@lobehub/chat 1.49.10 → 1.49.12

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (95) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/changelog/v1.json +18 -0
  3. package/locales/ar/components.json +24 -0
  4. package/locales/ar/modelProvider.json +0 -24
  5. package/locales/ar/models.json +15 -0
  6. package/locales/bg-BG/components.json +24 -0
  7. package/locales/bg-BG/modelProvider.json +0 -24
  8. package/locales/bg-BG/models.json +15 -0
  9. package/locales/de-DE/components.json +24 -0
  10. package/locales/de-DE/modelProvider.json +0 -24
  11. package/locales/de-DE/models.json +15 -0
  12. package/locales/en-US/components.json +24 -0
  13. package/locales/en-US/modelProvider.json +0 -24
  14. package/locales/en-US/models.json +15 -0
  15. package/locales/es-ES/components.json +24 -0
  16. package/locales/es-ES/modelProvider.json +0 -24
  17. package/locales/es-ES/models.json +15 -0
  18. package/locales/fa-IR/components.json +24 -0
  19. package/locales/fa-IR/modelProvider.json +0 -24
  20. package/locales/fa-IR/models.json +15 -0
  21. package/locales/fr-FR/components.json +24 -0
  22. package/locales/fr-FR/modelProvider.json +0 -24
  23. package/locales/fr-FR/models.json +15 -0
  24. package/locales/it-IT/components.json +24 -0
  25. package/locales/it-IT/modelProvider.json +0 -24
  26. package/locales/it-IT/models.json +15 -0
  27. package/locales/ja-JP/components.json +24 -0
  28. package/locales/ja-JP/modelProvider.json +0 -24
  29. package/locales/ja-JP/models.json +15 -0
  30. package/locales/ko-KR/components.json +24 -0
  31. package/locales/ko-KR/modelProvider.json +0 -24
  32. package/locales/ko-KR/models.json +4 -0
  33. package/locales/nl-NL/components.json +24 -0
  34. package/locales/nl-NL/modelProvider.json +0 -24
  35. package/locales/nl-NL/models.json +15 -0
  36. package/locales/pl-PL/components.json +24 -0
  37. package/locales/pl-PL/modelProvider.json +0 -24
  38. package/locales/pl-PL/models.json +15 -0
  39. package/locales/pt-BR/components.json +24 -0
  40. package/locales/pt-BR/modelProvider.json +0 -24
  41. package/locales/pt-BR/models.json +15 -0
  42. package/locales/ru-RU/components.json +24 -0
  43. package/locales/ru-RU/modelProvider.json +0 -24
  44. package/locales/ru-RU/models.json +15 -0
  45. package/locales/tr-TR/components.json +24 -0
  46. package/locales/tr-TR/modelProvider.json +0 -24
  47. package/locales/tr-TR/models.json +15 -0
  48. package/locales/vi-VN/components.json +24 -0
  49. package/locales/vi-VN/modelProvider.json +0 -24
  50. package/locales/vi-VN/models.json +15 -0
  51. package/locales/zh-CN/components.json +24 -0
  52. package/locales/zh-CN/modelProvider.json +0 -24
  53. package/locales/zh-CN/models.json +16 -1
  54. package/locales/zh-TW/components.json +24 -0
  55. package/locales/zh-TW/modelProvider.json +0 -24
  56. package/locales/zh-TW/models.json +15 -0
  57. package/package.json +1 -1
  58. package/src/app/(main)/chat/(workspace)/@portal/_layout/Mobile.tsx +1 -0
  59. package/src/app/(main)/chat/(workspace)/_layout/Desktop/Portal.tsx +26 -2
  60. package/src/app/(main)/settings/provider/(detail)/[id]/page.tsx +10 -3
  61. package/src/app/(main)/settings/provider/(detail)/ollama/CheckError.tsx +70 -0
  62. package/src/app/(main)/settings/provider/(detail)/ollama/Container.tsx +57 -0
  63. package/src/app/(main)/settings/provider/(detail)/ollama/OllamaModelDownloader/index.tsx +127 -0
  64. package/src/app/(main)/settings/provider/(detail)/ollama/OllamaModelDownloader/useDownloadMonitor.ts +29 -0
  65. package/src/app/(main)/settings/provider/(detail)/ollama/page.tsx +2 -7
  66. package/src/app/(main)/settings/provider/features/ProviderConfig/Checker.tsx +90 -69
  67. package/src/app/(main)/settings/provider/features/ProviderConfig/index.tsx +6 -6
  68. package/src/components/FormAction/index.tsx +66 -0
  69. package/src/components/OllamaSetupGuide/index.tsx +217 -0
  70. package/src/components/Thinking/index.tsx +14 -16
  71. package/src/config/aiModels/ollama.ts +12 -19
  72. package/src/config/modelProviders/ollama.ts +1 -0
  73. package/src/config/modelProviders/siliconcloud.ts +2 -2
  74. package/src/database/repositories/aiInfra/index.ts +33 -2
  75. package/src/database/server/models/aiProvider.ts +5 -1
  76. package/src/features/Conversation/Error/OllamaBizError/SetupGuide.tsx +2 -209
  77. package/src/features/Conversation/components/MarkdownElements/LobeThinking/Render.tsx +7 -58
  78. package/src/libs/agent-runtime/ollama/index.ts +1 -1
  79. package/src/libs/agent-runtime/siliconcloud/index.ts +33 -1
  80. package/src/locales/default/components.ts +26 -0
  81. package/src/locales/default/modelProvider.ts +0 -26
  82. package/src/server/routers/lambda/aiProvider.ts +2 -10
  83. package/src/services/aiProvider/client.ts +2 -8
  84. package/src/store/chat/slices/aiChat/actions/__tests__/generateAIChat.test.ts +10 -10
  85. package/src/store/chat/slices/aiChat/actions/generateAIChat.ts +4 -3
  86. package/src/store/chat/slices/aiChat/initialState.ts +1 -1
  87. package/src/store/chat/slices/message/action.ts +4 -3
  88. package/src/store/global/initialState.ts +2 -0
  89. package/src/store/global/selectors.ts +2 -0
  90. package/src/store/serverConfig/selectors.test.ts +3 -0
  91. package/src/store/serverConfig/store.test.ts +3 -2
  92. package/src/store/serverConfig/store.ts +1 -1
  93. package/src/store/user/slices/common/action.test.ts +1 -0
  94. package/src/types/serverConfig.ts +1 -1
  95. package/src/app/(main)/settings/provider/(detail)/ollama/Checker.tsx +0 -73
@@ -176,6 +176,9 @@
176
176
  "Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
177
177
  "description": "Meta Llama 3.1 es parte de la familia de modelos de lenguaje a gran escala multilingües desarrollados por Meta, que incluye variantes preentrenadas y de ajuste fino por instrucciones con tamaños de parámetros de 8B, 70B y 405B. Este modelo de 8B ha sido optimizado para escenarios de diálogo multilingüe y ha destacado en múltiples pruebas de referencia de la industria. El entrenamiento del modelo utilizó más de 150 billones de tokens de datos públicos y empleó técnicas como ajuste fino supervisado y aprendizaje por refuerzo con retroalimentación humana para mejorar la utilidad y seguridad del modelo. Llama 3.1 admite generación de texto y generación de código, con una fecha límite de conocimiento hasta diciembre de 2023."
178
178
  },
179
+ "Qwen/QVQ-72B-Preview": {
180
+ "description": "QVQ-72B-Preview es un modelo de investigación desarrollado por el equipo de Qwen, enfocado en la capacidad de razonamiento visual, que tiene ventajas únicas en la comprensión de escenas complejas y en la resolución de problemas matemáticos relacionados con la visión."
