@lobehub/chat 1.49.10 → 1.49.12
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/locales/ar/components.json +24 -0
- package/locales/ar/modelProvider.json +0 -24
- package/locales/ar/models.json +15 -0
- package/locales/bg-BG/components.json +24 -0
- package/locales/bg-BG/modelProvider.json +0 -24
- package/locales/bg-BG/models.json +15 -0
- package/locales/de-DE/components.json +24 -0
- package/locales/de-DE/modelProvider.json +0 -24
- package/locales/de-DE/models.json +15 -0
- package/locales/en-US/components.json +24 -0
- package/locales/en-US/modelProvider.json +0 -24
- package/locales/en-US/models.json +15 -0
- package/locales/es-ES/components.json +24 -0
- package/locales/es-ES/modelProvider.json +0 -24
- package/locales/es-ES/models.json +15 -0
- package/locales/fa-IR/components.json +24 -0
- package/locales/fa-IR/modelProvider.json +0 -24
- package/locales/fa-IR/models.json +15 -0
- package/locales/fr-FR/components.json +24 -0
- package/locales/fr-FR/modelProvider.json +0 -24
- package/locales/fr-FR/models.json +15 -0
- package/locales/it-IT/components.json +24 -0
- package/locales/it-IT/modelProvider.json +0 -24
- package/locales/it-IT/models.json +15 -0
- package/locales/ja-JP/components.json +24 -0
- package/locales/ja-JP/modelProvider.json +0 -24
- package/locales/ja-JP/models.json +15 -0
- package/locales/ko-KR/components.json +24 -0
- package/locales/ko-KR/modelProvider.json +0 -24
- package/locales/ko-KR/models.json +4 -0
- package/locales/nl-NL/components.json +24 -0
- package/locales/nl-NL/modelProvider.json +0 -24
- package/locales/nl-NL/models.json +15 -0
- package/locales/pl-PL/components.json +24 -0
- package/locales/pl-PL/modelProvider.json +0 -24
- package/locales/pl-PL/models.json +15 -0
- package/locales/pt-BR/components.json +24 -0
- package/locales/pt-BR/modelProvider.json +0 -24
- package/locales/pt-BR/models.json +15 -0
- package/locales/ru-RU/components.json +24 -0
- package/locales/ru-RU/modelProvider.json +0 -24
- package/locales/ru-RU/models.json +15 -0
- package/locales/tr-TR/components.json +24 -0
- package/locales/tr-TR/modelProvider.json +0 -24
- package/locales/tr-TR/models.json +15 -0
- package/locales/vi-VN/components.json +24 -0
- package/locales/vi-VN/modelProvider.json +0 -24
- package/locales/vi-VN/models.json +15 -0
- package/locales/zh-CN/components.json +24 -0
- package/locales/zh-CN/modelProvider.json +0 -24
- package/locales/zh-CN/models.json +16 -1
- package/locales/zh-TW/components.json +24 -0
- package/locales/zh-TW/modelProvider.json +0 -24
- package/locales/zh-TW/models.json +15 -0
- package/package.json +1 -1
- package/src/app/(main)/chat/(workspace)/@portal/_layout/Mobile.tsx +1 -0
- package/src/app/(main)/chat/(workspace)/_layout/Desktop/Portal.tsx +26 -2
- package/src/app/(main)/settings/provider/(detail)/[id]/page.tsx +10 -3
- package/src/app/(main)/settings/provider/(detail)/ollama/CheckError.tsx +70 -0
- package/src/app/(main)/settings/provider/(detail)/ollama/Container.tsx +57 -0
- package/src/app/(main)/settings/provider/(detail)/ollama/OllamaModelDownloader/index.tsx +127 -0
- package/src/app/(main)/settings/provider/(detail)/ollama/OllamaModelDownloader/useDownloadMonitor.ts +29 -0
- package/src/app/(main)/settings/provider/(detail)/ollama/page.tsx +2 -7
- package/src/app/(main)/settings/provider/features/ProviderConfig/Checker.tsx +90 -69
- package/src/app/(main)/settings/provider/features/ProviderConfig/index.tsx +6 -6
- package/src/components/FormAction/index.tsx +66 -0
- package/src/components/OllamaSetupGuide/index.tsx +217 -0
- package/src/components/Thinking/index.tsx +14 -16
- package/src/config/aiModels/ollama.ts +12 -19
- package/src/config/modelProviders/ollama.ts +1 -0
- package/src/config/modelProviders/siliconcloud.ts +2 -2
- package/src/database/repositories/aiInfra/index.ts +33 -2
- package/src/database/server/models/aiProvider.ts +5 -1
- package/src/features/Conversation/Error/OllamaBizError/SetupGuide.tsx +2 -209
- package/src/features/Conversation/components/MarkdownElements/LobeThinking/Render.tsx +7 -58
- package/src/libs/agent-runtime/ollama/index.ts +1 -1
- package/src/libs/agent-runtime/siliconcloud/index.ts +33 -1
- package/src/locales/default/components.ts +26 -0
- package/src/locales/default/modelProvider.ts +0 -26
- package/src/server/routers/lambda/aiProvider.ts +2 -10
- package/src/services/aiProvider/client.ts +2 -8
- package/src/store/chat/slices/aiChat/actions/__tests__/generateAIChat.test.ts +10 -10
- package/src/store/chat/slices/aiChat/actions/generateAIChat.ts +4 -3
- package/src/store/chat/slices/aiChat/initialState.ts +1 -1
- package/src/store/chat/slices/message/action.ts +4 -3
- package/src/store/global/initialState.ts +2 -0
- package/src/store/global/selectors.ts +2 -0
- package/src/store/serverConfig/selectors.test.ts +3 -0
- package/src/store/serverConfig/store.test.ts +3 -2
- package/src/store/serverConfig/store.ts +1 -1
- package/src/store/user/slices/common/action.test.ts +1 -0
- package/src/types/serverConfig.ts +1 -1
- package/src/app/(main)/settings/provider/(detail)/ollama/Checker.tsx +0 -73
@@ -154,30 +154,6 @@
|
|
154
154
|
"desc": "Moet http(s):// bevatten, kan leeg gelaten worden als lokaal niet specifiek opgegeven",
|
155
155
|
"title": "Interface Proxyadres"
|
156
156
|
},
|
157
|
-
"setup": {
|
158
|
-
"cors": {
|
159
|
-
"description": "Vanwege beveiligingsbeperkingen in de browser moet je CORS-configuratie voor Ollama instellen om het correct te kunnen gebruiken.",
|
160
|
-
"linux": {
|
161
|
-
"env": "Voeg `Environment` toe onder de [Service] sectie en voeg de OLLAMA_ORIGINS omgevingsvariabele toe:",
|
162
|
-
"reboot": "Herlaad systemd en herstart Ollama",
|
163
|
-
"systemd": "Roep systemd aan om de ollama service te bewerken:"
|
164
|
-
},
|
165
|
-
"macos": "Open de 'Terminal' applicatie, plak de volgende opdracht en druk op enter om uit te voeren",
|
166
|
-
"reboot": "Herstart de Ollama service na voltooiing",
|
167
|
-
"title": "Configureer Ollama voor cross-origin toegang",
|
168
|
-
"windows": "Op Windows, klik op 'Configuratiescherm', ga naar systeemomgevingsvariabelen bewerken. Maak een nieuwe omgevingsvariabele met de naam 'OLLAMA_ORIGINS' voor je gebruikersaccount, met de waarde *, en klik op 'OK/Toepassen' om op te slaan"
|
169
|
-
},
|
170
|
-
"install": {
|
171
|
-
"description": "Zorg ervoor dat je Ollama hebt ingeschakeld. Als je Ollama nog niet hebt gedownload, ga dan naar de officiële website <1>om te downloaden</1>",
|
172
|
-
"docker": "Als je de voorkeur geeft aan Docker, biedt Ollama ook een officiële Docker-image aan, die je kunt ophalen met de volgende opdracht:",
|
173
|
-
"linux": {
|
174
|
-
"command": "Installeer met de volgende opdracht:",
|
175
|
-
"manual": "Of je kunt de <1>Linux handmatige installatiehandleiding</1> raadplegen voor een handmatige installatie"
|
176
|
-
},
|
177
|
-
"title": "Installeer en start de Ollama applicatie lokaal",
|
178
|
-
"windowsTab": "Windows (previewversie)"
|
179
|
-
}
|
180
|
-
},
|
181
157
|
"title": "Ollama",
|
182
158
|
"unlock": {
|
183
159
|
"cancel": "Annuleer download",
|
@@ -176,6 +176,9 @@
|
|
176
176
|
"Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
177
177
|
"description": "Meta Llama 3.1 is een familie van meertalige grote taalmodellen ontwikkeld door Meta, inclusief voorgetrainde en instructie-fijn afgestelde varianten met parameter groottes van 8B, 70B en 405B. Dit 8B instructie-fijn afgestelde model is geoptimaliseerd voor meertalige gespreksscenario's en presteert uitstekend in verschillende industriële benchmarktests. Het model is getraind met meer dan 150 biljoen tokens van openbare gegevens en maakt gebruik van technieken zoals supervisie-fijn afstemming en versterkend leren met menselijke feedback om de bruikbaarheid en veiligheid van het model te verbeteren. Llama 3.1 ondersteunt tekstgeneratie en codegeneratie, met een kennisafkapdatum van december 2023."
