacités renforcées dans les domaines des mathématiques, de la programmation, de l'analyse visuelle, de la création et des tâches générales."
|
1768
1798
|
},
|
1769
1799
|
"qwen-coder-plus-latest": {
|
1770
1800
|
"description": "Modèle de code Qwen universel."
|
@@ -2075,12 +2105,24 @@
|
|
2075
2105
|
"text-embedding-3-small": {
|
2076
2106
|
"description": "Un modèle d'Embedding de nouvelle génération, efficace et économique, adapté à la recherche de connaissances, aux applications RAG, etc."
|
2077
2107
|
},
|
2108
|
+
"thudm/glm-4-32b": {
|
2109
|
+
"description": "GLM-4-32B-0414 est un modèle de langage à poids ouvert de 32B bilingue (chinois-anglais), optimisé pour la génération de code, les appels de fonctions et les tâches d'agents. Il a été pré-entraîné sur 15T de données de haute qualité et de réinférence, et perfectionné par un alignement des préférences humaines, un échantillonnage de rejet et un apprentissage par renforcement. Ce modèle excelle dans le raisonnement complexe, la génération d'artefacts et les tâches de sortie structurée, atteignant des performances comparables à celles de GPT-4o et DeepSeek-V3-0324 dans plusieurs tests de référence."
|
2110
|
+
},
|
2111
|
+
"thudm/glm-4-32b:free": {
|
2112
|
+
"description": "GLM-4-32B-0414 est un modèle de langage à poids ouvert de 32B bilingue (chinois-anglais), optimisé pour la génération de code, les appels de fonctions et les tâches d'agents. Il a été pré-entraîné sur 15T de données de haute qualité et de réinférence, et perfectionné par un alignement des préférences humaines, un échantillonnage de rejet et un apprentissage par renforcement. Ce modèle excelle dans le raisonnement complexe, la génération d'artefacts et les tâches de sortie structurée, atteignant des performances comparables à celles de GPT-4o et DeepSeek-V3-0324 dans plusieurs tests de référence."
|
2113
|
+
},
|
2078
2114
|
"thudm/glm-4-9b-chat": {
|
2079
2115
|
"description": "Version open source de la dernière génération de modèles pré-entraînés de la série GLM-4 publiée par Zhizhu AI."
|
2080
2116
|
},
|
2081
2117
|
"thudm/glm-4-9b:free": {
|
2082
2118
|
"description": "GLM-4-9B-0414 est un modèle de langage de 9 milliards de paramètres dans la série GLM-4 développé par THUDM. GLM-4-9B-0414 utilise les mêmes stratégies d'apprentissage par renforcement et d'alignement que son modèle correspondant de 32B, réalisant des performances élevées par rapport à sa taille, ce qui le rend adapté à des déploiements à ressources limitées nécessitant encore de solides capacités de compréhension et de génération de langage."
|
2083
2119
|
},
|
2120
|
+
"thudm/glm-z1-32b": {
|
2121
|
+
"description": "GLM-Z1-32B-0414 est une variante de raisonnement améliorée de GLM-4-32B, construite pour résoudre des problèmes de mathématiques profondes, de logique et orientés code. Il applique un apprentissage par renforcement étendu (spécifique à la tâche et basé sur des préférences par paires générales) pour améliorer les performances sur des tâches complexes à plusieurs étapes. Par rapport au modèle de base GLM-4-32B, Z1 améliore considérablement les capacités de raisonnement structuré et de domaine formel.\n\nCe modèle prend en charge l'exécution des étapes de 'pensée' via l'ingénierie des invites et offre une cohérence améliorée pour les sorties au format long. Il est optimisé pour les flux de travail d'agents et prend en charge un long contexte (via YaRN), des appels d'outils JSON et une configuration d'échantillonnage de granularité fine pour un raisonnement stable. Idéal pour les cas d'utilisation nécessitant une réflexion approfondie, un raisonnement à plusieurs étapes ou une déduction formelle."
