@lobehub/chat 1.84.23 → 1.84.24
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +25 -0
- package/changelog/v1.json +9 -0
- package/locales/ar/hotkey.json +4 -0
- package/locales/ar/models.json +55 -13
- package/locales/ar/providers.json +0 -3
- package/locales/bg-BG/hotkey.json +4 -0
- package/locales/bg-BG/models.json +55 -13
- package/locales/bg-BG/providers.json +0 -3
- package/locales/de-DE/hotkey.json +4 -0
- package/locales/de-DE/models.json +55 -13
- package/locales/de-DE/providers.json +0 -3
- package/locales/en-US/hotkey.json +4 -0
- package/locales/en-US/models.json +55 -13
- package/locales/en-US/providers.json +0 -3
- package/locales/es-ES/hotkey.json +4 -0
- package/locales/es-ES/models.json +55 -13
- package/locales/es-ES/providers.json +0 -3
- package/locales/fa-IR/hotkey.json +4 -0
- package/locales/fa-IR/models.json +55 -13
- package/locales/fa-IR/providers.json +0 -3
- package/locales/fr-FR/hotkey.json +4 -0
- package/locales/fr-FR/models.json +55 -13
- package/locales/fr-FR/providers.json +0 -3
- package/locales/it-IT/hotkey.json +4 -0
- package/locales/it-IT/models.json +55 -13
- package/locales/it-IT/providers.json +0 -3
- package/locales/ja-JP/hotkey.json +4 -0
- package/locales/ja-JP/models.json +55 -13
- package/locales/ja-JP/providers.json +0 -3
- package/locales/ko-KR/hotkey.json +4 -0
- package/locales/ko-KR/models.json +55 -13
- package/locales/ko-KR/providers.json +0 -3
- package/locales/nl-NL/hotkey.json +4 -0
- package/locales/nl-NL/models.json +55 -13
- package/locales/nl-NL/providers.json +0 -3
- package/locales/pl-PL/hotkey.json +4 -0
- package/locales/pl-PL/models.json +55 -13
- package/locales/pl-PL/providers.json +0 -3
- package/locales/pt-BR/hotkey.json +4 -0
- package/locales/pt-BR/models.json +55 -13
- package/locales/pt-BR/providers.json +0 -3
- package/locales/ru-RU/hotkey.json +4 -0
- package/locales/ru-RU/models.json +55 -13
- package/locales/ru-RU/providers.json +0 -3
- package/locales/tr-TR/hotkey.json +4 -0
- package/locales/tr-TR/models.json +55 -13
- package/locales/tr-TR/providers.json +0 -3
- package/locales/vi-VN/hotkey.json +4 -0
- package/locales/vi-VN/models.json +55 -13
- package/locales/vi-VN/providers.json +0 -3
- package/locales/zh-CN/hotkey.json +4 -0
- package/locales/zh-CN/models.json +55 -13
- package/locales/zh-CN/providers.json +0 -3
- package/locales/zh-TW/hotkey.json +4 -0
- package/locales/zh-TW/models.json +55 -13
- package/locales/zh-TW/providers.json +0 -3
- package/package.json +1 -1
- package/src/const/hotkeys.ts +7 -0
- package/src/const/url.ts +1 -1
- package/src/features/User/UserPanel/useMenu.tsx +2 -1
- package/src/locales/default/hotkey.ts +4 -0
- package/src/services/__tests__/_url.test.ts +23 -0
- package/src/types/hotkey.ts +1 -0
package/CHANGELOG.md
CHANGED
@@ -2,6 +2,31 @@
|
|
2
2
|
|
3
3
|
# Changelog
|
4
4
|
|
5
|
+
### [Version 1.84.24](https://github.com/lobehub/lobe-chat/compare/v1.84.23...v1.84.24)
|
6
|
+
|
7
|
+
<sup>Released on **2025-05-08**</sup>
|
8
|
+
|
9
|
+
#### 🐛 Bug Fixes
|
10
|
+
|
11
|
+
- **misc**: Fix changelog issue on desktop app.
|
12
|
+
|
13
|
+
<br/>
|
14
|
+
|
15
|
+
<details>
|
16
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
17
|
+
|
18
|
+
#### What's fixed
|
19
|
+
|
20
|
+
- **misc**: Fix changelog issue on desktop app, closes [#7740](https://github.com/lobehub/lobe-chat/issues/7740) ([f0a12af](https://github.com/lobehub/lobe-chat/commit/f0a12af))
|
21
|
+
|
22
|
+
</details>
|
23
|
+
|
24
|
+
<div align="right">
|
25
|
+
|
26
|
+
[](#readme-top)
|
27
|
+
|
28
|
+
</div>
|
29
|
+
|
5
30
|
### [Version 1.84.23](https://github.com/lobehub/lobe-chat/compare/v1.84.22...v1.84.23)
|
6
31
|
|
7
32
|
<sup>Released on **2025-05-08**</sup>
|
package/changelog/v1.json
CHANGED
package/locales/ar/hotkey.json
CHANGED
@@ -35,6 +35,10 @@
|
|
35
35
|
"desc": "استدعاء مربع البحث الرئيسي في الصفحة الحالية",
|
36
36
|
"title": "بحث"
|
37
37
|
},
|
38
|
+
"showApp": {
|
39
|
+
"desc": "استدعاء نافذة التطبيق الرئيسية بسرعة",
|
40
|
+
"title": "عرض النافذة الرئيسية"
|
41
|
+
},
|
38
42
|
"switchAgent": {
|
39
43
|
"desc": "تبديل المساعد المثبت في الشريط الجانبي عن طريق الضغط على Ctrl مع الأرقام من 0 إلى 9",
|
40
44
|
"title": "تبديل المساعد بسرعة"
|
package/locales/ar/models.json
CHANGED
@@ -71,6 +71,9 @@
|
|
71
71
|
"DeepSeek-V3": {
|
72
72
|
"description": "DeepSeek-V3 هو نموذج MoE تم تطويره ذاتيًا بواسطة شركة DeepSeek. حقق DeepSeek-V3 نتائج تقييم تفوقت على نماذج مفتوحة المصدر الأخرى مثل Qwen2.5-72B و Llama-3.1-405B، وفي الأداء ينافس النماذج المغلقة الرائدة عالميًا مثل GPT-4o و Claude-3.5-Sonnet."
|
73
73
|
},
|
74
|
+
"Doubao-1.5-thinking-pro-m": {
|
75
|
+
"description": "Doubao-1.5 هو نموذج تفكير عميق جديد (نسخة m تأتي مع قدرة استدلال عميق متعددة الوسائط أصلية)، يظهر أداءً بارزًا في مجالات الرياضيات، البرمجة، الاستدلال العلمي، والكتابة الإبداعية، حيث حقق أو اقترب من المستوى الأول في عدة معايير مرموقة مثل AIME 2024، Codeforces، وGPQA. يدعم نافذة سياق تصل إلى 128k، وإخراج يصل إلى 16k."