|
178
178
|
},
|
179
|
+
"Qwen/QVQ-72B-Preview": {
|
180
|
+
"description": "QVQ-72B-Preview is een onderzoeksmodel ontwikkeld door het Qwen-team, dat zich richt op visuele redeneervaardigheden en unieke voordelen heeft in het begrijpen van complexe scènes en het oplossen van visueel gerelateerde wiskundige problemen."
|
181
|
+
},
|
179
182
|
"Qwen/QwQ-32B-Preview": {
|
180
183
|
"description": "QwQ-32B-Preview is het nieuwste experimentele onderzoeksmodel van Qwen, gericht op het verbeteren van AI-redeneringscapaciteiten. Door het verkennen van complexe mechanismen zoals taalmixing en recursieve redenering, zijn de belangrijkste voordelen onder andere krachtige redeneringsanalyses, wiskundige en programmeervaardigheden. Tegelijkertijd zijn er ook problemen met taalwisseling, redeneringscycli, veiligheidskwesties en verschillen in andere capaciteiten."
|
181
184
|
},
|
@@ -530,12 +533,21 @@
|
|
530
533
|
"databricks/dbrx-instruct": {
|
531
534
|
"description": "DBRX Instruct biedt betrouwbare instructieverwerkingscapaciteiten en ondersteunt toepassingen in verschillende sectoren."
|
532
535
|
},
|
536
|
+
"deepseek-ai/DeepSeek-R1": {
|
537
|
+
"description": "DeepSeek-R1 is een op versterkend leren (RL) aangedreven inferentiemodel dat de problemen van herhaling en leesbaarheid in het model oplost. Voor RL introduceerde DeepSeek-R1 koude startdata om de inferentieprestaties verder te optimaliseren. Het presteert vergelijkbaar met OpenAI-o1 in wiskunde, code en inferentietaken, en verbetert de algehele effectiviteit door zorgvuldig ontworpen trainingsmethoden."
|
538
|
+
},
|
533
539
|
"deepseek-ai/DeepSeek-V2.5": {
|
534
540
|
"description": "DeepSeek V2.5 combineert de uitstekende kenmerken van eerdere versies en versterkt de algemene en coderingscapaciteiten."
|
535
541
|
},
|
542
|
+
"deepseek-ai/DeepSeek-V3": {
|
543
|
+
"description": "DeepSeek-V3 is een hybride expert (MoE) taalmodel met 6710 miljard parameters, dat gebruikmaakt van multi-head latent attention (MLA) en de DeepSeekMoE-architectuur, gecombineerd met een load balancing-strategie zonder extra verlies, om de inferentie- en trainingsefficiëntie te optimaliseren. Door voorgetraind te worden op 14,8 biljoen hoogwaardige tokens en vervolgens te worden fijngetuned met supervisie en versterkend leren, overtreft DeepSeek-V3 andere open-source modellen in prestaties en komt het dicht in de buurt van toonaangevende gesloten modellen."
|
544
|
+
},
|
536
545
|
"deepseek-ai/deepseek-llm-67b-chat": {
|
537
546
|
"description": "DeepSeek 67B is een geavanceerd model dat is getraind voor complexe gesprekken."
|
538
547
|
},
|
548
|
+
"deepseek-ai/deepseek-vl2": {
|
549
|
+
"description": "DeepSeek-VL2 is een hybride expert (MoE) visueel taalmodel dat is ontwikkeld op basis van DeepSeekMoE-27B, met een MoE-architectuur met spaarzame activatie, die uitstekende prestaties levert met slechts 4,5 miljard geactiveerde parameters. Dit model presteert uitstekend in verschillende taken, waaronder visuele vraag-antwoord, optische tekenherkenning, document/tabel/grafiekbegrip en visuele positionering."
|
550
|
+
},
|
539
551
|
"deepseek-chat": {
|
540
552
|
"description": "Een nieuw open-source model dat algemene en code-capaciteiten combineert, behoudt niet alleen de algemene conversatiecapaciteiten van het oorspronkelijke Chat-model en de krachtige codeverwerkingscapaciteiten van het Coder-model, maar is ook beter afgestemd op menselijke voorkeuren. Bovendien heeft DeepSeek-V2.5 aanzienlijke verbeteringen gerealiseerd in schrijfopdrachten, instructievolging en andere gebieden."
|
541
553
|
},
|
@@ -548,6 +560,9 @@
|
|
548
560
|
"deepseek-coder-v2:236b": {
|
549
561
|
"description": "DeepSeek Coder V2 is een open-source hybride expertcode-model, presteert uitstekend in code-taken en is vergelijkbaar met GPT4-Turbo."
|
550
562
|
},
|
563
|
+
"deepseek-r1": {
|
564
|
+
"description": "DeepSeek-R1 is een op versterkend leren (RL) aangedreven inferentiemodel dat de problemen van herhaling en leesbaarheid in het model oplost. Voor RL introduceerde DeepSeek-R1 koude startdata om de inferentieprestaties verder te optimaliseren. Het presteert vergelijkbaar met OpenAI-o1 in wiskunde, code en inferentietaken, en verbetert de algehele effectiviteit door zorgvuldig ontworpen trainingsmethoden."
|
565
|
+
},
|
551
566
|
"deepseek-reasoner": {
|
552
567
|
"description": "Het redeneer model van DeepSeek. Voordat het model het uiteindelijke antwoord geeft, genereert het eerst een stuk denkproces om de nauwkeurigheid van het uiteindelijke antwoord te verbeteren."
