@lobehub/chat 1.49.10 → 1.49.12

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (95) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/changelog/v1.json +18 -0
  3. package/locales/ar/components.json +24 -0
  4. package/locales/ar/modelProvider.json +0 -24
  5. package/locales/ar/models.json +15 -0
  6. package/locales/bg-BG/components.json +24 -0
  7. package/locales/bg-BG/modelProvider.json +0 -24
  8. package/locales/bg-BG/models.json +15 -0
  9. package/locales/de-DE/components.json +24 -0
  10. package/locales/de-DE/modelProvider.json +0 -24
  11. package/locales/de-DE/models.json +15 -0
  12. package/locales/en-US/components.json +24 -0
  13. package/locales/en-US/modelProvider.json +0 -24
  14. package/locales/en-US/models.json +15 -0
  15. package/locales/es-ES/components.json +24 -0
  16. package/locales/es-ES/modelProvider.json +0 -24
  17. package/locales/es-ES/models.json +15 -0
  18. package/locales/fa-IR/components.json +24 -0
  19. package/locales/fa-IR/modelProvider.json +0 -24
  20. package/locales/fa-IR/models.json +15 -0
  21. package/locales/fr-FR/components.json +24 -0
  22. package/locales/fr-FR/modelProvider.json +0 -24
  23. package/locales/fr-FR/models.json +15 -0
  24. package/locales/it-IT/components.json +24 -0
  25. package/locales/it-IT/modelProvider.json +0 -24
  26. package/locales/it-IT/models.json +15 -0
  27. package/locales/ja-JP/components.json +24 -0
  28. package/locales/ja-JP/modelProvider.json +0 -24
  29. package/locales/ja-JP/models.json +15 -0
  30. package/locales/ko-KR/components.json +24 -0
  31. package/locales/ko-KR/modelProvider.json +0 -24
  32. package/locales/ko-KR/models.json +4 -0
  33. package/locales/nl-NL/components.json +24 -0
  34. package/locales/nl-NL/modelProvider.json +0 -24
  35. package/locales/nl-NL/models.json +15 -0
  36. package/locales/pl-PL/components.json +24 -0
  37. package/locales/pl-PL/modelProvider.json +0 -24
  38. package/locales/pl-PL/models.json +15 -0
  39. package/locales/pt-BR/components.json +24 -0
  40. package/locales/pt-BR/modelProvider.json +0 -24
  41. package/locales/pt-BR/models.json +15 -0
  42. package/locales/ru-RU/components.json +24 -0
  43. package/locales/ru-RU/modelProvider.json +0 -24
  44. package/locales/ru-RU/models.json +15 -0
  45. package/locales/tr-TR/components.json +24 -0
  46. package/locales/tr-TR/modelProvider.json +0 -24
  47. package/locales/tr-TR/models.json +15 -0
  48. package/locales/vi-VN/components.json +24 -0
  49. package/locales/vi-VN/modelProvider.json +0 -24
  50. package/locales/vi-VN/models.json +15 -0
  51. package/locales/zh-CN/components.json +24 -0
  52. package/locales/zh-CN/modelProvider.json +0 -24
  53. package/locales/zh-CN/models.json +16 -1
  54. package/locales/zh-TW/components.json +24 -0
  55. package/locales/zh-TW/modelProvider.json +0 -24
  56. package/locales/zh-TW/models.json +15 -0
  57. package/package.json +1 -1
  58. package/src/app/(main)/chat/(workspace)/@portal/_layout/Mobile.tsx +1 -0
  59. package/src/app/(main)/chat/(workspace)/_layout/Desktop/Portal.tsx +26 -2
  60. package/src/app/(main)/settings/provider/(detail)/[id]/page.tsx +10 -3
  61. package/src/app/(main)/settings/provider/(detail)/ollama/CheckError.tsx +70 -0
  62. package/src/app/(main)/settings/provider/(detail)/ollama/Container.tsx +57 -0
  63. package/src/app/(main)/settings/provider/(detail)/ollama/OllamaModelDownloader/index.tsx +127 -0
  64. package/src/app/(main)/settings/provider/(detail)/ollama/OllamaModelDownloader/useDownloadMonitor.ts +29 -0
  65. package/src/app/(main)/settings/provider/(detail)/ollama/page.tsx +2 -7
  66. package/src/app/(main)/settings/provider/features/ProviderConfig/Checker.tsx +90 -69
  67. package/src/app/(main)/settings/provider/features/ProviderConfig/index.tsx +6 -6
  68. package/src/components/FormAction/index.tsx +66 -0
  69. package/src/components/OllamaSetupGuide/index.tsx +217 -0
  70. package/src/components/Thinking/index.tsx +14 -16
  71. package/src/config/aiModels/ollama.ts +12 -19
  72. package/src/config/modelProviders/ollama.ts +1 -0
  73. package/src/config/modelProviders/siliconcloud.ts +2 -2
  74. package/src/database/repositories/aiInfra/index.ts +33 -2
  75. package/src/database/server/models/aiProvider.ts +5 -1
  76. package/src/features/Conversation/Error/OllamaBizError/SetupGuide.tsx +2 -209
  77. package/src/features/Conversation/components/MarkdownElements/LobeThinking/Render.tsx +7 -58
  78. package/src/libs/agent-runtime/ollama/index.ts +1 -1
  79. package/src/libs/agent-runtime/siliconcloud/index.ts +33 -1
  80. package/src/locales/default/components.ts +26 -0
  81. package/src/locales/default/modelProvider.ts +0 -26
  82. package/src/server/routers/lambda/aiProvider.ts +2 -10
  83. package/src/services/aiProvider/client.ts +2 -8
  84. package/src/store/chat/slices/aiChat/actions/__tests__/generateAIChat.test.ts +10 -10
  85. package/src/store/chat/slices/aiChat/actions/generateAIChat.ts +4 -3
  86. package/src/store/chat/slices/aiChat/initialState.ts +1 -1
  87. package/src/store/chat/slices/message/action.ts +4 -3
  88. package/src/store/global/initialState.ts +2 -0
  89. package/src/store/global/selectors.ts +2 -0
  90. package/src/store/serverConfig/selectors.test.ts +3 -0
  91. package/src/store/serverConfig/store.test.ts +3 -2
  92. package/src/store/serverConfig/store.ts +1 -1
  93. package/src/store/user/slices/common/action.test.ts +1 -0
  94. package/src/types/serverConfig.ts +1 -1
  95. package/src/app/(main)/settings/provider/(detail)/ollama/Checker.tsx +0 -73
package/CHANGELOG.md CHANGED
@@ -2,6 +2,56 @@
2
2
 
3
3
  # Changelog
4
4
 
5
+ ### [Version 1.49.12](https://github.com/lobehub/lobe-chat/compare/v1.49.11...v1.49.12)
6
+
7
+ <sup>Released on **2025-02-02**</sup>
8
+
9
+ #### 🐛 Bug Fixes
10
+
11
+ - **misc**: Fix can not stop generating.
