@lobehub/chat 1.84.23 → 1.84.24
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +25 -0
- package/changelog/v1.json +9 -0
- package/locales/ar/hotkey.json +4 -0
- package/locales/ar/models.json +55 -13
- package/locales/ar/providers.json +0 -3
- package/locales/bg-BG/hotkey.json +4 -0
- package/locales/bg-BG/models.json +55 -13
- package/locales/bg-BG/providers.json +0 -3
- package/locales/de-DE/hotkey.json +4 -0
- package/locales/de-DE/models.json +55 -13
- package/locales/de-DE/providers.json +0 -3
- package/locales/en-US/hotkey.json +4 -0
- package/locales/en-US/models.json +55 -13
- package/locales/en-US/providers.json +0 -3
- package/locales/es-ES/hotkey.json +4 -0
- package/locales/es-ES/models.json +55 -13
- package/locales/es-ES/providers.json +0 -3
- package/locales/fa-IR/hotkey.json +4 -0
- package/locales/fa-IR/models.json +55 -13
- package/locales/fa-IR/providers.json +0 -3
- package/locales/fr-FR/hotkey.json +4 -0
- package/locales/fr-FR/models.json +55 -13
- package/locales/fr-FR/providers.json +0 -3
- package/locales/it-IT/hotkey.json +4 -0
- package/locales/it-IT/models.json +55 -13
- package/locales/it-IT/providers.json +0 -3
- package/locales/ja-JP/hotkey.json +4 -0
- package/locales/ja-JP/models.json +55 -13
- package/locales/ja-JP/providers.json +0 -3
- package/locales/ko-KR/hotkey.json +4 -0
- package/locales/ko-KR/models.json +55 -13
- package/locales/ko-KR/providers.json +0 -3
- package/locales/nl-NL/hotkey.json +4 -0
- package/locales/nl-NL/models.json +55 -13
- package/locales/nl-NL/providers.json +0 -3
- package/locales/pl-PL/hotkey.json +4 -0
- package/locales/pl-PL/models.json +55 -13
- package/locales/pl-PL/providers.json +0 -3
- package/locales/pt-BR/hotkey.json +4 -0
- package/locales/pt-BR/models.json +55 -13
- package/locales/pt-BR/providers.json +0 -3
- package/locales/ru-RU/hotkey.json +4 -0
- package/locales/ru-RU/models.json +55 -13
- package/locales/ru-RU/providers.json +0 -3
- package/locales/tr-TR/hotkey.json +4 -0
- package/locales/tr-TR/models.json +55 -13
- package/locales/tr-TR/providers.json +0 -3
- package/locales/vi-VN/hotkey.json +4 -0
- package/locales/vi-VN/models.json +55 -13
- package/locales/vi-VN/providers.json +0 -3
- package/locales/zh-CN/hotkey.json +4 -0
- package/locales/zh-CN/models.json +55 -13
- package/locales/zh-CN/providers.json +0 -3
- package/locales/zh-TW/hotkey.json +4 -0
- package/locales/zh-TW/models.json +55 -13
- package/locales/zh-TW/providers.json +0 -3
- package/package.json +1 -1
- package/src/const/hotkeys.ts +7 -0
- package/src/const/url.ts +1 -1
- package/src/features/User/UserPanel/useMenu.tsx +2 -1
- package/src/locales/default/hotkey.ts +4 -0
- package/src/services/__tests__/_url.test.ts +23 -0
- package/src/types/hotkey.ts +1 -0
@@ -71,6 +71,9 @@
|
|
71
71
|
"DeepSeek-V3": {
|
72
72
|
"description": "DeepSeek-V3 ist ein von der DeepSeek Company entwickeltes MoE-Modell. Die Ergebnisse von DeepSeek-V3 übertreffen die anderer Open-Source-Modelle wie Qwen2.5-72B und Llama-3.1-405B und stehen in der Leistung auf Augenhöhe mit den weltweit führenden Closed-Source-Modellen GPT-4o und Claude-3.5-Sonnet."
|
73
73
|
},
|
74
|
+
"Doubao-1.5-thinking-pro-m": {
|
75
|
+
"description": "Doubao-1.5 ist ein neues tiefes Denkmodell (m-Version mit nativer multimodaler tiefen Denkfähigkeit), das in den Fachbereichen Mathematik, Programmierung, wissenschaftlichem Denken und kreativen Schreibaufgaben herausragende Leistungen zeigt und in mehreren renommierten Benchmarks wie AIME 2024, Codeforces und GPQA die branchenführenden Standards erreicht oder nahe kommt. Es unterstützt ein Kontextfenster von 128k und 16k Ausgaben."
|
76
|
+
},
|
74
77
|
"Doubao-1.5-vision-pro": {
|
75
78
|
"description": "Doubao-1.5-vision-pro ist ein neu verbessertes multimodales großes Modell, das beliebige Auflösungen und extreme Seitenverhältnisse bei der Bilderkennung unterstützt und die Fähigkeiten in visueller Schlussfolgerung, Dokumentenerkennung, Detailverständnis und Befolgung von Anweisungen verbessert."
|
76
79
|
},
|
@@ -293,6 +296,21 @@
|
|
293
296
|
"Qwen/Qwen2.5-VL-72B-Instruct": {
|
294
297
|
"description": "Qwen2.5-VL ist ein visueller Sprachmodell der Qwen2.5-Serie. Dieses Modell zeichnet sich durch erhebliche Verbesserungen aus: Es verfügt über eine stärkere visuelle Wahrnehmungsfähigkeit, kann übliche Objekte erkennen, Texte, Diagramme und Layouts analysieren; als visueller Agent kann es Schlussfolgerungen ziehen und die dynamische Nutzung von Werkzeugen leiten; es unterstützt das Verstehen von Videos mit einer Länge von über einer Stunde und kann wichtige Ereignisse erfassen; es kann durch die Generierung von Begrenzungsrahmen oder Punkten Objekte in Bildern präzise lokalisieren; es unterstützt die Erstellung strukturierter Ausgaben, insbesondere für gescannte Daten wie Rechnungen und Tabellen."
|
295
298
|
},
|
299
|
+
"Qwen/Qwen3-14B": {
|
300
|
+
"description": "Qwen3 ist ein neues, leistungsstark verbessertes Modell von Tongyi Qianwen, das in den Bereichen Denken, Allgemeinwissen, Agenten und Mehrsprachigkeit in mehreren Kernfähigkeiten branchenführende Standards erreicht und den Wechsel zwischen Denkmodi unterstützt."
|
301
|
+
},
|
302
|
+
"Qwen/Qwen3-235B-A22B": {
|
303
|
+
"description": "Qwen3 ist ein neues, leistungsstark verbessertes Modell von Tongyi Qianwen, das in den Bereichen Denken, Allgemeinwissen, Agenten und Mehrsprachigkeit in mehreren Kernfähigkeiten branchenführende Standards erreicht und den Wechsel zwischen Denkmodi unterstützt."
|
304
|
+
},
|
305
|
+
"Qwen/Qwen3-30B-A3B": {
|
306
|
+
"description": "Qwen3 ist ein neues, leistungsstark verbessertes Modell von Tongyi Qianwen, das in den Bereichen Denken, Allgemeinwissen, Agenten und Mehrsprachigkeit in mehreren Kernfähigkeiten branchenführende Standards erreicht und den Wechsel zwischen Denkmodi unterstützt."
|
307
|
+
},
|
308
|
+
"Qwen/Qwen3-32B": {
|
309
|
+
"description": "Qwen3 ist ein neues, leistungsstark verbessertes Modell von Tongyi Qianwen, das in den Bereichen Denken, Allgemeinwissen, Agenten und Mehrsprachigkeit in mehreren Kernfähigkeiten branchenführende Standards erreicht und den Wechsel zwischen Denkmodi unterstützt."
|
310
|
+
},
|
311
|
+
"Qwen/Qwen3-8B": {
|
312
|
+
"description": "Qwen3 ist ein neues, leistungsstark verbessertes Modell von Tongyi Qianwen, das in den Bereichen Denken, Allgemeinwissen, Agenten und Mehrsprachigkeit in mehreren Kernfähigkeiten branchenführende Standards erreicht und den Wechsel zwischen Denkmodi unterstützt."
|
313
|
+
},
|
296
314
|
"Qwen2-72B-Instruct": {
|
297
315
|
"description": "Qwen2 ist die neueste Reihe des Qwen-Modells, das 128k Kontext unterstützt. Im Vergleich zu den derzeit besten Open-Source-Modellen übertrifft Qwen2-72B in den Bereichen natürliche Sprachverständnis, Wissen, Code, Mathematik und Mehrsprachigkeit deutlich die führenden Modelle."
|
298
316
|
},
|
@@ -398,9 +416,6 @@
|
|
398
416
|
"THUDM/glm-4-9b-chat": {
|
399
417
|
"description": "GLM-4 9B ist die Open-Source-Version, die ein optimiertes Dialogerlebnis für Konversationsanwendungen bietet."
|
400
418
|
},
|
401
|
-
"TeleAI/TeleChat2": {
|
402
|
-
"description": "Das TeleChat2-Modell ist ein generatives semantisches Großmodell, das von China Telecom von Grund auf neu entwickelt wurde und Funktionen wie Enzyklopädiefragen, Codegenerierung und lange Textgenerierung unterstützt. Es bietet Benutzern Beratungsdienste, ermöglicht Dialoginteraktionen mit Benutzern, beantwortet Fragen, unterstützt bei der Erstellung und hilft Benutzern effizient und bequem, Informationen, Wissen und Inspiration zu erhalten. Das Modell zeigt hervorragende Leistungen in den Bereichen Halluzinationsprobleme, lange Textgenerierung und logisches Verständnis."