|
2122
|
+
},
|
2123
|
+
"thudm/glm-z1-32b:free": {
|
2124
|
+
"description": "GLM-Z1-32B-0414 est une variante de raisonnement améliorée de GLM-4-32B, construite pour résoudre des problèmes de mathématiques profondes, de logique et orientés code. Il applique un apprentissage par renforcement étendu (spécifique à la tâche et basé sur des préférences par paires générales) pour améliorer les performances sur des tâches complexes à plusieurs étapes. Par rapport au modèle de base GLM-4-32B, Z1 améliore considérablement les capacités de raisonnement structuré et de domaine formel.\n\nCe modèle prend en charge l'exécution des étapes de 'pensée' via l'ingénierie des invites et offre une cohérence améliorée pour les sorties au format long. Il est optimisé pour les flux de travail d'agents et prend en charge un long contexte (via YaRN), des appels d'outils JSON et une configuration d'échantillonnage de granularité fine pour un raisonnement stable. Idéal pour les cas d'utilisation nécessitant une réflexion approfondie, un raisonnement à plusieurs étapes ou une déduction formelle."
|
2125
|
+
},
|
2084
2126
|
"thudm/glm-z1-9b:free": {
|
2085
2127
|
"description": "GLM-Z1-9B-0414 est un modèle de langage de 9 milliards de paramètres dans la série GLM-4 développé par THUDM. Il utilise des techniques initialement appliquées à des modèles GLM-Z1 plus grands, y compris un apprentissage par renforcement étendu, un alignement par classement par paires et une formation pour des tâches intensives en raisonnement telles que les mathématiques, le codage et la logique. Bien que de taille plus petite, il montre de solides performances sur des tâches de raisonnement général et surpasse de nombreux modèles open source à son niveau de poids."
|
2086
2128
|
},
|
@@ -29,9 +29,6 @@
|
|
29
29
|
"deepseek": {
|
30
30
|
"description": "DeepSeek est une entreprise spécialisée dans la recherche et l'application des technologies d'intelligence artificielle, dont le dernier modèle, DeepSeek-V2.5, combine des capacités de dialogue général et de traitement de code, réalisant des améliorations significatives dans l'alignement des préférences humaines, les tâches d'écriture et le suivi des instructions."
|
31
31
|
},
|
32
|
-
"doubao": {
|
33
|
-
"description": "Un grand modèle développé en interne par ByteDance. Validé par la pratique dans plus de 50 scénarios d'affaires au sein de ByteDance, avec un volume d'utilisation quotidien de plusieurs trillions de tokens, il offre diverses capacités multimodales, créant ainsi une expérience commerciale riche grâce à des performances de modèle de haute qualité."
|
34
|
-
},
|
35
32
|
"fireworksai": {
|
36
33
|
"description": "Fireworks AI est un fournisseur de services de modèles linguistiques avancés, axé sur les appels de fonction et le traitement multimodal. Son dernier modèle, Firefunction V2, basé sur Llama-3, est optimisé pour les appels de fonction, les dialogues et le suivi des instructions. Le modèle de langage visuel FireLLaVA-13B prend en charge les entrées mixtes d'images et de texte. D'autres modèles notables incluent la série Llama et la série Mixtral, offrant un support efficace pour le suivi et la génération d'instructions multilingues."
|
37
34
|
},
|
@@ -35,6 +35,10 @@
|
|
35
35
|
"desc": "Attiva la barra di ricerca principale della pagina corrente",
|
36
36
|
"title": "Cerca"
|
37
37
|
},
|
38
|
+
"showApp": {
|
39
|
+
"desc": "Apri rapidamente la finestra principale dell'applicazione",
|
40
|
+
"title": "Mostra finestra principale"
|
41
|
+
},
|
38
42
|
"switchAgent": {
|
39
43
|
"desc": "Cambia l'assistente fissato nella barra laterale tenendo premuto Ctrl e premendo un numero da 0 a 9",
|
40
44
|
"title": "Cambia assistente rapidamente"
|
@@ -71,6 +71,9 @@
|
|
71
71
|
"DeepSeek-V3": {
|
72
72
|
"description": "DeepSeek-V3 è un modello MoE sviluppato internamente dalla DeepSeek Company. I risultati di DeepSeek-V3 in molte valutazioni superano quelli di altri modelli open source come Qwen2.5-72B e Llama-3.1-405B, e si confronta alla pari con i modelli closed source di punta a livello mondiale come GPT-4o e Claude-3.5-Sonnet."