|
553
568
|
},
|
@@ -86,6 +86,30 @@
|
|
86
86
|
"emptyModel": "Brak włączonych modeli, przejdź do ustawień i włącz je",
|
87
87
|
"provider": "Dostawca"
|
88
88
|
},
|
89
|
+
"OllamaSetupGuide": {
|
90
|
+
"cors": {
|
91
|
+
"description": "Z powodu ograniczeń bezpieczeństwa przeglądarki, musisz skonfigurować CORS dla Ollama, aby móc go używać.",
|
92
|
+
"linux": {
|
93
|
+
"env": "Dodaj `Environment` w sekcji [Service], dodając zmienną środowiskową OLLAMA_ORIGINS:",
|
94
|
+
"reboot": "Przeładuj systemd i uruchom ponownie Ollama",
|
95
|
+
"systemd": "Wywołaj systemd, aby edytować usługę ollama:"
|
96
|
+
},
|
97
|
+
"macos": "Otwórz aplikację „Terminal” i wklej poniższe polecenie, a następnie naciśnij Enter, aby je uruchomić",
|
98
|
+
"reboot": "Po zakończeniu wykonania, uruchom ponownie usługę Ollama",
|
99
|
+
"title": "Skonfiguruj Ollama, aby zezwolić na dostęp międzydomenowy",
|
100
|
+
"windows": "Na Windowsie, kliknij „Panel sterowania”, aby edytować zmienne środowiskowe systemu. Utwórz nową zmienną środowiskową o nazwie „OLLAMA_ORIGINS” dla swojego konta użytkownika, ustawiając wartość na * i kliknij „OK/Zastosuj”, aby zapisać"
|
101
|
+
},
|
102
|
+
"install": {
|
103
|
+
"description": "Upewnij się, że uruchomiłeś Ollama. Jeśli nie masz Ollama, przejdź na oficjalną stronę <1>pobierz</1>",
|
104
|
+
"docker": "Jeśli wolisz używać Dockera, Ollama również oferuje oficjalny obraz Dockera, który możesz pobrać za pomocą poniższego polecenia:",
|
105
|
+
"linux": {
|
106
|
+
"command": "Zainstaluj za pomocą poniższego polecenia:",
|
107
|
+
"manual": "Alternatywnie, możesz również zapoznać się z <1>podręcznikiem instalacji ręcznej dla Linuxa</1>, aby zainstalować samodzielnie"
|
108
|
+
},
|
109
|
+
"title": "Zainstaluj i uruchom aplikację Ollama lokalnie",
|
110
|
+
"windowsTab": "Windows (wersja podglądowa)"
|
111
|
+
}
|
112
|
+
},
|
89
113
|
"Thinking": {
|
90
114
|
"thinking": "Głęboko myślę...",
|
91
115
|
"thought": "Głęboko przemyślane (czas: {{duration}} sekund)",
|
@@ -154,30 +154,6 @@
|
|
154
154
|
"desc": "Musi zawierać http(s)://, lokalnie, jeśli nie określono inaczej, można pozostawić puste",
|
155
155
|
"title": "Adres proxy API"
|
156
156
|
},
|
157
|
-
"setup": {
|
158
|
-
"cors": {
|
159
|
-
"description": "Z powodu ograniczeń bezpieczeństwa przeglądarki, musisz skonfigurować CORS dla Ollama, aby móc go używać.",
|
160
|
-
"linux": {
|
161
|
-
"env": "Dodaj `Environment` w sekcji [Service], dodaj zmienną środowiskową OLLAMA_ORIGINS:",
|
162
|
-
"reboot": "Przeładuj systemd i uruchom ponownie Ollama",
|
163
|
-
"systemd": "Użyj systemd, aby edytować usługę ollama:"
|
164
|
-
},
|
165
|
-
"macos": "Otwórz aplikację „Terminal” i wklej poniższe polecenie, a następnie naciśnij Enter",
|
166
|
-
"reboot": "Proszę ponownie uruchomić usługę Ollama po zakończeniu",
|
167
|
-
"title": "Konfiguracja Ollama do zezwolenia na dostęp CORS",
|
168
|
-
"windows": "Na Windowsie, kliknij „Panel sterowania”, aby edytować zmienne środowiskowe systemu. Utwórz nową zmienną środowiskową o nazwie „OLLAMA_ORIGINS” dla swojego konta użytkownika, ustaw wartość na *, a następnie kliknij „OK/Zastosuj”, aby zapisać"
|
169
|
-
},
|
170
|
-
"install": {
|
171
|
-
"description": "Proszę upewnić się, że Ollama jest uruchomione, jeśli nie pobrałeś Ollama, odwiedź oficjalną stronę <1>pobierz</1>",
|
172
|
-
"docker": "Jeśli wolisz używać Dockera, Ollama również oferuje oficjalny obraz Dockera, który możesz pobrać za pomocą poniższego polecenia:",
|
173
|
-
"linux": {
|
174
|
-
"command": "Zainstaluj za pomocą poniższego polecenia:",
|
175
|
-
"manual": "Alternatywnie, możesz zapoznać się z <1>podręcznikiem instalacji ręcznej dla Linuxa</1>, aby zainstalować samodzielnie"
|
176
|
-
},
|
177
|
-
"title": "Zainstaluj i uruchom aplikację Ollama lokalnie",
|
178
|
-
"windowsTab": "Windows (wersja podglądowa)"
|
179
|
-
}
|
180
|
-
},
|
181
157
|
"title": "Ollama",
|
182
158
|
"unlock": {
|
183
159
|
"cancel": "Anuluj pobieranie",
|
@@ -176,6 +176,9 @@
|
|
176
176
|
"Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
177
177
|
"description": "Meta Llama 3.1 to rodzina dużych modeli językowych opracowanych przez Meta, obejmująca pretrenowane i dostosowane do instrukcji warianty o rozmiarach parametrów 8B, 70B i 405B. Model 8B dostosowany do instrukcji został zoptymalizowany do scenariuszy rozmów wielojęzycznych, osiągając doskonałe wyniki w wielu branżowych testach benchmarkowych. Trening modelu wykorzystał ponad 150 bilionów tokenów danych publicznych oraz zastosował techniki takie jak nadzorowane dostrajanie i uczenie przez wzmacnianie z ludzkim feedbackiem, aby zwiększyć użyteczność i bezpieczeństwo modelu. Llama 3.1 wspiera generowanie tekstu i kodu, a data graniczna wiedzy to grudzień 2023 roku."
|
178
178
|
},
|
179
|
+
"Qwen/QVQ-72B-Preview": {
|
180
|
+
"description": "QVQ-72B-Preview to model badawczy opracowany przez zespół Qwen, skoncentrowany na zdolnościach wnioskowania wizualnego, który ma unikalne zalety w zrozumieniu złożonych scenariuszy i rozwiązywaniu wizualnie związanych problemów matematycznych."
|
181
|
+
},
|
179
182
|
"Qwen/QwQ-32B-Preview": {
|
180
183
|
"description": "QwQ-32B-Preview to najnowszy eksperymentalny model badawczy Qwen, skoncentrowany na zwiększeniu zdolności wnioskowania AI. Poprzez eksplorację złożonych mechanizmów, takich jak mieszanie języków i wnioskowanie rekurencyjne, główne zalety obejmują silne zdolności analizy wnioskowania, matematyki i programowania. Jednocześnie występują problemy z przełączaniem języków, cyklami wnioskowania, kwestiami bezpieczeństwa oraz różnicami w innych zdolnościach."
|
181
184
|
},
|
@@ -530,12 +533,21 @@
|
|
530
533
|
"databricks/dbrx-instruct": {
|
531
534
|
"description": "DBRX Instruct oferuje wysoką niezawodność w przetwarzaniu poleceń, wspierając różne branże."
|
532
535
|
},
|
536
|
+
"deepseek-ai/DeepSeek-R1": {
|
537
|
+
"description": "DeepSeek-R1 to model wnioskowania napędzany uczeniem przez wzmacnianie (RL), który rozwiązuje problemy z powtarzalnością i czytelnością modelu. Przed RL, DeepSeek-R1 wprowadził dane z zimnego startu, co dodatkowo zoptymalizowało wydajność wnioskowania. W zadaniach matematycznych, kodowania i wnioskowania osiąga wyniki porównywalne z OpenAI-o1, a dzięki starannie zaprojektowanym metodom treningowym poprawia ogólne efekty."
|
538
|
+
},
|
533
539
|
"deepseek-ai/DeepSeek-V2.5": {
|
534
540
|
"description": "DeepSeek V2.5 łączy doskonałe cechy wcześniejszych wersji, wzmacniając zdolności ogólne i kodowania."
|
535
541
|
},
|
542
|
+
"deepseek-ai/DeepSeek-V3": {
|
543
|
+
"description": "DeepSeek-V3 to model językowy z 6710 miliardami parametrów, oparty na mieszanych ekspertach (MoE), wykorzystujący wielogłowicową potencjalną uwagę (MLA) oraz architekturę DeepSeekMoE, łączącą strategię równoważenia obciążenia bez dodatkowych strat, co optymalizuje wydajność wnioskowania i treningu. Dzięki wstępnemu treningowi na 14,8 bilionach wysokiej jakości tokenów oraz nadzorowanemu dostrajaniu i uczeniu przez wzmacnianie, DeepSeek-V3 przewyższa inne modele open source, zbliżając się do wiodących modeli zamkniętych."
|
544
|
+
},
|
536
545
|
"deepseek-ai/deepseek-llm-67b-chat": {
|
537
546
|
"description": "DeepSeek 67B to zaawansowany model przeszkolony do złożonych dialogów."
|
538
547
|
},
|
548
|
+
"deepseek-ai/deepseek-vl2": {
|
549
|
+
"description": "DeepSeek-VL2 to model wizualno-językowy oparty na DeepSeekMoE-27B, wykorzystujący architekturę MoE z rzadką aktywacją, osiągający doskonałe wyniki przy aktywacji jedynie 4,5 miliarda parametrów. Model ten wyróżnia się w wielu zadaniach, takich jak wizualne pytania i odpowiedzi, optyczne rozpoznawanie znaków, zrozumienie dokumentów/tabel/wykresów oraz lokalizacja wizualna."