181
+ },
179
182
  "Qwen/QwQ-32B-Preview": {
180
183
  "description": "QwQ-32B-Preview es el último modelo de investigación experimental de Qwen, enfocado en mejorar la capacidad de razonamiento de la IA. A través de la exploración de mecanismos complejos como la mezcla de lenguajes y el razonamiento recursivo, sus principales ventajas incluyen una poderosa capacidad de análisis de razonamiento, así como habilidades matemáticas y de programación. Sin embargo, también presenta problemas de cambio de idioma, ciclos de razonamiento, consideraciones de seguridad y diferencias en otras capacidades."
181
184
  },
@@ -530,12 +533,21 @@
530
533
  "databricks/dbrx-instruct": {
531
534
  "description": "DBRX Instruct ofrece capacidades de procesamiento de instrucciones de alta fiabilidad, soportando aplicaciones en múltiples industrias."
532
535
  },
536
+ "deepseek-ai/DeepSeek-R1": {
537
+ "description": "DeepSeek-R1 es un modelo de inferencia impulsado por aprendizaje reforzado (RL) que aborda los problemas de repetitividad y legibilidad en el modelo. Antes de RL, DeepSeek-R1 introdujo datos de arranque en frío, optimizando aún más el rendimiento de la inferencia. Su desempeño en tareas matemáticas, de código e inferencia es comparable al de OpenAI-o1, y ha mejorado su efectividad general a través de métodos de entrenamiento cuidadosamente diseñados."
538
+ },
533
539
  "deepseek-ai/DeepSeek-V2.5": {
534
540
  "description": "DeepSeek V2.5 combina las excelentes características de versiones anteriores, mejorando la capacidad general y de codificación."
535
541
  },
542
+ "deepseek-ai/DeepSeek-V3": {
543
+ "description": "DeepSeek-V3 es un modelo de lenguaje de expertos mixtos (MoE) con 6710 millones de parámetros, que utiliza atención latente de múltiples cabezas (MLA) y la arquitectura DeepSeekMoE, combinando una estrategia de balanceo de carga sin pérdidas auxiliares para optimizar la eficiencia de inferencia y entrenamiento. Al ser preentrenado en 14.8 billones de tokens de alta calidad y realizar ajustes supervisados y aprendizaje reforzado, DeepSeek-V3 supera en rendimiento a otros modelos de código abierto, acercándose a los modelos cerrados líderes."
544
+ },
536
545
  "deepseek-ai/deepseek-llm-67b-chat": {
537
546
  "description": "DeepSeek 67B es un modelo avanzado entrenado para diálogos de alta complejidad."
538
547
  },
548
+ "deepseek-ai/deepseek-vl2": {
549
+ "description": "DeepSeek-VL2 es un modelo de lenguaje visual de expertos mixtos (MoE) desarrollado sobre DeepSeekMoE-27B, que utiliza una arquitectura MoE de activación dispersa, logrando un rendimiento excepcional al activar solo 4.5B de parámetros. Este modelo destaca en múltiples tareas como preguntas visuales, reconocimiento óptico de caracteres, comprensión de documentos/tablas/gráficos y localización visual."
550
+ },
539
551
  "deepseek-chat": {
540
552
  "description": "Un nuevo modelo de código abierto que fusiona capacidades generales y de codificación, que no solo conserva la capacidad de diálogo general del modelo Chat original y la potente capacidad de procesamiento de código del modelo Coder, sino que también se alinea mejor con las preferencias humanas. Además, DeepSeek-V2.5 ha logrado mejoras significativas en tareas de escritura, seguimiento de instrucciones y más."
541
553
  },
@@ -548,6 +560,9 @@
548
560
  "deepseek-coder-v2:236b": {
549
561
  "description": "DeepSeek Coder V2 es un modelo de código de expertos híbrido de código abierto, que destaca en tareas de codificación, comparable a GPT4-Turbo."
550
562
  },
563
+ "deepseek-r1": {
564
+ "description": "DeepSeek-R1 es un modelo de inferencia impulsado por aprendizaje reforzado (RL) que aborda los problemas de repetitividad y legibilidad en el modelo. Antes de RL, DeepSeek-R1 introdujo datos de arranque en frío, optimizando aún más el rendimiento de la inferencia. Su desempeño en tareas matemáticas, de código e inferencia es comparable al de OpenAI-o1, y ha mejorado su efectividad general a través de métodos de entrenamiento cuidadosamente diseñados."
565
+ },
551
566
  "deepseek-reasoner": {
552
567
  "description": "Modelo de inferencia lanzado por DeepSeek. Antes de proporcionar la respuesta final, el modelo genera primero una cadena de pensamiento para mejorar la precisión de la respuesta final."
553
568
  },
@@ -86,6 +86,30 @@
86
86
  "emptyModel": "هیچ مدلی فعال نیست، لطفاً به تنظیمات بروید و آن را فعال کنید",
87
87
  "provider": "ارائه‌دهنده"
88
88
  },
89
+ "OllamaSetupGuide": {
90
+ "cors": {
91
+ "description": "به دلیل محدودیت‌های امنیتی مرورگر، شما باید تنظیمات跨域 برای Ollama را انجام دهید تا بتوانید به درستی از آن استفاده کنید.",
92
+ "linux": {
93
+ "env": "در بخش [Service]، `Environment` را اضافه کنید و متغیر محیطی OLLAMA_ORIGINS را اضافه کنید:",
94
+ "reboot": "systemd را بارگذاری مجدد کرده و Ollama را راه‌اندازی مجدد کنید",
95
+ "systemd": "برای ویرایش سرویس ollama از systemd استفاده کنید:"
96
+ },
97
+ "macos": "لطفاً برنامه «ترمینال» را باز کرده و دستورات زیر را کپی کرده و با فشار دادن Enter اجرا کنید",
98
+ "reboot": "لطفاً پس از اتمام اجرا، سرویس Ollama را راه‌اندازی مجدد کنید",
99
+ "title": "تنظیمات Ollama برای اجازه دسترسی跨域",
100
+ "windows": "در ویندوز، بر روی «کنترل پنل» کلیک کنید و به ویرایش متغیرهای محیطی سیستم بروید. برای حساب کاربری خود یک متغیر محیطی جدید به نام «OLLAMA_ORIGINS» با مقدار * ایجاد کنید و بر روی «OK/اعمال» کلیک کنید تا ذخیره شود."
101
+ },
102
+ "install": {
103
+ "description": "لطفاً اطمینان حاصل کنید که Ollama را فعال کرده‌اید. اگر Ollama را دانلود نکرده‌اید، لطفاً به وب‌سایت رسمی <1>دانلود</1> بروید.",
104
+ "docker": "اگر تمایل دارید از Docker استفاده کنید، Ollama همچنین تصویر Docker رسمی را ارائه می‌دهد که می‌توانید با استفاده از دستور زیر آن را بارگیری کنید:",
105
+ "linux": {
106
+ "command": "با استفاده از دستور زیر نصب کنید:",
107
+ "manual": "یا می‌توانید به <1>راهنمای نصب دستی لینوکس</1> مراجعه کنید و خودتان نصب کنید."