|
403
|
-
},
|
404
419
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
405
420
|
"description": "Qwen2.5-72B-Instruct ist eines der neuesten großen Sprachmodelle, die von Alibaba Cloud veröffentlicht wurden. Dieses 72B-Modell hat signifikante Verbesserungen in den Bereichen Codierung und Mathematik. Das Modell bietet auch mehrsprachige Unterstützung und deckt über 29 Sprachen ab, einschließlich Chinesisch und Englisch. Es zeigt signifikante Verbesserungen in der Befolgung von Anweisungen, im Verständnis strukturierter Daten und in der Generierung strukturierter Ausgaben (insbesondere JSON)."
|
406
421
|
},
|
@@ -800,6 +815,12 @@
|
|
800
815
|
"deepseek/deepseek-chat": {
|
801
816
|
"description": "Ein neues Open-Source-Modell, das allgemeine und Codefähigkeiten vereint. Es behält nicht nur die allgemeinen Dialogfähigkeiten des ursprünglichen Chat-Modells und die leistungsstarken Codeverarbeitungsfähigkeiten des Coder-Modells bei, sondern stimmt auch besser mit menschlichen Vorlieben überein. Darüber hinaus hat DeepSeek-V2.5 in vielen Bereichen wie Schreibaufgaben und Befehlsbefolgung erhebliche Verbesserungen erzielt."
|
802
817
|
},
|
818
|
+
"deepseek/deepseek-chat-v3-0324": {
|
819
|
+
"description": "DeepSeek V3 ist ein Experten-Mischmodell mit 685B Parametern und die neueste Iteration der Flaggschiff-Chatmodellreihe des DeepSeek-Teams.\n\nEs erbt das [DeepSeek V3](/deepseek/deepseek-chat-v3) Modell und zeigt hervorragende Leistungen in verschiedenen Aufgaben."
|
820
|
+
},
|
821
|
+
"deepseek/deepseek-chat-v3-0324:free": {
|
822
|
+
"description": "DeepSeek V3 ist ein Experten-Mischmodell mit 685B Parametern und die neueste Iteration der Flaggschiff-Chatmodellreihe des DeepSeek-Teams.\n\nEs erbt das [DeepSeek V3](/deepseek/deepseek-chat-v3) Modell und zeigt hervorragende Leistungen in verschiedenen Aufgaben."
|
823
|
+
},
|
803
824
|
"deepseek/deepseek-r1": {
|
804
825
|
"description": "DeepSeek-R1 hat die Schlussfolgerungsfähigkeiten des Modells erheblich verbessert, selbst bei nur wenigen gekennzeichneten Daten. Bevor das Modell die endgültige Antwort ausgibt, gibt es zunächst eine Denkprozesskette aus, um die Genauigkeit der endgültigen Antwort zu erhöhen."
|
805
826
|
},
|
@@ -851,9 +872,6 @@
|
|
851
872
|
"doubao-1.5-thinking-pro": {
|
852
873
|
"description": "Das Doubao-1.5 Modell für tiefes Denken ist neu und zeichnet sich in Fachbereichen wie Mathematik, Programmierung und wissenschaftlichem Denken sowie in allgemeinen Aufgaben wie kreativem Schreiben aus. Es erreicht oder nähert sich in mehreren renommierten Benchmarks wie AIME 2024, Codeforces und GPQA dem Spitzenlevel der Branche. Es unterstützt ein Kontextfenster von 128k und eine Ausgabe von 16k."
|
853
874
|
},
|
854
|
-
"doubao-1.5-thinking-pro-vision": {
|
855
|
-
"description": "Das Doubao-1.5 Modell für tiefes Denken ist neu und zeichnet sich in Fachbereichen wie Mathematik, Programmierung und wissenschaftlichem Denken sowie in allgemeinen Aufgaben wie kreativem Schreiben aus. Es erreicht oder nähert sich in mehreren renommierten Benchmarks wie AIME 2024, Codeforces und GPQA dem Spitzenlevel der Branche. Es unterstützt ein Kontextfenster von 128k und eine Ausgabe von 16k."
|
856
|
-
},
|
857
875
|
"doubao-1.5-vision-lite": {
|
858
876
|
"description": "Doubao-1.5-vision-lite ist ein neu verbessertes multimodales großes Modell, das beliebige Auflösungen und extreme Seitenverhältnisse bei der Bilderkennung unterstützt und die Fähigkeiten in visueller Schlussfolgerung, Dokumentenerkennung, Detailverständnis und Befolgung von Anweisungen verbessert. Es unterstützt ein Kontextfenster von 128k und eine maximale Ausgabelänge von 16k Tokens."
|
859
877
|
},
|
@@ -995,9 +1013,6 @@
|
|
995
1013
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
996
1014
|
"description": "Gemini 2.0 Flash Exp ist Googles neuestes experimentelles multimodales KI-Modell mit der nächsten Generation von Funktionen, außergewöhnlicher Geschwindigkeit, nativer Tool-Nutzung und multimodaler Generierung."
|
997
1015
|
},
|
998
|
-
"gemini-2.0-pro-exp-02-05": {
|
999
|
-
"description": "Gemini 2.0 Pro Experimental ist Googles neuestes experimentelles multimodales KI-Modell, das im Vergleich zu früheren Versionen eine gewisse Qualitätsverbesserung aufweist, insbesondere in Bezug auf Weltwissen, Code und lange Kontexte."
|
1000
|
-
},
|
1001
1016
|
"gemini-2.5-flash-preview-04-17": {
|
1002
1017
|
"description": "Gemini 2.5 Flash Preview ist das kosteneffizienteste Modell von Google und bietet umfassende Funktionen."
|
1003
1018
|
},
|
@@ -1007,6 +1022,9 @@
|
|
1007
1022
|
"gemini-2.5-pro-preview-03-25": {
|
1008
1023
|
"description": "Gemini 2.5 Pro Preview ist Googles fortschrittlichstes Denkmodell, das in der Lage ist, komplexe Probleme in den Bereichen Code, Mathematik und STEM zu analysieren sowie große Datensätze, Codebasen und Dokumente mithilfe von langen Kontextanalysen zu verarbeiten."
|
1009
1024
|
},
|
1025
|
+
"gemini-2.5-pro-preview-05-06": {
|
1026
|
+
"description": "Gemini 2.5 Pro Preview ist Googles fortschrittlichstes Denkmodell, das in der Lage ist, komplexe Probleme in den Bereichen Code, Mathematik und STEM zu analysieren und große Datensätze, Codebasen und Dokumente mithilfe von Langzeitkontext zu analysieren."
|
1027
|
+
},
|
1010
1028
|
"gemma-7b-it": {
|
1011
1029
|
"description": "Gemma 7B eignet sich für die Verarbeitung von mittelgroßen Aufgaben und bietet ein gutes Kosten-Nutzen-Verhältnis."
|
1012
1030
|
},
|
@@ -1091,8 +1109,17 @@
|
|
1091
1109
|
"google/gemini-2.0-flash-001": {
|
1092
1110
|
"description": "Gemini 2.0 Flash bietet nächste Generation Funktionen und Verbesserungen, einschließlich außergewöhnlicher Geschwindigkeit, nativer Werkzeugnutzung, multimodaler Generierung und einem Kontextfenster von 1M Tokens."
|
1093
1111
|
},
|
1094
|
-
"google/gemini-2.0-
|
1095
|
-
"description": "Gemini 2.0
|
1112
|
+
"google/gemini-2.0-flash-exp:free": {
|
1113
|
+
"description": "Gemini 2.0 Flash Experimental ist Googles neuestes experimentelles multimodales KI-Modell, das im Vergleich zu früheren Versionen eine gewisse Qualitätsverbesserung aufweist, insbesondere in Bezug auf Weltwissen, Code und langen Kontext."