12
+
13
+ <br/>
14
+
15
+ <details>
16
+ <summary><kbd>Improvements and Fixes</kbd></summary>
17
+
18
+ #### What's fixed
19
+
20
+ - **misc**: Fix can not stop generating, closes [#5671](https://github.com/lobehub/lobe-chat/issues/5671) ([ae39c35](https://github.com/lobehub/lobe-chat/commit/ae39c35))
21
+
22
+ </details>
23
+
24
+ <div align="right">
25
+
26
+ [![](https://img.shields.io/badge/-BACK_TO_TOP-151515?style=flat-square)](#readme-top)
27
+
28
+ </div>
29
+
30
+ ### [Version 1.49.11](https://github.com/lobehub/lobe-chat/compare/v1.49.10...v1.49.11)
31
+
32
+ <sup>Released on **2025-02-02**</sup>
33
+
34
+ #### 🐛 Bug Fixes
35
+
36
+ - **misc**: Fix ollama intergration checker and client fetch issue.
37
+
38
+ <br/>
39
+
40
+ <details>
41
+ <summary><kbd>Improvements and Fixes</kbd></summary>
42
+
43
+ #### What's fixed
44
+
45
+ - **misc**: Fix ollama intergration checker and client fetch issue, closes [#5665](https://github.com/lobehub/lobe-chat/issues/5665) ([cd09a07](https://github.com/lobehub/lobe-chat/commit/cd09a07))
46
+
47
+ </details>
48
+
49
+ <div align="right">
50
+
51
+ [![](https://img.shields.io/badge/-BACK_TO_TOP-151515?style=flat-square)](#readme-top)
52
+
53
+ </div>
54
+
5
55
  ### [Version 1.49.10](https://github.com/lobehub/lobe-chat/compare/v1.49.9...v1.49.10)
6
56
 
7
57
  <sup>Released on **2025-02-02**</sup>
package/changelog/v1.json CHANGED
@@ -1,4 +1,22 @@
1
1
  [
2
+ {
3
+ "children": {
4
+ "fixes": [
5
+ "Fix can not stop generating."
6
+ ]
7
+ },
8
+ "date": "2025-02-02",
9
+ "version": "1.49.12"
10
+ },
11
+ {
12
+ "children": {
13
+ "fixes": [
14
+ "Fix ollama intergration checker and client fetch issue."
15
+ ]
16
+ },
17
+ "date": "2025-02-02",
18
+ "version": "1.49.11"
19
+ },
2
20
  {
3
21
  "children": {
4
22
  "fixes": [
@@ -86,6 +86,30 @@
86
86
  "emptyModel": "لا توجد نماذج ممكن تمكينها، يرجى الانتقال إلى الإعدادات لتمكينها",
87
87
  "provider": "مزود"
88
88
  },
89
+ "OllamaSetupGuide": {
90
+ "cors": {
91
+ "description": "بسبب قيود أمان المتصفح، تحتاج إلى تكوين CORS لـ Ollama لاستخدامه بشكل صحيح.",
92
+ "linux": {
93
+ "env": "أضف `Environment` تحت قسم [Service]، وأضف متغير البيئة OLLAMA_ORIGINS:",
94
+ "reboot": "أعد تحميل systemd وأعد تشغيل Ollama",
95
+ "systemd": "استخدم systemd لتحرير خدمة ollama:"
96
+ },
97
+ "macos": "يرجى فتح تطبيق «الطرفية» ولصق الأوامر التالية ثم الضغط على Enter للتنفيذ",
98
+ "reboot": "يرجى إعادة تشغيل خدمة Ollama بعد الانتهاء من التنفيذ",
99
+ "title": "تكوين Ollama للسماح بالوصول عبر النطاقات المتعددة",
100
+ "windows": "على نظام Windows، انقر على «لوحة التحكم»، ثم انتقل إلى تحرير متغيرات البيئة للنظام. أنشئ متغير بيئة جديد باسم «OLLAMA_ORIGINS» لقائمة المستخدم الخاصة بك، وقيمته هي *، ثم انقر على «موافق/تطبيق» لحفظ التغييرات."
101
+ },
102
+ "install": {
103
+ "description": "يرجى التأكد من أنك قد قمت بتشغيل Ollama، إذا لم تقم بتنزيل Ollama، يرجى زيارة الموقع الرسمي <1>للتنزيل</1>",
104
+ "docker": "إذا كنت تفضل استخدام Docker، فإن Ollama يوفر أيضًا صورة Docker رسمية، يمكنك سحبها باستخدام الأمر التالي:",
105
+ "linux": {
106
+ "command": "قم بتثبيت باستخدام الأمر التالي:",
107
+ "manual": "أو يمكنك الرجوع إلى <1>دليل التثبيت اليدوي لنظام Linux</1> للتثبيت بنفسك."
108
+ },
109
+ "title": "تثبيت وتشغيل تطبيق Ollama محليًا",
110
+ "windowsTab": "Windows (نسخة المعاينة)"
111
+ }
112
+ },
89
113
  "Thinking": {
90
114
  "thinking": "في حالة تفكير عميق...",
91
115
  "thought": "لقد فكرت بعمق (استغرق الأمر {{duration}} ثانية)",
@@ -154,30 +154,6 @@
154
154
  "desc": "يجب أن تحتوي على http(s)://، يمكن تركها فارغة إذا لم يتم تحديدها محليًا",
155
155
  "title": "عنوان وكيل الواجهة"
156
156
  },
157
- "setup": {
158
- "cors": {
159
- "description": "بسبب قيود الأمان في المتصفح، يجب تكوين الوصول عبر المواقع المختلفة لـ Ollama لاستخدامه بشكل صحيح.",
160
- "linux": {
161
- "env": "في القسم [Service]، أضف `Environment` وأضف متغير البيئة OLLAMA_ORIGINS:",
162
- "reboot": "أعد تحميل systemd وأعد تشغيل Ollama",
163
- "systemd": "استدعاء تحرير خدمة ollama في systemd:"
164
- },
165
- "macos": "افتح تطبيق \"Terminal\" والصق الأمر التالي، ثم اضغط على Enter للتشغيل.",
166
- "reboot": "يرجى إعادة تشغيل خدمة Ollama بعد الانتهاء من التنفيذ",
167
- "title": "تكوين Ollama للسماح بالوصول عبر المواقع المختلفة",
168
- "windows": "على نظام Windows، انقر فوق \"لوحة التحكم\"، ثم ادخل إلى تحرير متغيرات البيئة النظامية. قم بإنشاء متغير بيئي بعنوان \"OLLAMA_ORIGINS\" لحساب المستخدم الخاص بك، واجعل قيمته * ثم انقر على \"موافق/تطبيق\" للحفظ."