108
+ },
109
+ "title": "نصب و راه‌اندازی محلی برنامه Ollama",
110
+ "windowsTab": "ویندوز (نسخه پیش‌نمایش)"
111
+ }
112
+ },
89
113
  "Thinking": {
90
114
  "thinking": "در حال تفکر عمیق...",
91
115
  "thought": "به‌طور عمیق فکر شده است (مدت زمان {{duration}} ثانیه)",
@@ -154,30 +154,6 @@
154
154
  "desc": "باید شامل http(s):// باشد، اگر محلی به طور اضافی مشخص نشده باشد می‌توان خالی گذاشت",
155
155
  "title": "آدرس سرویس Ollama"
156
156
  },
157
- "setup": {
158
- "cors": {
159
- "description": "به دلیل محدودیت‌های امنیتی مرورگر، شما باید پیکربندی‌های Cross-Origin را برای Ollama انجام دهید تا بتوانید به درستی از آن استفاده کنید.",
160
- "linux": {
161
- "env": "در بخش [Service]، `Environment` را اضافه کنید و متغیر محیطی OLLAMA_ORIGINS را اضافه کنید:",
162
- "reboot": "systemd را مجدداً بارگذاری کرده و Ollama را راه‌اندازی مجدد کنید",
163
- "systemd": "با استفاده از systemd سرویس ollama را ویرایش کنید:"
164
- },
165
- "macos": "لطفاً برنامه «ترمینال» را باز کنید و دستور زیر را کپی و اجرا کنید",
166
- "reboot": "پس از اتمام، سرویس Ollama را مجدداً راه‌اندازی کنید",
167
- "title": "پیکربندی Ollama برای دسترسی Cross-Origin",
168
- "windows": "در ویندوز، به «کنترل پنل» بروید و متغیرهای محیطی سیستم را ویرایش کنید. برای حساب کاربری خود یک متغیر محیطی جدید به نام «OLLAMA_ORIGINS» با مقدار * ایجاد کنید و روی «OK/اعمال» کلیک کنید تا ذخیره شود"
169
- },
170
- "install": {
171
- "description": "لطفاً مطمئن شوید که Ollama را فعال کرده‌اید. اگر Ollama را دانلود نکرده‌اید، لطفاً به وب‌سایت رسمی مراجعه کرده و <1>دانلود</1> کنید",
172
- "docker": "اگر ترجیح می‌دهید از Docker استفاده کنید، Ollama یک تصویر رسمی Docker نیز ارائه می‌دهد که می‌توانید با دستور زیر آن را دریافت کنید:",
173
- "linux": {
174
- "command": "با دستور زیر نصب کنید:",
175
- "manual": "یا می‌توانید به <1>راهنمای نصب دستی لینوکس</1> مراجعه کنید"
176
- },
177
- "title": "Ollama را به صورت محلی نصب و فعال کنید",
178
- "windowsTab": "ویندوز (نسخه پیش‌نمایش)"
179
- }
180
- },
181
157
  "title": "Ollama",
182
158
  "unlock": {
183
159
  "cancel": "لغو دانلود",
@@ -176,6 +176,9 @@
176
176
  "Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
177
177
  "description": "Meta Llama 3.1 یکی از خانواده‌های مدل‌های زبانی بزرگ چند زبانه است که توسط Meta توسعه یافته و شامل واریانت‌های پیش‌آموزش شده و تنظیم دقیق دستوری با اندازه‌های پارامتر 8B، 70B و 405B است. این مدل 8B به طور خاص برای سناریوهای گفتگوی چند زبانه بهینه‌سازی شده و در چندین آزمون معیار صنعتی عملکرد عالی دارد. آموزش مدل با استفاده از بیش از 15 تریلیون توکن داده‌های عمومی انجام شده و از تکنیک‌های تنظیم دقیق نظارتی و یادگیری تقویتی با بازخورد انسانی برای افزایش مفید بودن و ایمنی مدل استفاده شده است. Llama 3.1 از تولید متن و تولید کد پشتیبانی می‌کند و تاریخ قطع دانش آن دسامبر 2023 است."
178
178
  },
179
+ "Qwen/QVQ-72B-Preview": {
180
+ "description": "QVQ-72B-Preview یک مدل تحقیقاتی است که توسط تیم Qwen توسعه یافته و بر روی توانایی‌های استنتاج بصری تمرکز دارد و در درک صحنه‌های پیچیده و حل مسائل ریاضی مرتبط با بصری دارای مزیت‌های منحصر به فردی است."
181
+ },
179
182
  "Qwen/QwQ-32B-Preview": {
180
183
  "description": "QwQ-32B-Preview جدیدترین مدل تحقیقاتی تجربی Qwen است که بر بهبود توانایی استدلال AI تمرکز دارد. با کاوش در مکانیزم‌های پیچیده‌ای مانند ترکیب زبان و استدلال بازگشتی، مزایای اصلی شامل توانایی تحلیل استدلال قوی، توانایی ریاضی و برنامه‌نویسی است. در عین حال، مشکلاتی مانند تغییر زبان، حلقه‌های استدلال، ملاحظات ایمنی و تفاوت‌های دیگر در توانایی‌ها وجود دارد."
181
184
  },
@@ -530,12 +533,21 @@
530
533
  "databricks/dbrx-instruct": {
531
534
  "description": "DBRX Instruct قابلیت پردازش دستورات با قابلیت اطمینان بالا را فراهم می‌کند و از کاربردهای چندین صنعت پشتیبانی می‌کند."
532
535
  },
536
+ "deepseek-ai/DeepSeek-R1": {
537
+ "description": "DeepSeek-R1 یک مدل استنتاجی مبتنی بر یادگیری تقویتی (RL) است که به مشکلات تکرار و خوانایی در مدل پرداخته است. قبل از RL، DeepSeek-R1 داده‌های شروع سرد را معرفی کرد و عملکرد استنتاج را بهینه‌تر کرد. این مدل در وظایف ریاضی، کدنویسی و استنتاج با OpenAI-o1 عملکرد مشابهی دارد و با استفاده از روش‌های آموزشی به دقت طراحی شده، کیفیت کلی را بهبود بخشیده است."
538
+ },
533
539
  "deepseek-ai/DeepSeek-V2.5": {
534
540
  "description": "DeepSeek V2.5 ویژگی‌های برجسته نسخه‌های قبلی را گرد هم آورده و توانایی‌های عمومی و کدنویسی را تقویت کرده است."
535
541
  },
542
+ "deepseek-ai/DeepSeek-V3": {
543
+ "description": "DeepSeek-V3 یک مدل زبانی ترکیبی از متخصصان (MoE) با 671 میلیارد پارامتر است که از توجه چندسر (MLA) و معماری DeepSeekMoE استفاده می‌کند و با ترکیب استراتژی تعادل بار بدون ضرر کمکی، کارایی استنتاج و آموزش را بهینه می‌کند. با پیش‌آموزش بر روی 14.8 تریلیون توکن با کیفیت بالا و انجام تنظیم دقیق نظارتی و یادگیری تقویتی، DeepSeek-V3 در عملکرد از سایر مدل‌های متن‌باز پیشی می‌گیرد و به مدل‌های بسته پیشرو نزدیک می‌شود."
544
+ },
536
545
  "deepseek-ai/deepseek-llm-67b-chat": {
537
546
  "description": "DeepSeek LLM Chat (67B) یک مدل نوآورانه هوش مصنوعی است که توانایی درک عمیق زبان و تعامل را فراهم می‌کند."
538
547
  },
548
+ "deepseek-ai/deepseek-vl2": {
549
+ "description": "DeepSeek-VL2 یک مدل زبانی بصری مبتنی بر DeepSeekMoE-27B است که از معماری MoE با فعال‌سازی پراکنده استفاده می‌کند و در حالی که تنها 4.5 میلیارد پارامتر فعال است، عملکرد فوق‌العاده‌ای را ارائه می‌دهد. این مدل در چندین وظیفه از جمله پرسش و پاسخ بصری، شناسایی کاراکتر نوری، درک اسناد/جدول‌ها/نمودارها و مکان‌یابی بصری عملکرد عالی دارد."
550
+ },
539
551
  "deepseek-chat": {
540
552
  "description": "مدل متن‌باز جدیدی که توانایی‌های عمومی و کدنویسی را ترکیب می‌کند. این مدل نه تنها توانایی گفتگوی عمومی مدل Chat و توانایی قدرتمند پردازش کد مدل Coder را حفظ کرده است، بلکه به ترجیحات انسانی نیز بهتر همسو شده است. علاوه بر این، DeepSeek-V2.5 در وظایف نوشتاری، پیروی از دستورات و سایر جنبه‌ها نیز بهبودهای قابل توجهی داشته است."
541
553
  },
@@ -548,6 +560,9 @@
548
560
  "deepseek-coder-v2:236b": {
549
561
  "description": "DeepSeek Coder V2 یک مدل کد نویسی ترکیبی و متن‌باز است که در وظایف کدنویسی عملکرد بسیار خوبی دارد و با GPT4-Turbo قابل مقایسه است."