|
76
|
+
},
|
74
77
|
"Doubao-1.5-vision-pro": {
|
75
78
|
"description": "Doubao-1.5-vision-pro هو نموذج كبير متعدد الوسائط تم ترقيته حديثًا، يدعم التعرف على الصور بدقة غير محدودة ونسب عرض إلى ارتفاع متطرفة، ويعزز قدرات الاستدلال البصري، التعرف على الوثائق، فهم المعلومات التفصيلية، واتباع التعليمات."
|
76
79
|
},
|
@@ -293,6 +296,21 @@
|
|
293
296
|
"Qwen/Qwen2.5-VL-72B-Instruct": {
|
294
297
|
"description": "Qwen2.5-VL هو نموذج اللغة البصرية في سلسلة Qwen2.5. يتميز هذا النموذج بتحسينات كبيرة في جوانب متعددة: قدرة أقوى على الفهم البصري، مع القدرة على التعرف على الأشياء الشائعة وتحليل النصوص والرسوم البيانية والتخطيطات؛ كوسيط بصري يمكنه التفكير وتوجيه استخدام الأدوات ديناميكيًا؛ يدعم فهم مقاطع الفيديو الطويلة التي تزيد عن ساعة واحدة مع القدرة على التقاط الأحداث الرئيسية؛ يمكنه تحديد موقع الأشياء في الصور بدقة من خلال إنشاء مربعات حدودية أو نقاط؛ يدعم إنشاء مخرجات منظمة، وهو مفيد بشكل خاص للبيانات الممسوحة ضوئيًا مثل الفواتير والجداول."
|
295
298
|
},
|
299
|
+
"Qwen/Qwen3-14B": {
|
300
|
+
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الاستدلال، المهام العامة، الوكلاء، واللغات المتعددة، ويدعم تبديل وضع التفكير."
|
301
|
+
},
|
302
|
+
"Qwen/Qwen3-235B-A22B": {
|
303
|
+
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الاستدلال، المهام العامة، الوكلاء، واللغات المتعددة، ويدعم تبديل وضع التفكير."
|
304
|
+
},
|
305
|
+
"Qwen/Qwen3-30B-A3B": {
|
306
|
+
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الاستدلال، المهام العامة، الوكلاء، واللغات المتعددة، ويدعم تبديل وضع التفكير."
|
307
|
+
},
|
308
|
+
"Qwen/Qwen3-32B": {
|
309
|
+
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الاستدلال، المهام العامة، الوكلاء، واللغات المتعددة، ويدعم تبديل وضع التفكير."
|
310
|
+
},
|
311
|
+
"Qwen/Qwen3-8B": {
|
312
|
+
"description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الاستدلال، المهام العامة، الوكلاء، واللغات المتعددة، ويدعم تبديل وضع التفكير."
|
313
|
+
},
|
296
314
|
"Qwen2-72B-Instruct": {
|
297
315
|
"description": "Qwen2 هو أحدث سلسلة من نموذج Qwen، ويدعم سياقًا يصل إلى 128 ألف، مقارنةً بأفضل النماذج مفتوحة المصدر الحالية، يتفوق Qwen2-72B بشكل ملحوظ في فهم اللغة الطبيعية والمعرفة والترميز والرياضيات والقدرات متعددة اللغات."
|
298
316
|
},
|
@@ -398,9 +416,6 @@
|
|
398
416
|
"THUDM/glm-4-9b-chat": {
|
399
417
|
"description": "GLM-4 9B هو إصدار مفتوح المصدر، يوفر تجربة حوار محسنة لتطبيقات الحوار."
|
400
418
|
},
|
401
|
-
"TeleAI/TeleChat2": {
|
402
|
-
"description": "نموذج TeleChat2 هو نموذج كبير تم تطويره ذاتيًا من قبل China Telecom، يدعم وظائف مثل الأسئلة والأجوبة الموسوعية، وتوليد الشيفرة، وتوليد النصوص الطويلة، ويقدم خدمات استشارية للمستخدمين، مما يمكنه من التفاعل مع المستخدمين، والإجابة على الأسئلة، والمساعدة في الإبداع، وتوفير المعلومات والمعرفة والإلهام بكفاءة وسهولة. أظهر النموذج أداءً ممتازًا في معالجة مشكلات الهلوسة، وتوليد النصوص الطويلة، وفهم المنطق."
|
403
|
-
},
|
404
419
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
405
420
|
"description": "Qwen2.5-72B-Instruct هو أحد أحدث نماذج اللغة الكبيرة التي أصدرتها Alibaba Cloud. يتمتع هذا النموذج بقدرات محسنة بشكل ملحوظ في مجالات الترميز والرياضيات. كما يوفر دعمًا للغات متعددة، تغطي أكثر من 29 لغة، بما في ذلك الصينية والإنجليزية. أظهر النموذج تحسينات ملحوظة في اتباع التعليمات، وفهم البيانات الهيكلية، وتوليد المخرجات الهيكلية (خاصة JSON)."
|
406
421
|
},
|
@@ -800,6 +815,12 @@
|
|
800
815
|
"deepseek/deepseek-chat": {
|
801
816
|
"description": "نموذج مفتوح المصدر جديد يجمع بين القدرات العامة وقدرات البرمجة، لا يحتفظ فقط بقدرات الحوار العامة لنموذج الدردشة الأصلي وقدرات معالجة الأكواد القوية لنموذج Coder، بل يتماشى أيضًا بشكل أفضل مع تفضيلات البشر. بالإضافة إلى ذلك، حقق DeepSeek-V2.5 تحسينات كبيرة في مهام الكتابة، واتباع التعليمات، وغيرها من المجالات."
|
802
817
|
},
|
818
|
+
"deepseek/deepseek-chat-v3-0324": {
|
819
|
+
"description": "DeepSeek V3 هو نموذج مختلط خبير يحتوي على 685B من المعلمات، وهو أحدث إصدار من سلسلة نماذج الدردشة الرائدة لفريق DeepSeek.\n\nيستفيد من نموذج [DeepSeek V3](/deepseek/deepseek-chat-v3) ويظهر أداءً ممتازًا في مجموعة متنوعة من المهام."
|
820
|
+
},
|
821
|
+
"deepseek/deepseek-chat-v3-0324:free": {
|
822
|
+
"description": "DeepSeek V3 هو نموذج مختلط خبير يحتوي على 685B من المعلمات، وهو أحدث إصدار من سلسلة نماذج الدردشة الرائدة لفريق DeepSeek.\n\nيستفيد من نموذج [DeepSeek V3](/deepseek/deepseek-chat-v3) ويظهر أداءً ممتازًا في مجموعة متنوعة من المهام."
|
823
|
+
},
|
803
824
|
"deepseek/deepseek-r1": {
|
804
825
|
"description": "DeepSeek-R1 يعزز بشكل كبير من قدرة النموذج على الاستدلال في ظل وجود بيانات محدودة جدًا. قبل تقديم الإجابة النهائية، يقوم النموذج أولاً بإخراج سلسلة من التفكير لتحسين دقة الإجابة النهائية."