|
550
|
+
},
|
539
551
|
"deepseek-chat": {
|
540
552
|
"description": "Nowy otwarty model łączący zdolności ogólne i kodowe, który nie tylko zachowuje ogólne zdolności dialogowe oryginalnego modelu czatu i potężne zdolności przetwarzania kodu modelu Coder, ale także lepiej dostosowuje się do ludzkich preferencji. Ponadto, DeepSeek-V2.5 osiągnął znaczne poprawy w zadaniach pisarskich, przestrzeganiu instrukcji i innych obszarach."
|
541
553
|
},
|
@@ -548,6 +560,9 @@
|
|
548
560
|
"deepseek-coder-v2:236b": {
|
549
561
|
"description": "DeepSeek Coder V2 to otwarty model kodowy Mixture-of-Experts, który doskonale radzi sobie z zadaniami kodowymi, porównywalny z GPT4-Turbo."
|
550
562
|
},
|
563
|
+
"deepseek-r1": {
|
564
|
+
"description": "DeepSeek-R1 to model wnioskowania napędzany uczeniem przez wzmacnianie (RL), który rozwiązuje problemy z powtarzalnością i czytelnością modelu. Przed RL, DeepSeek-R1 wprowadził dane z zimnego startu, co dodatkowo zoptymalizowało wydajność wnioskowania. W zadaniach matematycznych, kodowania i wnioskowania osiąga wyniki porównywalne z OpenAI-o1, a dzięki starannie zaprojektowanym metodom treningowym poprawia ogólne efekty."
|
565
|
+
},
|
551
566
|
"deepseek-reasoner": {
|
552
567
|
"description": "Model inferency wprowadzony przez DeepSeek. Przed wygenerowaniem ostatecznej odpowiedzi, model najpierw przedstawia fragment łańcucha myślowego, aby zwiększyć dokładność końcowej odpowiedzi."
|
553
568
|
},
|
@@ -86,6 +86,30 @@
|
|
86
86
|
"emptyModel": "Nenhum modelo habilitado. Por favor, vá para as configurações e habilite um.",
|
87
87
|
"provider": "Fornecedor"
|
88
88
|
},
|
89
|
+
"OllamaSetupGuide": {
|
90
|
+
"cors": {
|
91
|
+
"description": "Devido a restrições de segurança do navegador, você precisa configurar o CORS para o Ollama antes de usá-lo normalmente.",
|
92
|
+
"linux": {
|
93
|
+
"env": "Adicione `Environment` na seção [Service] e adicione a variável de ambiente OLLAMA_ORIGINS:",
|
94
|
+
"reboot": "Recarregue o systemd e reinicie o Ollama",
|
95
|
+
"systemd": "Chame o systemd para editar o serviço ollama:"
|
96
|
+
},
|
97
|
+
"macos": "Abra o aplicativo 'Terminal', cole o seguinte comando e pressione Enter para executar",
|
98
|
+
"reboot": "Reinicie o serviço Ollama após a conclusão da execução",
|
99
|
+
"title": "Configurar o Ollama para permitir acesso CORS",
|
100
|
+
"windows": "No Windows, clique em 'Painel de Controle' e entre na edição das variáveis de ambiente do sistema. Crie uma nova variável de ambiente chamada 'OLLAMA_ORIGINS' para sua conta de usuário, com o valor * e clique em 'OK/Aplicar' para salvar."
|
101
|
+
},
|
102
|
+
"install": {
|
103
|
+
"description": "Por favor, confirme que você já ativou o Ollama. Se não tiver baixado o Ollama, visite o site oficial <1>para baixar</1>",
|
104
|
+
"docker": "Se você preferir usar o Docker, o Ollama também oferece uma imagem oficial do Docker, que você pode puxar com o seguinte comando:",
|
105
|
+
"linux": {
|
106
|
+
"command": "Instale com o seguinte comando:",
|
107
|
+
"manual": "Ou, você também pode consultar o <1>Guia de Instalação Manual do Linux</1> para instalar por conta própria."
|
108
|
+
},
|
109
|
+
"title": "Instalar e iniciar o aplicativo Ollama localmente",
|
110
|
+
"windowsTab": "Windows (versão de pré-visualização)"
|
111
|
+
}
|
112
|
+
},
|
89
113
|
"Thinking": {
|
90
114
|
"thinking": "Pensando profundamente...",
|
91
115
|
"thought": "Já pensei profundamente (tempo gasto {{duration}} segundos)",
|
@@ -154,30 +154,6 @@
|
|
154
154
|
"desc": "Deve incluir http(s)://, pode deixar em branco se não houver especificação local adicional",
|
155
155
|
"title": "Endereço do Proxy de Interface"
|
156
156
|
},
|
157
|
-
"setup": {
|
158
|
-
"cors": {
|
159
|
-
"description": "Devido às restrições de segurança do navegador, você precisa configurar o Ollama para permitir o acesso entre domínios.",
|
160
|
-
"linux": {
|
161
|
-
"env": "Sob a seção [Service], adicione `Environment` e inclua a variável de ambiente OLLAMA_ORIGINS:",
|
162
|
-
"reboot": "Recarregue o systemd e reinicie o Ollama.",
|
163
|
-
"systemd": "Chame o systemd para editar o serviço ollama:"
|
164
|
-
},
|
165
|
-
"macos": "Abra o aplicativo 'Terminal', cole o comando abaixo e pressione Enter para executar:",
|
166
|
-
"reboot": "Após a conclusão, reinicie o serviço Ollama.",
|
167
|
-
"title": "Configurar o Ollama para permitir acesso entre domínios",
|
168
|
-
"windows": "No Windows, acesse o 'Painel de Controle' e edite as variáveis de ambiente do sistema. Crie uma nova variável de ambiente chamada 'OLLAMA_ORIGINS' para sua conta de usuário, com o valor '*', e clique em 'OK/Aplicar' para salvar."
|
169
|
-
},
|
170
|
-
"install": {
|
171
|
-
"description": "Certifique-se de que você ativou o Ollama. Se ainda não o fez, baixe o Ollama no site oficial <1>aqui</1>.",
|
172
|
-
"docker": "Se preferir usar o Docker, o Ollama também oferece uma imagem oficial. Você pode puxá-la com o comando:",
|
173
|
-
"linux": {
|
174
|
-
"command": "Instale com o comando a seguir:",
|
175
|
-
"manual": "Ou, se preferir, consulte o <1>Guia de Instalação Manual do Linux</1> para instalar manualmente."
|
176
|
-
},
|
177
|
-
"title": "Instale e inicie o aplicativo Ollama localmente",
|
178
|
-
"windowsTab": "Windows (Versão de Visualização)"
|
179
|
-
}
|
180
|
-
},
|
181
157
|
"title": "Ollama",
|
182
158
|
"unlock": {
|
183
159
|
"cancel": "Cancel Download",
|
@@ -176,6 +176,9 @@
|
|
176
176
|
"Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
177
177
|
"description": "Meta Llama 3.1 é uma família de modelos de linguagem em larga escala multilíngue desenvolvida pela Meta, incluindo variantes pré-treinadas e de ajuste fino para instruções com tamanhos de parâmetros de 8B, 70B e 405B. Este modelo de 8B foi otimizado para cenários de diálogo multilíngue e se destacou em vários benchmarks da indústria. O treinamento do modelo utilizou mais de 150 trilhões de tokens de dados públicos e empregou técnicas como ajuste fino supervisionado e aprendizado por reforço com feedback humano para melhorar a utilidade e segurança do modelo. Llama 3.1 suporta geração de texto e geração de código, com data de corte de conhecimento em dezembro de 2023."
|
178
178
|
},
|
179
|
+
"Qwen/QVQ-72B-Preview": {
|
180
|
+
"description": "QVQ-72B-Preview é um modelo de pesquisa desenvolvido pela equipe Qwen, focado em capacidades de raciocínio visual, apresentando vantagens únicas na compreensão de cenários complexos e na resolução de problemas matemáticos relacionados à visão."
|
181
|
+
},
|
179
182
|
"Qwen/QwQ-32B-Preview": {
|
180
183
|
"description": "QwQ-32B-Preview é o mais recente modelo de pesquisa experimental da Qwen, focado em melhorar a capacidade de raciocínio da IA. Ao explorar mecanismos complexos como mistura de linguagem e raciocínio recursivo, suas principais vantagens incluem forte capacidade de análise de raciocínio, habilidades matemáticas e de programação. Ao mesmo tempo, existem questões de troca de linguagem, ciclos de raciocínio, considerações de segurança e diferenças em outras capacidades."