|
73
73
|
},
|
74
|
+
"Doubao-1.5-thinking-pro-m": {
|
75
|
+
"description": "Doubao-1.5 è un nuovo modello di pensiero profondo (versione m con capacità di ragionamento multimodale native), che si distingue in matematica, programmazione, ragionamento scientifico e compiti generali come la scrittura creativa, raggiungendo o avvicinandosi ai livelli di punta del settore in vari benchmark autorevoli come AIME 2024, Codeforces, GPQA. Supporta una finestra di contesto di 128k e un output di 16k."
|
76
|
+
},
|
74
77
|
"Doubao-1.5-vision-pro": {
|
75
78
|
"description": "Doubao-1.5-vision-pro è un grande modello multimodale aggiornato, che supporta il riconoscimento di immagini a qualsiasi risoluzione e proporzioni estremamente lunghe, migliorando le capacità di ragionamento visivo, riconoscimento di documenti, comprensione delle informazioni dettagliate e rispetto delle istruzioni."
|
76
79
|
},
|
@@ -293,6 +296,21 @@
|
|
293
296
|
"Qwen/Qwen2.5-VL-72B-Instruct": {
|
294
297
|
"description": "Qwen2.5-VL è un modello di linguaggio visivo della serie Qwen2.5. Questo modello presenta miglioramenti significativi in diversi aspetti: dispone di una capacità di comprensione visiva migliore, in grado di riconoscere oggetti comuni, analizzare testi, grafici e layout; come agente visivo, può ragionare e guidare dinamicamente l'uso degli strumenti; supporta la comprensione di video di durata superiore a un'ora e la cattura di eventi chiave; può localizzare oggetti nelle immagini con precisione attraverso la generazione di bounding box o punti; supporta la generazione di output strutturati, particolarmente adatti a dati scannerizzati come fatture e tabelle."
|
295
298
|
},
|
299
|
+
"Qwen/Qwen3-14B": {
|
300
|
+
"description": "Qwen3 è un nuovo modello di Tongyi Qianwen con capacità notevolmente migliorate, raggiungendo livelli leader del settore in ragionamento, generico, agenti e multilingue, e supporta il passaggio della modalità di pensiero."
|
301
|
+
},
|
302
|
+
"Qwen/Qwen3-235B-A22B": {
|
303
|
+
"description": "Qwen3 è un nuovo modello di Tongyi Qianwen con capacità notevolmente migliorate, raggiungendo livelli leader del settore in ragionamento, generico, agenti e multilingue, e supporta il passaggio della modalità di pensiero."
|
304
|
+
},
|
305
|
+
"Qwen/Qwen3-30B-A3B": {
|
306
|
+
"description": "Qwen3 è un nuovo modello di Tongyi Qianwen con capacità notevolmente migliorate, raggiungendo livelli leader del settore in ragionamento, generico, agenti e multilingue, e supporta il passaggio della modalità di pensiero."
|
307
|
+
},
|
308
|
+
"Qwen/Qwen3-32B": {
|
309
|
+
"description": "Qwen3 è un nuovo modello di Tongyi Qianwen con capacità notevolmente migliorate, raggiungendo livelli leader del settore in ragionamento, generico, agenti e multilingue, e supporta il passaggio della modalità di pensiero."
|
310
|
+
},
|
311
|
+
"Qwen/Qwen3-8B": {
|
312
|
+
"description": "Qwen3 è un nuovo modello di Tongyi Qianwen con capacità notevolmente migliorate, raggiungendo livelli leader del settore in ragionamento, generico, agenti e multilingue, e supporta il passaggio della modalità di pensiero."