550
562
  },
563
+ "deepseek-r1": {
564
+ "description": "DeepSeek-R1 یک مدل استنتاجی مبتنی بر یادگیری تقویتی (RL) است که به مشکلات تکرار و خوانایی در مدل پرداخته است. قبل از RL، DeepSeek-R1 داده‌های شروع سرد را معرفی کرد و عملکرد استنتاج را بهینه‌تر کرد. این مدل در وظایف ریاضی، کدنویسی و استنتاج با OpenAI-o1 عملکرد مشابهی دارد و با استفاده از روش‌های آموزشی به دقت طراحی شده، کیفیت کلی را بهبود بخشیده است."
565
+ },
551
566
  "deepseek-reasoner": {
552
567
  "description": "مدل استدلالی ارائه شده توسط DeepSeek. قبل از ارائه پاسخ نهایی، مدل ابتدا یک زنجیره تفکر را تولید می‌کند تا دقت پاسخ نهایی را افزایش دهد."
553
568
  },
@@ -86,6 +86,30 @@
86
86
  "emptyModel": "Aucun modèle activé. Veuillez vous rendre dans les paramètres pour l'activer.",
87
87
  "provider": "Fournisseur"
88
88
  },
89
+ "OllamaSetupGuide": {
90
+ "cors": {
91
+ "description": "En raison des restrictions de sécurité des navigateurs, vous devez configurer les paramètres CORS pour utiliser Ollama correctement.",
92
+ "linux": {
93
+ "env": "Ajoutez `Environment` sous la section [Service], et ajoutez la variable d'environnement OLLAMA_ORIGINS :",
94
+ "reboot": "Rechargez systemd et redémarrez Ollama",
95
+ "systemd": "Appelez systemd pour éditer le service ollama :"
96
+ },
97
+ "macos": "Veuillez ouvrir l'application « Terminal », collez la commande suivante et appuyez sur Entrée pour l'exécuter",
98
+ "reboot": "Veuillez redémarrer le service Ollama après l'exécution",
99
+ "title": "Configurer Ollama pour autoriser l'accès CORS",
100
+ "windows": "Sous Windows, cliquez sur « Panneau de configuration », puis accédez à l'édition des variables d'environnement système. Créez une nouvelle variable d'environnement nommée « OLLAMA_ORIGINS » pour votre compte utilisateur, avec la valeur * , puis cliquez sur « OK/Appliquer » pour enregistrer"
101
+ },
102
+ "install": {
103
+ "description": "Veuillez vous assurer que vous avez démarré Ollama. Si vous n'avez pas téléchargé Ollama, veuillez vous rendre sur le site officiel <1>pour le télécharger</1>",
104
+ "docker": "Si vous préférez utiliser Docker, Ollama propose également une image Docker officielle que vous pouvez tirer avec la commande suivante :",
105
+ "linux": {
106
+ "command": "Installez avec la commande suivante :",
107
+ "manual": "Ou, vous pouvez également consulter le <1>guide d'installation manuelle pour Linux</1> pour l'installer vous-même"
108
+ },
109
+ "title": "Installer et démarrer l'application Ollama localement",
110
+ "windowsTab": "Windows (version préliminaire)"
111
+ }
112
+ },
89
113
  "Thinking": {
90
114
  "thinking": "En pleine réflexion...",
91
115
  "thought": "Pensée approfondie (durée : {{duration}} secondes)",
@@ -154,30 +154,6 @@
154
154
  "desc": "Doit inclure http(s)://, peut rester vide si non spécifié localement",
155
155
  "title": "Adresse du proxy"
156
156
  },
157
- "setup": {
158
- "cors": {
159
- "description": "En raison des restrictions de sécurité du navigateur, vous devez configurer CORS pour Ollama afin de l'utiliser correctement.",
160
- "linux": {
161
- "env": "Ajoutez `Environment` sous la section [Service], en ajoutant la variable d'environnement OLLAMA_ORIGINS :",
162
- "reboot": "Rechargez systemd et redémarrez Ollama",
163
- "systemd": "Appelez systemd pour éditer le service ollama :"
164
- },
165
- "macos": "Veuillez ouvrir l'application « Terminal » et coller la commande suivante, puis appuyez sur Entrée pour l'exécuter.",
166
- "reboot": "Veuillez redémarrer le service Ollama après l'exécution.",
167
- "title": "Configurer Ollama pour autoriser l'accès CORS",
168
- "windows": "Sous Windows, cliquez sur « Panneau de configuration », puis accédez à l'édition des variables d'environnement système. Créez une nouvelle variable d'environnement nommée « OLLAMA_ORIGINS » pour votre compte utilisateur, avec la valeur *, puis cliquez sur « OK/Appliquer » pour enregistrer."
169
- },
170
- "install": {
171
- "description": "Veuillez vous assurer que vous avez démarré Ollama. Si vous n'avez pas téléchargé Ollama, veuillez vous rendre sur le site officiel <1>pour le télécharger</1>.",
172
- "docker": "Si vous préférez utiliser Docker, Ollama propose également une image Docker officielle que vous pouvez tirer avec la commande suivante :",
173
- "linux": {
174
- "command": "Installez avec la commande suivante :",
175
- "manual": "Ou, vous pouvez également consulter le <1>guide d'installation manuelle pour Linux</1> pour l'installer vous-même."
176
- },
177
- "title": "Installer et démarrer l'application Ollama localement",
178
- "windowsTab": "Windows (version préliminaire)"
179
- }
180
- },
181
157
  "title": "Ollama",
182
158
  "unlock": {
183
159
  "cancel": "Annuler le téléchargement",
@@ -176,6 +176,9 @@
176
176
  "Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
177
177
  "description": "Meta Llama 3.1 est une famille de modèles de langage à grande échelle multilingues développée par Meta, comprenant des variantes pré-entraînées et d'ajustement d'instructions de tailles de paramètres de 8B, 70B et 405B. Ce modèle d'ajustement d'instructions 8B est optimisé pour des scénarios de dialogue multilingue, montrant d'excellentes performances dans plusieurs tests de référence de l'industrie. L'entraînement du modèle a utilisé plus de 150 trillions de tokens de données publiques, et des techniques telles que l'ajustement supervisé et l'apprentissage par renforcement basé sur les retours humains ont été appliquées pour améliorer l'utilité et la sécurité du modèle. Llama 3.1 prend en charge la génération de texte et de code, avec une date limite de connaissances fixée à décembre 2023."
178
178
  },
179
+ "Qwen/QVQ-72B-Preview": {
180
+ "description": "QVQ-72B-Preview est un modèle de recherche développé par l'équipe Qwen, axé sur les capacités de raisonnement visuel, qui possède des avantages uniques dans la compréhension de scènes complexes et la résolution de problèmes mathématiques liés à la vision."
181
+ },
179
182
  "Qwen/QwQ-32B-Preview": {
180
183
  "description": "QwQ-32B-Preview est le dernier modèle de recherche expérimental de Qwen, axé sur l'amélioration des capacités de raisonnement de l'IA. En explorant des mécanismes complexes tels que le mélange de langues et le raisonnement récursif, ses principaux avantages incluent de puissantes capacités d'analyse de raisonnement, ainsi que des compétences en mathématiques et en programmation. Cependant, il existe également des problèmes de changement de langue, des cycles de raisonnement, des considérations de sécurité et des différences dans d'autres capacités."
181
184
  },
@@ -530,12 +533,21 @@
530
533
  "databricks/dbrx-instruct": {
531
534
  "description": "DBRX Instruct offre des capacités de traitement d'instructions hautement fiables, prenant en charge des applications dans divers secteurs."