|
805
826
|
},
|
@@ -851,9 +872,6 @@
|
|
851
872
|
"doubao-1.5-thinking-pro": {
|
852
873
|
"description": "نموذج Doubao-1.5 الجديد للتفكير العميق، يتميز بأداء بارز في مجالات الرياضيات، البرمجة، الاستدلال العلمي، وكذلك في المهام العامة مثل الكتابة الإبداعية. حقق أو اقترب من المستوى الأول في العديد من المعايير المرموقة مثل AIME 2024 وCodeforces وGPQA. يدعم نافذة سياق بحجم 128k و16k للإخراج."
|
853
874
|
},
|
854
|
-
"doubao-1.5-thinking-pro-vision": {
|
855
|
-
"description": "نموذج Doubao-1.5 الجديد للتفكير العميق، يتميز بأداء بارز في مجالات الرياضيات، البرمجة، الاستدلال العلمي، وكذلك في المهام العامة مثل الكتابة الإبداعية. حقق أو اقترب من المستوى الأول في العديد من المعايير المرموقة مثل AIME 2024 وCodeforces وGPQA. يدعم نافذة سياق بحجم 128k و16k للإخراج."
|
856
|
-
},
|
857
875
|
"doubao-1.5-vision-lite": {
|
858
876
|
"description": "Doubao-1.5-vision-lite هو نموذج كبير متعدد الوسائط تم ترقيته حديثًا، يدعم التعرف على الصور بدقة غير محدودة ونسب عرض إلى ارتفاع متطرفة، ويعزز قدرات الاستدلال البصري، التعرف على الوثائق، فهم المعلومات التفصيلية، واتباع التعليمات. يدعم نافذة سياق 128k، وطول الإخراج يدعم حتى 16k توكن."
|
859
877
|
},
|
@@ -995,9 +1013,6 @@
|
|
995
1013
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
996
1014
|
"description": "Gemini 2.0 Flash Exp هو أحدث نموذج تجريبي متعدد الوسائط من Google، يتمتع بميزات الجيل التالي، وسرعة فائقة، واستدعاء أدوات أصلية، وتوليد متعدد الوسائط."
|
997
1015
|
},
|
998
|
-
"gemini-2.0-pro-exp-02-05": {
|
999
|
-
"description": "Gemini 2.0 Pro Experimental هو أحدث نموذج ذكاء اصطناعي متعدد الوسائط التجريبي من Google، مع تحسينات ملحوظة في الجودة مقارنة بالإصدارات السابقة، خاصة في المعرفة العالمية، والبرمجة، والسياقات الطويلة."
|
1000
|
-
},
|
1001
1016
|
"gemini-2.5-flash-preview-04-17": {
|
1002
1017
|
"description": "معاينة فلاش جمنّي 2.5 هي النموذج الأكثر كفاءة من جوجل، حيث تقدم مجموعة شاملة من الميزات."
|
1003
1018
|
},
|
@@ -1007,6 +1022,9 @@
|
|
1007
1022
|
"gemini-2.5-pro-preview-03-25": {
|
1008
1023
|
"description": "معاينة Gemini 2.5 Pro هي نموذج التفكير الأكثر تقدمًا من Google، قادر على الاستدلال حول الشيفرات، الرياضيات، والمشكلات المعقدة في مجالات STEM، بالإضافة إلى تحليل مجموعات البيانات الكبيرة، مكتبات الشيفرات، والمستندات باستخدام سياقات طويلة."
|
1009
1024
|
},
|
1025
|
+
"gemini-2.5-pro-preview-05-06": {
|
1026
|
+
"description": "Gemini 2.5 Pro Preview هو نموذج التفكير الأكثر تقدمًا من Google، قادر على الاستدلال حول الشيفرات، الرياضيات، والمشكلات المعقدة في مجالات STEM، بالإضافة إلى تحليل مجموعات البيانات الكبيرة، ومكتبات الشيفرات، والمستندات باستخدام سياقات طويلة."
|
1027
|
+
},
|
1010
1028
|
"gemma-7b-it": {
|
1011
1029
|
"description": "Gemma 7B مناسب لمعالجة المهام المتوسطة والصغيرة، ويجمع بين الكفاءة من حيث التكلفة."
|
1012
1030
|
},
|
@@ -1091,8 +1109,17 @@
|
|
1091
1109
|
"google/gemini-2.0-flash-001": {
|
1092
1110
|
"description": "Gemini 2.0 Flash يقدم ميزات وتحسينات من الجيل التالي، بما في ذلك سرعة فائقة، واستخدام أدوات أصلية، وتوليد متعدد الوسائط، ونافذة سياق تصل إلى 1M توكن."
|
1093
1111
|
},
|
1094
|
-
"google/gemini-2.0-
|
1095
|
-
"description": "Gemini 2.0
|
1112
|
+
"google/gemini-2.0-flash-exp:free": {
|
1113
|
+
"description": "Gemini 2.0 Flash Experimental هو أحدث نموذج ذكاء اصطناعي متعدد الوسائط من Google، مع تحسينات ملحوظة في الجودة مقارنة بالإصدارات السابقة، خاصة في المعرفة العالمية، الشيفرات، والسياقات الطويلة."
|
1114
|
+
},
|
1115
|
+
"google/gemini-2.5-flash-preview": {
|
1116
|
+
"description": "Gemini 2.5 Flash هو النموذج الرائد الأكثر تقدمًا من Google، مصمم للاستدلال المتقدم، الترميز، المهام الرياضية والعلمية. يحتوي على قدرة \"التفكير\" المدمجة، مما يمكّنه من تقديم استجابات بدقة أعلى ومعالجة سياقات أكثر تفصيلاً.\n\nملاحظة: يحتوي هذا النموذج على نوعين: التفكير وغير التفكير. تختلف تسعير الإخراج بشكل ملحوظ بناءً على ما إذا كانت قدرة التفكير مفعلة. إذا اخترت النوع القياسي (بدون لاحقة \" :thinking \")، سيتجنب النموذج بشكل صريح توليد رموز التفكير.\n\nلاستغلال قدرة التفكير واستقبال رموز التفكير، يجب عليك اختيار النوع \" :thinking \"، مما سيؤدي إلى تسعير إخراج تفكير أعلى.\n\nبالإضافة إلى ذلك، يمكن تكوين Gemini 2.5 Flash من خلال معلمة \"الحد الأقصى لعدد رموز الاستدلال\"، كما هو موضح في الوثائق (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1117
|
+
},
|
1118
|
+
"google/gemini-2.5-flash-preview:thinking": {
|
1119
|
+
"description": "Gemini 2.5 Flash هو النموذج الرائد الأكثر تقدمًا من Google، مصمم للاستدلال المتقدم، الترميز، المهام الرياضية والعلمية. يحتوي على قدرة \"التفكير\" المدمجة، مما يمكّنه من تقديم استجابات بدقة أعلى ومعالجة سياقات أكثر تفصيلاً.\n\nملاحظة: يحتوي هذا النموذج على نوعين: التفكير وغير التفكير. تختلف تسعير الإخراج بشكل ملحوظ بناءً على ما إذا كانت قدرة التفكير مفعلة. إذا اخترت النوع القياسي (بدون لاحقة \" :thinking \")، سيتجنب النموذج بشكل صريح توليد رموز التفكير.\n\nلاستغلال قدرة التفكير واستقبال رموز التفكير، يجب عليك اختيار النوع \" :thinking \"، مما سيؤدي إلى تسعير إخراج تفكير أعلى.\n\nبالإضافة إلى ذلك، يمكن تكوين Gemini 2.5 Flash من خلال معلمة \"الحد الأقصى لعدد رموز الاستدلال\"، كما هو موضح في الوثائق (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1120
|
+
},
|
1121
|
+
"google/gemini-2.5-pro-preview-03-25": {
|
1122
|
+
"description": "Gemini 2.5 Pro هو نموذج الذكاء الاصطناعي الأكثر تقدمًا من Google، مصمم للاستدلال المتقدم، الترميز، المهام الرياضية والعلمية. يتميز بقدرة \"التفكير\"، مما يمكّنه من الاستدلال بدقة أعلى ومعالجة سياقات أكثر تفصيلاً. حقق Gemini 2.5 Pro أداءً رائدًا في عدة اختبارات معيارية، بما في ذلك تصدره في تصنيف LMArena، مما يعكس تميز توافق تفضيلات البشر وقدرته على حل المشكلات المعقدة."