|
1114
|
+
},
|
1115
|
+
"google/gemini-2.5-flash-preview": {
|
1116
|
+
"description": "Gemini 2.5 Flash ist Googles fortschrittlichstes Hauptmodell, das für fortgeschrittenes Denken, Codierung, Mathematik und wissenschaftliche Aufgaben entwickelt wurde. Es enthält die eingebaute Fähigkeit zu \"denken\", was es ihm ermöglicht, Antworten mit höherer Genauigkeit und detaillierter Kontextverarbeitung zu liefern.\n\nHinweis: Dieses Modell hat zwei Varianten: Denken und Nicht-Denken. Die Ausgabepreise variieren erheblich, je nachdem, ob die Denkfähigkeit aktiviert ist oder nicht. Wenn Sie die Standardvariante (ohne den Suffix \":thinking\") wählen, wird das Modell ausdrücklich vermeiden, Denk-Tokens zu generieren.\n\nUm die Denkfähigkeit zu nutzen und Denk-Tokens zu erhalten, müssen Sie die \":thinking\"-Variante wählen, was zu höheren Preisen für Denk-Ausgaben führt.\n\nDarüber hinaus kann Gemini 2.5 Flash über den Parameter \"maximale Tokenanzahl für das Denken\" konfiguriert werden, wie in der Dokumentation beschrieben (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1117
|
+
},
|
1118
|
+
"google/gemini-2.5-flash-preview:thinking": {
|
1119
|
+
"description": "Gemini 2.5 Flash ist Googles fortschrittlichstes Hauptmodell, das für fortgeschrittenes Denken, Codierung, Mathematik und wissenschaftliche Aufgaben entwickelt wurde. Es enthält die eingebaute Fähigkeit zu \"denken\", was es ihm ermöglicht, Antworten mit höherer Genauigkeit und detaillierter Kontextverarbeitung zu liefern.\n\nHinweis: Dieses Modell hat zwei Varianten: Denken und Nicht-Denken. Die Ausgabepreise variieren erheblich, je nachdem, ob die Denkfähigkeit aktiviert ist oder nicht. Wenn Sie die Standardvariante (ohne den Suffix \":thinking\") wählen, wird das Modell ausdrücklich vermeiden, Denk-Tokens zu generieren.\n\nUm die Denkfähigkeit zu nutzen und Denk-Tokens zu erhalten, müssen Sie die \":thinking\"-Variante wählen, was zu höheren Preisen für Denk-Ausgaben führt.\n\nDarüber hinaus kann Gemini 2.5 Flash über den Parameter \"maximale Tokenanzahl für das Denken\" konfiguriert werden, wie in der Dokumentation beschrieben (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1120
|
+
},
|
1121
|
+
"google/gemini-2.5-pro-preview-03-25": {
|
1122
|
+
"description": "Gemini 2.5 Pro ist Googles fortschrittlichstes KI-Modell, das für fortgeschrittenes Denken, Codierung, Mathematik und wissenschaftliche Aufgaben entwickelt wurde. Es verfügt über die Fähigkeit zu \"denken\", was es ihm ermöglicht, Antworten mit höherer Genauigkeit und detaillierter Kontextverarbeitung zu generieren. Gemini 2.5 Pro hat in mehreren Benchmark-Tests Spitzenleistungen erzielt, darunter den ersten Platz in der LMArena-Rangliste, was die hervorragende Ausrichtung an menschlichen Vorlieben und die Fähigkeit zur Lösung komplexer Probleme widerspiegelt."
|
1096
1123
|
},
|
1097
1124
|
"google/gemini-flash-1.5": {
|
1098
1125
|
"description": "Gemini 1.5 Flash bietet optimierte multimodale Verarbeitungsfähigkeiten, die für verschiedene komplexe Aufgabenszenarien geeignet sind."
|
@@ -1592,6 +1619,9 @@
|
|
1592
1619
|
"mistral-large-latest": {
|
1593
1620
|
"description": "Mistral Large ist das Flaggschiff-Modell, das sich gut für mehrsprachige Aufgaben, komplexe Schlussfolgerungen und Codegenerierung eignet und die ideale Wahl für hochentwickelte Anwendungen ist."
|
1594
1621
|
},
|
1622
|
+
"mistral-medium-latest": {
|
1623
|
+
"description": "Mistral Medium 3 bietet mit 8-fachen Kosten erstklassige Leistung und vereinfacht grundlegend die Unternehmensbereitstellung."
|
1624
|
+
},
|
1595
1625
|
"mistral-nemo": {
|
1596
1626
|
"description": "Mistral Nemo wurde in Zusammenarbeit mit Mistral AI und NVIDIA entwickelt und ist ein leistungsstarkes 12B-Modell."
|
1597
1627
|
},
|
@@ -1763,8 +1793,8 @@
|
|
1763
1793
|
"qvq-72b-preview": {
|
1764
1794
|
"description": "Das QVQ-Modell ist ein experimentelles Forschungsmodell, das vom Qwen-Team entwickelt wurde und sich auf die Verbesserung der visuellen Schlussfolgerungsfähigkeiten konzentriert, insbesondere im Bereich der mathematischen Schlussfolgerungen."
|
1765
1795
|
},
|
1766
|
-
"qvq-max": {
|
1767
|
-
"description": "Das
|
1796
|
+
"qvq-max-latest": {
|
1797
|
+
"description": "Das QVQ-Vision-Reasoning-Modell von Tongyi Qianwen unterstützt visuelle Eingaben und Denkkettenausgaben und zeigt in Mathematik, Programmierung, visueller Analyse, kreativen Aufgaben und allgemeinen Aufgaben eine stärkere Leistungsfähigkeit."
|
1768
1798
|
},
|
1769
1799
|
"qwen-coder-plus-latest": {
|
1770
1800
|
"description": "Tongyi Qianwen Code-Modell."
|
@@ -2075,12 +2105,24 @@
|
|
2075
2105
|
"text-embedding-3-small": {
|
2076
2106
|
"description": "Effizientes und kostengünstiges neues Embedding-Modell, geeignet für Wissensabruf, RAG-Anwendungen und andere Szenarien."
|
2077
2107
|
},
|
2108
|
+
"thudm/glm-4-32b": {
|
2109
|
+
"description": "GLM-4-32B-0414 ist ein 32B zweisprachiges (Chinesisch-Englisch) offenes Gewicht Sprachmodell, das für die Codegenerierung, Funktionsaufrufe und agentenbasierte Aufgaben optimiert wurde. Es wurde auf 15T hochwertigen und wiederholten Daten vortrainiert und weiter verfeinert durch menschliche Präferenzanpassung, Ablehnungs-Sampling und Verstärkungslernen. Das Modell zeigt hervorragende Leistungen bei komplexem Denken, Artefakterstellung und strukturierten Ausgaben und erreicht in mehreren Benchmark-Tests eine Leistung, die mit GPT-4o und DeepSeek-V3-0324 vergleichbar ist."
|
2110
|
+
},
|
2111
|
+
"thudm/glm-4-32b:free": {
|
2112
|
+
"description": "GLM-4-32B-0414 ist ein 32B zweisprachiges (Chinesisch-Englisch) offenes Gewicht Sprachmodell, das für die Codegenerierung, Funktionsaufrufe und agentenbasierte Aufgaben optimiert wurde. Es wurde auf 15T hochwertigen und wiederholten Daten vortrainiert und weiter verfeinert durch menschliche Präferenzanpassung, Ablehnungs-Sampling und Verstärkungslernen. Das Modell zeigt hervorragende Leistungen bei komplexem Denken, Artefakterstellung und strukturierten Ausgaben und erreicht in mehreren Benchmark-Tests eine Leistung, die mit GPT-4o und DeepSeek-V3-0324 vergleichbar ist."
|
2113
|
+
},
|
2078
2114
|
"thudm/glm-4-9b-chat": {
|
2079
2115
|
"description": "Die Open-Source-Version des neuesten vortrainierten Modells der GLM-4-Serie, das von Zhizhu AI veröffentlicht wurde."
|
2080
2116
|
},
|
2081
2117
|
"thudm/glm-4-9b:free": {
|
2082
2118
|
"description": "GLM-4-9B-0414 ist ein Sprachmodell mit 9 Milliarden Parametern aus der GLM-4-Serie, das von THUDM entwickelt wurde. GLM-4-9B-0414 verwendet die gleichen Verstärkungs- und Ausrichtungsstrategien wie das größere 32B-Modell und erzielt in Bezug auf seine Größe hohe Leistungen, was es für ressourcenbeschränkte Bereitstellungen geeignet macht, die dennoch starke Sprachverständnis- und Generierungsfähigkeiten erfordern."
|
2083
2119
|
},
|
2120
|
+
"thudm/glm-z1-32b": {
|
2121
|
+
"description": "GLM-Z1-32B-0414 ist eine verbesserte Denkvariante von GLM-4-32B, die für tiefgehende Mathematik, Logik und codeorientierte Problemlösungen entwickelt wurde. Es verwendet erweiterte Verstärkungslernen (aufgabenspezifisch und basierend auf allgemeinen Paarpräferenzen), um die Leistung bei komplexen mehrstufigen Aufgaben zu verbessern. Im Vergleich zum Basis-GLM-4-32B-Modell hat Z1 die Fähigkeiten im strukturierten Denken und im formalen Bereich erheblich verbessert.\n\nDieses Modell unterstützt die Durchsetzung von \"Denk\"-Schritten durch Prompt-Engineering und bietet verbesserte Kohärenz für Ausgaben im Langformat. Es ist für Agenten-Workflows optimiert und unterstützt langen Kontext (über YaRN), JSON-Toolaufrufe und feinkörnige Sampling-Konfigurationen für stabiles Denken. Besonders geeignet für Anwendungsfälle, die durchdachtes, mehrstufiges Denken oder formale Ableitungen erfordern."
|
2122
|
+
},
|
2123
|
+
"thudm/glm-z1-32b:free": {
|
2124
|
+
"description": "GLM-Z1-32B-0414 ist eine verbesserte Denkvariante von GLM-4-32B, die für tiefgehende Mathematik, Logik und codeorientierte Problemlösungen entwickelt wurde. Es verwendet erweiterte Verstärkungslernen (aufgabenspezifisch und basierend auf allgemeinen Paarpräferenzen), um die Leistung bei komplexen mehrstufigen Aufgaben zu verbessern. Im Vergleich zum Basis-GLM-4-32B-Modell hat Z1 die Fähigkeiten im strukturierten Denken und im formalen Bereich erheblich verbessert.\n\nDieses Modell unterstützt die Durchsetzung von \"Denk\"-Schritten durch Prompt-Engineering und bietet verbesserte Kohärenz für Ausgaben im Langformat. Es ist für Agenten-Workflows optimiert und unterstützt langen Kontext (über YaRN), JSON-Toolaufrufe und feinkörnige Sampling-Konfigurationen für stabiles Denken. Besonders geeignet für Anwendungsfälle, die durchdachtes, mehrstufiges Denken oder formale Ableitungen erfordern."