|
181
184
|
},
|
@@ -530,12 +533,21 @@
|
|
530
533
|
"databricks/dbrx-instruct": {
|
531
534
|
"description": "DBRX Instruct oferece capacidade de processamento de instruções altamente confiável, suportando aplicações em diversos setores."
|
532
535
|
},
|
536
|
+
"deepseek-ai/DeepSeek-R1": {
|
537
|
+
"description": "DeepSeek-R1 é um modelo de inferência impulsionado por aprendizado por reforço (RL), que resolve problemas de repetitividade e legibilidade no modelo. Antes do RL, o DeepSeek-R1 introduziu dados de inicialização a frio, otimizando ainda mais o desempenho da inferência. Ele apresenta desempenho comparável ao OpenAI-o1 em tarefas matemáticas, de código e de inferência, e melhora o resultado geral por meio de métodos de treinamento cuidadosamente projetados."
|
538
|
+
},
|
533
539
|
"deepseek-ai/DeepSeek-V2.5": {
|
534
540
|
"description": "DeepSeek V2.5 combina as excelentes características das versões anteriores, aprimorando a capacidade geral e de codificação."
|
535
541
|
},
|
542
|
+
"deepseek-ai/DeepSeek-V3": {
|
543
|
+
"description": "DeepSeek-V3 é um modelo de linguagem de especialistas mistos (MoE) com 671 bilhões de parâmetros, utilizando atenção latente de múltiplas cabeças (MLA) e a arquitetura DeepSeekMoE, combinando uma estratégia de balanceamento de carga sem perda auxiliar para otimizar a eficiência de inferência e treinamento. Após ser pré-treinado em 14,8 trilhões de tokens de alta qualidade e passar por ajuste fino supervisionado e aprendizado por reforço, o DeepSeek-V3 supera outros modelos de código aberto em desempenho, aproximando-se de modelos fechados líderes."
|
544
|
+
},
|
536
545
|
"deepseek-ai/deepseek-llm-67b-chat": {
|
537
546
|
"description": "DeepSeek 67B é um modelo avançado treinado para diálogos de alta complexidade."
|
538
547
|
},
|
548
|
+
"deepseek-ai/deepseek-vl2": {
|
549
|
+
"description": "DeepSeek-VL2 é um modelo de linguagem visual baseado no DeepSeekMoE-27B, desenvolvido como um especialista misto (MoE), utilizando uma arquitetura de MoE com ativação esparsa, alcançando desempenho excepcional com apenas 4,5 bilhões de parâmetros ativados. Este modelo se destaca em várias tarefas, incluindo perguntas visuais, reconhecimento óptico de caracteres, compreensão de documentos/tabelas/gráficos e localização visual."
|
550
|
+
},
|
539
551
|
"deepseek-chat": {
|
540
552
|
"description": "Um novo modelo de código aberto que combina capacidades gerais e de codificação, não apenas preservando a capacidade de diálogo geral do modelo Chat original e a poderosa capacidade de processamento de código do modelo Coder, mas também alinhando-se melhor às preferências humanas. Além disso, o DeepSeek-V2.5 também alcançou melhorias significativas em várias áreas, como tarefas de escrita e seguimento de instruções."
|
541
553
|
},
|
@@ -548,6 +560,9 @@
|
|
548
560
|
"deepseek-coder-v2:236b": {
|
549
561
|
"description": "DeepSeek Coder V2 é um modelo de código de especialistas abertos, destacando-se em tarefas de codificação, comparável ao GPT4-Turbo."
|
550
562
|
},
|
563
|
+
"deepseek-r1": {
|
564
|
+
"description": "DeepSeek-R1 é um modelo de inferência impulsionado por aprendizado por reforço (RL), que resolve problemas de repetitividade e legibilidade no modelo. Antes do RL, o DeepSeek-R1 introduziu dados de inicialização a frio, otimizando ainda mais o desempenho da inferência. Ele apresenta desempenho comparável ao OpenAI-o1 em tarefas matemáticas, de código e de inferência, e melhora o resultado geral por meio de métodos de treinamento cuidadosamente projetados."
|
565
|
+
},
|
551
566
|
"deepseek-reasoner": {
|
552
567
|
"description": "Modelo de raciocínio lançado pela DeepSeek. Antes de fornecer a resposta final, o modelo gera uma cadeia de pensamento para aumentar a precisão da resposta final."
|
553
568
|
},
|
@@ -86,6 +86,30 @@
|
|
86
86
|
"emptyModel": "Нет активированных моделей. Пожалуйста, перейдите в настройки и включите модель",
|
87
87
|
"provider": "Поставщик"
|
88
88
|
},
|
89
|
+
"OllamaSetupGuide": {
|
90
|
+
"cors": {
|
91
|
+
"description": "Из-за ограничений безопасности браузера вам необходимо настроить кросс-доменные запросы для корректного использования Ollama.",
|
92
|
+
"linux": {
|
93
|
+
"env": "Добавьте `Environment` в раздел [Service] и добавьте переменную окружения OLLAMA_ORIGINS:",
|
94
|
+
"reboot": "Перезагрузите systemd и перезапустите Ollama",
|
95
|
+
"systemd": "Вызовите systemd для редактирования службы ollama:"
|
96
|
+
},
|
97
|
+
"macos": "Откройте приложение «Терминал», вставьте следующую команду и нажмите Enter для выполнения",
|
98
|
+
"reboot": "Пожалуйста, перезапустите службу Ollama после завершения выполнения",
|
99
|
+
"title": "Настройка Ollama для разрешения кросс-доменных запросов",
|
100
|
+
"windows": "На Windows нажмите «Панель управления», перейдите к редактированию системных переменных окружения. Создайте новую переменную окружения с именем «OLLAMA_ORIGINS» для вашей учетной записи пользователя, значение - * , нажмите «OK/Применить» для сохранения"
|
101
|
+
},
|
102
|
+
"install": {
|
103
|
+
"description": "Пожалуйста, убедитесь, что вы запустили Ollama. Если вы еще не скачали Ollama, перейдите на официальный сайт <1>для загрузки</1>",
|
104
|
+
"docker": "Если вы предпочитаете использовать Docker, Ollama также предоставляет официальный образ Docker, который вы можете загрузить с помощью следующей команды:",
|
105
|
+
"linux": {
|
106
|
+
"command": "Установите с помощью следующей команды:",
|
107
|
+
"manual": "Или вы можете обратиться к <1>руководству по ручной установке для Linux</1> для самостоятельной установки"
|
108
|
+
},
|
109
|
+
"title": "Установите и запустите приложение Ollama локально",
|
110
|
+
"windowsTab": "Windows (предварительная версия)"
|
111
|
+
}
|
112
|
+
},
|
89
113
|
"Thinking": {
|
90
114
|
"thinking": "Глубокое размышление...",
|
91
115
|
"thought": "Глубоко обдумано (время: {{duration}} секунд)",
|
@@ -154,30 +154,6 @@
|
|
154
154
|
"desc": "Должен содержать http(s)://, если локально не указано иное, можно оставить пустым",
|
155
155
|
"title": "Адрес прокси-интерфейса"
|
156
156
|
},
|
157
|
-
"setup": {
|
158
|
-
"cors": {
|
159
|
-
"description": "Из-за ограничений безопасности браузера вам необходимо настроить кросс-доменные запросы для правильной работы Ollama.",
|
160
|
-
"linux": {
|
161
|
-
"env": "Добавьте переменную среды OLLAMA_ORIGINS в разделе [Service],",
|
162
|
-
"reboot": "Перезагрузите systemd и перезапустите Ollama.",
|
163
|
-
"systemd": "Вызовите редактирование службы ollama в systemd:"
|
164
|
-
},
|
165
|
-
"macos": "Откройте приложение \"Терминал\", вставьте и выполните следующую команду, затем нажмите Enter.",
|
166
|
-
"reboot": "Пожалуйста, перезагрузите службу Ollama после завершения выполнения команды.",
|
167
|
-
"title": "Настройка разрешений на кросс-доменный доступ для Ollama",
|
168
|
-
"windows": "На Windows откройте \"Панель управления\", зайдите в настройки системных переменных. Создайте новую переменную среды для вашей учетной записи с именем \"OLLAMA_ORIGINS\" и значением * , затем нажмите \"OK/Применить\" для сохранения."