|
313
|
+
},
|
296
314
|
"Qwen2-72B-Instruct": {
|
297
315
|
"description": "Qwen2 è l'ultima serie del modello Qwen, supporta un contesto di 128k, e rispetto ai modelli open source attualmente migliori, Qwen2-72B supera significativamente i modelli leader attuali in comprensione del linguaggio naturale, conoscenza, codice, matematica e capacità multilingue."
|
298
316
|
},
|
@@ -398,9 +416,6 @@
|
|
398
416
|
"THUDM/glm-4-9b-chat": {
|
399
417
|
"description": "GLM-4 9B è una versione open source, progettata per fornire un'esperienza di dialogo ottimizzata per applicazioni conversazionali."
|
400
418
|
},
|
401
|
-
"TeleAI/TeleChat2": {
|
402
|
-
"description": "Il grande modello TeleChat2 è un modello semantico generativo sviluppato autonomamente da China Telecom, che supporta funzioni come domande e risposte enciclopediche, generazione di codice e generazione di testi lunghi, fornendo servizi di consulenza dialogica agli utenti, in grado di interagire con gli utenti, rispondere a domande e assistere nella creazione, aiutando gli utenti a ottenere informazioni, conoscenze e ispirazione in modo efficiente e conveniente. Il modello ha mostrato prestazioni eccellenti in problemi di illusione, generazione di testi lunghi e comprensione logica."
|
403
|
-
},
|
404
419
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
405
420
|
"description": "Qwen2.5-72B-Instruct è uno dei più recenti modelli linguistici di grandi dimensioni rilasciati da Alibaba Cloud. Questo modello da 72B ha capacità notevolmente migliorate in codifica e matematica. Il modello offre anche supporto multilingue, coprendo oltre 29 lingue, tra cui cinese e inglese. Ha mostrato miglioramenti significativi nel seguire istruzioni, comprendere dati strutturati e generare output strutturati (soprattutto JSON)."
|
406
421
|
},
|
@@ -800,6 +815,12 @@
|
|
800
815
|
"deepseek/deepseek-chat": {
|
801
816
|
"description": "Un nuovo modello open source che integra capacità generali e di codice, mantenendo non solo le capacità di dialogo generali del modello Chat originale e la potente capacità di elaborazione del codice del modello Coder, ma allineandosi anche meglio alle preferenze umane. Inoltre, DeepSeek-V2.5 ha ottenuto notevoli miglioramenti in vari aspetti, come compiti di scrittura e seguire istruzioni."
|
802
817
|
},
|
818
|
+
"deepseek/deepseek-chat-v3-0324": {
|
819
|
+
"description": "DeepSeek V3 è un modello misto esperto con 685B di parametri, l'ultima iterazione della serie di modelli di chat di punta del team DeepSeek.\n\nEredita il modello [DeepSeek V3](/deepseek/deepseek-chat-v3) e si comporta eccezionalmente in vari compiti."
|
820
|
+
},
|
821
|
+
"deepseek/deepseek-chat-v3-0324:free": {
|
822
|
+
"description": "DeepSeek V3 è un modello misto esperto con 685B di parametri, l'ultima iterazione della serie di modelli di chat di punta del team DeepSeek.\n\nEredita il modello [DeepSeek V3](/deepseek/deepseek-chat-v3) e si comporta eccezionalmente in vari compiti."
|
823
|
+
},
|
803
824
|
"deepseek/deepseek-r1": {
|
804
825
|
"description": "DeepSeek-R1 ha notevolmente migliorato le capacità di ragionamento del modello con pochissimi dati etichettati. Prima di fornire la risposta finale, il modello genera una catena di pensiero per migliorare l'accuratezza della risposta finale."
|
805
826
|
},
|
@@ -851,9 +872,6 @@
|
|
851
872
|
"doubao-1.5-thinking-pro": {
|
852
873
|
"description": "Il modello di pensiero profondo Doubao-1.5, completamente nuovo, si distingue in ambiti professionali come matematica, programmazione e ragionamento scientifico, oltre che in compiti generali come la scrittura creativa, raggiungendo o avvicinandosi ai livelli di eccellenza del settore in numerosi benchmark autorevoli come AIME 2024, Codeforces e GPQA. Supporta una finestra di contesto di 128k e un output di 16k."