532
535
  },
536
+ "deepseek-ai/DeepSeek-R1": {
537
+ "description": "DeepSeek-R1 est un modèle d'inférence alimenté par l'apprentissage par renforcement (RL), qui résout les problèmes de répétitivité et de lisibilité dans le modèle. Avant le RL, DeepSeek-R1 a introduit des données de démarrage à froid, optimisant ainsi les performances d'inférence. Il se compare à OpenAI-o1 en matière de tâches mathématiques, de code et d'inférence, et améliore l'efficacité globale grâce à des méthodes d'entraînement soigneusement conçues."
538
+ },
533
539
  "deepseek-ai/DeepSeek-V2.5": {
534
540
  "description": "DeepSeek V2.5 intègre les excellentes caractéristiques des versions précédentes, renforçant les capacités générales et de codage."
535
541
  },
542
+ "deepseek-ai/DeepSeek-V3": {
543
+ "description": "DeepSeek-V3 est un modèle de langage à experts mixtes (MoE) avec 6710 milliards de paramètres, utilisant une attention potentielle multi-tête (MLA) et l'architecture DeepSeekMoE, combinée à une stratégie d'équilibrage de charge sans perte auxiliaire, optimisant ainsi l'efficacité d'inférence et d'entraînement. En pré-entraînant sur 14,8 billions de tokens de haute qualité, suivi d'un ajustement supervisé et d'apprentissage par renforcement, DeepSeek-V3 surpasse les autres modèles open source en termes de performance, se rapprochant des modèles fermés de premier plan."
544
+ },
536
545
  "deepseek-ai/deepseek-llm-67b-chat": {
537
546
  "description": "DeepSeek 67B est un modèle avancé formé pour des dialogues de haute complexité."
538
547
  },
548
+ "deepseek-ai/deepseek-vl2": {
549
+ "description": "DeepSeek-VL2 est un modèle de langage visuel à experts mixtes (MoE) développé sur la base de DeepSeekMoE-27B, utilisant une architecture MoE à activation sparse, réalisant des performances exceptionnelles tout en n'activant que 4,5 milliards de paramètres. Ce modèle excelle dans plusieurs tâches telles que la question-réponse visuelle, la reconnaissance optique de caractères, la compréhension de documents/tableaux/graphes et le positionnement visuel."
550
+ },
539
551
  "deepseek-chat": {
540
552
  "description": "Un nouveau modèle open source qui fusionne des capacités générales et de code, conservant non seulement la capacité de dialogue général du modèle Chat d'origine et la puissante capacité de traitement de code du modèle Coder, mais s'alignant également mieux sur les préférences humaines. De plus, DeepSeek-V2.5 a réalisé des améliorations significatives dans plusieurs domaines tels que les tâches d'écriture et le suivi des instructions."
541
553
  },
@@ -548,6 +560,9 @@
548
560
  "deepseek-coder-v2:236b": {
549
561
  "description": "DeepSeek Coder V2 est un modèle de code open source de type expert mixte, performant dans les tâches de code, rivalisant avec GPT4-Turbo."
550
562
  },
563
+ "deepseek-r1": {
564
+ "description": "DeepSeek-R1 est un modèle d'inférence alimenté par l'apprentissage par renforcement (RL), qui résout les problèmes de répétitivité et de lisibilité dans le modèle. Avant le RL, DeepSeek-R1 a introduit des données de démarrage à froid, optimisant ainsi les performances d'inférence. Il se compare à OpenAI-o1 en matière de tâches mathématiques, de code et d'inférence, et améliore l'efficacité globale grâce à des méthodes d'entraînement soigneusement conçues."
565
+ },
551
566
  "deepseek-reasoner": {
552
567
  "description": "Modèle d'inférence proposé par DeepSeek. Avant de fournir la réponse finale, le modèle génère d'abord une chaîne de pensée pour améliorer l'exactitude de la réponse finale."
553
568
  },
@@ -86,6 +86,30 @@
86
86
  "emptyModel": "Nessun modello attivo. Vai alle impostazioni per attivarne uno.",
87
87
  "provider": "Provider"
88
88
  },
89
+ "OllamaSetupGuide": {
90
+ "cors": {
91
+ "description": "A causa delle restrizioni di sicurezza del browser, è necessario configurare il cross-origin per utilizzare Ollama correttamente.",
92
+ "linux": {
93
+ "env": "Aggiungi `Environment` nella sezione [Service] e aggiungi la variabile d'ambiente OLLAMA_ORIGINS:",
94
+ "reboot": "Ricarica systemd e riavvia Ollama",
95
+ "systemd": "Usa systemd per modificare il servizio ollama:"
96
+ },
97
+ "macos": "Apri l'applicazione 'Terminale', incolla il seguente comando e premi invio per eseguirlo",
98
+ "reboot": "Riavvia il servizio Ollama dopo il completamento dell'esecuzione",
99
+ "title": "Configura Ollama per consentire l'accesso cross-origin",
100
+ "windows": "Su Windows, fai clic su 'Pannello di controllo' e accedi alla modifica delle variabili d'ambiente di sistema. Crea una nuova variabile d'ambiente chiamata 'OLLAMA_ORIGINS' per il tuo account utente, con valore *, quindi fai clic su 'OK/Applica' per salvare"
101
+ },
102
+ "install": {
103
+ "description": "Assicurati di aver avviato Ollama. Se non hai scaricato Ollama, visita il sito ufficiale <1>per scaricare</1>",
104
+ "docker": "Se preferisci utilizzare Docker, Ollama offre anche un'immagine Docker ufficiale, puoi scaricarla con il seguente comando:",
105
+ "linux": {
106
+ "command": "Installa con il seguente comando:",
107
+ "manual": "In alternativa, puoi fare riferimento alla <1>guida all'installazione manuale di Linux</1> per installare manualmente"
108
+ },
109
+ "title": "Installa e avvia l'app Ollama localmente",
110
+ "windowsTab": "Windows (versione anteprima)"
111
+ }
112
+ },
89
113
  "Thinking": {
90
114
  "thinking": "Pensando profondamente...",
91
115
  "thought": "Ho riflettuto a lungo (tempo impiegato {{duration}} secondi)",
@@ -154,30 +154,6 @@
154
154
  "desc": "Deve includere http(s)://, può rimanere vuoto se non specificato localmente",
155
155
  "title": "Indirizzo del proxy dell'interfaccia"
156
156
  },
157
- "setup": {
158
- "cors": {
159
- "description": "A causa delle restrizioni di sicurezza del browser, è necessario configurare il cross-origin resource sharing (CORS) per consentire l'utilizzo di Ollama.",
160
- "linux": {
161
- "env": "Nella sezione [Service], aggiungi `Environment` e inserisci la variabile di ambiente OLLAMA_ORIGINS:",
162
- "reboot": "Dopo aver completato l'esecuzione, riavvia il servizio Ollama.",
163
- "systemd": "Per modificare il servizio ollama, chiama systemd:"
164
- },
165
- "macos": "Apri l'applicazione 'Terminale', incolla il comando seguente e premi Invio per eseguirlo",
166
- "reboot": "Riavvia il servizio Ollama una volta completata l'esecuzione",
167
- "title": "Configura Ollama per consentire l'accesso cross-origin",
168
- "windows": "Su Windows, fai clic su 'Pannello di controllo', accedi alle variabili di ambiente di sistema. Crea una nuova variabile di ambiente chiamata 'OLLAMA_ORIGINS' per il tuo account utente, con valore *, quindi fai clic su 'OK/Applica' per salvare le modifiche"
169
- },
170
- "install": {
171
- "description": "Assicurati di aver avviato Ollama. Se non l'hai ancora scaricato, visita il sito ufficiale per <1>scaricarlo</1>",
172
- "docker": "Se preferisci utilizzare Docker, Ollama fornisce anche un'immagine Docker ufficiale che puoi scaricare tramite il seguente comando:",
173
- "linux": {
174
- "command": "Per installare, utilizza il seguente comando:",
175
- "manual": "Oppure, puoi consultare la <1>Guida all'installazione manuale di Linux</1> per installare manualmente"
176
- },
177
- "title": "Installa e avvia l'applicazione Ollama localmente",
178
- "windowsTab": "Windows (Versione di anteprima)"
179
- }
180
- },
181
157
  "title": "Ollama",
182
158
  "unlock": {
183
159
  "cancel": "Annulla download",
@@ -176,6 +176,9 @@
176
176
  "Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
177
177
  "description": "Meta Llama 3.1 è una famiglia di modelli linguistici di grandi dimensioni multilingue sviluppata da Meta, che include varianti pre-addestrate e con fine-tuning per istruzioni con dimensioni di 8B, 70B e 405B. Questo modello di fine-tuning per istruzioni da 8B è ottimizzato per scenari di dialogo multilingue e ha dimostrato prestazioni eccellenti in vari benchmark di settore. L'addestramento del modello ha utilizzato oltre 150 trilioni di token di dati pubblici e ha impiegato tecniche come il fine-tuning supervisionato e l'apprendimento per rinforzo basato su feedback umano per migliorare l'utilità e la sicurezza del modello. Llama 3.1 supporta la generazione di testi e di codice, con una data di scadenza delle conoscenze fissata a dicembre 2023."