|
169
|
-
},
|
170
|
-
"install": {
|
171
|
-
"description": "Пожалуйста, убедитесь, что вы установили Ollama. Если вы еще не скачали Ollama, перейдите на официальный сайт <1> для загрузки</1>",
|
172
|
-
"docker": "Если вы предпочитаете использовать Docker, Ollama также предоставляет официальное образ Docker. Вы можете загрузить его с помощью следующей команды:",
|
173
|
-
"linux": {
|
174
|
-
"command": "Установите с помощью следующей команды:",
|
175
|
-
"manual": "Или вы можете установить его вручную, следуя <1>руководству по установке на Linux</1>."
|
176
|
-
},
|
177
|
-
"title": "Установка и запуск приложения Ollama локально",
|
178
|
-
"windowsTab": "Windows (превью)"
|
179
|
-
}
|
180
|
-
},
|
181
157
|
"title": "Ollama",
|
182
158
|
"unlock": {
|
183
159
|
"cancel": "Cancel Download",
|
@@ -176,6 +176,9 @@
|
|
176
176
|
"Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
177
177
|
"description": "Meta Llama 3.1 — это семейство многоязычных крупных языковых моделей, разработанных Meta, включая предобученные и дообученные на инструкциях варианты с параметрами 8B, 70B и 405B. Эта 8B модель с дообучением на инструкциях оптимизирована для многоязычных диалоговых сценариев и показывает отличные результаты в нескольких отраслевых бенчмарках. Обучение модели использовало более 150 триллионов токенов открытых данных и применяло такие технологии, как контролируемое дообучение и обучение с подкреплением на основе человеческой обратной связи для повышения полезности и безопасности модели. Llama 3.1 поддерживает генерацию текста и кода, с датой окончания знаний в декабре 2023 года."
|
178
178
|
},
|
179
|
+
"Qwen/QVQ-72B-Preview": {
|
180
|
+
"description": "QVQ-72B-Preview — это исследовательская модель, разработанная командой Qwen, сосредоточенная на способностях визуального вывода, обладающая уникальными преимуществами в понимании сложных сцен и решении визуально связанных математических задач."
|
181
|
+
},
|
179
182
|
"Qwen/QwQ-32B-Preview": {
|
180
183
|
"description": "QwQ-32B-Preview — это последняя экспериментальная исследовательская модель Qwen, сосредоточенная на повышении возможностей вывода ИИ. Исследуя сложные механизмы, такие как смешение языков и рекурсивные выводы, основные преимущества включают мощные аналитические способности, математические и программные навыки. В то же время существуют проблемы с переключением языков, циклом вывода, соображениями безопасности и различиями в других способностях."
|
181
184
|
},
|
@@ -530,12 +533,21 @@
|
|
530
533
|
"databricks/dbrx-instruct": {
|
531
534
|
"description": "DBRX Instruct предлагает высокую надежность в обработке команд, поддерживая приложения в различных отраслях."
|
532
535
|
},
|
536
|
+
"deepseek-ai/DeepSeek-R1": {
|
537
|
+
"description": "DeepSeek-R1 — это модель вывода, управляемая методом обучения с подкреплением (RL), которая решает проблемы повторяемости и читаемости модели. Перед применением RL DeepSeek-R1 вводит данные холодного старта, что дополнительно оптимизирует производительность вывода. Она показывает сопоставимые результаты с OpenAI-o1 в математических, кодовых и задачах вывода, а также улучшает общую эффективность благодаря тщательно разработанным методам обучения."
|
538
|
+
},
|
533
539
|
"deepseek-ai/DeepSeek-V2.5": {
|
534
540
|
"description": "DeepSeek V2.5 объединяет отличительные черты предыдущих версий, улучшая общие и кодировочные способности."
|
535
541
|
},
|
542
|
+
"deepseek-ai/DeepSeek-V3": {
|
543
|
+
"description": "DeepSeek-V3 — это языковая модель смешанных экспертов (MoE) с 6710 миллиардами параметров, использующая многоголовое потенциальное внимание (MLA) и архитектуру DeepSeekMoE, в сочетании с стратегией балансировки нагрузки без вспомогательных потерь, оптимизирующей эффективность вывода и обучения. После предобучения на 14,8 триллионах высококачественных токенов и последующей супервизионной донастройки и обучения с подкреплением, DeepSeek-V3 превосходит другие открытые модели и приближается к ведущим закрытым моделям."
|
544
|
+
},
|
536
545
|
"deepseek-ai/deepseek-llm-67b-chat": {
|
537
546
|
"description": "DeepSeek 67B — это передовая модель, обученная для высококомплексных диалогов."
|
538
547
|
},
|
548
|
+
"deepseek-ai/deepseek-vl2": {
|
549
|
+
"description": "DeepSeek-VL2 — это модель визуального языка, разработанная на основе DeepSeekMoE-27B, использующая архитектуру MoE с разреженной активацией, которая демонстрирует выдающуюся производительность при активации всего 4,5 миллиарда параметров. Эта модель показывает отличные результаты в таких задачах, как визуальные вопросы и ответы, оптическое распознавание символов, понимание документов/таблиц/графиков и визуальная локализация."
|
550
|
+
},
|
539
551
|
"deepseek-chat": {
|
540
552
|
"description": "Новая открытая модель, объединяющая общие и кодовые возможности, не только сохраняет общие диалоговые способности оригинальной модели Chat и мощные возможности обработки кода модели Coder, но и лучше согласуется с человеческими предпочтениями. Кроме того, DeepSeek-V2.5 значительно улучшила производительность в таких задачах, как написание текстов и следование инструкциям."
|
541
553
|
},
|
@@ -548,6 +560,9 @@
|
|
548
560
|
"deepseek-coder-v2:236b": {
|
549
561
|
"description": "DeepSeek Coder V2 — это открытая смешанная экспертная модель кода, показывающая отличные результаты в задачах кода, сопоставимая с GPT4-Turbo."
|
550
562
|
},
|
563
|
+
"deepseek-r1": {
|
564
|
+
"description": "DeepSeek-R1 — это модель вывода, управляемая методом обучения с подкреплением (RL), которая решает проблемы повторяемости и читаемости модели. Перед применением RL DeepSeek-R1 вводит данные холодного старта, что дополнительно оптимизирует производительность вывода. Она показывает сопоставимые результаты с OpenAI-o1 в математических, кодовых и задачах вывода, а также улучшает общую эффективность благодаря тщательно разработанным методам обучения."
|
565
|
+
},
|
551
566
|
"deepseek-reasoner": {
|
552
567
|
"description": "Модель вывода, представленная DeepSeek. Перед тем как выдать окончательный ответ, модель сначала выводит цепочку размышлений, чтобы повысить точность окончательного ответа."
|
553
568
|
},
|
@@ -86,6 +86,30 @@
|
|
86
86
|
"emptyModel": "Etkinleştirilmiş model bulunmamaktadır, lütfen ayarlara giderek açın",
|
87
87
|
"provider": "Sağlayıcı"
|
88
88
|
},
|
89
|
+
"OllamaSetupGuide": {
|
90
|
+
"cors": {
|
91
|
+
"description": "Tarayıcı güvenlik kısıtlamaları nedeniyle, Ollama'yı düzgün bir şekilde kullanabilmek için çapraz alan yapılandırması yapmanız gerekmektedir.",
|
92
|
+
"linux": {
|
93
|
+
"env": "[Service] bölümüne `Environment` ekleyin ve OLLAMA_ORIGINS ortam değişkenini ekleyin:",
|
94
|
+
"reboot": "systemd'yi yeniden yükleyin ve Ollama'yı yeniden başlatın",
|
95
|
+
"systemd": "ollama hizmetini düzenlemek için systemd'yi çağırın:"
|
96
|
+
},
|
97
|
+
"macos": "Lütfen 'Terminal' uygulamasını açın, aşağıdaki komutu yapıştırın ve çalıştırmak için Enter tuşuna basın",
|
98
|
+
"reboot": "İşlem tamamlandıktan sonra Ollama hizmetini yeniden başlatın",
|
99
|
+
"title": "Ollama'nın çapraz alan erişimine izin vermek için yapılandırma",
|
100
|
+
"windows": "Windows'ta, 'Denetim Masası'na tıklayın ve sistem ortam değişkenlerini düzenleyin. Kullanıcı hesabınız için 'OLLAMA_ORIGINS' adında bir ortam değişkeni oluşturun, değeri * olarak ayarlayın ve 'Tamam/Uygula'ya tıklayarak kaydedin."