|
853
874
|
},
|
854
|
-
"doubao-1.5-thinking-pro-vision": {
|
855
|
-
"description": "Il modello di pensiero profondo Doubao-1.5, completamente nuovo, si distingue in ambiti professionali come matematica, programmazione e ragionamento scientifico, oltre che in compiti generali come la scrittura creativa, raggiungendo o avvicinandosi ai livelli di eccellenza del settore in numerosi benchmark autorevoli come AIME 2024, Codeforces e GPQA. Supporta una finestra di contesto di 128k e un output di 16k."
|
856
|
-
},
|
857
875
|
"doubao-1.5-vision-lite": {
|
858
876
|
"description": "Doubao-1.5-vision-lite è un grande modello multimodale aggiornato, che supporta il riconoscimento di immagini a qualsiasi risoluzione e proporzioni estremamente lunghe, migliorando le capacità di ragionamento visivo, riconoscimento di documenti, comprensione delle informazioni dettagliate e rispetto delle istruzioni. Supporta una finestra di contesto di 128k e una lunghezza di uscita massima di 16k token."
|
859
877
|
},
|
@@ -995,9 +1013,6 @@
|
|
995
1013
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
996
1014
|
"description": "Gemini 2.0 Flash Exp è il più recente modello AI multimodale sperimentale di Google, dotato di caratteristiche di nuova generazione, velocità eccezionale, chiamate a strumenti nativi e generazione multimodale."
|
997
1015
|
},
|
998
|
-
"gemini-2.0-pro-exp-02-05": {
|
999
|
-
"description": "Gemini 2.0 Pro Experimental è il più recente modello AI multimodale sperimentale di Google, con un miglioramento della qualità rispetto alle versioni precedenti, in particolare per quanto riguarda la conoscenza del mondo, il codice e i contesti lunghi."
|
1000
|
-
},
|
1001
1016
|
"gemini-2.5-flash-preview-04-17": {
|
1002
1017
|
"description": "Gemini 2.5 Flash Preview è il modello più conveniente di Google, che offre funzionalità complete."
|
1003
1018
|
},
|
@@ -1007,6 +1022,9 @@
|
|
1007
1022
|
"gemini-2.5-pro-preview-03-25": {
|
1008
1023
|
"description": "Gemini 2.5 Pro Preview è il modello di pensiero più avanzato di Google, in grado di ragionare su problemi complessi in codice, matematica e nei campi STEM, oltre a utilizzare analisi di lungo contesto per grandi set di dati, codici sorgente e documenti."
|
1009
1024
|
},
|
1025
|
+
"gemini-2.5-pro-preview-05-06": {
|
1026
|
+
"description": "Gemini 2.5 Pro Preview è il modello di pensiero più avanzato di Google, in grado di ragionare su problemi complessi nel codice, nella matematica e nei campi STEM, utilizzando analisi di lungo contesto per esaminare grandi set di dati, librerie di codice e documenti."
|
1027
|
+
},
|
1010
1028
|
"gemma-7b-it": {
|
1011
1029
|
"description": "Gemma 7B è adatto per l'elaborazione di compiti di piccole e medie dimensioni, combinando efficienza dei costi."
|
1012
1030
|
},
|
@@ -1091,8 +1109,17 @@
|
|
1091
1109
|
"google/gemini-2.0-flash-001": {
|
1092
1110
|
"description": "Gemini 2.0 Flash offre funzionalità e miglioramenti di nuova generazione, tra cui velocità eccezionale, utilizzo di strumenti nativi, generazione multimodale e una finestra di contesto di 1M token."
|
1093
1111
|
},
|
1094
|
-
"google/gemini-2.0-
|
1095
|
-
"description": "Gemini 2.0
|
1112
|
+
"google/gemini-2.0-flash-exp:free": {
|
1113
|
+
"description": "Gemini 2.0 Flash Experimental è il più recente modello AI multimodale sperimentale di Google, con un miglioramento della qualità rispetto alle versioni storiche, in particolare per quanto riguarda la conoscenza del mondo, il codice e il lungo contesto."