169
- },
170
- "install": {
171
- "description": "يرجى التأكد من أنك قد قمت بتشغيل Ollama ، إذا لم تقم بتنزيل Ollama ، يرجى زيارة الموقع الرسمي <1>للتنزيل</1>",
172
- "docker": "إذا كنت تفضل استخدام Docker، يوفر Ollama أيضًا صور Docker الرسمية، يمكنك سحبها باستخدام الأمر التالي:",
173
- "linux": {
174
- "command": "قم بتثبيته باستخدام الأمر التالي:",
175
- "manual": "أو يمكنك الرجوع إلى <1>دليل تثبيت Linux يدويًا</1> للقيام بالتثبيت بنفسك."
176
- },
177
- "title": "تثبيت وتشغيل تطبيق Ollama محليًا",
178
- "windowsTab": "Windows (نسخة معاينة)"
179
- }
180
- },
181
157
  "title": "Ollama",
182
158
  "unlock": {
183
159
  "cancel": "Cancel Download",
@@ -176,6 +176,9 @@
176
176
  "Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
177
177
  "description": "Meta Llama 3.1 هو جزء من عائلة نماذج اللغة الكبيرة متعددة اللغات التي طورتها Meta، بما في ذلك متغيرات مدربة مسبقًا ومعدلة وفقًا للتعليمات بحجم 8B و70B و405B. تم تحسين هذا النموذج 8B وفقًا لمشاهدات المحادثات متعددة اللغات، وأظهر أداءً ممتازًا في العديد من اختبارات المعايير الصناعية. تم تدريب النموذج باستخدام أكثر من 15 تريليون توكن من البيانات العامة، واستخدم تقنيات مثل التعديل الخاضع للإشراف والتعلم المعزز من ردود الفعل البشرية لتحسين فائدة النموذج وأمانه. يدعم Llama 3.1 توليد النصوص وتوليد الشيفرة، مع تاريخ معرفة حتى ديسمبر 2023."
178
178
  },
179
+ "Qwen/QVQ-72B-Preview": {
180
+ "description": "QVQ-72B-Preview هو نموذج بحثي طورته فريق Qwen يركز على قدرات الاستدلال البصري، حيث يتمتع بميزة فريدة في فهم المشاهد المعقدة وحل المشكلات الرياضية المتعلقة بالرؤية."
181
+ },
179
182
  "Qwen/QwQ-32B-Preview": {
180
183
  "description": "QwQ-32B-Preview هو أحدث نموذج بحث تجريبي من Qwen، يركز على تعزيز قدرات الاستدلال للذكاء الاصطناعي. من خلال استكشاف آليات معقدة مثل خلط اللغة والاستدلال التكراري، تشمل المزايا الرئيسية القدرة القوية على التحليل الاستدلالي، والقدرات الرياضية والبرمجية. في الوقت نفسه، هناك أيضًا مشكلات في تبديل اللغة، ودورات الاستدلال، واعتبارات الأمان، واختلافات في القدرات الأخرى."
181
184
  },
@@ -530,12 +533,21 @@
530
533
  "databricks/dbrx-instruct": {
531
534
  "description": "DBRX Instruct يوفر قدرة معالجة تعليمات موثوقة، يدعم تطبيقات متعددة الصناعات."
532
535
  },
536
+ "deepseek-ai/DeepSeek-R1": {
537
+ "description": "DeepSeek-R1 هو نموذج استدلال مدفوع بالتعلم المعزز (RL) يعالج مشكلات التكرار وقابلية القراءة في النموذج. قبل استخدام RL، قدم DeepSeek-R1 بيانات بدء باردة، مما أدى إلى تحسين أداء الاستدلال. إنه يقدم أداءً مماثلاً لـ OpenAI-o1 في المهام الرياضية والبرمجية والاستدلال، وقد حسّن النتائج العامة من خلال طرق تدريب مصممة بعناية."
538
+ },
533
539
  "deepseek-ai/DeepSeek-V2.5": {
534
540
  "description": "DeepSeek V2.5 يجمع بين الميزات الممتازة للإصدارات السابقة، ويعزز القدرات العامة والترميز."
535
541
  },
542
+ "deepseek-ai/DeepSeek-V3": {
543
+ "description": "DeepSeek-V3 هو نموذج لغوي مختلط الخبراء (MoE) يحتوي على 6710 مليار معلمة، يستخدم انتباه متعدد الرؤوس (MLA) وبنية DeepSeekMoE، ويجمع بين استراتيجية توازن الحمل بدون خسارة مساعدة، مما يحسن كفاءة الاستدلال والتدريب. من خلال التدريب المسبق على 14.8 تريليون توكن عالي الجودة، وإجراء تعديلات إشرافية وتعلم معزز، يتفوق DeepSeek-V3 في الأداء على نماذج المصدر المفتوح الأخرى، ويقترب من النماذج المغلقة الرائدة."
544
+ },
536
545
  "deepseek-ai/deepseek-llm-67b-chat": {
537
546
  "description": "DeepSeek 67B هو نموذج متقدم تم تدريبه للحوار المعقد."
538
547
  },
548
+ "deepseek-ai/deepseek-vl2": {
549
+ "description": "DeepSeek-VL2 هو نموذج لغوي بصري مختلط الخبراء (MoE) تم تطويره بناءً على DeepSeekMoE-27B، يستخدم بنية MoE ذات تفعيل نادر، محققًا أداءً ممتازًا مع تفعيل 4.5 مليار معلمة فقط. يقدم هذا النموذج أداءً ممتازًا في مهام مثل الأسئلة البصرية، التعرف الضوئي على الأحرف، فهم الوثائق/الجداول/الرسوم البيانية، وتحديد المواقع البصرية."
550
+ },
539
551
  "deepseek-chat": {
540
552
  "description": "نموذج مفتوح المصدر الجديد الذي يجمع بين القدرات العامة وقدرات البرمجة، لا يحتفظ فقط بالقدرات الحوارية العامة لنموذج الدردشة الأصلي وقدرات معالجة الشيفرة القوية لنموذج Coder، بل يتماشى أيضًا بشكل أفضل مع تفضيلات البشر. بالإضافة إلى ذلك، حقق DeepSeek-V2.5 تحسينات كبيرة في مهام الكتابة، واتباع التعليمات، وغيرها من المجالات."
541
553
  },
@@ -548,6 +560,9 @@
548
560
  "deepseek-coder-v2:236b": {
549
561
  "description": "DeepSeek Coder V2 هو نموذج شيفرة مفتوح المصدر من نوع خبير مختلط، يقدم أداءً ممتازًا في مهام الشيفرة، ويضاهي GPT4-Turbo."
550
562
  },
563
+ "deepseek-r1": {
564
+ "description": "DeepSeek-R1 هو نموذج استدلال مدفوع بالتعلم المعزز (RL) يعالج مشكلات التكرار وقابلية القراءة في النموذج. قبل استخدام RL، قدم DeepSeek-R1 بيانات بدء باردة، مما أدى إلى تحسين أداء الاستدلال. إنه يقدم أداءً مماثلاً لـ OpenAI-o1 في المهام الرياضية والبرمجية والاستدلال، وقد حسّن النتائج العامة من خلال طرق تدريب مصممة بعناية."