|
1096
1123
|
},
|
1097
1124
|
"google/gemini-flash-1.5": {
|
1098
1125
|
"description": "يقدم Gemini 1.5 Flash قدرات معالجة متعددة الوسائط محسّنة، مناسبة لمجموعة متنوعة من سيناريوهات المهام المعقدة."
|
@@ -1592,6 +1619,9 @@
|
|
1592
1619
|
"mistral-large-latest": {
|
1593
1620
|
"description": "Mistral Large هو النموذج الرائد، يتفوق في المهام متعددة اللغات، والاستدلال المعقد، وتوليد الشيفرة، وهو الخيار المثالي للتطبيقات الراقية."
|
1594
1621
|
},
|
1622
|
+
"mistral-medium-latest": {
|
1623
|
+
"description": "Mistral Medium 3 يقدم أداءً متقدمًا بتكلفة 8 مرات أقل، مما يبسط بشكل جذري نشر المؤسسات."
|
1624
|
+
},
|
1595
1625
|
"mistral-nemo": {
|
1596
1626
|
"description": "Mistral Nemo تم تطويره بالتعاون بين Mistral AI وNVIDIA، وهو نموذج 12B عالي الأداء."
|
1597
1627
|
},
|
@@ -1763,8 +1793,8 @@
|
|
1763
1793
|
"qvq-72b-preview": {
|
1764
1794
|
"description": "نموذج QVQ هو نموذج بحث تجريبي تم تطويره بواسطة فريق Qwen، يركز على تعزيز قدرات الاستدلال البصري، خاصة في مجال الاستدلال الرياضي."
|
1765
1795
|
},
|
1766
|
-
"qvq-max": {
|
1767
|
-
"description": "نموذج
|
1796
|
+
"qvq-max-latest": {
|
1797
|
+
"description": "نموذج QVQ للرؤية البصرية، يدعم الإدخال البصري وإخراج سلسلة التفكير، ويظهر قدرات أقوى في الرياضيات، البرمجة، التحليل البصري، الإبداع، والمهام العامة."
|
1768
1798
|
},
|
1769
1799
|
"qwen-coder-plus-latest": {
|
1770
1800
|
"description": "نموذج كود Qwen الشامل."
|
@@ -2075,12 +2105,24 @@
|
|
2075
2105
|
"text-embedding-3-small": {
|
2076
2106
|
"description": "نموذج التضمين من الجيل الجديد، فعال واقتصادي، مناسب لاسترجاع المعرفة وتطبيقات RAG وغيرها."
|
2077
2107
|
},
|
2108
|
+
"thudm/glm-4-32b": {
|
2109
|
+
"description": "GLM-4-32B-0414 هو نموذج لغوي مفتوح الوزن ثنائي اللغة (صيني وإنجليزي) بحجم 32B، تم تحسينه لتوليد الشيفرات، استدعاءات الوظائف، والمهام الوكيلة. تم تدريبه مسبقًا على 15T من البيانات عالية الجودة وإعادة الاستدلال، وتم تحسينه باستخدام توافق تفضيلات البشر، أخذ العينات الرفض، والتعلم المعزز. يظهر هذا النموذج أداءً ممتازًا في الاستدلال المعقد، توليد القطع، ومهام الإخراج الهيكلي، حيث حقق أداءً يعادل GPT-4o وDeepSeek-V3-0324 في عدة اختبارات معيارية."
|
2110
|
+
},
|
2111
|
+
"thudm/glm-4-32b:free": {
|
2112
|
+
"description": "GLM-4-32B-0414 هو نموذج لغوي مفتوح الوزن ثنائي اللغة (صيني وإنجليزي) بحجم 32B، تم تحسينه لتوليد الشيفرات، استدعاءات الوظائف، والمهام الوكيلة. تم تدريبه مسبقًا على 15T من البيانات عالية الجودة وإعادة الاستدلال، وتم تحسينه باستخدام توافق تفضيلات البشر، أخذ العينات الرفض، والتعلم المعزز. يظهر هذا النموذج أداءً ممتازًا في الاستدلال المعقد، توليد القطع، ومهام الإخراج الهيكلي، حيث حقق أداءً يعادل GPT-4o وDeepSeek-V3-0324 في عدة اختبارات معيارية."
|
2113
|
+
},
|
2078
2114
|
"thudm/glm-4-9b-chat": {
|
2079
2115
|
"description": "الإصدار المفتوح من الجيل الأحدث من نموذج GLM-4 الذي أطلقته Zhizhu AI."
|
2080
2116
|
},
|
2081
2117
|
"thudm/glm-4-9b:free": {
|
2082
2118
|
"description": "GLM-4-9B-0414 هو نموذج لغوي يحتوي على 9 مليار معلمة من سلسلة GLM-4 التي تم تطويرها بواسطة THUDM. يستخدم GLM-4-9B-0414 نفس استراتيجيات تعزيز التعلم والتوافق المستخدمة في النموذج المقابل الأكبر 32B، مما يحقق أداءً عاليًا بالنسبة لحجمه، مما يجعله مناسبًا للنشر في البيئات المحدودة الموارد التي لا تزال تتطلب قدرات قوية في فهم اللغة وتوليدها."
|
2083
2119
|
},
|
2120
|
+
"thudm/glm-z1-32b": {
|
2121
|
+
"description": "GLM-Z1-32B-0414 هو نسخة محسنة من GLM-4-32B، مصممة لحل المشكلات المعقدة في الرياضيات العميقة، المنطق، والشيفرات. يستخدم التعلم المعزز الموسع (المخصص للمهام والمبني على تفضيلات عامة) لتحسين الأداء في المهام المعقدة متعددة الخطوات. مقارنةً بنموذج GLM-4-32B الأساسي، زادت Z1 بشكل ملحوظ من قدرات الاستدلال الهيكلي والمجالات الرسمية.\n\nيدعم هذا النموذج تنفيذ خطوات \"التفكير\" من خلال هندسة التلميحات، ويقدم اتساقًا محسنًا للإخراج الطويل. تم تحسينه لعمليات سير العمل الخاصة بالوكيل، ويدعم السياقات الطويلة (عبر YaRN)، واستدعاءات أدوات JSON، وتكوينات أخذ العينات الدقيقة للاستدلال المستقر. مثالي للحالات التي تتطلب تفكيرًا عميقًا، استدلالًا متعدد الخطوات، أو استنتاجات رسمية."