|
1114
|
+
},
|
1115
|
+
"google/gemini-2.5-flash-preview": {
|
1116
|
+
"description": "Gemini 2.5 Flash è il modello principale più avanzato di Google, progettato per ragionamenti avanzati, codifica, matematica e compiti scientifici. Include capacità di 'pensiero' integrate, permettendo di fornire risposte con maggiore accuratezza e una gestione contestuale più dettagliata.\n\nNota: questo modello ha due varianti: pensiero e non pensiero. I prezzi di output variano significativamente a seconda che la capacità di pensiero sia attivata o meno. Se scegli la variante standard (senza il suffisso ':thinking'), il modello eviterà esplicitamente di generare token di pensiero.\n\nPer sfruttare la capacità di pensiero e ricevere token di pensiero, devi scegliere la variante ':thinking', che comporterà un prezzo di output di pensiero più elevato.\n\nInoltre, Gemini 2.5 Flash può essere configurato tramite il parametro 'numero massimo di token per il ragionamento', come descritto nella documentazione (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1117
|
+
},
|
1118
|
+
"google/gemini-2.5-flash-preview:thinking": {
|
1119
|
+
"description": "Gemini 2.5 Flash è il modello principale più avanzato di Google, progettato per ragionamenti avanzati, codifica, matematica e compiti scientifici. Include capacità di 'pensiero' integrate, permettendo di fornire risposte con maggiore accuratezza e una gestione contestuale più dettagliata.\n\nNota: questo modello ha due varianti: pensiero e non pensiero. I prezzi di output variano significativamente a seconda che la capacità di pensiero sia attivata o meno. Se scegli la variante standard (senza il suffisso ':thinking'), il modello eviterà esplicitamente di generare token di pensiero.\n\nPer sfruttare la capacità di pensiero e ricevere token di pensiero, devi scegliere la variante ':thinking', che comporterà un prezzo di output di pensiero più elevato.\n\nInoltre, Gemini 2.5 Flash può essere configurato tramite il parametro 'numero massimo di token per il ragionamento', come descritto nella documentazione (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1120
|
+
},
|
1121
|
+
"google/gemini-2.5-pro-preview-03-25": {
|
1122
|
+
"description": "Gemini 2.5 Pro è il modello AI più avanzato di Google, progettato per ragionamenti avanzati, codifica, matematica e compiti scientifici. Esso incorpora capacità di 'pensiero', permettendo di fornire risposte con maggiore accuratezza e una gestione contestuale più dettagliata. Gemini 2.5 Pro ha ottenuto prestazioni di alto livello in vari benchmark, inclusa la prima posizione nella classifica LMArena, riflettendo un'eccellente allineamento con le preferenze umane e capacità di risoluzione di problemi complessi."
|
1096
1123
|
},
|
1097
1124
|
"google/gemini-flash-1.5": {
|
1098
1125
|
"description": "Gemini 1.5 Flash offre capacità di elaborazione multimodale ottimizzate, adatte a vari scenari di compiti complessi."
|
@@ -1592,6 +1619,9 @@
|
|
1592
1619
|
"mistral-large-latest": {
|
1593
1620
|
"description": "Mistral Large è il modello di punta, specializzato in compiti multilingue, ragionamento complesso e generazione di codice, è la scelta ideale per applicazioni di alta gamma."
|
1594
1621
|
},
|
1622
|
+
"mistral-medium-latest": {
|
1623
|
+
"description": "Mistral Medium 3 offre prestazioni all'avanguardia a un costo otto volte inferiore, semplificando radicalmente il deployment aziendale."
|
1624
|
+
},
|
1595
1625
|
"mistral-nemo": {
|
1596
1626
|
"description": "Mistral Nemo è un modello da 12B lanciato in collaborazione tra Mistral AI e NVIDIA, offre prestazioni eccellenti."