178
178
  },
179
+ "Qwen/QVQ-72B-Preview": {
180
+ "description": "QVQ-72B-Preview è un modello di ricerca sviluppato dal team Qwen, focalizzato sulle capacità di inferenza visiva, con vantaggi unici nella comprensione di scenari complessi e nella risoluzione di problemi matematici legati alla visione."
181
+ },
179
182
  "Qwen/QwQ-32B-Preview": {
180
183
  "description": "QwQ-32B-Preview è l'ultimo modello di ricerca sperimentale di Qwen, focalizzato sul miglioramento delle capacità di ragionamento dell'IA. Esplorando meccanismi complessi come la mescolanza linguistica e il ragionamento ricorsivo, i principali vantaggi includono potenti capacità di analisi del ragionamento, abilità matematiche e di programmazione. Tuttavia, ci sono anche problemi di cambio linguistico, cicli di ragionamento, considerazioni di sicurezza e differenze in altre capacità."
181
184
  },
@@ -530,12 +533,21 @@
530
533
  "databricks/dbrx-instruct": {
531
534
  "description": "DBRX Instruct offre capacità di elaborazione di istruzioni altamente affidabili, supportando applicazioni in vari settori."
532
535
  },
536
+ "deepseek-ai/DeepSeek-R1": {
537
+ "description": "DeepSeek-R1 è un modello di inferenza guidato da apprendimento rinforzato (RL) che affronta i problemi di ripetitività e leggibilità nel modello. Prima dell'RL, DeepSeek-R1 ha introdotto dati di cold start, ottimizzando ulteriormente le prestazioni di inferenza. Si comporta in modo comparabile a OpenAI-o1 in compiti matematici, di codifica e di inferenza, e migliora l'efficacia complessiva attraverso metodi di addestramento accuratamente progettati."
538
+ },
533
539
  "deepseek-ai/DeepSeek-V2.5": {
534
540
  "description": "DeepSeek V2.5 combina le eccellenti caratteristiche delle versioni precedenti, migliorando le capacità generali e di codifica."
535
541
  },
542
+ "deepseek-ai/DeepSeek-V3": {
543
+ "description": "DeepSeek-V3 è un modello linguistico a esperti misti (MoE) con 6710 miliardi di parametri, che utilizza attenzione latente multi-testa (MLA) e architettura DeepSeekMoE, combinando strategie di bilanciamento del carico senza perdite ausiliarie per ottimizzare l'efficienza di inferenza e addestramento. Pre-addestrato su 14,8 trilioni di token di alta qualità e successivamente affinato supervisionato e tramite apprendimento rinforzato, DeepSeek-V3 supera le prestazioni di altri modelli open source, avvicinandosi ai modelli closed source leader."
544
+ },
536
545
  "deepseek-ai/deepseek-llm-67b-chat": {
537
546
  "description": "DeepSeek 67B è un modello avanzato addestrato per dialoghi ad alta complessità."
538
547
  },
548
+ "deepseek-ai/deepseek-vl2": {
549
+ "description": "DeepSeek-VL2 è un modello linguistico visivo a esperti misti (MoE) sviluppato sulla base di DeepSeekMoE-27B, che utilizza un'architettura MoE con attivazione sparsa, raggiungendo prestazioni eccezionali attivando solo 4,5 miliardi di parametri. Questo modello eccelle in vari compiti, tra cui domande visive, riconoscimento ottico dei caratteri, comprensione di documenti/tabelle/grafici e localizzazione visiva."
550
+ },
539
551
  "deepseek-chat": {
540
552
  "description": "Un nuovo modello open source che integra capacità generali e di codifica, mantenendo non solo le capacità conversazionali generali del modello Chat originale, ma anche la potente capacità di elaborazione del codice del modello Coder, allineandosi meglio alle preferenze umane. Inoltre, DeepSeek-V2.5 ha ottenuto notevoli miglioramenti in vari aspetti, come i compiti di scrittura e il rispetto delle istruzioni."
541
553
  },
@@ -548,6 +560,9 @@
548
560
  "deepseek-coder-v2:236b": {
549
561
  "description": "DeepSeek Coder V2 è un modello di codice open source di esperti misti, eccelle nei compiti di codice, paragonabile a GPT4-Turbo."
550
562
  },
563
+ "deepseek-r1": {
564
+ "description": "DeepSeek-R1 è un modello di inferenza guidato da apprendimento rinforzato (RL) che affronta i problemi di ripetitività e leggibilità nel modello. Prima dell'RL, DeepSeek-R1 ha introdotto dati di cold start, ottimizzando ulteriormente le prestazioni di inferenza. Si comporta in modo comparabile a OpenAI-o1 in compiti matematici, di codifica e di inferenza, e migliora l'efficacia complessiva attraverso metodi di addestramento accuratamente progettati."
565
+ },
551
566
  "deepseek-reasoner": {
552
567
  "description": "Modello di ragionamento lanciato da DeepSeek. Prima di fornire la risposta finale, il modello genera una catena di pensiero per migliorare l'accuratezza della risposta finale."