|
2122
|
+
},
|
2123
|
+
"thudm/glm-z1-32b:free": {
|
2124
|
+
"description": "GLM-Z1-32B-0414 هو نسخة محسنة من GLM-4-32B، مصممة لحل المشكلات المعقدة في الرياضيات العميقة، المنطق، والشيفرات. يستخدم التعلم المعزز الموسع (المخصص للمهام والمبني على تفضيلات عامة) لتحسين الأداء في المهام المعقدة متعددة الخطوات. مقارنةً بنموذج GLM-4-32B الأساسي، زادت Z1 بشكل ملحوظ من قدرات الاستدلال الهيكلي والمجالات الرسمية.\n\nيدعم هذا النموذج تنفيذ خطوات \"التفكير\" من خلال هندسة التلميحات، ويقدم اتساقًا محسنًا للإخراج الطويل. تم تحسينه لعمليات سير العمل الخاصة بالوكيل، ويدعم السياقات الطويلة (عبر YaRN)، واستدعاءات أدوات JSON، وتكوينات أخذ العينات الدقيقة للاستدلال المستقر. مثالي للحالات التي تتطلب تفكيرًا عميقًا، استدلالًا متعدد الخطوات، أو استنتاجات رسمية."
|
2125
|
+
},
|
2084
2126
|
"thudm/glm-z1-9b:free": {
|
2085
2127
|
"description": "GLM-Z1-9B-0414 هو نموذج لغوي يحتوي على 9 مليار معلمة من سلسلة GLM-4 التي تم تطويرها بواسطة THUDM. يستخدم تقنيات تم تطبيقها في الأصل على نموذج GLM-Z1 الأكبر، بما في ذلك تعزيز التعلم الموسع، والتوافق القائم على الترتيب الثنائي، والتدريب على المهام التي تتطلب استدلالًا مكثفًا مثل الرياضيات، والترميز، والمنطق. على الرغم من حجمه الأصغر، إلا أنه يظهر أداءً قويًا في المهام العامة للاستدلال، ويتفوق على العديد من النماذج مفتوحة المصدر في مستوى وزنه."
|
2086
2128
|
},
|
@@ -29,9 +29,6 @@
|
|
29
29
|
"deepseek": {
|
30
30
|
"description": "DeepSeek هي شركة تركز على أبحاث وتطبيقات تقنيات الذكاء الاصطناعي، حيث يجمع نموذجها الأحدث DeepSeek-V2.5 بين قدرات الحوار العامة ومعالجة الشيفرات، وقد حقق تحسينات ملحوظة في محاذاة تفضيلات البشر، ومهام الكتابة، واتباع التعليمات."
|
31
31
|
},
|
32
|
-
"doubao": {
|
33
|
-
"description": "نموذج كبير تم تطويره داخليًا بواسطة بايت دانس. تم التحقق من صحته من خلال أكثر من 50 سيناريو عمل داخلي، مع استخدام يومي يتجاوز تريليون توكن، مما يتيح تقديم قدرات متعددة الأنماط، ويعمل على توفير تجربة عمل غنية للشركات من خلال نموذج عالي الجودة."
|
34
|
-
},
|
35
32
|
"fireworksai": {
|
36
33
|
"description": "Fireworks AI هي شركة رائدة في تقديم خدمات نماذج اللغة المتقدمة، تركز على استدعاء الوظائف والمعالجة متعددة الوسائط. نموذجها الأحدث Firefunction V2 مبني على Llama-3، مُحسّن لاستدعاء الوظائف، والحوار، واتباع التعليمات. يدعم نموذج اللغة البصرية FireLLaVA-13B إدخال الصور والنصوص المختلطة. تشمل النماذج البارزة الأخرى سلسلة Llama وسلسلة Mixtral، مما يوفر دعمًا فعالًا لاتباع التعليمات وتوليدها بلغات متعددة."
|
37
34
|
},
|
@@ -35,6 +35,10 @@
|
|
35
35
|
"desc": "Активирайте основното поле за търсене на текущата страница",
|
36
36
|
"title": "Търсене"
|
37
37
|
},
|
38
|
+
"showApp": {
|
39
|
+
"desc": "Бързо отваряне на основния прозорец на приложението",
|
40
|
+
"title": "Покажи основния прозорец"
|
41
|
+
},
|
38
42
|
"switchAgent": {
|
39
43
|
"desc": "Сменете помощника, фиксиран в страничната лента, като задържите Ctrl и натиснете число от 0 до 9",
|
40
44
|
"title": "Бърза смяна на помощника"
|
@@ -71,6 +71,9 @@
|
|
71
71
|
"DeepSeek-V3": {
|
72
72
|
"description": "DeepSeek-V3 е MoE модел, разработен от компанията DeepSeek. DeepSeek-V3 постига резултати в множество оценки, които надминават други отворени модели като Qwen2.5-72B и Llama-3.1-405B, като по отношение на производителност е наравно с водещите затворени модели в света като GPT-4o и Claude-3.5-Sonnet."
|
73
73
|
},
|
74
|
+
"Doubao-1.5-thinking-pro-m": {
|
75
|
+
"description": "Doubao-1.5 е новият модел за дълбочинно разсъждение (версия m идва с вградена многомодална дълбочинна разсъждаваща способност), който показва отлични резултати в професионални области като математика, програмиране, научни разсъждения и в общи задачи като креативно писане, достигайки или приближавайки се до водещото ниво в индустрията в множество авторитетни бенчмаркове като AIME 2024, Codeforces, GPQA. Поддържа контекстен прозорец от 128k и изход от 16k."
|
76
|
+
},
|
74
77
|
"Doubao-1.5-vision-pro": {
|
75
78
|
"description": "Doubao-1.5-vision-pro е ново обновление на мултимодалния модел, поддържащ разпознаване на изображения с произволна резолюция и екстремни съотношения на дължина и ширина, подобряващ способностите за визуални разсъждения, разпознаване на документи, разбиране на детайлна информация и следване на инструкции."
|
76
79
|
},
|
@@ -293,6 +296,21 @@
|
|
293
296
|
"Qwen/Qwen2.5-VL-72B-Instruct": {
|
294
297
|
"description": "Qwen2.5-VL е визуален езиков модел от серията Qwen2.5. Този модел има значителни подобрения в различни аспекти: разполага с по-добри възможности за визуално разбиране, може да разпознава обикновени обекти, да анализира текст, диаграми и оформление; като визуален агент може да разсъждава и динамично да насочва използването на инструменти; поддържа разбиране на дълги видеоклипове с продължителност над 1 час и улавяне на ключови събития; може да локализира точно обекти в изображения чрез генериране на ограничителни кутии или точки; поддържа генериране на структуриран изход, особено подходящ за сканирани данни като фактури и таблици."