|
2125
|
+
},
|
2084
2126
|
"thudm/glm-z1-9b:free": {
|
2085
2127
|
"description": "GLM-Z1-9B-0414 ist ein Sprachmodell mit 9B Parametern aus der GLM-4-Serie, das von THUDM entwickelt wurde. Es verwendet Techniken, die ursprünglich auf das größere GLM-Z1-Modell angewendet wurden, einschließlich erweiterten verstärkten Lernens, paarweiser Rangordnungsausrichtung und Training für inferenzintensive Aufgaben wie Mathematik, Programmierung und Logik. Trotz seiner kleineren Größe zeigt es starke Leistungen bei allgemeinen Inferenzaufgaben und übertrifft viele Open-Source-Modelle in Bezug auf seine Gewichtung."
|
2086
2128
|
},
|
@@ -29,9 +29,6 @@
|
|
29
29
|
"deepseek": {
|
30
30
|
"description": "DeepSeek ist ein Unternehmen, das sich auf die Forschung und Anwendung von KI-Technologien spezialisiert hat. Ihr neuestes Modell, DeepSeek-V2.5, kombiniert allgemeine Dialog- und Codeverarbeitungsfähigkeiten und hat signifikante Fortschritte in den Bereichen menschliche Präferenzanpassung, Schreibaufgaben und Befehlsbefolgung erzielt."
|
31
31
|
},
|
32
|
-
"doubao": {
|
33
|
-
"description": "Ein von ByteDance entwickeltes großes Modell. Durch die praktische Validierung in über 50 internen Geschäftsszenarien und die kontinuierliche Verfeinerung mit täglich Billionen von Tokens bietet es vielfältige Modalitäten und schafft mit hochwertigen Modellergebnissen ein reichhaltiges Geschäftserlebnis für Unternehmen."
|
34
|
-
},
|
35
32
|
"fireworksai": {
|
36
33
|
"description": "Fireworks AI ist ein führender Anbieter von fortschrittlichen Sprachmodellen, der sich auf Funktionsaufrufe und multimodale Verarbeitung spezialisiert hat. Ihr neuestes Modell, Firefunction V2, basiert auf Llama-3 und ist für Funktionsaufrufe, Dialoge und Befehlsbefolgung optimiert. Das visuelle Sprachmodell FireLLaVA-13B unterstützt gemischte Eingaben von Bildern und Text. Weitere bemerkenswerte Modelle sind die Llama-Serie und die Mixtral-Serie, die effiziente mehrsprachige Befehlsbefolgung und Generierungsunterstützung bieten."
|
37
34
|
},
|
@@ -35,6 +35,10 @@
|
|
35
35
|
"desc": "Activate the main search box on the current page",
|
36
36
|
"title": "Search"
|
37
37
|
},
|
38
|
+
"showApp": {
|
39
|
+
"desc": "Quickly open the main application window",
|
40
|
+
"title": "Show Main Window"
|
41
|
+
},
|
38
42
|
"switchAgent": {
|
39
43
|
"desc": "Switch between pinned assistants in the sidebar by holding Ctrl and pressing numbers 0-9",
|
40
44
|
"title": "Quick Switch Assistant"
|
@@ -71,6 +71,9 @@
|
|
71
71
|
"DeepSeek-V3": {
|
72
72
|
"description": "DeepSeek-V3 is a MoE model developed in-house by Deep Seek Company. Its performance surpasses that of other open-source models such as Qwen2.5-72B and Llama-3.1-405B in multiple assessments, and it stands on par with the world's top proprietary models like GPT-4o and Claude-3.5-Sonnet."
|
73
73
|
},
|
74
|
+
"Doubao-1.5-thinking-pro-m": {
|
75
|
+
"description": "Doubao-1.5 is a new deep thinking model (the m version comes with native multimodal deep reasoning capabilities) that excels in specialized fields such as mathematics, programming, scientific reasoning, and general tasks like creative writing, achieving or nearing top-tier performance in authoritative benchmarks such as AIME 2024, Codeforces, and GPQA. It supports a 128k context window and 16k output."
|
76
|
+
},
|
74
77
|
"Doubao-1.5-vision-pro": {
|
75
78
|
"description": "Doubao-1.5-vision-pro is a newly upgraded multimodal large model that supports image recognition at any resolution and extreme aspect ratios, enhancing visual reasoning, document recognition, detail comprehension, and instruction following capabilities."
|
76
79
|
},
|
@@ -293,6 +296,21 @@
|
|
293
296
|
"Qwen/Qwen2.5-VL-72B-Instruct": {
|
294
297
|
"description": "Qwen2.5-VL is the vision-language model in the Qwen2.5 series. This model demonstrates significant improvements across multiple dimensions: enhanced visual comprehension capable of recognizing common objects, analyzing text, charts, and layouts; serving as a visual agent that can reason and dynamically guide tool usage; supporting understanding of long videos exceeding 1 hour while capturing key events; able to precisely locate objects in images by generating bounding boxes or points; and capable of producing structured outputs particularly suitable for scanned data like invoices and forms."
|
295
298
|
},
|
299
|
+
"Qwen/Qwen3-14B": {
|
300
|
+
"description": "Qwen3 is a next-generation model with significantly enhanced capabilities, achieving industry-leading levels in reasoning, general tasks, agent functions, and multilingual support, with a switchable thinking mode."
|
301
|
+
},
|
302
|
+
"Qwen/Qwen3-235B-A22B": {
|
303
|
+
"description": "Qwen3 is a next-generation model with significantly enhanced capabilities, achieving industry-leading levels in reasoning, general tasks, agent functions, and multilingual support, with a switchable thinking mode."
|
304
|
+
},
|
305
|
+
"Qwen/Qwen3-30B-A3B": {
|
306
|
+
"description": "Qwen3 is a next-generation model with significantly enhanced capabilities, achieving industry-leading levels in reasoning, general tasks, agent functions, and multilingual support, with a switchable thinking mode."
|
307
|
+
},
|
308
|
+
"Qwen/Qwen3-32B": {
|
309
|
+
"description": "Qwen3 is a next-generation model with significantly enhanced capabilities, achieving industry-leading levels in reasoning, general tasks, agent functions, and multilingual support, with a switchable thinking mode."
|
310
|
+
},
|
311
|
+
"Qwen/Qwen3-8B": {
|
312
|
+
"description": "Qwen3 is a next-generation model with significantly enhanced capabilities, achieving industry-leading levels in reasoning, general tasks, agent functions, and multilingual support, with a switchable thinking mode."
|
313
|
+
},
|
296
314
|
"Qwen2-72B-Instruct": {
|
297
315
|
"description": "Qwen2 is the latest series of the Qwen model, supporting 128k context. Compared to the current best open-source models, Qwen2-72B significantly surpasses leading models in natural language understanding, knowledge, coding, mathematics, and multilingual capabilities."
|
298
316
|
},
|
@@ -398,9 +416,6 @@
|
|
398
416
|
"THUDM/glm-4-9b-chat": {
|
399
417
|
"description": "GLM-4 9B is an open-source version that provides an optimized conversational experience for chat applications."
|
400
418
|
},
|
401
|
-
"TeleAI/TeleChat2": {
|
402
|
-
"description": "The TeleChat2 large model is a generative semantic model independently developed from scratch by China Telecom, supporting functions such as encyclopedia Q&A, code generation, and long text generation, providing users with conversational consulting services. It can interact with users, answer questions, assist in creation, and efficiently help users obtain information, knowledge, and inspiration. The model performs well in areas such as hallucination issues, long text generation, and logical understanding."
|
403
|
-
},
|
404
419
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
405
420
|
"description": "Qwen2.5-72B-Instruct is one of the latest large language models released by Alibaba Cloud. This 72B model shows significant improvements in coding and mathematics. It also provides multilingual support, covering over 29 languages, including Chinese and English. The model has made notable advancements in instruction following, understanding structured data, and generating structured outputs, especially JSON."
|
406
421
|
},
|
@@ -800,6 +815,12 @@
|
|
800
815
|
"deepseek/deepseek-chat": {
|
801
816
|
"description": "A new open-source model that integrates general and coding capabilities, retaining the general conversational abilities of the original Chat model and the powerful code handling capabilities of the Coder model, while better aligning with human preferences. Additionally, DeepSeek-V2.5 has achieved significant improvements in writing tasks, instruction following, and more."
|
802
817
|
},
|
818
|
+
"deepseek/deepseek-chat-v3-0324": {
|
819
|
+
"description": "DeepSeek V3 is a 685B parameter expert mixture model, the latest iteration in the DeepSeek team's flagship chat model series.\n\nIt inherits from the [DeepSeek V3](/deepseek/deepseek-chat-v3) model and performs excellently across various tasks."
|
820
|
+
},
|
821
|
+
"deepseek/deepseek-chat-v3-0324:free": {
|
822
|
+
"description": "DeepSeek V3 is a 685B parameter expert mixture model, the latest iteration in the DeepSeek team's flagship chat model series.\n\nIt inherits from the [DeepSeek V3](/deepseek/deepseek-chat-v3) model and performs excellently across various tasks."
|
823
|
+
},
|
803
824
|
"deepseek/deepseek-r1": {
|
804
825
|
"description": "DeepSeek-R1 significantly enhances model reasoning capabilities with minimal labeled data. Before outputting the final answer, the model first provides a chain of thought to improve the accuracy of the final response."
|
805
826
|
},
|
@@ -851,9 +872,6 @@
|
|
851
872
|
"doubao-1.5-thinking-pro": {
|
852
873
|
"description": "Doubao-1.5 is a brand new deep thinking model that excels in specialized fields such as mathematics, programming, and scientific reasoning, as well as in general tasks like creative writing. It has achieved or is close to the top tier of industry standards in several authoritative benchmarks, including AIME 2024, Codeforces, and GPQA. It supports a 128k context window and 16k output."