565
+ },
551
566
  "deepseek-reasoner": {
552
567
  "description": "نموذج الاستدلال الذي أطلقته DeepSeek. قبل تقديم الإجابة النهائية، يقوم النموذج أولاً بإخراج سلسلة من المحتوى الفكري لتحسين دقة الإجابة النهائية."
553
568
  },
@@ -86,6 +86,30 @@
86
86
  "emptyModel": "Няма активирани модели, моля, посетете настройките и ги активирайте",
87
87
  "provider": "Доставчик"
88
88
  },
89
+ "OllamaSetupGuide": {
90
+ "cors": {
91
+ "description": "Поради ограниченията на сигурността на браузъра, трябва да конфигурирате крос-домейн достъп за Ollama, за да можете да го използвате нормално.",
92
+ "linux": {
93
+ "env": "Добавете `Environment` в секцията [Service] и добавете променливата на средата OLLAMA_ORIGINS:",
94
+ "reboot": "Презаредете systemd и рестартирайте Ollama",
95
+ "systemd": "Извикайте systemd, за да редактирате услугата ollama:"
96
+ },
97
+ "macos": "Моля, отворете приложението „Терминал“ и поставете следната команда, след което натиснете Enter, за да я изпълните",
98
+ "reboot": "Моля, рестартирайте услугата Ollama след завършване на изпълнението",
99
+ "title": "Конфигуриране на Ollama за разрешаване на крос-домейн достъп",
100
+ "windows": "На Windows, кликнете върху „Контролен панел“, за да редактирате системните променливи на средата. Създайте нова променлива на средата с име „OLLAMA_ORIGINS“ за вашия потребителски акаунт, със стойност * и кликнете „OK/Приложи“, за да запазите"
101
+ },
102
+ "install": {
103
+ "description": "Моля, уверете се, че сте стартирали Ollama. Ако не сте изтеглили Ollama, моля, посетете официалния сайт <1>за изтегляне</1>",
104
+ "docker": "Ако предпочитате да използвате Docker, Ollama предлага и официален Docker образ, който можете да изтеглите с следната команда:",
105
+ "linux": {
106
+ "command": "Инсталирайте с следната команда:",
107
+ "manual": "Или можете да се запознаете с <1>Ръководството за ръчна инсталация на Linux</1> и да инсталирате сами"
108
+ },
109
+ "title": "Инсталиране и стартиране на приложението Ollama локално",
110
+ "windowsTab": "Windows (предварителна версия)"
111
+ }
112
+ },
89
113
  "Thinking": {
90
114
  "thinking": "В процес на дълбочинно размисъл...",
91
115
  "thought": "Дълбоко размислих (отне ми {{duration}} секунди)",
@@ -154,30 +154,6 @@
154
154
  "desc": "Трябва да съдържа http(s)://, местният адрес може да остане празен, ако не е зададен допълнително",
155
155
  "title": "Адрес на прокси интерфейс"
156
156
  },
157
- "setup": {
158
- "cors": {
159
- "description": "Заради ограниченията за сигурност в браузъра, трябва да конфигурирате кросдомейн за Ollama, за да работи правилно.",
160
- "linux": {
161
- "env": "Добавете `Environment` в раздела [Service], като добавите променливата на средата OLLAMA_ORIGINS:",
162
- "reboot": "Презаредете systemd и рестартирайте Ollama",
163
- "systemd": "Извикайте systemd за редактиране на услугата ollama:"
164
- },
165
- "macos": "Моля, отворете приложението „Терминал“ и поставете следната команда, след което натиснете Enter",
166
- "reboot": "Моля, рестартирайте услугата Ollama след приключване на изпълнението",
167
- "title": "Конфигуриране на Ollama за позволяване на кросдомейн достъп",
168
- "windows": "На Windows кликнете върху „Контролен панел“, влезте в редактиране на системните променливи. Създайте нова променлива на средата с име „OLLAMA_ORIGINS“, стойност * и кликнете „ОК/Приложи“, за да запазите промените"
169
- },
170
- "install": {
171
- "description": "Моля, потвърдете, че сте активирали Ollama. Ако не сте го изтеглили, моля посетете <1>официалния сайт</1> на Ollama.",
172
- "docker": "Ако предпочитате да използвате Docker, Ollama предлага официален Docker образ, който можете да изтеглите с помощта на следната команда:",
173
- "linux": {
174
- "command": "Инсталирайте чрез следната команда:",
175
- "manual": "Или може да се обадите на <1>Ръководство за ръчна инсталация на Linux</1> и да инсталирате ръчно"
176
- },
177
- "title": "Инсталиране и стартиране на приложението Ollama локално",
178
- "windowsTab": "Windows (преглед)"
179
- }
180
- },
181
157
  "title": "Ollama",
182
158
  "unlock": {
183
159
  "cancel": "Отмяна на изтеглянето",
@@ -176,6 +176,9 @@
176
176
  "Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
177
177
  "description": "Meta Llama 3.1 е семейство от многоезични големи езикови модели, разработени от Meta, включващо предварително обучени и модели с фино настройване с параметри 8B, 70B и 405B. Този 8B модел с фино настройване на инструкции е оптимизиран за многоезични разговорни сценарии и показва отлични резултати в множество индустриални бенчмаркове. Моделът е обучен с над 15 трилиона токена от публични данни и използва технологии като наблюдавано фино настройване и обучение с човешка обратна връзка, за да подобри полезността и безопасността на модела. Llama 3.1 поддържа генериране на текст и генериране на код, с дата на прекратяване на знанията до декември 2023 г."
178
178
  },
179
+ "Qwen/QVQ-72B-Preview": {
180
+ "description": "QVQ-72B-Preview е изследователски модел, разработен от екипа на Qwen, който се фокусира върху визуалните способности за извеждане и притежава уникални предимства в разбирането на сложни сцени и решаването на визуално свързани математически проблеми."
181
+ },
179
182
  "Qwen/QwQ-32B-Preview": {
180
183
  "description": "QwQ-32B-Preview е най-новият експериментален изследователски модел на Qwen, който се фокусира върху подобряване на AI разсъдъчните способности. Чрез изследване на сложни механизми като езикови смеси и рекурсивно разсъждение, основните предимства включват мощни аналитични способности, математически и програмистки умения. В същото време съществуват проблеми с езиковото превключване, цикли на разсъждение, съображения за безопасност и разлики в други способности."
181
184
  },
@@ -530,12 +533,21 @@
530
533
  "databricks/dbrx-instruct": {
531
534
  "description": "DBRX Instruct предлага висока надеждност в обработката на инструкции, поддържаща приложения в множество индустрии."
532
535
  },
536
+ "deepseek-ai/DeepSeek-R1": {
537
+ "description": "DeepSeek-R1 е модел за извеждане, управляван от подсилено обучение (RL), който решава проблемите с повторяемостта и четимостта в модела. Преди RL, DeepSeek-R1 въвежда данни за студен старт, за да оптимизира допълнително производителността на извеждане. Той показва сравнима производителност с OpenAI-o1 в математически, кодови и извеждащи задачи и подобрява общите резултати чрез внимателно проектирани методи на обучение."