|
295
298
|
},
|
299
|
+
"Qwen/Qwen3-14B": {
|
300
|
+
"description": "Qwen3 е ново поколение модел на Tongyi Qianwen с значително подобрени способности, достигащи водещо ниво в индустрията в разсъждения, общи, агенти и многоезични основни способности, и поддържа превключване на режим на мислене."
|
301
|
+
},
|
302
|
+
"Qwen/Qwen3-235B-A22B": {
|
303
|
+
"description": "Qwen3 е ново поколение модел на Tongyi Qianwen с значително подобрени способности, достигащи водещо ниво в индустрията в разсъждения, общи, агенти и многоезични основни способности, и поддържа превключване на режим на мислене."
|
304
|
+
},
|
305
|
+
"Qwen/Qwen3-30B-A3B": {
|
306
|
+
"description": "Qwen3 е ново поколение модел на Tongyi Qianwen с значително подобрени способности, достигащи водещо ниво в индустрията в разсъждения, общи, агенти и многоезични основни способности, и поддържа превключване на режим на мислене."
|
307
|
+
},
|
308
|
+
"Qwen/Qwen3-32B": {
|
309
|
+
"description": "Qwen3 е ново поколение модел на Tongyi Qianwen с значително подобрени способности, достигащи водещо ниво в индустрията в разсъждения, общи, агенти и многоезични основни способности, и поддържа превключване на режим на мислене."
|
310
|
+
},
|
311
|
+
"Qwen/Qwen3-8B": {
|
312
|
+
"description": "Qwen3 е ново поколение модел на Tongyi Qianwen с значително подобрени способности, достигащи водещо ниво в индустрията в разсъждения, общи, агенти и многоезични основни способности, и поддържа превключване на режим на мислене."
|
313
|
+
},
|
296
314
|
"Qwen2-72B-Instruct": {
|
297
315
|
"description": "Qwen2 е най-новата серия на модела Qwen, поддържаща 128k контекст. В сравнение с текущите най-добри отворени модели, Qwen2-72B значително надминава водещите модели в области като разбиране на естествен език, знания, код, математика и многоезичност."
|
298
316
|
},
|
@@ -398,9 +416,6 @@
|
|
398
416
|
"THUDM/glm-4-9b-chat": {
|
399
417
|
"description": "GLM-4 9B е отворен код версия, предоставяща оптимизирано изживяване в разговорните приложения."
|
400
418
|
},
|
401
|
-
"TeleAI/TeleChat2": {
|
402
|
-
"description": "TeleChat2 е голям модел, разработен от China Telecom, който предлага генеративен семантичен модел, поддържащ функции като енциклопедични въпроси и отговори, генериране на код и генериране на дълги текстове, предоставяйки услуги за консултации на потребителите, способни да взаимодействат с потребителите, да отговарят на въпроси и да помагат в творчеството, ефективно и удобно помагайки на потребителите да получат информация, знания и вдъхновение. Моделът показва отлични резултати в проблеми с илюзии, генериране на дълги текстове и логическо разбиране."
|
403
|
-
},
|
404
419
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
405
420
|
"description": "Qwen2.5-72B-Instruct е един от най-новите големи езикови модели, публикувани от Alibaba Cloud. Този 72B модел показва значителни подобрения в областите на кодирането и математиката. Моделът предлага многоезична поддръжка, обхващаща над 29 езика, включително китайски, английски и др. Моделът показва значителни подобрения в следването на инструкции, разбирането на структурирани данни и генерирането на структурирани изходи (особено JSON)."
|
406
421
|
},
|
@@ -800,6 +815,12 @@
|
|
800
815
|
"deepseek/deepseek-chat": {
|
801
816
|
"description": "Новооткритият отворен модел, който съчетава общи и кодови способности, не само запазва общата диалогова способност на оригиналния Chat модел и мощната способност за обработка на код на Coder модела, но също така по-добре се съобразява с човешките предпочитания. Освен това, DeepSeek-V2.5 постигна значителни подобрения в задачи по писане, следване на инструкции и много други."
|
802
817
|
},
|
818
|
+
"deepseek/deepseek-chat-v3-0324": {
|
819
|
+
"description": "DeepSeek V3 е експертен смесен модел с 685B параметри, последната итерация на флагманската серия чат модели на екипа DeepSeek.\n\nТой наследява модела [DeepSeek V3](/deepseek/deepseek-chat-v3) и показва отлични резултати в различни задачи."
|
820
|
+
},
|
821
|
+
"deepseek/deepseek-chat-v3-0324:free": {
|
822
|
+
"description": "DeepSeek V3 е експертен смесен модел с 685B параметри, последната итерация на флагманската серия чат модели на екипа DeepSeek.\n\nТой наследява модела [DeepSeek V3](/deepseek/deepseek-chat-v3) и показва отлични резултати в различни задачи."
|
823
|
+
},
|
803
824
|
"deepseek/deepseek-r1": {
|
804
825
|
"description": "DeepSeek-R1 значително подобри способността на модела за разсъждение при наличието на много малко маркирани данни. Преди да предостави окончателния отговор, моделът първо ще изведе част от съдържанието на веригата на мислене, за да повиши точността на окончателния отговор."
|
805
826
|
},
|
@@ -851,9 +872,6 @@
|
|
851
872
|
"doubao-1.5-thinking-pro": {
|
852
873
|
"description": "Doubao-1.5 е нов модел за дълбоко мислене, който се отличава в специализирани области като математика, програмиране и научно разсъждение, както и в общи задачи като креативно писане. Той достига или е близо до нивото на водещите в индустрията в множество авторитетни бенчмаркове, включително AIME 2024, Codeforces и GPQA. Поддържа контекстен прозорец от 128k и 16k изход."
|
853
874
|
},
|
854
|
-
"doubao-1.5-thinking-pro-vision": {
|
855
|
-
"description": "Doubao-1.5 е нов модел за дълбоко мислене, който се отличава в специализирани области като математика, програмиране и научно разсъждение, както и в общи задачи като креативно писане. Той достига или е близо до нивото на водещите в индустрията в множество авторитетни бенчмаркове, включително AIME 2024, Codeforces и GPQA. Поддържа контекстен прозорец от 128k и 16k изход."
|
856
|
-
},
|
857
875
|
"doubao-1.5-vision-lite": {
|
858
876
|
"description": "Doubao-1.5-vision-lite е ново обновление на мултимодалния модел, поддържащ разпознаване на изображения с произволна резолюция и екстремни съотношения на дължина и ширина, подобряващ способностите за визуални разсъждения, разпознаване на документи, разбиране на детайлна информация и следване на инструкции. Поддържа контекстуален прозорец от 128k, с максимална дължина на изхода от 16k токена."
|
859
877
|
},
|
@@ -995,9 +1013,6 @@
|
|
995
1013
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
996
1014
|
"description": "Gemini 2.0 Flash Exp е най-новият експериментален многомодален AI модел на Google, с ново поколение функции, изключителна скорост, нативно извикване на инструменти и многомодално генериране."