|
1597
1627
|
},
|
@@ -1763,8 +1793,8 @@
|
|
1763
1793
|
"qvq-72b-preview": {
|
1764
1794
|
"description": "Il modello QVQ è un modello di ricerca sperimentale sviluppato dal team Qwen, focalizzato sul miglioramento delle capacità di ragionamento visivo, in particolare nel campo del ragionamento matematico."
|
1765
1795
|
},
|
1766
|
-
"qvq-max": {
|
1767
|
-
"description": "Il modello di ragionamento visivo QVQ di Tongyi Qianwen supporta input visivi e output di catene di pensiero,
|
1796
|
+
"qvq-max-latest": {
|
1797
|
+
"description": "Il modello di ragionamento visivo QVQ di Tongyi Qianwen supporta input visivi e output di catene di pensiero, mostrando capacità superiori in matematica, programmazione, analisi visiva, creazione e compiti generali."
|
1768
1798
|
},
|
1769
1799
|
"qwen-coder-plus-latest": {
|
1770
1800
|
"description": "Modello di codice Qwen di Tongyi."
|
@@ -2075,12 +2105,24 @@
|
|
2075
2105
|
"text-embedding-3-small": {
|
2076
2106
|
"description": "Modello di Embedding di nuova generazione, efficiente ed economico, adatto per la ricerca di conoscenza, applicazioni RAG e altri scenari."
|
2077
2107
|
},
|
2108
|
+
"thudm/glm-4-32b": {
|
2109
|
+
"description": "GLM-4-32B-0414 è un modello linguistico a pesi aperti bilingue (cinese e inglese) da 32B, ottimizzato per la generazione di codice, chiamate a funzioni e compiti agenti. È stato pre-addestrato su 15T di dati di alta qualità e di ri-ragionamento, e ulteriormente perfezionato utilizzando l'allineamento delle preferenze umane, il campionamento di rifiuto e l'apprendimento rinforzato. Questo modello mostra prestazioni eccezionali in ragionamenti complessi, generazione di artefatti e compiti di output strutturato, raggiungendo prestazioni comparabili a GPT-4o e DeepSeek-V3-0324 in vari benchmark."
|
2110
|
+
},
|
2111
|
+
"thudm/glm-4-32b:free": {
|
2112
|
+
"description": "GLM-4-32B-0414 è un modello linguistico a pesi aperti bilingue (cinese e inglese) da 32B, ottimizzato per la generazione di codice, chiamate a funzioni e compiti agenti. È stato pre-addestrato su 15T di dati di alta qualità e di ri-ragionamento, e ulteriormente perfezionato utilizzando l'allineamento delle preferenze umane, il campionamento di rifiuto e l'apprendimento rinforzato. Questo modello mostra prestazioni eccezionali in ragionamenti complessi, generazione di artefatti e compiti di output strutturato, raggiungendo prestazioni comparabili a GPT-4o e DeepSeek-V3-0324 in vari benchmark."
|
2113
|
+
},
|
2078
2114
|
"thudm/glm-4-9b-chat": {
|
2079
2115
|
"description": "La versione open source dell'ultima generazione del modello pre-addestrato GLM-4 rilasciato da Zhizhu AI."
|
2080
2116
|
},
|
2081
2117
|
"thudm/glm-4-9b:free": {
|
2082
2118
|
"description": "GLM-4-9B-0414 è un modello linguistico con 9 miliardi di parametri della serie GLM-4 sviluppato da THUDM. GLM-4-9B-0414 utilizza le stesse strategie di apprendimento rinforzato e allineamento del suo modello corrispondente più grande da 32B, raggiungendo alte prestazioni rispetto alle sue dimensioni, rendendolo adatto per implementazioni a risorse limitate che richiedono ancora forti capacità di comprensione e generazione del linguaggio."