|
853
874
|
},
|
854
|
-
"doubao-1.5-thinking-pro-vision": {
|
855
|
-
"description": "Doubao-1.5 is a brand new deep thinking model that excels in specialized fields such as mathematics, programming, and scientific reasoning, as well as in general tasks like creative writing. It has achieved or is close to the top tier of industry standards in several authoritative benchmarks, including AIME 2024, Codeforces, and GPQA. It supports a 128k context window and 16k output."
|
856
|
-
},
|
857
875
|
"doubao-1.5-vision-lite": {
|
858
876
|
"description": "Doubao-1.5-vision-lite is a newly upgraded multimodal large model that supports image recognition at any resolution and extreme aspect ratios, enhancing visual reasoning, document recognition, detail comprehension, and instruction following capabilities. It supports a context window of 128k and an output length of up to 16k tokens."
|
859
877
|
},
|
@@ -995,9 +1013,6 @@
|
|
995
1013
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
996
1014
|
"description": "Gemini 2.0 Flash Exp is Google's latest experimental multimodal AI model, featuring next-generation capabilities, exceptional speed, native tool invocation, and multimodal generation."
|
997
1015
|
},
|
998
|
-
"gemini-2.0-pro-exp-02-05": {
|
999
|
-
"description": "Gemini 2.0 Pro Experimental is Google's latest experimental multimodal AI model, showing a quality improvement compared to previous versions, especially in world knowledge, coding, and long context."
|
1000
|
-
},
|
1001
1016
|
"gemini-2.5-flash-preview-04-17": {
|
1002
1017
|
"description": "Gemini 2.5 Flash Preview is Google's most cost-effective model, offering a comprehensive set of features."
|
1003
1018
|
},
|
@@ -1007,6 +1022,9 @@
|
|
1007
1022
|
"gemini-2.5-pro-preview-03-25": {
|
1008
1023
|
"description": "Gemini 2.5 Pro Preview is Google's most advanced thinking model, capable of reasoning about complex problems in code, mathematics, and STEM fields, as well as analyzing large datasets, codebases, and documents using long-context analysis."
|
1009
1024
|
},
|
1025
|
+
"gemini-2.5-pro-preview-05-06": {
|
1026
|
+
"description": "Gemini 2.5 Pro Preview is Google's most advanced reasoning model, capable of reasoning about complex problems in code, mathematics, and STEM fields, as well as analyzing large datasets, codebases, and documents using long context."
|
1027
|
+
},
|
1010
1028
|
"gemma-7b-it": {
|
1011
1029
|
"description": "Gemma 7B is suitable for medium to small-scale task processing, offering cost-effectiveness."
|
1012
1030
|
},
|
@@ -1091,8 +1109,17 @@
|
|
1091
1109
|
"google/gemini-2.0-flash-001": {
|
1092
1110
|
"description": "Gemini 2.0 Flash offers next-generation features and improvements, including exceptional speed, native tool usage, multimodal generation, and a 1M token context window."
|
1093
1111
|
},
|
1094
|
-
"google/gemini-2.0-
|
1095
|
-
"description": "Gemini 2.0
|
1112
|
+
"google/gemini-2.0-flash-exp:free": {
|
1113
|
+
"description": "Gemini 2.0 Flash Experimental is Google's latest experimental multimodal AI model, showing a quality improvement compared to historical versions, especially in world knowledge, code, and long context."
|
1114
|
+
},
|
1115
|
+
"google/gemini-2.5-flash-preview": {
|
1116
|
+
"description": "Gemini 2.5 Flash is Google's most advanced flagship model, designed for advanced reasoning, coding, mathematics, and scientific tasks. It includes built-in 'thinking' capabilities that allow it to provide responses with higher accuracy and detailed context handling.\n\nNote: This model has two variants: thinking and non-thinking. Output pricing varies significantly based on whether the thinking capability is activated. If you choose the standard variant (without the ':thinking' suffix), the model will explicitly avoid generating thinking tokens.\n\nTo leverage the thinking capability and receive thinking tokens, you must select the ':thinking' variant, which will incur higher thinking output pricing.\n\nAdditionally, Gemini 2.5 Flash can be configured via the 'maximum tokens for reasoning' parameter, as described in the documentation (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1117
|
+
},
|
1118
|
+
"google/gemini-2.5-flash-preview:thinking": {
|
1119
|
+
"description": "Gemini 2.5 Flash is Google's most advanced flagship model, designed for advanced reasoning, coding, mathematics, and scientific tasks. It includes built-in 'thinking' capabilities that allow it to provide responses with higher accuracy and detailed context handling.\n\nNote: This model has two variants: thinking and non-thinking. Output pricing varies significantly based on whether the thinking capability is activated. If you choose the standard variant (without the ':thinking' suffix), the model will explicitly avoid generating thinking tokens.\n\nTo leverage the thinking capability and receive thinking tokens, you must select the ':thinking' variant, which will incur higher thinking output pricing.\n\nAdditionally, Gemini 2.5 Flash can be configured via the 'maximum tokens for reasoning' parameter, as described in the documentation (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1120
|
+
},
|
1121
|
+
"google/gemini-2.5-pro-preview-03-25": {
|
1122
|
+
"description": "Gemini 2.5 Pro is Google's cutting-edge AI model designed for advanced reasoning, coding, mathematics, and scientific tasks. It features 'thinking' capabilities that enable it to reason responses with higher accuracy and detailed context handling. Gemini 2.5 Pro has achieved top performance in multiple benchmark tests, including ranking first on the LMArena leaderboard, reflecting exceptional human preference alignment and complex problem-solving abilities."
|
1096
1123
|
},
|
1097
1124
|
"google/gemini-flash-1.5": {
|
1098
1125
|
"description": "Gemini 1.5 Flash offers optimized multimodal processing capabilities, suitable for various complex task scenarios."
|
@@ -1592,6 +1619,9 @@
|
|
1592
1619
|
"mistral-large-latest": {
|
1593
1620
|
"description": "Mistral Large is the flagship model, excelling in multilingual tasks, complex reasoning, and code generation, making it an ideal choice for high-end applications."
|
1594
1621
|
},
|
1622
|
+
"mistral-medium-latest": {
|
1623
|
+
"description": "Mistral Medium 3 offers state-of-the-art performance at 8 times the cost, fundamentally simplifying enterprise deployment."
|
1624
|
+
},
|
1595
1625
|
"mistral-nemo": {
|
1596
1626
|
"description": "Mistral Nemo, developed in collaboration with Mistral AI and NVIDIA, is a high-performance 12B model."
|
1597
1627
|
},
|
@@ -1763,8 +1793,8 @@
|
|
1763
1793
|
"qvq-72b-preview": {
|
1764
1794
|
"description": "The QVQ model is an experimental research model developed by the Qwen team, focusing on enhancing visual reasoning capabilities, particularly in the field of mathematical reasoning."
|
1765
1795
|
},
|
1766
|
-
"qvq-max": {
|
1767
|
-
"description": "The QVQ
|
1796
|
+
"qvq-max-latest": {
|
1797
|
+
"description": "The QVQ visual reasoning model supports visual input and thinking chain output, demonstrating stronger capabilities in mathematics, programming, visual analysis, creative writing, and general tasks."
|
1768
1798
|
},
|
1769
1799
|
"qwen-coder-plus-latest": {
|
1770
1800
|
"description": "Tongyi Qianwen code model."
|
@@ -2075,12 +2105,24 @@
|
|
2075
2105
|
"text-embedding-3-small": {
|
2076
2106
|
"description": "An efficient and cost-effective next-generation embedding model, suitable for knowledge retrieval, RAG applications, and more."
|
2077
2107
|
},
|
2108
|
+
"thudm/glm-4-32b": {
|
2109
|
+
"description": "GLM-4-32B-0414 is a 32B bilingual (Chinese-English) open-weight language model optimized for code generation, function calls, and agent-based tasks. It has been pre-trained on 15T of high-quality and re-reasoning data and further refined using human preference alignment, rejection sampling, and reinforcement learning. The model excels in complex reasoning, artifact generation, and structured output tasks, achieving performance comparable to GPT-4o and DeepSeek-V3-0324 in multiple benchmark tests."
|
2110
|
+
},
|
2111
|
+
"thudm/glm-4-32b:free": {
|
2112
|
+
"description": "GLM-4-32B-0414 is a 32B bilingual (Chinese-English) open-weight language model optimized for code generation, function calls, and agent-based tasks. It has been pre-trained on 15T of high-quality and re-reasoning data and further refined using human preference alignment, rejection sampling, and reinforcement learning. The model excels in complex reasoning, artifact generation, and structured output tasks, achieving performance comparable to GPT-4o and DeepSeek-V3-0324 in multiple benchmark tests."
|
2113
|
+
},
|
2078
2114
|
"thudm/glm-4-9b-chat": {
|
2079
2115
|
"description": "The open-source version of the latest generation pre-trained model from the GLM-4 series released by Zhiyuan AI."
|
2080
2116
|
},
|
2081
2117
|
"thudm/glm-4-9b:free": {
|
2082
2118
|
"description": "GLM-4-9B-0414 is a 9 billion parameter language model in the GLM-4 series developed by THUDM. GLM-4-9B-0414 is trained using the same reinforcement learning and alignment strategies as its larger 32B counterpart, achieving high performance relative to its scale, making it suitable for resource-constrained deployments that still require strong language understanding and generation capabilities."