|
997
1015
|
},
|
998
|
-
"gemini-2.0-pro-exp-02-05": {
|
999
|
-
"description": "Gemini 2.0 Pro Experimental е най-новият експериментален многомодален AI модел на Google, който предлага значително подобрение в качеството в сравнение с предишните версии, особено по отношение на световни знания, код и дълги контексти."
|
1000
|
-
},
|
1001
1016
|
"gemini-2.5-flash-preview-04-17": {
|
1002
1017
|
"description": "Gemini 2.5 Flash Preview е моделът с най-добро съотношение цена-качество на Google, предлагащ пълна функционалност."
|
1003
1018
|
},
|
@@ -1007,6 +1022,9 @@
|
|
1007
1022
|
"gemini-2.5-pro-preview-03-25": {
|
1008
1023
|
"description": "Gemini 2.5 Pro Preview е най-напредналият модел на Google за мислене, способен да разсъждава по сложни проблеми в кодиране, математика и STEM области, както и да анализира големи набори от данни, кодови библиотеки и документи с дълъг контекст."
|
1009
1024
|
},
|
1025
|
+
"gemini-2.5-pro-preview-05-06": {
|
1026
|
+
"description": "Gemini 2.5 Pro Preview е най-напредналият модел на Google за мислене, способен да разсъждава по сложни проблеми в кодиране, математика и STEM области, както и да анализира големи набори от данни, кодови библиотеки и документи с дълъг контекст."
|
1027
|
+
},
|
1010
1028
|
"gemma-7b-it": {
|
1011
1029
|
"description": "Gemma 7B е подходяща за обработка на средни и малки задачи, съчетаваща икономичност."
|
1012
1030
|
},
|
@@ -1091,8 +1109,17 @@
|
|
1091
1109
|
"google/gemini-2.0-flash-001": {
|
1092
1110
|
"description": "Gemini 2.0 Flash предлага следващо поколение функции и подобрения, включително изключителна скорост, нативна употреба на инструменти, многомодално генериране и контекстен прозорец от 1M токена."
|
1093
1111
|
},
|
1094
|
-
"google/gemini-2.0-
|
1095
|
-
"description": "Gemini 2.0
|
1112
|
+
"google/gemini-2.0-flash-exp:free": {
|
1113
|
+
"description": "Gemini 2.0 Flash Experimental е най-новият експериментален мултимодален AI модел на Google, с определено подобрение в качеството в сравнение с предишните версии, особено по отношение на световни знания, код и дълъг контекст."
|
1114
|
+
},
|
1115
|
+
"google/gemini-2.5-flash-preview": {
|
1116
|
+
"description": "Gemini 2.5 Flash е най-напредналият основен модел на Google, проектиран за напреднали разсъждения, кодиране, математика и научни задачи. Той включва вградена способност за \"мислене\", което му позволява да предоставя отговори с по-висока точност и детайлна обработка на контекста.\n\nЗабележка: Този модел има два варианта: с мислене и без мислене. Цените на изхода значително варират в зависимост от активирането на способността за мислене. Ако изберете стандартния вариант (без суфикс \":thinking\"), моделът ще избягва генерирането на токени за мислене.\n\nЗа да се възползвате от способността за мислене и да получите токени за мислене, трябва да изберете варианта \":thinking\", което ще доведе до по-високи цени на изхода за мислене.\n\nОсвен това, Gemini 2.5 Flash може да бъде конфигуриран чрез параметъра \"максимален брой токени за разсъждение\", както е описано в документацията (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1117
|
+
},
|
1118
|
+
"google/gemini-2.5-flash-preview:thinking": {
|
1119
|
+
"description": "Gemini 2.5 Flash е най-напредналият основен модел на Google, проектиран за напреднали разсъждения, кодиране, математика и научни задачи. Той включва вградена способност за \"мислене\", което му позволява да предоставя отговори с по-висока точност и детайлна обработка на контекста.\n\nЗабележка: Този модел има два варианта: с мислене и без мислене. Цените на изхода значително варират в зависимост от активирането на способността за мислене. Ако изберете стандартния вариант (без суфикс \":thinking\"), моделът ще избягва генерирането на токени за мислене.\n\nЗа да се възползвате от способността за мислене и да получите токени за мислене, трябва да изберете варианта \":thinking\", което ще доведе до по-високи цени на изхода за мислене.\n\nОсвен това, Gemini 2.5 Flash може да бъде конфигуриран чрез параметъра \"максимален брой токени за разсъждение\", както е описано в документацията (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1120
|
+
},
|
1121
|
+
"google/gemini-2.5-pro-preview-03-25": {
|
1122
|
+
"description": "Gemini 2.5 Pro е най-напредналият AI модел на Google, проектиран за напреднали разсъждения, кодиране, математика и научни задачи. Той притежава способността за \"мислене\", което му позволява да разсъждава с по-висока точност и детайлна обработка на контекста. Gemini 2.5 Pro постига топ производителност в множество бенчмарков, включително първо място в класацията на LMArena, отразявайки изключителна съвместимост с човешките предпочитания и способност за решаване на сложни проблеми."
|
1096
1123
|
},
|
1097
1124
|
"google/gemini-flash-1.5": {
|
1098
1125
|
"description": "Gemini 1.5 Flash предлага оптимизирани мултимодални обработващи способности, подходящи за различни сложни задачи."
|
@@ -1592,6 +1619,9 @@
|
|
1592
1619
|
"mistral-large-latest": {
|
1593
1620
|
"description": "Mistral Large е флагманският модел, специализиран в многоезични задачи, сложни разсъждения и генериране на код, идеален за висококачествени приложения."
|
1594
1621
|
},
|
1622
|
+
"mistral-medium-latest": {
|
1623
|
+
"description": "Mistral Medium 3 предлага най-напреднала производителност на цена 8 пъти по-ниска и основно опростява внедряването в предприятия."
|
1624
|
+
},
|
1595
1625
|
"mistral-nemo": {
|
1596
1626
|
"description": "Mistral Nemo е 12B модел, разработен в сътрудничество между Mistral AI и NVIDIA, предлагащ ефективна производителност."
|
1597
1627
|
},
|
@@ -1763,8 +1793,8 @@
|
|
1763
1793
|
"qvq-72b-preview": {
|
1764
1794
|
"description": "QVQ моделът е експериментален изследователски модел, разработен от екипа на Qwen, фокусиран върху повишаване на визуалните способности за разсъждение, особено в областта на математическото разсъждение."
|
1765
1795
|
},
|
1766
|
-
"qvq-max": {
|
1767
|
-
"description": "Моделът за визуално разсъждение QVQ на Tongyi поддържа визуален вход и изход на
|
1796
|
+
"qvq-max-latest": {
|
1797
|
+
"description": "Моделът за визуално разсъждение QVQ на Tongyi Qianwen поддържа визуален вход и изход на вериги от мисли, демонстрирайки по-силни способности в математика, програмиране, визуален анализ, творчество и общи задачи."
|
1768
1798
|
},
|
1769
1799
|
"qwen-coder-plus-latest": {
|
1770
1800
|
"description": "Модел за кодиране Qwen с общо предназначение."