|
2083
2119
|
},
|
2120
|
+
"thudm/glm-z1-32b": {
|
2121
|
+
"description": "GLM-Z1-32B-0414 è una variante di ragionamento potenziata di GLM-4-32B, costruita per la risoluzione di problemi di matematica profonda, logica e orientati al codice. Utilizza l'apprendimento rinforzato esteso (specifico per compiti e basato su preferenze generali) per migliorare le prestazioni in compiti complessi a più passaggi. Rispetto al modello di base GLM-4-32B, Z1 ha migliorato significativamente le capacità di ragionamento strutturato e nei domini formali.\n\nQuesto modello supporta l'applicazione di 'passaggi di pensiero' tramite ingegneria dei prompt e offre una coerenza migliorata per output di lungo formato. È ottimizzato per flussi di lavoro agenti e supporta contesti lunghi (tramite YaRN), chiamate a strumenti JSON e configurazioni di campionamento a grana fine per un ragionamento stabile. È particolarmente adatto per casi d'uso che richiedono ragionamenti approfonditi, a più passaggi o deduzioni formali."
|
2122
|
+
},
|
2123
|
+
"thudm/glm-z1-32b:free": {
|
2124
|
+
"description": "GLM-Z1-32B-0414 è una variante di ragionamento potenziata di GLM-4-32B, costruita per la risoluzione di problemi di matematica profonda, logica e orientati al codice. Utilizza l'apprendimento rinforzato esteso (specifico per compiti e basato su preferenze generali) per migliorare le prestazioni in compiti complessi a più passaggi. Rispetto al modello di base GLM-4-32B, Z1 ha migliorato significativamente le capacità di ragionamento strutturato e nei domini formali.\n\nQuesto modello supporta l'applicazione di 'passaggi di pensiero' tramite ingegneria dei prompt e offre una coerenza migliorata per output di lungo formato. È ottimizzato per flussi di lavoro agenti e supporta contesti lunghi (tramite YaRN), chiamate a strumenti JSON e configurazioni di campionamento a grana fine per un ragionamento stabile. È particolarmente adatto per casi d'uso che richiedono ragionamenti approfonditi, a più passaggi o deduzioni formali."
|
2125
|
+
},
|
2084
2126
|
"thudm/glm-z1-9b:free": {
|
2085
2127
|
"description": "GLM-Z1-9B-0414 è un modello linguistico con 9 miliardi di parametri della serie GLM-4 sviluppato da THUDM. Utilizza tecniche inizialmente applicate a modelli GLM-Z1 più grandi, inclusi apprendimento rinforzato esteso, allineamento di ranking a coppie e addestramento per compiti di ragionamento intensivo come matematica, codifica e logica. Nonostante le sue dimensioni più piccole, mostra prestazioni robuste in compiti di ragionamento generali e supera molti modelli open source nel suo livello di pesi."
|
2086
2128
|
},
|
@@ -29,9 +29,6 @@
|
|
29
29
|
"deepseek": {
|
30
30
|
"description": "DeepSeek è un'azienda focalizzata sulla ricerca e applicazione della tecnologia AI, il cui ultimo modello DeepSeek-V2.5 combina capacità di dialogo generico e elaborazione del codice, realizzando miglioramenti significativi nell'allineamento delle preferenze umane, nei compiti di scrittura e nel rispetto delle istruzioni."
|
31
31
|
},
|
32
|
-
"doubao": {
|
33
|
-
"description": "Il grande modello sviluppato internamente da ByteDance. Validato attraverso oltre 50 scenari aziendali interni, con un utilizzo quotidiano di trilioni di token che affinano continuamente il modello, offre diverse capacità multimodali, creando esperienze aziendali ricche con risultati di alta qualità."
|
34
|
-
},
|
35
32
|
"fireworksai": {
|
36
33
|
"description": "Fireworks AI è un fornitore leader di servizi di modelli linguistici avanzati, focalizzato su chiamate funzionali e elaborazione multimodale. Il suo ultimo modello Firefunction V2, basato su Llama-3, è ottimizzato per chiamate di funzione, dialogo e rispetto delle istruzioni. Il modello di linguaggio visivo FireLLaVA-13B supporta input misti di immagini e testo. Altri modelli notevoli includono la serie Llama e la serie Mixtral, offrendo supporto efficiente per il rispetto e la generazione di istruzioni multilingue."
|
37
34
|
},
|