553
568
  },
@@ -86,6 +86,30 @@
86
86
  "emptyModel": "有効なモデルがありません。設定に移動して有効にしてください。",
87
87
  "provider": "プロバイダー"
88
88
  },
89
+ "OllamaSetupGuide": {
90
+ "cors": {
91
+ "description": "ブラウザのセキュリティ制限により、Ollamaを正常に使用するにはクロスオリジン設定が必要です。",
92
+ "linux": {
93
+ "env": "[Service] セクションに `Environment` を追加し、OLLAMA_ORIGINS 環境変数を設定します:",
94
+ "reboot": "systemdをリロードし、Ollamaを再起動します",
95
+ "systemd": "systemdを呼び出してollamaサービスを編集します:"
96
+ },
97
+ "macos": "「ターミナル」アプリを開き、以下のコマンドを貼り付けてEnterを押して実行します",
98
+ "reboot": "実行が完了したらOllamaサービスを再起動してください",
99
+ "title": "Ollamaのクロスオリジンアクセスを許可する設定",
100
+ "windows": "Windowsでは、「コントロールパネル」をクリックし、システム環境変数を編集します。ユーザーアカウント用に「OLLAMA_ORIGINS」という名前の環境変数を新規作成し、値を * に設定して「OK/適用」をクリックして保存します"
101
+ },
102
+ "install": {
103
+ "description": "Ollamaが起動していることを確認してください。まだOllamaをダウンロードしていない場合は、公式サイト<1>からダウンロード</1>してください。",
104
+ "docker": "Dockerを使用することを好む場合、Ollamaは公式のDockerイメージも提供しています。以下のコマンドでプルできます:",
105
+ "linux": {
106
+ "command": "以下のコマンドでインストールします:",
107
+ "manual": "または、<1>Linux手動インストールガイド</1>を参照して自分でインストールすることもできます。"
108
+ },
109
+ "title": "ローカルにOllamaアプリをインストールして起動する",
110
+ "windowsTab": "Windows(プレビュー版)"
111
+ }
112
+ },
89
113
  "Thinking": {
90
114
  "thinking": "深く考えています...",
91
115
  "thought": "深く考えました(所要時間 {{duration}} 秒)",
@@ -154,30 +154,6 @@
154
154
  "desc": "http(s)://を含める必要があります。ローカルで特に指定がない場合は空白のままで構いません",
155
155
  "title": "プロキシインターフェースアドレス"
156
156
  },
157
- "setup": {
158
- "cors": {
159
- "description": "ブラウザのセキュリティ制限により、Ollama を正常に使用するにはクロスオリジンリクエストを許可する必要があります。",
160
- "linux": {
161
- "env": "[Service] セクションに `Environment` を追加し、OLLAMA_ORIGINS 環境変数を設定してください:",
162
- "reboot": "systemd を再読み込みして Ollama を再起動します。",
163
- "systemd": "systemd を呼び出して ollama サービスを編集します:"
164
- },
165
- "macos": "「ターミナル」アプリを開き、以下のコマンドを貼り付けて実行し、Enter キーを押してください",
166
- "reboot": "Ollama サービスを再起動するには、実行後に再起動してください",
167
- "title": "Ollama の CORS アクセスを許可する設定",
168
- "windows": "Windows 上では、「コントロールパネル」をクリックしてシステム環境変数を編集します。ユーザーアカウントに「OLLAMA_ORIGINS」という名前の環境変数を作成し、値を * に設定し、「OK/適用」をクリックして保存します"
169
- },
170
- "install": {
171
- "description": "Ollamaを有効にしていることを確認してください。Ollamaをまだダウンロードしていない場合は、公式サイト<1>からダウンロード</1>してください。",
172
- "docker": "もしDockerを使用することを好む場合、Ollamaは公式Dockerイメージも提供しています。以下のコマンドを使用して取得できます:",
173
- "linux": {
174
- "command": "以下のコマンドを使用してインストール:",
175
- "manual": "または、<1>Linuxマニュアルインストールガイド</1>を参照して手動でインストールすることもできます"
176
- },
177
- "title": "ローカルでOllamaアプリをインストールして起動する",
178
- "windowsTab": "Windows(プレビュー版)"
179
- }
180
- },
181
157
  "title": "Ollama",
182
158
  "unlock": {
183
159
  "cancel": "ダウンロードをキャンセル",
@@ -176,6 +176,9 @@
176
176
  "Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
177
177
  "description": "Meta Llama 3.1はMetaが開発した多言語大規模言語モデルファミリーで、8B、70B、405Bの3つのパラメータ規模の事前訓練および指示微調整バリアントを含みます。この8B指示微調整モデルは多言語対話シーンに最適化されており、複数の業界ベンチマークテストで優れたパフォーマンスを示しています。モデルの訓練には150兆トークン以上の公開データが使用され、監視微調整や人間のフィードバック強化学習などの技術が採用され、モデルの有用性と安全性が向上しています。Llama 3.1はテキスト生成とコード生成をサポートし、知識のカットオフ日は2023年12月です。"
178
178
  },
179
+ "Qwen/QVQ-72B-Preview": {
180
+ "description": "QVQ-72B-Previewは、Qwenチームによって開発された視覚推論能力に特化した研究モデルであり、複雑なシーン理解と視覚関連の数学問題を解決する上で独自の利点を持っています。"
181
+ },
179
182
  "Qwen/QwQ-32B-Preview": {
180
183
  "description": "QwQ-32B-PreviewはQwenの最新の実験的研究モデルで、AIの推論能力を向上させることに特化しています。言語の混合、再帰的推論などの複雑なメカニズムを探求することで、主な利点は強力な推論分析能力、数学およびプログラミング能力です。同時に、言語切り替えの問題、推論のループ、安全性の考慮、その他の能力の違いも存在します。"
181
184
  },
@@ -530,12 +533,21 @@
530
533
  "databricks/dbrx-instruct": {
531
534
  "description": "DBRX Instructは、高い信頼性の指示処理能力を提供し、多業界アプリケーションをサポートします。"
532
535
  },
536
+ "deepseek-ai/DeepSeek-R1": {
537
+ "description": "DeepSeek-R1は、強化学習(RL)駆動の推論モデルであり、モデル内の繰り返しと可読性の問題を解決します。RLの前に、DeepSeek-R1はコールドスタートデータを導入し、推論性能をさらに最適化しました。数学、コード、推論タスクにおいてOpenAI-o1と同等のパフォーマンスを発揮し、精巧に設計されたトレーニング手法によって全体的な効果を向上させました。"
538
+ },
533
539
  "deepseek-ai/DeepSeek-V2.5": {
534
540
  "description": "DeepSeek V2.5は以前のバージョンの優れた特徴を集約し、汎用性とコーディング能力を強化しました。"
535
541
  },
542
+ "deepseek-ai/DeepSeek-V3": {
543
+ "description": "DeepSeek-V3は、6710億パラメータを持つ混合専門家(MoE)言語モデルであり、多頭潜在注意(MLA)とDeepSeekMoEアーキテクチャを採用し、補助損失なしの負荷バランス戦略を組み合わせて、推論とトレーニングの効率を最適化します。14.8兆の高品質トークンで事前トレーニングを行い、監視微調整と強化学習を経て、DeepSeek-V3は他のオープンソースモデルを超え、先進的なクローズドソースモデルに近づきました。"
544
+ },
536
545
  "deepseek-ai/deepseek-llm-67b-chat": {
537
546
  "description": "DeepSeek 67Bは、高い複雑性の対話のために訓練された先進的なモデルです。"
538
547
  },
548
+ "deepseek-ai/deepseek-vl2": {
549
+ "description": "DeepSeek-VL2は、DeepSeekMoE-27Bに基づいて開発された混合専門家(MoE)視覚言語モデルであり、スパースアクティベーションのMoEアーキテクチャを採用し、わずか4.5Bパラメータを活性化することで卓越した性能を実現しています。このモデルは、視覚的質問応答、光学文字認識、文書/表/グラフ理解、視覚的定位などの複数のタスクで優れたパフォーマンスを発揮します。"
550
+ },
539
551
  "deepseek-chat": {
540
552
  "description": "一般的な対話能力と強力なコード処理能力を兼ね備えた新しいオープンソースモデルであり、元のChatモデルの対話能力とCoderモデルのコード処理能力を保持しつつ、人間の好みにより良く整合しています。さらに、DeepSeek-V2.5は、執筆タスクや指示に従う能力など、さまざまな面で大幅な向上を実現しました。"
541
553
  },
@@ -548,6 +560,9 @@
548
560
  "deepseek-coder-v2:236b": {
549
561
  "description": "DeepSeek Coder V2は、オープンソースの混合エキスパートコードモデルであり、コードタスクにおいて優れた性能を発揮し、GPT4-Turboに匹敵します。"
550
562
  },
563
+ "deepseek-r1": {
564
+ "description": "DeepSeek-R1は、強化学習(RL)駆動の推論モデルであり、モデル内の繰り返しと可読性の問題を解決します。RLの前に、DeepSeek-R1はコールドスタートデータを導入し、推論性能をさらに最適化しました。数学、コード、推論タスクにおいてOpenAI-o1と同等のパフォーマンスを発揮し、精巧に設計されたトレーニング手法によって全体的な効果を向上させました。"
565
+ },
551
566
  "deepseek-reasoner": {
552
567
  "description": "DeepSeekが提供する推論モデルです。最終的な回答を出力する前に、モデルは思考の連鎖を出力し、最終的な答えの正確性を高めます。"
553
568
  },
@@ -86,6 +86,30 @@
86
86
  "emptyModel": "활성화된 모델이 없습니다. 설정으로 이동하여 활성화하세요",
87
87
  "provider": "제공자"
88
88
  },
89
+ "OllamaSetupGuide": {
90
+ "cors": {
91
+ "description": "브라우저 보안 제한으로 인해 Ollama를 사용하기 위해서는 교차 출처 구성이 필요합니다.",
92
+ "linux": {
93
+ "env": "[Service] 섹션에 `Environment`를 추가하고 OLLAMA_ORIGINS 환경 변수를 추가하세요:",
94
+ "reboot": "systemd를 재로드하고 Ollama를 재시작하세요",
95
+ "systemd": "systemd를 호출하여 ollama 서비스를 편집하세요:"
96
+ },
97
+ "macos": "터미널 애플리케이션을 열고 아래 명령어를 붙여넣은 후 Enter 키를 눌러 실행하세요",
98
+ "reboot": "작업이 완료된 후 Ollama 서비스를 재시작하세요",
99
+ "title": "Ollama의 교차 출처 접근 허용 구성",
100
+ "windows": "Windows에서 '제어판'을 클릭하고 시스템 환경 변수를 편집하세요. 사용자 계정에 'OLLAMA_ORIGINS'라는 이름의 환경 변수를 새로 만들고 값으로 *를 입력한 후 '확인/적용'을 클릭하여 저장하세요."