|
101
|
+
},
|
102
|
+
"install": {
|
103
|
+
"description": "Lütfen Ollama'nın açık olduğundan emin olun, eğer Ollama'yı indirmediyseniz, lütfen resmi web sitesinden <1>indirin</1>",
|
104
|
+
"docker": "Eğer Docker kullanmayı tercih ediyorsanız, Ollama'nın resmi Docker imajı da mevcuttur, aşağıdaki komutla çekebilirsiniz:",
|
105
|
+
"linux": {
|
106
|
+
"command": "Aşağıdaki komutla kurulum yapın:",
|
107
|
+
"manual": "Alternatif olarak, <1>Linux Manuel Kurulum Kılavuzu</1>'na başvurarak kendiniz de kurulum yapabilirsiniz."
|
108
|
+
},
|
109
|
+
"title": "Ollama uygulamasını yerel olarak kurun ve başlatın",
|
110
|
+
"windowsTab": "Windows (önizleme sürümü)"
|
111
|
+
}
|
112
|
+
},
|
89
113
|
"Thinking": {
|
90
114
|
"thinking": "Derin düşünme aşamasında...",
|
91
115
|
"thought": "Derinlemesine düşündüm (geçen süre {{duration}} saniye)",
|
@@ -154,30 +154,6 @@
|
|
154
154
|
"desc": "http(s):// içermelidir, yerel olarak belirtilmemişse boş bırakılabilir",
|
155
155
|
"title": "Arayüz Proxy Adresi"
|
156
156
|
},
|
157
|
-
"setup": {
|
158
|
-
"cors": {
|
159
|
-
"description": "Ollama'nın normal şekilde çalışabilmesi için, tarayıcı güvenlik kısıtlamaları nedeniyle Ollama'nın çapraz kaynak isteklerine izin verilmesi gerekmektedir.",
|
160
|
-
"linux": {
|
161
|
-
"env": "[Service] bölümüne `Environment` ekleyerek OLLAMA_ORIGINS ortam değişkenini ekleyin:",
|
162
|
-
"reboot": "systemd'yi yeniden yükleyin ve Ollama'yı yeniden başlatın",
|
163
|
-
"systemd": "systemd'yi çağırarak ollama servisini düzenleyin:"
|
164
|
-
},
|
165
|
-
"macos": "Lütfen 'Terminal' uygulamasını açın ve aşağıdaki komutu yapıştırıp Enter tuşuna basın",
|
166
|
-
"reboot": "Komut tamamlandıktan sonra Ollama servisini yeniden başlatın",
|
167
|
-
"title": "Ollama'nın çapraz kaynak erişimine izin vermek için yapılandırma",
|
168
|
-
"windows": "Windows'ta, 'Control Panel'ı tıklayarak sistem ortam değişkenlerini düzenleyin. Kullanıcı hesabınıza * değerinde 'OLLAMA_ORIGINS' adında bir ortam değişkeni oluşturun ve 'OK/Apply' düğmesine tıklayarak kaydedin"
|
169
|
-
},
|
170
|
-
"install": {
|
171
|
-
"description": "Ollama'nın açık olduğundan emin olun. Ollama'yı indirmediyseniz, lütfen resmi web sitesine giderek <1>indirin</1>.",
|
172
|
-
"docker": "Docker kullanmayı tercih ediyorsanız, Ollama resmi Docker görüntüsünü aşağıdaki komutla çekebilirsiniz:",
|
173
|
-
"linux": {
|
174
|
-
"command": "Aşağıdaki komutları kullanarak yükleyin:",
|
175
|
-
"manual": "Ya da, <1>Linux için el ile kurulum kılavuzuna</1> bakarak kendiniz kurabilirsiniz"
|
176
|
-
},
|
177
|
-
"title": "Yerel olarak Ollama uygulamasını kurun ve başlatın",
|
178
|
-
"windowsTab": "Windows (Önizleme)"
|
179
|
-
}
|
180
|
-
},
|
181
157
|
"title": "Ollama",
|
182
158
|
"unlock": {
|
183
159
|
"cancel": "取消下载",
|
@@ -176,6 +176,9 @@
|
|
176
176
|
"Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
177
177
|
"description": "Meta Llama 3.1, Meta tarafından geliştirilen çok dilli büyük dil modeli ailesidir ve 8B, 70B ve 405B olmak üzere üç parametre ölçeği ile önceden eğitilmiş ve talimat ince ayar varyantları içermektedir. Bu 8B talimat ince ayar modeli, çok dilli diyalog senaryoları için optimize edilmiştir ve birçok endüstri standart testinde mükemmel performans sergilemektedir. Model, 15 trilyon token'dan fazla açık veriler kullanılarak eğitilmiş ve modelin faydasını ve güvenliğini artırmak için denetimli ince ayar ve insan geri bildirimi pekiştirmeli öğrenme gibi teknikler kullanılmıştır. Llama 3.1, metin üretimi ve kod üretimini desteklemekte olup, bilgi kesim tarihi 2023 Aralık'tır."
|
178
178
|
},
|
179
|
+
"Qwen/QVQ-72B-Preview": {
|
180
|
+
"description": "QVQ-72B-Preview, Qwen ekibi tarafından geliştirilen ve görsel çıkarım yeteneklerine odaklanan bir araştırma modelidir. Karmaşık sahne anlayışı ve görsel ile ilgili matematiksel sorunları çözme konusundaki benzersiz avantajları ile dikkat çekmektedir."
|
181
|
+
},
|
179
182
|
"Qwen/QwQ-32B-Preview": {
|
180
183
|
"description": "QwQ-32B-Preview, Qwen'in en son deneysel araştırma modelidir ve AI akıl yürütme yeteneklerini artırmaya odaklanmaktadır. Dil karışımı, özyinelemeli akıl yürütme gibi karmaşık mekanizmaları keşfederek, güçlü akıl yürütme analizi, matematik ve programlama yetenekleri gibi ana avantajlar sunmaktadır. Bununla birlikte, dil geçiş sorunları, akıl yürütme döngüleri, güvenlik endişeleri ve diğer yetenek farklılıkları gibi zorluklar da bulunmaktadır."
|
181
184
|
},
|
@@ -530,12 +533,21 @@
|
|
530
533
|
"databricks/dbrx-instruct": {
|
531
534
|
"description": "DBRX Instruct, yüksek güvenilirlikte talimat işleme yetenekleri sunar ve çok çeşitli endüstri uygulamalarını destekler."
|
532
535
|
},
|
536
|
+
"deepseek-ai/DeepSeek-R1": {
|
537
|
+
"description": "DeepSeek-R1, tekrarlayan öğrenme (RL) destekli bir çıkarım modelidir ve modeldeki tekrarlama ve okunabilirlik sorunlarını çözmektedir. RL'den önce, DeepSeek-R1 soğuk başlangıç verilerini tanıtarak çıkarım performansını daha da optimize etmiştir. Matematik, kod ve çıkarım görevlerinde OpenAI-o1 ile benzer bir performans sergilemekte ve özenle tasarlanmış eğitim yöntemleri ile genel etkisini artırmaktadır."
|
538
|
+
},
|
533
539
|
"deepseek-ai/DeepSeek-V2.5": {
|
534
540
|
"description": "DeepSeek V2.5, önceki sürümlerin mükemmel özelliklerini bir araya getirir, genel ve kodlama yeteneklerini artırır."
|
535
541
|
},
|
542
|
+
"deepseek-ai/DeepSeek-V3": {
|
543
|
+
"description": "DeepSeek-V3, 6710 milyar parametreye sahip bir karma uzman (MoE) dil modelidir. Çok başlı potansiyel dikkat (MLA) ve DeepSeekMoE mimarisini kullanarak, yardımcı kayıplar olmadan yük dengeleme stratejisi ile çıkarım ve eğitim verimliliğini optimize etmektedir. 14.8 trilyon yüksek kaliteli token üzerinde önceden eğitilmiş ve denetimli ince ayar ile tekrarlayan öğrenme gerçekleştirilmiştir; DeepSeek-V3, performans açısından diğer açık kaynaklı modelleri geride bırakmakta ve lider kapalı kaynaklı modellere yaklaşmaktadır."