|
2083
2119
|
},
|
2120
|
+
"thudm/glm-z1-32b": {
|
2121
|
+
"description": "GLM-Z1-32B-0414 is an enhanced reasoning variant of GLM-4-32B, built for deep mathematics, logic, and code-oriented problem solving. It applies extended reinforcement learning (task-specific and based on general pairwise preferences) to improve performance on complex multi-step tasks. Compared to the base GLM-4-32B model, Z1 significantly enhances capabilities in structured reasoning and formal domains.\n\nThis model supports enforcing 'thinking' steps through prompt engineering and provides improved coherence for long-format outputs. It is optimized for agent workflows and supports long context (via YaRN), JSON tool calls, and fine-grained sampling configurations for stable reasoning. It is ideal for use cases requiring thoughtful, multi-step reasoning or formal derivation."
|
2122
|
+
},
|
2123
|
+
"thudm/glm-z1-32b:free": {
|
2124
|
+
"description": "GLM-Z1-32B-0414 is an enhanced reasoning variant of GLM-4-32B, built for deep mathematics, logic, and code-oriented problem solving. It applies extended reinforcement learning (task-specific and based on general pairwise preferences) to improve performance on complex multi-step tasks. Compared to the base GLM-4-32B model, Z1 significantly enhances capabilities in structured reasoning and formal domains.\n\nThis model supports enforcing 'thinking' steps through prompt engineering and provides improved coherence for long-format outputs. It is optimized for agent workflows and supports long context (via YaRN), JSON tool calls, and fine-grained sampling configurations for stable reasoning. It is ideal for use cases requiring thoughtful, multi-step reasoning or formal derivation."
|
2125
|
+
},
|
2084
2126
|
"thudm/glm-z1-9b:free": {
|
2085
2127
|
"description": "GLM-Z1-9B-0414 is a 9 billion parameter language model in the GLM-4 series developed by THUDM. It employs techniques initially applied to the larger GLM-Z1 model, including extended reinforcement learning, pairwise ranking alignment, and training for reasoning-intensive tasks such as mathematics, coding, and logic. Despite its smaller scale, it demonstrates strong performance on general reasoning tasks and outperforms many open-source models at its weight level."
|
2086
2128
|
},
|
@@ -29,9 +29,6 @@
|
|
29
29
|
"deepseek": {
|
30
30
|
"description": "DeepSeek is a company focused on AI technology research and application, with its latest model DeepSeek-V2.5 integrating general dialogue and code processing capabilities, achieving significant improvements in human preference alignment, writing tasks, and instruction following."
|
31
31
|
},
|
32
|
-
"doubao": {
|
33
|
-
"description": "A self-developed large model launched by ByteDance. Verified through practical applications in over 50 internal business scenarios, it continuously refines its capabilities with a daily usage of trillions of tokens, providing various modal abilities to create a rich business experience for enterprises with high-quality model performance."
|
34
|
-
},
|
35
32
|
"fireworksai": {
|
36
33
|
"description": "Fireworks AI is a leading provider of advanced language model services, focusing on functional calling and multimodal processing. Its latest model, Firefunction V2, is based on Llama-3, optimized for function calling, conversation, and instruction following. The visual language model FireLLaVA-13B supports mixed input of images and text. Other notable models include the Llama series and Mixtral series, providing efficient multilingual instruction following and generation support."
|
37
34
|
},
|
@@ -35,6 +35,10 @@
|
|
35
35
|
"desc": "Invocar el cuadro de búsqueda principal de la página actual",
|
36
36
|
"title": "Buscar"
|
37
37
|
},
|
38
|
+
"showApp": {
|
39
|
+
"desc": "Abrir rápidamente la ventana principal de la aplicación",
|
40
|
+
"title": "Mostrar ventana principal"
|
41
|
+
},
|
38
42
|
"switchAgent": {
|
39
43
|
"desc": "Cambiar el asistente fijado en la barra lateral manteniendo presionada la tecla Ctrl y pulsando un número del 0 al 9",
|
40
44
|
"title": "Cambio rápido de asistente"
|
@@ -71,6 +71,9 @@
|
|
71
71
|
"DeepSeek-V3": {
|
72
72
|
"description": "DeepSeek-V3 es un modelo MoE desarrollado internamente por la empresa DeepSeek. Los resultados de DeepSeek-V3 en múltiples evaluaciones superan a otros modelos de código abierto como Qwen2.5-72B y Llama-3.1-405B, y su rendimiento es comparable al de los modelos cerrados de primer nivel mundial como GPT-4o y Claude-3.5-Sonnet."
|
73
73
|
},
|
74
|
+
"Doubao-1.5-thinking-pro-m": {
|
75
|
+
"description": "Doubao-1.5 es un nuevo modelo de pensamiento profundo (la versión m incluye capacidades de razonamiento multimodal nativas), destacándose en campos profesionales como matemáticas, programación, razonamiento científico y tareas generales como la escritura creativa, alcanzando o acercándose a los niveles de élite en múltiples pruebas de referencia como AIME 2024, Codeforces y GPQA. Soporta una ventana de contexto de 128k y una salida de 16k."
|
76
|
+
},
|
74
77
|
"Doubao-1.5-vision-pro": {
|
75
78
|
"description": "Doubao-1.5-vision-pro es un modelo multimodal de gran escala actualizado, que soporta el reconocimiento de imágenes de cualquier resolución y proporciones extremas, mejorando la capacidad de razonamiento visual, reconocimiento de documentos, comprensión de información detallada y seguimiento de instrucciones."
|
76
79
|
},
|
@@ -293,6 +296,21 @@
|
|
293
296
|
"Qwen/Qwen2.5-VL-72B-Instruct": {
|
294
297
|
"description": "Qwen2.5-VL es el modelo de lenguaje visual de la serie Qwen2.5. Este modelo presenta mejoras significativas en múltiples aspectos: posee una mayor capacidad de comprensión visual, pudiendo reconocer objetos comunes, analizar texto, gráficos y diseños; como agente visual puede razonar y guiar dinámicamente el uso de herramientas; soporta la comprensión de videos largos de más de 1 hora capturando eventos clave; es capaz de localizar objetos en imágenes con precisión generando cuadros delimitadores o puntos; y admite la generación de salidas estructuradas, especialmente útil para datos escaneados como facturas o tablas."
|
295
298
|
},
|
299
|
+
"Qwen/Qwen3-14B": {
|
300
|
+
"description": "Qwen3 es un nuevo modelo de Tongyi Qianwen de próxima generación con capacidades significativamente mejoradas, alcanzando niveles líderes en la industria en razonamiento, general, agente y múltiples idiomas, y admite el cambio de modo de pensamiento."
|
301
|
+
},
|
302
|
+
"Qwen/Qwen3-235B-A22B": {
|
303
|
+
"description": "Qwen3 es un nuevo modelo de Tongyi Qianwen de próxima generación con capacidades significativamente mejoradas, alcanzando niveles líderes en la industria en razonamiento, general, agente y múltiples idiomas, y admite el cambio de modo de pensamiento."
|
304
|
+
},
|
305
|
+
"Qwen/Qwen3-30B-A3B": {
|
306
|
+
"description": "Qwen3 es un nuevo modelo de Tongyi Qianwen de próxima generación con capacidades significativamente mejoradas, alcanzando niveles líderes en la industria en razonamiento, general, agente y múltiples idiomas, y admite el cambio de modo de pensamiento."
|
307
|
+
},
|
308
|
+
"Qwen/Qwen3-32B": {
|
309
|
+
"description": "Qwen3 es un nuevo modelo de Tongyi Qianwen de próxima generación con capacidades significativamente mejoradas, alcanzando niveles líderes en la industria en razonamiento, general, agente y múltiples idiomas, y admite el cambio de modo de pensamiento."
|
310
|
+
},
|
311
|
+
"Qwen/Qwen3-8B": {
|
312
|
+
"description": "Qwen3 es un nuevo modelo de Tongyi Qianwen de próxima generación con capacidades significativamente mejoradas, alcanzando niveles líderes en la industria en razonamiento, general, agente y múltiples idiomas, y admite el cambio de modo de pensamiento."
|
313
|
+
},
|
296
314
|
"Qwen2-72B-Instruct": {
|
297
315
|
"description": "Qwen2 es la última serie del modelo Qwen, que admite un contexto de 128k. En comparación con los modelos de código abierto más óptimos actuales, Qwen2-72B supera significativamente a los modelos líderes actuales en comprensión del lenguaje natural, conocimiento, código, matemáticas y capacidades multilingües."
|
298
316
|
},
|
@@ -398,9 +416,6 @@
|
|
398
416
|
"THUDM/glm-4-9b-chat": {
|
399
417
|
"description": "GLM-4 9B es una versión de código abierto, que proporciona una experiencia de conversación optimizada para aplicaciones de diálogo."
|
400
418
|
},
|
401
|
-
"TeleAI/TeleChat2": {
|
402
|
-
"description": "El modelo grande TeleChat2 ha sido desarrollado de manera independiente por China Telecom desde cero, siendo un modelo semántico generativo que admite funciones como preguntas y respuestas enciclopédicas, generación de código y generación de textos largos, proporcionando servicios de consulta conversacional a los usuarios, permitiendo interacciones de diálogo, respondiendo preguntas y asistiendo en la creación, ayudando a los usuarios a obtener información, conocimiento e inspiración de manera eficiente y conveniente. El modelo ha mostrado un rendimiento destacado en problemas de alucinación, generación de textos largos y comprensión lógica."