|
@@ -2075,12 +2105,24 @@
|
|
2075
2105
|
"text-embedding-3-small": {
|
2076
2106
|
"description": "Ефективен и икономичен ново поколение модел за вграждане, подходящ за извличане на знания, RAG приложения и други сценарии."
|
2077
2107
|
},
|
2108
|
+
"thudm/glm-4-32b": {
|
2109
|
+
"description": "GLM-4-32B-0414 е 32B двуезичен (китайски и английски) модел на отворени тегла, оптимизиран за генериране на код, извиквания на функции и задачи с агенти. Той е предварително обучен на 15T висококачествени и повторно разсъждаващи данни и е допълнително усъвършенстван с човешка съвместимост, отхвърляне на проби и обучение с подсилване. Моделът показва отлични резултати в сложни разсъждения, генериране на артефакти и структурирани изходни задачи, постигащи производителност, сравнима с GPT-4o и DeepSeek-V3-0324 в множество бенчмаркове."
|
2110
|
+
},
|
2111
|
+
"thudm/glm-4-32b:free": {
|
2112
|
+
"description": "GLM-4-32B-0414 е 32B двуезичен (китайски и английски) модел на отворени тегла, оптимизиран за генериране на код, извиквания на функции и задачи с агенти. Той е предварително обучен на 15T висококачествени и повторно разсъждаващи данни и е допълнително усъвършенстван с човешка съвместимост, отхвърляне на проби и обучение с подсилване. Моделът показва отлични резултати в сложни разсъждения, генериране на артефакти и структурирани изходни задачи, постигащи производителност, сравнима с GPT-4o и DeepSeek-V3-0324 в множество бенчмаркове."
|
2113
|
+
},
|
2078
2114
|
"thudm/glm-4-9b-chat": {
|
2079
2115
|
"description": "GLM-4 е последната версия на предварително обучен модел от серията, публикувана от Zhizhu AI."
|
2080
2116
|
},
|
2081
2117
|
"thudm/glm-4-9b:free": {
|
2082
2118
|
"description": "GLM-4-9B-0414 е езиков модел с 9 милиарда параметри от серията GLM-4, разработен от THUDM. GLM-4-9B-0414 използва същите стратегии за усилено обучение и подравняване, които се прилагат за по-голямата му 32B версия, за да постигне висока производителност в съотношение с размера си, което го прави подходящ за внедряване с ограничени ресурси, което все пак изисква силни способности за разбиране и генериране на език."
|
2083
2119
|
},
|
2120
|
+
"thudm/glm-z1-32b": {
|
2121
|
+
"description": "GLM-Z1-32B-0414 е подобрена версия на GLM-4-32B, проектирана за дълбока математика, логика и решаване на проблеми, свързани с код. Той прилага разширено обучение с подсилване (за специфични задачи и на базата на общи предпочитания) за подобряване на производителността при сложни многостепенни задачи. В сравнение с основния модел GLM-4-32B, Z1 значително подобрява способностите в структурираното разсъждение и формалните области.\n\nМоделът поддържа прилагане на стъпки за \"мислене\" чрез инженеринг на подсказки и предлага подобрена последователност за дълги формати на изхода. Той е оптимизиран за работни потоци на агенти и поддържа дълъг контекст (чрез YaRN), извиквания на JSON инструменти и конфигурации за фино проби за стабилно разсъждение. Идеален е за случаи, изискващи дълбочинно разсъждение, многостепенни разсъждения или формализирани изводи."
|
2122
|
+
},
|
2123
|
+
"thudm/glm-z1-32b:free": {
|
2124
|
+
"description": "GLM-Z1-32B-0414 е подобрена версия на GLM-4-32B, проектирана за дълбока математика, логика и решаване на проблеми, свързани с код. Той прилага разширено обучение с подсилване (за специфични задачи и на базата на общи предпочитания) за подобряване на производителността при сложни многостепенни задачи. В сравнение с основния модел GLM-4-32B, Z1 значително подобрява способностите в структурираното разсъждение и формалните области.\n\nМоделът поддържа прилагане на стъпки за \"мислене\" чрез инженеринг на подсказки и предлага подобрена последователност за дълги формати на изхода. Той е оптимизиран за работни потоци на агенти и поддържа дълъг контекст (чрез YaRN), извиквания на JSON инструменти и конфигурации за фино проби за стабилно разсъждение. Идеален е за случаи, изискващи дълбочинно разсъждение, многостепенни разсъждения или формализирани изводи."
|
2125
|
+
},
|
2084
2126
|
"thudm/glm-z1-9b:free": {
|
2085
2127
|
"description": "GLM-Z1-9B-0414 е езиков модел с 9B параметри от серията GLM-4, разработен от THUDM. Той прилага технологии, първоначално използвани в по-големия GLM-Z1 модел, включително разширено усилено обучение, подравняване на двойки и обучение за интензивни разсъждения в области като математика, кодиране и логика. Въпреки по-малкия си размер, той показва силна производителност в общите задачи за разсъждение и надминава много от отворените модели на нивото на теглата."
|
2086
2128
|
},
|
@@ -29,9 +29,6 @@
|
|
29
29
|
"deepseek": {
|
30
30
|
"description": "DeepSeek е компания, специализирана в изследвания и приложения на технологии за изкуствен интелект, чийто най-нов модел DeepSeek-V2.5 комбинира способности за общи диалози и обработка на код, постигайки значителни подобрения в съответствието с човешките предпочитания, писателските задачи и следването на инструкции."
|
31
31
|
},
|
32
|
-
"doubao": {
|
33
|
-
"description": "Модел, разработен от ByteDance. Проверен в над 50 бизнес сценария в рамките на компанията, с ежедневна употреба на триллиони токени, който продължава да се усъвършенства, предоставяйки множество модални възможности и създавайки богато бизнес изживяване с висококачествени модели."
|
34
|
-
},
|
35
32
|
"fireworksai": {
|
36
33
|
"description": "Fireworks AI е водещ доставчик на напреднали езикови модели, фокусирайки се върху извикване на функции и мултимодална обработка. Най-новият им модел Firefunction V2, базиран на Llama-3, е оптимизиран за извикване на функции, диалози и следване на инструкции. Визуалният езиков модел FireLLaVA-13B поддържа смесени входове от изображения и текст. Други забележителни модели включват серията Llama и серията Mixtral, предлагащи ефективна поддръжка за многоезично следване на инструкции и генериране."
|
37
34
|
},
|
@@ -35,6 +35,10 @@
|
|
35
35
|
"desc": "Hauptsuchfeld der aktuellen Seite aufrufen",
|
36
36
|
"title": "Suche"
|
37
37
|
},
|
38
|
+
"showApp": {
|
39
|
+
"desc": "Schnelles Öffnen des Hauptfensters der Anwendung",
|
40
|
+
"title": "Hauptfenster anzeigen"
|
41
|
+
},
|
38
42
|
"switchAgent": {
|
39
43
|
"desc": "Wechseln Sie zwischen den im Seitenbereich fixierten Assistenten, indem Sie die Strg-Taste gedrückt halten und eine Zahl von 0 bis 9 drücken",
|
40
44
|
"title": "Schnell zwischen Assistenten wechseln"
|