538
+ },
533
539
  "deepseek-ai/DeepSeek-V2.5": {
534
540
  "description": "DeepSeek V2.5 обединява отличителните характеристики на предишните версии, подобрявайки общите и кодиращите способности."
535
541
  },
542
+ "deepseek-ai/DeepSeek-V3": {
543
+ "description": "DeepSeek-V3 е езиков модел с 6710 милиарда параметри, базиран на смесени експерти (MoE), който използва многоглаво потенциално внимание (MLA) и архитектурата DeepSeekMoE, комбинирайки стратегии за баланс на натоварването без помощни загуби, за да оптимизира производителността на извеждане и обучение. Чрез предварително обучение на 14.8 трилиона висококачествени токени и последващо наблюдавано фино настройване и подсилено обучение, DeepSeek-V3 надминава производителността на други отворени модели и се приближава до водещите затворени модели."
544
+ },
536
545
  "deepseek-ai/deepseek-llm-67b-chat": {
537
546
  "description": "DeepSeek 67B е напреднал модел, обучен за диалози с висока сложност."
538
547
  },
548
+ "deepseek-ai/deepseek-vl2": {
549
+ "description": "DeepSeek-VL2 е визуален езиков модел, разработен на базата на DeepSeekMoE-27B, който използва архитектура на смесени експерти (MoE) с рядка активация, постигайки изключителна производителност с активирани само 4.5B параметри. Моделът показва отлични резултати в множество задачи, включително визуални въпроси и отговори, оптично разпознаване на символи, разбиране на документи/таблици/графики и визуална локализация."
550
+ },
539
551
  "deepseek-chat": {
540
552
  "description": "Новооткритият отворен модел, който съчетава общи и кодови способности, не само запазва общата диалогова способност на оригиналния Chat модел и мощната способност за обработка на код на Coder модела, но също така по-добре се съгласува с човешките предпочитания. Освен това, DeepSeek-V2.5 постигна значителни подобрения в писателските задачи, следването на инструкции и много други области."
541
553
  },
@@ -548,6 +560,9 @@
548
560
  "deepseek-coder-v2:236b": {
549
561
  "description": "DeepSeek Coder V2 е отворен хибриден експертен кодов модел, който се представя отлично в кодовите задачи, сравним с GPT4-Turbo."
550
562
  },
563
+ "deepseek-r1": {
564
+ "description": "DeepSeek-R1 е модел за извеждане, управляван от подсилено обучение (RL), който решава проблемите с повторяемостта и четимостта в модела. Преди RL, DeepSeek-R1 въвежда данни за студен старт, за да оптимизира допълнително производителността на извеждане. Той показва сравнима производителност с OpenAI-o1 в математически, кодови и извеждащи задачи и подобрява общите резултати чрез внимателно проектирани методи на обучение."
565
+ },
551
566
  "deepseek-reasoner": {
552
567
  "description": "Модел за извеждане, разработен от DeepSeek. Преди да предостави окончателния отговор, моделът първо извежда част от веригата на мислене, за да повиши точността на крайния отговор."
553
568
  },
@@ -86,6 +86,30 @@
86
86
  "emptyModel": "Kein aktiviertes Modell. Bitte gehen Sie zu den Einstellungen, um es zu aktivieren.",
87
87
  "provider": "Anbieter"
88
88
  },
89
+ "OllamaSetupGuide": {
90
+ "cors": {
91
+ "description": "Aufgrund von Sicherheitsbeschränkungen im Browser müssen Sie CORS für Ollama konfigurieren, um es ordnungsgemäß nutzen zu können.",
92
+ "linux": {
93
+ "env": "Fügen Sie im Abschnitt [Service] `Environment` hinzu und setzen Sie die Umgebungsvariable OLLAMA_ORIGINS:",
94
+ "reboot": "Laden Sie systemd neu und starten Sie Ollama neu",
95
+ "systemd": "Rufen Sie systemd auf, um den ollama-Dienst zu bearbeiten:"
96
+ },
97
+ "macos": "Bitte öffnen Sie die „Terminal“-Anwendung, fügen Sie die folgenden Befehle ein und drücken Sie die Eingabetaste, um sie auszuführen",
98
+ "reboot": "Bitte starten Sie den Ollama-Dienst nach Abschluss der Ausführung neu",
99
+ "title": "Konfigurieren Sie Ollama für den CORS-Zugriff",
100
+ "windows": "Klicken Sie unter Windows auf „Systemsteuerung“ und gehen Sie zu den Systemeigenschaften. Erstellen Sie eine neue Umgebungsvariable mit dem Namen „OLLAMA_ORIGINS“ für Ihr Benutzerkonto, setzen Sie den Wert auf * und klicken Sie auf „OK/Übernehmen“, um zu speichern"
101
+ },
102
+ "install": {
103
+ "description": "Bitte stellen Sie sicher, dass Sie Ollama gestartet haben. Wenn Sie Ollama nicht heruntergeladen haben, besuchen Sie die offizielle Website <1>zum Herunterladen</1>",
104
+ "docker": "Wenn Sie lieber Docker verwenden möchten, bietet Ollama auch offizielle Docker-Images an, die Sie mit dem folgenden Befehl herunterladen können:",
105
+ "linux": {
106
+ "command": "Installieren Sie es mit dem folgenden Befehl:",
107
+ "manual": "Alternativ können Sie auch die <1>Linux-Handbuchinstallation</1> zur Selbstinstallation konsultieren"
108
+ },
109
+ "title": "Ollama-Anwendung lokal installieren und starten",
110
+ "windowsTab": "Windows (Vorschau)"
111
+ }
112
+ },
89
113
  "Thinking": {
90
114
  "thinking": "Tiefes Nachdenken...",
91
115
  "thought": "Tiefgründig nachgedacht (Dauer: {{duration}} Sekunden)",
@@ -154,30 +154,6 @@
154
154
  "desc": "Muss http(s):// enthalten, kann leer gelassen werden, wenn lokal nicht zusätzlich angegeben.",
155
155
  "title": "Schnittstellen-Proxy-Adresse"
156
156
  },
157
- "setup": {
158
- "cors": {
159
- "description": "Aufgrund von Browser-Sicherheitsbeschränkungen müssen Sie die CORS-Einstellungen für Ollama konfigurieren, um es ordnungsgemäß zu verwenden.",
160
- "linux": {
161
- "env": "Fügen Sie unter [Service] `Environment` hinzu und setzen Sie die Umgebungsvariable OLLAMA_ORIGINS:",
162
- "reboot": "Systemd neu laden und Ollama neu starten",
163
- "systemd": "Rufen Sie systemd auf, um den Ollama-Dienst zu bearbeiten:"
164
- },
165
- "macos": "Öffnen Sie das Terminal und fügen Sie den folgenden Befehl ein, um fortzufahren.",
166
- "reboot": "Starten Sie den Ollama-Dienst nach Abschluss der Ausführung neu.",
167
- "title": "Konfigurieren Sie Ollama für den Zugriff über CORS",
168
- "windows": "Klicken Sie auf Windows auf 'Systemsteuerung', um die Systemumgebungsvariablen zu bearbeiten. Erstellen Sie eine Umgebungsvariable namens 'OLLAMA_ORIGINS' für Ihr Benutzerkonto mit dem Wert '*', und klicken Sie auf 'OK/Anwenden', um zu speichern."