|
403
|
-
},
|
404
419
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
405
420
|
"description": "Qwen2.5-72B-Instruct es uno de los últimos modelos de lenguaje a gran escala lanzados por Alibaba Cloud. Este modelo de 72B ha mejorado significativamente en áreas como codificación y matemáticas. También ofrece soporte multilingüe, abarcando más de 29 idiomas, incluidos chino e inglés. El modelo ha mostrado mejoras significativas en el seguimiento de instrucciones, comprensión de datos estructurados y generación de salidas estructuradas (especialmente JSON)."
|
406
421
|
},
|
@@ -800,6 +815,12 @@
|
|
800
815
|
"deepseek/deepseek-chat": {
|
801
816
|
"description": "Un nuevo modelo de código abierto que fusiona capacidades generales y de codificación, no solo conserva la capacidad de diálogo general del modelo Chat original y la potente capacidad de procesamiento de código del modelo Coder, sino que también se alinea mejor con las preferencias humanas. Además, DeepSeek-V2.5 ha logrado mejoras significativas en tareas de escritura, seguimiento de instrucciones y más."
|
802
817
|
},
|
818
|
+
"deepseek/deepseek-chat-v3-0324": {
|
819
|
+
"description": "DeepSeek V3 es un modelo experto de mezcla de 685B parámetros, la última iteración de la serie de modelos de chat insignia del equipo de DeepSeek.\n\nHereda el modelo [DeepSeek V3](/deepseek/deepseek-chat-v3) y se desempeña excepcionalmente en diversas tareas."
|
820
|
+
},
|
821
|
+
"deepseek/deepseek-chat-v3-0324:free": {
|
822
|
+
"description": "DeepSeek V3 es un modelo experto de mezcla de 685B parámetros, la última iteración de la serie de modelos de chat insignia del equipo de DeepSeek.\n\nHereda el modelo [DeepSeek V3](/deepseek/deepseek-chat-v3) y se desempeña excepcionalmente en diversas tareas."
|
823
|
+
},
|
803
824
|
"deepseek/deepseek-r1": {
|
804
825
|
"description": "DeepSeek-R1 mejora significativamente la capacidad de razonamiento del modelo con muy pocos datos etiquetados. Antes de proporcionar la respuesta final, el modelo genera una cadena de pensamiento para mejorar la precisión de la respuesta final."
|
805
826
|
},
|
@@ -851,9 +872,6 @@
|
|
851
872
|
"doubao-1.5-thinking-pro": {
|
852
873
|
"description": "El modelo de pensamiento profundo Doubao-1.5, completamente nuevo, destaca en campos especializados como matemáticas, programación y razonamiento científico, así como en tareas generales como la escritura creativa, alcanzando o acercándose al nivel de élite de la industria en múltiples estándares de referencia, como AIME 2024, Codeforces y GPQA. Soporta una ventana de contexto de 128k y una salida de 16k."
|
853
874
|
},
|
854
|
-
"doubao-1.5-thinking-pro-vision": {
|
855
|
-
"description": "El modelo de pensamiento profundo Doubao-1.5, completamente nuevo, destaca en campos especializados como matemáticas, programación y razonamiento científico, así como en tareas generales como la escritura creativa, alcanzando o acercándose al nivel de élite de la industria en múltiples estándares de referencia, como AIME 2024, Codeforces y GPQA. Soporta una ventana de contexto de 128k y una salida de 16k."
|
856
|
-
},
|
857
875
|
"doubao-1.5-vision-lite": {
|
858
876
|
"description": "Doubao-1.5-vision-lite es un modelo multimodal de gran escala actualizado, que soporta el reconocimiento de imágenes de cualquier resolución y proporciones extremas, mejorando la capacidad de razonamiento visual, reconocimiento de documentos, comprensión de información detallada y seguimiento de instrucciones. Soporta una ventana de contexto de 128k, con una longitud de salida que admite hasta 16k tokens."
|
859
877
|
},
|
@@ -995,9 +1013,6 @@
|
|
995
1013
|
"gemini-2.0-flash-thinking-exp-01-21": {
|
996
1014
|
"description": "Gemini 2.0 Flash Exp es el último modelo experimental de IA multimodal de Google, con características de próxima generación, velocidad excepcional, llamadas nativas a herramientas y generación multimodal."
|
997
1015
|
},
|
998
|
-
"gemini-2.0-pro-exp-02-05": {
|
999
|
-
"description": "Gemini 2.0 Pro Experimental es el último modelo de IA multimodal experimental de Google, con mejoras de calidad en comparación con versiones anteriores, especialmente en conocimiento del mundo, código y contextos largos."
|
1000
|
-
},
|
1001
1016
|
"gemini-2.5-flash-preview-04-17": {
|
1002
1017
|
"description": "Gemini 2.5 Flash Preview es el modelo más rentable de Google, que ofrece una funcionalidad completa."
|
1003
1018
|
},
|
@@ -1007,6 +1022,9 @@
|
|
1007
1022
|
"gemini-2.5-pro-preview-03-25": {
|
1008
1023
|
"description": "Gemini 2.5 Pro Preview es el modelo de pensamiento más avanzado de Google, capaz de razonar sobre problemas complejos en código, matemáticas y campos STEM, así como de analizar grandes conjuntos de datos, bibliotecas de código y documentos utilizando un contexto largo."
|
1009
1024
|
},
|
1025
|
+
"gemini-2.5-pro-preview-05-06": {
|
1026
|
+
"description": "Gemini 2.5 Pro Preview es el modelo de pensamiento más avanzado de Google, capaz de razonar sobre problemas complejos en código, matemáticas y campos STEM, así como de analizar grandes conjuntos de datos, bibliotecas de código y documentos utilizando un análisis de contexto prolongado."
|
1027
|
+
},
|
1010
1028
|
"gemma-7b-it": {
|
1011
1029
|
"description": "Gemma 7B es adecuado para el procesamiento de tareas de pequeña y mediana escala, combinando rentabilidad."
|
1012
1030
|
},
|
@@ -1091,8 +1109,17 @@
|
|
1091
1109
|
"google/gemini-2.0-flash-001": {
|
1092
1110
|
"description": "Gemini 2.0 Flash ofrece funciones y mejoras de próxima generación, incluyendo velocidad excepcional, uso de herramientas nativas, generación multimodal y una ventana de contexto de 1M tokens."
|
1093
1111
|
},
|
1094
|
-
"google/gemini-2.0-
|
1095
|
-
"description": "Gemini 2.0
|
1112
|
+
"google/gemini-2.0-flash-exp:free": {
|
1113
|
+
"description": "Gemini 2.0 Flash Experimental es el último modelo de IA multimodal experimental de Google, con una mejora de calidad en comparación con versiones anteriores, especialmente en conocimiento del mundo, código y contexto largo."
|
1114
|
+
},
|
1115
|
+
"google/gemini-2.5-flash-preview": {
|
1116
|
+
"description": "Gemini 2.5 Flash es el modelo principal más avanzado de Google, diseñado para razonamiento avanzado, codificación, matemáticas y tareas científicas. Incluye la capacidad de 'pensar' incorporada, lo que le permite proporcionar respuestas con mayor precisión y un manejo más detallado del contexto.\n\nNota: Este modelo tiene dos variantes: con pensamiento y sin pensamiento. La fijación de precios de salida varía significativamente según si la capacidad de pensamiento está activada. Si elige la variante estándar (sin el sufijo ':thinking'), el modelo evitará explícitamente generar tokens de pensamiento.\n\nPara aprovechar la capacidad de pensamiento y recibir tokens de pensamiento, debe elegir la variante ':thinking', lo que resultará en un precio de salida de pensamiento más alto.\n\nAdemás, Gemini 2.5 Flash se puede configurar a través del parámetro 'número máximo de tokens de razonamiento', como se describe en la documentación (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1117
|
+
},
|
1118
|
+
"google/gemini-2.5-flash-preview:thinking": {
|
1119
|
+
"description": "Gemini 2.5 Flash es el modelo principal más avanzado de Google, diseñado para razonamiento avanzado, codificación, matemáticas y tareas científicas. Incluye la capacidad de 'pensar' incorporada, lo que le permite proporcionar respuestas con mayor precisión y un manejo más detallado del contexto.\n\nNota: Este modelo tiene dos variantes: con pensamiento y sin pensamiento. La fijación de precios de salida varía significativamente según si la capacidad de pensamiento está activada. Si elige la variante estándar (sin el sufijo ':thinking'), el modelo evitará explícitamente generar tokens de pensamiento.\n\nPara aprovechar la capacidad de pensamiento y recibir tokens de pensamiento, debe elegir la variante ':thinking', lo que resultará en un precio de salida de pensamiento más alto.\n\nAdemás, Gemini 2.5 Flash se puede configurar a través del parámetro 'número máximo de tokens de razonamiento', como se describe en la documentación (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
1120
|
+
},
|
1121
|
+
"google/gemini-2.5-pro-preview-03-25": {
|
1122
|
+
"description": "Gemini 2.5 Pro es el modelo de IA más avanzado de Google, diseñado para razonamiento avanzado, codificación, matemáticas y tareas científicas. Posee la capacidad de 'pensar', lo que le permite razonar respuestas con mayor precisión y un manejo más detallado del contexto. Gemini 2.5 Pro ha logrado un rendimiento de primer nivel en múltiples pruebas de referencia, incluyendo el primer lugar en la clasificación de LMArena, reflejando una alineación excepcional con las preferencias humanas y una capacidad de resolución de problemas complejos."
|
1096
1123
|
},
|
1097
1124
|
"google/gemini-flash-1.5": {
|
1098
1125
|
"description": "Gemini 1.5 Flash ofrece capacidades de procesamiento multimodal optimizadas, adecuadas para una variedad de escenarios de tareas complejas."