|
544
|
+
},
|
536
545
|
"deepseek-ai/deepseek-llm-67b-chat": {
|
537
546
|
"description": "DeepSeek 67B, yüksek karmaşıklıkta diyaloglar için eğitilmiş gelişmiş bir modeldir."
|
538
547
|
},
|
548
|
+
"deepseek-ai/deepseek-vl2": {
|
549
|
+
"description": "DeepSeek-VL2, DeepSeekMoE-27B tabanlı bir karma uzman (MoE) görsel dil modelidir. Seyrek etkinleştirilen MoE mimarisini kullanarak yalnızca 4.5B parametreyi etkinleştirerek olağanüstü performans sergilemektedir. Bu model, görsel soru yanıtlama, optik karakter tanıma, belge/tablolar/grafikler anlama ve görsel konumlandırma gibi birçok görevde mükemmel sonuçlar elde etmektedir."
|
550
|
+
},
|
539
551
|
"deepseek-chat": {
|
540
552
|
"description": "Genel ve kod yeteneklerini birleştiren yeni bir açık kaynak modeli, yalnızca mevcut Chat modelinin genel diyalog yeteneklerini ve Coder modelinin güçlü kod işleme yeteneklerini korumakla kalmaz, aynı zamanda insan tercihleri ile daha iyi hizalanmıştır. Ayrıca, DeepSeek-V2.5 yazım görevleri, talimat takibi gibi birçok alanda büyük iyileştirmeler sağlamıştır."
|
541
553
|
},
|
@@ -548,6 +560,9 @@
|
|
548
560
|
"deepseek-coder-v2:236b": {
|
549
561
|
"description": "DeepSeek Coder V2, açık kaynaklı bir karışık uzman kod modelidir, kod görevlerinde mükemmel performans sergiler ve GPT4-Turbo ile karşılaştırılabilir."
|
550
562
|
},
|
563
|
+
"deepseek-r1": {
|
564
|
+
"description": "DeepSeek-R1, tekrarlayan öğrenme (RL) destekli bir çıkarım modelidir ve modeldeki tekrarlama ve okunabilirlik sorunlarını çözmektedir. RL'den önce, DeepSeek-R1 soğuk başlangıç verilerini tanıtarak çıkarım performansını daha da optimize etmiştir. Matematik, kod ve çıkarım görevlerinde OpenAI-o1 ile benzer bir performans sergilemekte ve özenle tasarlanmış eğitim yöntemleri ile genel etkisini artırmaktadır."
|
565
|
+
},
|
551
566
|
"deepseek-reasoner": {
|
552
567
|
"description": "DeepSeek tarafından sunulan bir akıl yürütme modeli. Model, nihai yanıtı vermeden önce bir düşünce zinciri içeriği sunarak nihai cevabın doğruluğunu artırır."
|
553
568
|
},
|
@@ -86,6 +86,30 @@
|
|
86
86
|
"emptyModel": "Không có mô hình nào được kích hoạt, vui lòng điều chỉnh trong cài đặt",
|
87
87
|
"provider": "Nhà cung cấp"
|
88
88
|
},
|
89
|
+
"OllamaSetupGuide": {
|
90
|
+
"cors": {
|
91
|
+
"description": "Do hạn chế bảo mật của trình duyệt, bạn cần cấu hình CORS cho Ollama để có thể sử dụng bình thường.",
|
92
|
+
"linux": {
|
93
|
+
"env": "Thêm `Environment` trong phần [Service], thêm biến môi trường OLLAMA_ORIGINS:",
|
94
|
+
"reboot": "Tải lại systemd và khởi động lại Ollama",
|
95
|
+
"systemd": "Gọi systemd để chỉnh sửa dịch vụ ollama:"
|
96
|
+
},
|
97
|
+
"macos": "Vui lòng mở ứng dụng «Terminal» và dán lệnh sau, sau đó nhấn Enter để chạy",
|
98
|
+
"reboot": "Vui lòng khởi động lại dịch vụ Ollama sau khi hoàn thành",
|
99
|
+
"title": "Cấu hình Ollama cho phép truy cập CORS",
|
100
|
+
"windows": "Trên Windows, nhấp vào «Control Panel», vào chỉnh sửa biến môi trường hệ thống. Tạo một biến môi trường mới có tên là «OLLAMA_ORIGINS» cho tài khoản người dùng của bạn, giá trị là *, nhấp «OK/Apply» để lưu"
|
101
|
+
},
|
102
|
+
"install": {
|
103
|
+
"description": "Vui lòng xác nhận rằng bạn đã mở Ollama, nếu chưa tải Ollama, hãy truy cập trang web chính thức <1>tải xuống</1>",
|
104
|
+
"docker": "Nếu bạn thích sử dụng Docker, Ollama cũng cung cấp hình ảnh Docker chính thức, bạn có thể kéo xuống bằng lệnh sau:",
|
105
|
+
"linux": {
|
106
|
+
"command": "Cài đặt bằng lệnh sau:",
|
107
|
+
"manual": "Hoặc, bạn cũng có thể tham khảo <1>Hướng dẫn cài đặt thủ công trên Linux</1> để tự cài đặt"
|
108
|
+
},
|
109
|
+
"title": "Cài đặt và khởi động ứng dụng Ollama trên máy tính",
|
110
|
+
"windowsTab": "Windows (phiên bản xem trước)"
|
111
|
+
}
|
112
|
+
},
|
89
113
|
"Thinking": {
|
90
114
|
"thinking": "Đang suy nghĩ sâu sắc...",
|
91
115
|
"thought": "Đã suy nghĩ sâu sắc (mất {{duration}} giây)",
|
@@ -154,30 +154,6 @@
|
|
154
154
|
"desc": "Phải bao gồm http(s)://, có thể để trống nếu không chỉ định thêm cho địa phương",
|
155
155
|
"title": "Địa chỉ proxy API"
|
156
156
|
},
|
157
|
-
"setup": {
|
158
|
-
"cors": {
|
159
|
-
"description": "Do vấn đề về an ninh trình duyệt, bạn cần cấu hình CORS cho Ollama trước khi có thể sử dụng bình thường.",
|
160
|
-
"linux": {
|
161
|
-
"env": "Trong phần [Service], thêm `Environment`, thêm biến môi trường OLLAMA_ORIGINS:",
|
162
|
-
"reboot": "Tải lại systemd và khởi động lại Ollama",
|
163
|
-
"systemd": "Gọi systemd để chỉnh sửa dịch vụ ollama:"
|
164
|
-
},
|
165
|
-
"macos": "Vui lòng mở ứng dụng «Terminal», dán lệnh sau và nhấn Enter để chạy",
|
166
|
-
"reboot": "Vui lòng khởi động lại dịch vụ Ollama sau khi hoàn thành",
|
167
|
-
"title": "Cấu hình Ollama cho phép truy cập từ xa",
|
168
|
-
"windows": "Trên Windows, nhấp vào «Control Panel», vào chỉnh sửa biến môi trường hệ thống. Tạo biến môi trường tên là «OLLAMA_ORIGINS» cho tài khoản người dùng của bạn, giá trị là * , nhấp vào «OK/Áp dụng» để lưu lại"
|
169
|
-
},
|
170
|
-
"install": {
|
171
|
-
"description": "Vui lòng xác nhận rằng bạn đã bật Ollama. Nếu chưa tải Ollama, vui lòng truy cập trang web chính thức để <1>tải xuống</1>",
|
172
|
-
"docker": "Nếu bạn muốn sử dụng Docker, Ollama cũng cung cấp hình ảnh Docker chính thức, bạn có thể kéo theo lệnh sau:",
|
173
|
-
"linux": {
|
174
|
-
"command": "Cài đặt bằng lệnh sau:",
|
175
|
-
"manual": "Hoặc bạn cũng có thể tham khảo <1>Hướng dẫn cài đặt thủ công trên Linux</1> để tự cài đặt"
|
176
|
-
},
|
177
|
-
"title": "Cài đặt và mở Ollama ứng dụng trên máy cục bộ",
|
178
|
-
"windowsTab": "Windows (Bản xem trước)"
|
179
|
-
}
|
180
|
-
},
|
181
157
|
"title": "Ollama",
|
182
158
|
"unlock": {
|
183
159
|
"cancel": "Hủy tải xuống",
|