169
- },
170
- "install": {
171
- "description": "Stelle sicher, dass du Ollama aktiviert hast. Wenn du Ollama noch nicht heruntergeladen hast, besuche die offizielle Website, um es <1>herunterzuladen</1>.",
172
- "docker": "Wenn Sie Docker bevorzugen, bietet Ollama auch offizielle Docker-Images an. Sie können sie mit dem folgenden Befehl abrufen:",
173
- "linux": {
174
- "command": "Installieren Sie mit dem folgenden Befehl:",
175
- "manual": "Alternativ können Sie die <1>Linux-Installationsanleitung</1> für die manuelle Installation verwenden."
176
- },
177
- "title": "Installieren und starten Sie die lokale Ollama-Anwendung",
178
- "windowsTab": "Windows (Vorschau)"
179
- }
180
- },
181
157
  "title": "Ollama",
182
158
  "unlock": {
183
159
  "cancel": "Cancel Download",
@@ -176,6 +176,9 @@
176
176
  "Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
177
177
  "description": "Meta Llama 3.1 ist eine Familie von mehrsprachigen großen Sprachmodellen, die von Meta entwickelt wurden und vortrainierte sowie anweisungsfeinabgestimmte Varianten mit 8B, 70B und 405B Parametern umfasst. Dieses 8B-Anweisungsfeinabgestimmte Modell wurde für mehrsprachige Dialogszenarien optimiert und zeigt in mehreren Branchen-Benchmark-Tests hervorragende Leistungen. Das Modelltraining verwendete über 150 Billionen Tokens aus öffentlichen Daten und nutzte Techniken wie überwachte Feinabstimmung und verstärkendes Lernen mit menschlichem Feedback, um die Nützlichkeit und Sicherheit des Modells zu verbessern. Llama 3.1 unterstützt Text- und Codegenerierung, mit einem Wissensstichtag von Dezember 2023."
178
178
  },
179
+ "Qwen/QVQ-72B-Preview": {
180
+ "description": "QVQ-72B-Preview ist ein forschungsorientiertes Modell, das vom Qwen-Team entwickelt wurde und sich auf visuelle Inferenzfähigkeiten konzentriert. Es hat einzigartige Vorteile beim Verständnis komplexer Szenen und der Lösung visuell verwandter mathematischer Probleme."
181
+ },
179
182
  "Qwen/QwQ-32B-Preview": {
180
183
  "description": "QwQ-32B-Preview ist das neueste experimentelle Forschungsmodell von Qwen, das sich auf die Verbesserung der KI-Inferenzfähigkeiten konzentriert. Durch die Erforschung komplexer Mechanismen wie Sprachmischung und rekursive Inferenz bietet es Hauptvorteile wie starke Analysefähigkeiten, mathematische und Programmierfähigkeiten. Gleichzeitig gibt es Herausforderungen wie Sprachwechsel, Inferenzzyklen, Sicherheitsüberlegungen und Unterschiede in anderen Fähigkeiten."
181
184
  },
@@ -530,12 +533,21 @@
530
533
  "databricks/dbrx-instruct": {
531
534
  "description": "DBRX Instruct bietet zuverlässige Anweisungsverarbeitungsfähigkeiten und unterstützt Anwendungen in verschiedenen Branchen."
532
535
  },
536
+ "deepseek-ai/DeepSeek-R1": {
537
+ "description": "DeepSeek-R1 ist ein durch verstärkendes Lernen (RL) gesteuertes Inferenzmodell, das die Probleme der Wiederholbarkeit und Lesbarkeit im Modell löst. Vor dem RL führte DeepSeek-R1 Kaltstartdaten ein, um die Inferenzleistung weiter zu optimieren. Es zeigt in mathematischen, programmierbezogenen und Inferenzaufgaben eine vergleichbare Leistung zu OpenAI-o1 und verbessert durch sorgfältig gestaltete Trainingsmethoden die Gesamteffizienz."
538
+ },
533
539
  "deepseek-ai/DeepSeek-V2.5": {
534
540
  "description": "DeepSeek V2.5 vereint die hervorragenden Merkmale früherer Versionen und verbessert die allgemeinen und kodierenden Fähigkeiten."
535
541
  },
542
+ "deepseek-ai/DeepSeek-V3": {
543
+ "description": "DeepSeek-V3 ist ein hybrides Expertenmodell (MoE) mit 6710 Milliarden Parametern, das eine Multi-Head-Latent-Attention (MLA) und die DeepSeekMoE-Architektur verwendet, kombiniert mit einer Lastenausgleichsstrategie ohne Hilfskosten, um die Inferenz- und Trainingseffizienz zu optimieren. Durch das Pre-Training auf 14,8 Billionen hochwertigen Tokens und anschließendes überwachten Feintuning und verstärkendes Lernen übertrifft DeepSeek-V3 in der Leistung andere Open-Source-Modelle und nähert sich führenden Closed-Source-Modellen."
544
+ },
536
545
  "deepseek-ai/deepseek-llm-67b-chat": {
537
546
  "description": "DeepSeek 67B ist ein fortschrittliches Modell, das für komplexe Dialoge trainiert wurde."
538
547
  },
548
+ "deepseek-ai/deepseek-vl2": {
549
+ "description": "DeepSeek-VL2 ist ein hybrides Expertenmodell (MoE) für visuelle Sprache, das auf DeepSeekMoE-27B basiert und eine spärliche Aktivierung der MoE-Architektur verwendet, um außergewöhnliche Leistungen bei der Aktivierung von nur 4,5 Milliarden Parametern zu erzielen. Dieses Modell zeigt hervorragende Leistungen in mehreren Aufgaben, darunter visuelle Fragenbeantwortung, optische Zeichenerkennung, Dokument-/Tabellen-/Diagrammverständnis und visuelle Lokalisierung."
550
+ },
539
551
  "deepseek-chat": {
540
552
  "description": "Ein neues Open-Source-Modell, das allgemeine und Codefähigkeiten kombiniert. Es bewahrt nicht nur die allgemeinen Dialogfähigkeiten des ursprünglichen Chat-Modells und die leistungsstarken Codeverarbeitungsfähigkeiten des Coder-Modells, sondern stimmt auch besser mit menschlichen Präferenzen überein. Darüber hinaus hat DeepSeek-V2.5 in mehreren Bereichen wie Schreibaufgaben und Befolgung von Anweisungen erhebliche Verbesserungen erzielt."