|
@@ -1592,6 +1619,9 @@
|
|
1592
1619
|
"mistral-large-latest": {
|
1593
1620
|
"description": "Mistral Large es el modelo insignia, especializado en tareas multilingües, razonamiento complejo y generación de código, ideal para aplicaciones de alta gama."
|
1594
1621
|
},
|
1622
|
+
"mistral-medium-latest": {
|
1623
|
+
"description": "Mistral Medium 3 ofrece un rendimiento de vanguardia a un costo 8 veces menor y simplifica fundamentalmente el despliegue empresarial."
|
1624
|
+
},
|
1595
1625
|
"mistral-nemo": {
|
1596
1626
|
"description": "Mistral Nemo, desarrollado en colaboración entre Mistral AI y NVIDIA, es un modelo de 12B de alto rendimiento."
|
1597
1627
|
},
|
@@ -1763,8 +1793,8 @@
|
|
1763
1793
|
"qvq-72b-preview": {
|
1764
1794
|
"description": "El modelo QVQ es un modelo de investigación experimental desarrollado por el equipo de Qwen, enfocado en mejorar la capacidad de razonamiento visual, especialmente en el ámbito del razonamiento matemático."
|
1765
1795
|
},
|
1766
|
-
"qvq-max": {
|
1767
|
-
"description": "El modelo de razonamiento visual QVQ de Tongyi Qianwen admite entradas visuales y salidas de cadena de pensamiento, mostrando
|
1796
|
+
"qvq-max-latest": {
|
1797
|
+
"description": "El modelo de razonamiento visual QVQ de Tongyi Qianwen admite entradas visuales y salidas de cadena de pensamiento, mostrando capacidades más fuertes en matemáticas, programación, análisis visual, creación y tareas generales."
|
1768
1798
|
},
|
1769
1799
|
"qwen-coder-plus-latest": {
|
1770
1800
|
"description": "Modelo de código Qwen de Tongyi."
|
@@ -2075,12 +2105,24 @@
|
|
2075
2105
|
"text-embedding-3-small": {
|
2076
2106
|
"description": "Un modelo de Embedding de nueva generación, eficiente y económico, adecuado para la recuperación de conocimiento, aplicaciones RAG y más."
|
2077
2107
|
},
|
2108
|
+
"thudm/glm-4-32b": {
|
2109
|
+
"description": "GLM-4-32B-0414 es un modelo de lenguaje de pesos abiertos de 32B bilingüe (chino-inglés), optimizado para generación de código, llamadas a funciones y tareas de estilo agente. Ha sido preentrenado en 15T de datos de alta calidad y re-razonamiento, y se ha perfeccionado aún más utilizando alineación de preferencias humanas, muestreo de rechazo y aprendizaje por refuerzo. Este modelo destaca en razonamiento complejo, generación de artefactos y tareas de salida estructurada, alcanzando un rendimiento comparable al de GPT-4o y DeepSeek-V3-0324 en múltiples pruebas de referencia."
|
2110
|
+
},
|
2111
|
+
"thudm/glm-4-32b:free": {
|
2112
|
+
"description": "GLM-4-32B-0414 es un modelo de lenguaje de pesos abiertos de 32B bilingüe (chino-inglés), optimizado para generación de código, llamadas a funciones y tareas de estilo agente. Ha sido preentrenado en 15T de datos de alta calidad y re-razonamiento, y se ha perfeccionado aún más utilizando alineación de preferencias humanas, muestreo de rechazo y aprendizaje por refuerzo. Este modelo destaca en razonamiento complejo, generación de artefactos y tareas de salida estructurada, alcanzando un rendimiento comparable al de GPT-4o y DeepSeek-V3-0324 en múltiples pruebas de referencia."
|
2113
|
+
},
|
2078
2114
|
"thudm/glm-4-9b-chat": {
|
2079
2115
|
"description": "Versión de código abierto de la última generación del modelo preentrenado GLM-4 lanzado por Zhizhu AI."
|
2080
2116
|
},
|
2081
2117
|
"thudm/glm-4-9b:free": {
|
2082
2118
|
"description": "GLM-4-9B-0414 es un modelo de lenguaje de 9B parámetros en la serie GLM-4 desarrollado por THUDM. GLM-4-9B-0414 utiliza las mismas estrategias de aprendizaje por refuerzo y alineación que su modelo correspondiente de 32B, logrando un alto rendimiento en relación con su tamaño, lo que lo hace adecuado para implementaciones con recursos limitados que aún requieren una fuerte capacidad de comprensión y generación de lenguaje."
|
2083
2119
|
},
|
2120
|
+
"thudm/glm-z1-32b": {
|
2121
|
+
"description": "GLM-Z1-32B-0414 es una variante de razonamiento mejorada de GLM-4-32B, construida para resolver problemas de matemáticas profundas, lógica y orientados al código. Aplica aprendizaje por refuerzo extendido (específico para tareas y basado en preferencias emparejadas generales) para mejorar el rendimiento en tareas complejas de múltiples pasos. En comparación con el modelo base GLM-4-32B, Z1 mejora significativamente las capacidades de razonamiento estructurado y en dominios formalizados.\n\nEste modelo admite la ejecución forzada de pasos de 'pensamiento' a través de ingeniería de indicaciones y proporciona una coherencia mejorada para salidas de formato largo. Está optimizado para flujos de trabajo de agentes y admite contextos largos (a través de YaRN), llamadas a herramientas JSON y configuraciones de muestreo de alta precisión para razonamiento estable. Es ideal para casos de uso que requieren razonamiento reflexivo, de múltiples pasos o deducción formal."
|
2122
|
+
},
|
2123
|
+
"thudm/glm-z1-32b:free": {
|
2124
|
+
"description": "GLM-Z1-32B-0414 es una variante de razonamiento mejorada de GLM-4-32B, construida para resolver problemas de matemáticas profundas, lógica y orientados al código. Aplica aprendizaje por refuerzo extendido (específico para tareas y basado en preferencias emparejadas generales) para mejorar el rendimiento en tareas complejas de múltiples pasos. En comparación con el modelo base GLM-4-32B, Z1 mejora significativamente las capacidades de razonamiento estructurado y en dominios formalizados.\n\nEste modelo admite la ejecución forzada de pasos de 'pensamiento' a través de ingeniería de indicaciones y proporciona una coherencia mejorada para salidas de formato largo. Está optimizado para flujos de trabajo de agentes y admite contextos largos (a través de YaRN), llamadas a herramientas JSON y configuraciones de muestreo de alta precisión para razonamiento estable. Es ideal para casos de uso que requieren razonamiento reflexivo, de múltiples pasos o deducción formal."
|
2125
|
+
},
|
2084
2126
|
"thudm/glm-z1-9b:free": {
|
2085
2127
|
"description": "GLM-Z1-9B-0414 es un modelo de lenguaje de 9B parámetros en la serie GLM-4 desarrollado por THUDM. Utiliza técnicas inicialmente aplicadas al modelo GLM-Z1 más grande, incluyendo aprendizaje por refuerzo extendido, alineación de clasificación por pares y entrenamiento para tareas intensivas en razonamiento como matemáticas, código y lógica. A pesar de su menor tamaño, muestra un rendimiento robusto en tareas de razonamiento general y supera a muchos modelos de código abierto en su nivel de pesos."
|
2086
2128
|
},
|
@@ -29,9 +29,6 @@
|
|
29
29
|
"deepseek": {
|
30
30
|
"description": "DeepSeek es una empresa centrada en la investigación y aplicación de tecnologías de inteligencia artificial, cuyo modelo más reciente, DeepSeek-V2.5, combina capacidades de diálogo general y procesamiento de código, logrando mejoras significativas en alineación con preferencias humanas, tareas de escritura y seguimiento de instrucciones."
|
31
31
|
},
|
32
|
-
"doubao": {
|
33
|
-
"description": "Un modelo grande desarrollado internamente por ByteDance. Validado a través de más de 50 escenarios de negocio internos, con un uso diario de tokens en billones que se perfecciona continuamente, ofrece múltiples capacidades modales y crea experiencias comerciales ricas para las empresas con un rendimiento de modelo de alta calidad."
|
34
|
-
},
|
35
32
|
"fireworksai": {
|
36
33
|
"description": "Fireworks AI es un proveedor líder de servicios de modelos de lenguaje avanzados, enfocado en la llamada de funciones y el procesamiento multimodal. Su modelo más reciente, Firefunction V2, basado en Llama-3, está optimizado para llamadas de funciones, diálogos y seguimiento de instrucciones. El modelo de lenguaje visual FireLLaVA-13B admite entradas mixtas de imágenes y texto. Otros modelos notables incluyen la serie Llama y la serie Mixtral, que ofrecen un soporte eficiente para el seguimiento y generación de instrucciones multilingües."
|
37
34
|
},
|
@@ -35,6 +35,10 @@
|
|
35
35
|
"desc": "فعال کردن جعبه جستجوی اصلی صفحه کنونی",
|
36
36
|
"title": "جستجو"
|
37
37
|
},
|
38
|
+
"showApp": {
|
39
|
+
"desc": "باز کردن سریع پنجره اصلی برنامه",
|
40
|
+
"title": "نمایش پنجره اصلی"
|
41
|
+
},
|
38
42
|
"switchAgent": {
|
39
43
|
"desc": "با نگه داشتن Ctrl و زدن عدد 0~9، دستیار ثابت در نوار کناری را تغییر دهید",
|
40
44
|
"title": "تغییر سریع دستیار"
|