101
+ },
102
+ "install": {
103
+ "description": "Ollama가 이미 실행 중인지 확인하세요. Ollama를 다운로드하지 않았다면 공식 웹사이트<1>에서 다운로드</1>하세요.",
104
+ "docker": "Docker를 사용하는 것을 선호하는 경우, Ollama는 공식 Docker 이미지를 제공합니다. 아래 명령어로 가져올 수 있습니다:",
105
+ "linux": {
106
+ "command": "아래 명령어로 설치하세요:",
107
+ "manual": "또는 <1>Linux 수동 설치 가이드</1>를 참조하여 직접 설치할 수 있습니다."
108
+ },
109
+ "title": "로컬에 Ollama 애플리케이션 설치 및 실행",
110
+ "windowsTab": "Windows (미리보기 버전)"
111
+ }
112
+ },
89
113
  "Thinking": {
90
114
  "thinking": "심층적으로 생각 중...",
91
115
  "thought": "심층적으로 생각했습니다 (소요 시간 {{duration}} 초)",
@@ -154,30 +154,6 @@
154
154
  "desc": "http(s)://를 포함해야 하며, 로컬에서 추가로 지정하지 않은 경우 비워둘 수 있습니다.",
155
155
  "title": "인터페이스 프록시 주소"
156
156
  },
157
- "setup": {
158
- "cors": {
159
- "description": "브라우저 보안 제한으로 인해 Ollama를 사용하려면 CORS 구성이 필요합니다.",
160
- "linux": {
161
- "env": "[Service] 섹션에 `Environment`를 추가하고 OLLAMA_ORIGINS 환경 변수를 추가하십시오:",
162
- "reboot": "systemd를 다시로드하고 Ollama를 다시 시작하십시오.",
163
- "systemd": "systemd를 호출하여 ollama 서비스를 편집하십시오: "
164
- },
165
- "macos": "「터미널」앱을 열고 다음 명령을 붙여넣고 Enter를 눌러 실행하십시오.",
166
- "reboot": "작업을 완료한 후 Ollama 서비스를 다시 시작하십시오.",
167
- "title": "CORS 액세스를 허용하도록 Ollama 구성",
168
- "windows": "Windows에서는 '제어판'을 클릭하여 시스템 환경 변수를 편집하십시오. 사용자 계정에 'OLLAMA_ORIGINS'이라는 환경 변수를 만들고 값으로 *을 입력한 후 '확인/적용'을 클릭하여 저장하십시오."
169
- },
170
- "install": {
171
- "description": "Ollama가 활성화되어 있는지 확인하고, Ollama를 다운로드하지 않았다면 공식 웹사이트<1>에서 다운로드</1>하십시오.",
172
- "docker": "Docker를 사용하는 것을 선호하는 경우 Ollama는 공식 Docker 이미지도 제공하며 다음 명령을 사용하여 가져올 수 있습니다:",
173
- "linux": {
174
- "command": "다음 명령을 사용하여 설치하십시오:",
175
- "manual": "또는 <1>Linux 수동 설치 안내</1>를 참조하여 직접 설치할 수도 있습니다."
176
- },
177
- "title": "로컬에서 Ollama 애플리케이션을 설치하고 시작하십시오",
178
- "windowsTab": "Windows (미리보기판)"
179
- }
180
- },
181
157
  "title": "Ollama",
182
158
  "unlock": {
183
159
  "cancel": "다운로드 취소",
@@ -1,4 +1,5 @@
1
1
  {
2
+ "0": "{",
2
3
  "01-ai/Yi-1.5-34B-Chat-16K": {
3
4
  "description": "Yi-1.5 34B는 풍부한 훈련 샘플을 통해 산업 응용에서 우수한 성능을 제공합니다."
4
5
  },
@@ -8,6 +9,9 @@
8
9
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
10
  "description": "Yi-1.5 9B는 16K 토큰을 지원하며, 효율적이고 매끄러운 언어 생성 능력을 제공합니다."
10
11
  },
12
+ "1": "\n",
13
+ "2": " ",
14
+ "3": " ",
11
15
  "360gpt-pro": {
12
16
  "description": "360GPT Pro는 360 AI 모델 시리즈의 중요한 구성원으로, 다양한 자연어 응용 시나리오에 맞춘 효율적인 텍스트 처리 능력을 갖추고 있으며, 긴 텍스트 이해 및 다중 회화 기능을 지원합니다."
13
17
  },
@@ -86,6 +86,30 @@
86
86
  "emptyModel": "No enabled model, please go to settings to enable.",
87
87
  "provider": "Provider"
88
88
  },
89
+ "OllamaSetupGuide": {
90
+ "cors": {
91
+ "description": "Vanwege beveiligingsbeperkingen in de browser moet je cross-origin configuratie voor Ollama instellen om het correct te kunnen gebruiken.",
92
+ "linux": {
93
+ "env": "Voeg `Environment` toe onder de [Service] sectie en voeg de OLLAMA_ORIGINS omgevingsvariabele toe:",
94
+ "reboot": "Herlaad systemd en herstart Ollama",
95
+ "systemd": "Roep systemd aan om de ollama service te bewerken:"
96
+ },
97
+ "macos": "Open de 'Terminal' applicatie, plak de volgende opdracht en druk op enter om uit te voeren",
98
+ "reboot": "Herstart de Ollama service na het voltooien van de uitvoering",
99
+ "title": "Configureer Ollama voor cross-origin toegang",
100
+ "windows": "Op Windows, klik op 'Configuratiescherm', ga naar systeemomgevingsvariabelen bewerken. Maak een nieuwe omgevingsvariabele aan met de naam 'OLLAMA_ORIGINS' voor je gebruikersaccount, met de waarde * en klik op 'OK/Toepassen' om op te slaan"
101
+ },
102
+ "install": {
103
+ "description": "Zorg ervoor dat je Ollama hebt ingeschakeld. Als je Ollama nog niet hebt gedownload, ga dan naar de officiële website <1>om te downloaden</1>",
104
+ "docker": "Als je de voorkeur geeft aan het gebruik van Docker, biedt Ollama ook een officiële Docker-image aan die je kunt ophalen met de volgende opdracht:",
105
+ "linux": {
106
+ "command": "Installeer met de volgende opdracht:",
107
+ "manual": "Of je kunt de <1>Linux handmatige installatiehandleiding</1> raadplegen voor een handmatige installatie"
108
+ },
109
+ "title": "Installeer en start de Ollama applicatie lokaal",
110
+ "windowsTab": "Windows (previewversie)"
111
+ }
112
+ },
89
113
  "Thinking": {
90
114
  "thinking": "Diep in gedachten...",
91
115
  "thought": "Diep nagedacht (tijd gebruikt {{duration}} seconden)",