541
553
  },
@@ -548,6 +560,9 @@
548
560
  "deepseek-coder-v2:236b": {
549
561
  "description": "DeepSeek Coder V2 ist ein Open-Source-Mischexperten-Code-Modell, das in Codeaufgaben hervorragende Leistungen erbringt und mit GPT4-Turbo vergleichbar ist."
550
562
  },
563
+ "deepseek-r1": {
564
+ "description": "DeepSeek-R1 ist ein durch verstärkendes Lernen (RL) gesteuertes Inferenzmodell, das die Probleme der Wiederholbarkeit und Lesbarkeit im Modell löst. Vor dem RL führte DeepSeek-R1 Kaltstartdaten ein, um die Inferenzleistung weiter zu optimieren. Es zeigt in mathematischen, programmierbezogenen und Inferenzaufgaben eine vergleichbare Leistung zu OpenAI-o1 und verbessert durch sorgfältig gestaltete Trainingsmethoden die Gesamteffizienz."
565
+ },
551
566
  "deepseek-reasoner": {
552
567
  "description": "Das von DeepSeek entwickelte Inferenzmodell. Bevor das Modell die endgültige Antwort ausgibt, gibt es zunächst eine Denkprozesskette aus, um die Genauigkeit der endgültigen Antwort zu erhöhen."
553
568
  },
@@ -86,6 +86,30 @@
86
86
  "emptyModel": "No enabled model. Please go to settings to enable.",
87
87
  "provider": "Provider"
88
88
  },
89
+ "OllamaSetupGuide": {
90
+ "cors": {
91
+ "description": "Due to browser security restrictions, you need to configure cross-origin settings for Ollama to function properly.",
92
+ "linux": {
93
+ "env": "Add `Environment` under the [Service] section, and set the OLLAMA_ORIGINS environment variable:",
94
+ "reboot": "Reload systemd and restart Ollama",
95
+ "systemd": "Edit the ollama service using systemd:"
96
+ },
97
+ "macos": "Please open the 'Terminal' application, paste the following command, and press Enter to run it.",
98
+ "reboot": "Please restart the Ollama service after the execution is complete.",
99
+ "title": "Configure Ollama for Cross-Origin Access",
100
+ "windows": "On Windows, click 'Control Panel' and go to edit system environment variables. Create a new environment variable named 'OLLAMA_ORIGINS' for your user account, with the value set to *, and click 'OK/Apply' to save."
101
+ },
102
+ "install": {
103
+ "description": "Please ensure that you have started Ollama. If you haven't downloaded Ollama, please visit the official website to <1>download</1> it.",
104
+ "docker": "If you prefer to use Docker, Ollama also provides an official Docker image, which you can pull using the following command:",
105
+ "linux": {
106
+ "command": "Install using the following command:",
107
+ "manual": "Alternatively, you can refer to the <1>Linux Manual Installation Guide</1> for a manual installation."
108
+ },
109
+ "title": "Install and Start the Ollama Application Locally",
110
+ "windowsTab": "Windows (Preview)"
111
+ }
112
+ },
89
113
  "Thinking": {
90
114
  "thinking": "Deep in thought...",
91
115
  "thought": "Deeply thought (took {{duration}} seconds)",
@@ -154,30 +154,6 @@
154
154
  "desc": "Must include http(s)://; can be left blank if not specified locally.",
155
155
  "title": "Interface proxy address"
156
156
  },
157
- "setup": {
158
- "cors": {
159
- "description": "Due to browser security restrictions, you need to configure cross-origin settings for Ollama to function properly.",
160
- "linux": {
161
- "env": "Add `Environment` under [Service] section, and set the OLLAMA_ORIGINS environment variable:",
162
- "reboot": "Reload systemd and restart Ollama.",
163
- "systemd": "Invoke systemd to edit the ollama service:"
164
- },
165
- "macos": "Open the 'Terminal' application, paste the following command, and press Enter to run it.",
166
- "reboot": "Please restart the Ollama service after completion.",
167
- "title": "Configure Ollama for Cross-Origin Access",
168
- "windows": "On Windows, go to 'Control Panel' and edit system environment variables. Create a new environment variable named 'OLLAMA_ORIGINS' for your user account, set the value to '*', and click 'OK/Apply' to save."
169
- },
170
- "install": {
171
- "description": "Please make sure you have enabled Ollama. If you haven't downloaded Ollama yet, please visit the official website <1>to download</1>.",
172
- "docker": "If you prefer using Docker, Ollama also provides an official Docker image. You can pull it using the following command:",
173
- "linux": {
174
- "command": "Install using the following command:",
175
- "manual": "Alternatively, you can refer to the <1>Linux Manual Installation Guide</1> for manual installation."
176
- },
177
- "title": "Install and Start Ollama Locally",
178
- "windowsTab": "Windows (Preview)"
179
- }
180
- },
181
157
  "title": "Ollama",
182
158
  "unlock": {
183
159
  "cancel": "Cancel Download",
@@ -176,6 +176,9 @@
176
176
  "Pro/meta-llama/Meta-Llama-3.1-8B-Instruct": {
177
177
  "description": "Meta Llama 3.1 is a family of multilingual large language models developed by Meta, including pre-trained and instruction-tuned variants with parameter sizes of 8B, 70B, and 405B. This 8B instruction-tuned model is optimized for multilingual dialogue scenarios and performs excellently in multiple industry benchmark tests. The model is trained using over 150 trillion tokens of public data and employs techniques such as supervised fine-tuning and human feedback reinforcement learning to enhance the model's usefulness and safety. Llama 3.1 supports text generation and code generation, with a knowledge cutoff date of December 2023."
178
178
  },
179
+ "Qwen/QVQ-72B-Preview": {
180
+ "description": "QVQ-72B-Preview is a research-oriented model developed by the Qwen team, focusing on visual reasoning capabilities, with unique advantages in understanding complex scenes and solving visually related mathematical problems."
181
+ },
179
182
  "Qwen/QwQ-32B-Preview": {
180
183
  "description": "QwQ-32B-Preview is Qwen's latest experimental research model, focusing on enhancing AI reasoning capabilities. By exploring complex mechanisms such as language mixing and recursive reasoning, its main advantages include strong analytical reasoning, mathematical, and programming abilities. However, it also faces challenges such as language switching issues, reasoning loops, safety considerations, and differences in other capabilities."
181
184
  },
@@ -530,12 +533,21 @@
530
533
  "databricks/dbrx-instruct": {
531
534
  "description": "DBRX Instruct provides highly reliable instruction processing capabilities, supporting applications across multiple industries."
532
535
  },
536
+ "deepseek-ai/DeepSeek-R1": {
537
+ "description": "DeepSeek-R1 is a reinforcement learning (RL) driven inference model that addresses issues of repetitiveness and readability within the model. Prior to RL, DeepSeek-R1 introduced cold start data to further optimize inference performance. It performs comparably to OpenAI-o1 in mathematical, coding, and reasoning tasks, and enhances overall effectiveness through meticulously designed training methods."
538
+ },
533
539
  "deepseek-ai/DeepSeek-V2.5": {
534
540
  "description": "DeepSeek V2.5 combines the excellent features of previous versions, enhancing general and coding capabilities."
535
541
  },
542
+ "deepseek-ai/DeepSeek-V3": {
543
+ "description": "DeepSeek-V3 is a mixture of experts (MoE) language model with 671 billion parameters, utilizing multi-head latent attention (MLA) and the DeepSeekMoE architecture, combined with a load balancing strategy that does not rely on auxiliary loss, optimizing inference and training efficiency. Pre-trained on 14.8 trillion high-quality tokens and fine-tuned with supervision and reinforcement learning, DeepSeek-V3 outperforms other open-source models and approaches leading closed-source models in performance."
544
+ },
536
545
  "deepseek-ai/deepseek-llm-67b-chat": {
537
546
  "description": "DeepSeek 67B is an advanced model trained for highly complex conversations."
538
547
  },
548
+ "deepseek-ai/deepseek-vl2": {
549
+ "description": "DeepSeek-VL2 is a mixture of experts (MoE) visual language model developed based on DeepSeekMoE-27B, employing a sparsely activated MoE architecture that achieves outstanding performance while activating only 4.5 billion parameters. This model excels in various tasks, including visual question answering, optical character recognition, document/table/chart understanding, and visual localization."
550
+ },
539
551
  "deepseek-chat": {
540
552
  "description": "A new open-source model that integrates general and coding capabilities, retaining the general conversational abilities of the original Chat model and the powerful code handling capabilities of the Coder model, while better aligning with human preferences. Additionally, DeepSeek-V2.5 has achieved significant improvements in writing tasks, instruction following, and more."
541
553
  },
@@ -548,6 +560,9 @@
548
560
  "deepseek-coder-v2:236b": {
549
561
  "description": "DeepSeek Coder V2 is an open-source hybrid expert code model that performs excellently in coding tasks, comparable to GPT4-Turbo."
550
562
  },
563
+ "deepseek-r1": {
564
+ "description": "DeepSeek-R1 is a reinforcement learning (RL) driven inference model that addresses issues of repetitiveness and readability within the model. Prior to RL, DeepSeek-R1 introduced cold start data to further optimize inference performance. It performs comparably to OpenAI-o1 in mathematical, coding, and reasoning tasks, and enhances overall effectiveness through meticulously designed training methods."
565
+ },
551
566
  "deepseek-reasoner": {
552
567
  "description": "The reasoning model launched by DeepSeek. Before outputting the final answer, the model first provides a chain of thought to enhance the accuracy of the final response."
553
568
  },
@@ -86,6 +86,30 @@
86
86
  "emptyModel": "No hay modelos habilitados. Vaya a la configuración para habilitarlos.",
87
87
  "provider": "Proveedor"
88
88
  },
89
+ "OllamaSetupGuide": {
90
+ "cors": {
91
+ "description": "Debido a las restricciones de seguridad del navegador, necesitas configurar CORS para Ollama antes de poder usarlo correctamente.",
92
+ "linux": {
93
+ "env": "Agrega `Environment` en la sección [Service] y añade la variable de entorno OLLAMA_ORIGINS:",
94
+ "reboot": "Recarga systemd y reinicia Ollama",
95
+ "systemd": "Usa systemd para editar el servicio de ollama:"
96
+ },
97
+ "macos": "Abre la aplicación 'Terminal', pega el siguiente comando y presiona Enter para ejecutarlo",
98
+ "reboot": "Reinicia el servicio de Ollama después de completar la ejecución",
99
+ "title": "Configura Ollama para permitir el acceso CORS",
100
+ "windows": "En Windows, haz clic en 'Panel de control' y entra en la edición de variables de entorno del sistema. Crea una nueva variable de entorno llamada 'OLLAMA_ORIGINS' para tu cuenta de usuario, con el valor * y haz clic en 'OK/Aplicar' para guardar."
101
+ },
102
+ "install": {
103
+ "description": "Asegúrate de que has iniciado Ollama. Si no has descargado Ollama, visita el sitio web oficial <1>para descargar</1>.",
104
+ "docker": "Si prefieres usar Docker, Ollama también ofrece una imagen oficial de Docker que puedes descargar con el siguiente comando:",
105
+ "linux": {
106
+ "command": "Instala con el siguiente comando:",
107
+ "manual": "O también puedes consultar la <1>guía de instalación manual de Linux</1> para instalarlo tú mismo."
108
+ },
109
+ "title": "Instala y ejecuta la aplicación Ollama localmente",
110
+ "windowsTab": "Windows (versión preliminar)"
111
+ }
112
+ },
89
113
  "Thinking": {
90
114
  "thinking": "Pensando profundamente...",
91
115
  "thought": "He pensado profundamente (durante {{duration}} segundos)",
@@ -154,30 +154,6 @@
154
154
  "desc": "Debe incluir http(s)://, se puede dejar vacío si no se especifica localmente",
155
155
  "title": "Dirección del proxy de la interfaz"
156
156
  },
157
- "setup": {
158
- "cors": {
159
- "description": "Debido a restricciones de seguridad del navegador, es necesario configurar Ollama para permitir el acceso entre dominios.",
160
- "linux": {
161
- "env": "En la sección [Service], agrega `Environment` y añade la variable de entorno OLLAMA_ORIGINS:",
162
- "reboot": "Recarga systemd y reinicia Ollama.",
163
- "systemd": "Edita el servicio ollama llamando a systemd:"
164
- },
165
- "macos": "Abre la aplicación 'Terminal', pega y ejecuta el siguiente comando, luego presiona Enter.",
166
- "reboot": "Reinicia el servicio de Ollama una vez completada la ejecución.",
167
- "title": "Configuración para permitir el acceso entre dominios en Ollama",
168
- "windows": "En Windows, ve a 'Panel de control', edita las variables de entorno del sistema. Crea una nueva variable de entorno llamada 'OLLAMA_ORIGINS' para tu cuenta de usuario, con el valor '*', y haz clic en 'OK/Aplicar' para guardar los cambios."
169
- },
170
- "install": {
171
- "description": "Por favor, asegúrate de que has activado Ollama. Si no has descargado Ollama, por favor visita el sitio web oficial para <1>descargarlo</1>.",
172
- "docker": "Si prefieres usar Docker, Ollama también ofrece una imagen oficial en Docker. Puedes obtenerla con el siguiente comando:",
173
- "linux": {
174
- "command": "Instala con el siguiente comando:",
175
- "manual": "O también puedes consultar la <1>Guía de instalación manual en Linux</1> para instalarlo por tu cuenta."
176
- },
177
- "title": "Instalación local y activación de la aplicación Ollama",
178
- "windowsTab": "Windows (Versión de vista previa)"
179
- }
180
- },
181
157
  "title": "Ollama",
182
158
  "unlock": {
183
159
  "cancel": "Cancel Download",