@lobehub/chat 1.45.2 → 1.45.4
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/locales/ar/models.json +42 -24
- package/locales/bg-BG/models.json +42 -24
- package/locales/de-DE/models.json +42 -24
- package/locales/en-US/models.json +42 -24
- package/locales/es-ES/models.json +42 -24
- package/locales/fa-IR/models.json +42 -24
- package/locales/fr-FR/models.json +42 -24
- package/locales/it-IT/models.json +42 -24
- package/locales/ja-JP/models.json +42 -24
- package/locales/ko-KR/models.json +42 -24
- package/locales/nl-NL/models.json +42 -24
- package/locales/pl-PL/models.json +42 -24
- package/locales/pt-BR/models.json +42 -24
- package/locales/ru-RU/models.json +42 -24
- package/locales/tr-TR/models.json +42 -24
- package/locales/vi-VN/models.json +42 -24
- package/locales/zh-CN/models.json +55 -37
- package/locales/zh-TW/models.json +42 -24
- package/package.json +1 -1
- package/src/app/(main)/discover/(detail)/provider/[slug]/features/ProviderConfig.tsx +3 -2
- package/src/app/(main)/settings/provider/(detail)/github/page.tsx +4 -4
- package/src/app/(main)/settings/provider/(detail)/huggingface/page.tsx +4 -4
- package/src/database/repositories/aiInfra/index.ts +8 -5
- package/src/database/server/models/__tests__/aiModel.test.ts +1 -1
- package/src/database/server/models/aiModel.ts +14 -45
- package/src/locales/default/models.ts +2 -2
@@ -119,9 +119,6 @@
|
|
119
119
|
"OpenGVLab/InternVL2-26B": {
|
120
120
|
"description": "InternVL2 a démontré des performances exceptionnelles sur diverses tâches de langage visuel, y compris la compréhension de documents et de graphiques, la compréhension de texte de scène, l'OCR, ainsi que la résolution de problèmes scientifiques et mathématiques."
|
121
121
|
},
|
122
|
-
"OpenGVLab/InternVL2-Llama3-76B": {
|
123
|
-
"description": "InternVL2 a démontré des performances exceptionnelles sur diverses tâches de langage visuel, y compris la compréhension de documents et de graphiques, la compréhension de texte de scène, l'OCR, ainsi que la résolution de problèmes scientifiques et mathématiques."
|
124
|
-
},
|
125
122
|
"Phi-3-medium-128k-instruct": {
|
126
123
|
"description": "Même modèle Phi-3-medium, mais avec une taille de contexte plus grande pour RAG ou un prompt à quelques exemples."
|
127
124
|
},
|
@@ -215,9 +212,6 @@
|
|
215
212
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
216
213
|
"description": "Qwen2.5-Coder-7B-Instruct est la dernière version de la série de modèles de langage à grande échelle spécifique au code publiée par Alibaba Cloud. Ce modèle, basé sur Qwen2.5, a été formé avec 55 trillions de tokens, améliorant considérablement les capacités de génération, de raisonnement et de correction de code. Il renforce non seulement les capacités de codage, mais maintient également des avantages en mathématiques et en compétences générales. Le modèle fournit une base plus complète pour des applications pratiques telles que les agents de code."
|
217
214
|
},
|
218
|
-
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
219
|
-
"description": "Qwen2.5-Math se concentre sur la résolution de problèmes dans le domaine des mathématiques, fournissant des réponses professionnelles pour des questions de haute difficulté."
|
220
|
-
},
|
221
215
|
"Qwen2-72B-Instruct": {
|
222
216
|
"description": "Qwen2 est la dernière série du modèle Qwen, prenant en charge un contexte de 128k. Comparé aux meilleurs modèles open source actuels, Qwen2-72B surpasse de manière significative les modèles leaders dans des domaines tels que la compréhension du langage naturel, les connaissances, le code, les mathématiques et le multilinguisme."
|
223
217
|
},
|
@@ -290,12 +284,6 @@
|
|
290
284
|
"TeleAI/TeleMM": {
|
291
285
|
"description": "Le grand modèle multimodal TeleMM est un modèle de compréhension multimodale développé de manière autonome par China Telecom, capable de traiter des entrées multimodales telles que du texte et des images, prenant en charge des fonctionnalités telles que la compréhension d'images et l'analyse de graphiques, fournissant des services de compréhension intermodale aux utilisateurs. Le modèle peut interagir avec les utilisateurs de manière multimodale, comprendre avec précision le contenu d'entrée, répondre à des questions, assister à la création, et fournir efficacement des informations et un soutien d'inspiration multimodale. Il excelle dans des tâches multimodales telles que la perception fine et le raisonnement logique."
|
292
286
|
},
|
293
|
-
"Tencent/Hunyuan-A52B-Instruct": {
|
294
|
-
"description": "Hunyuan-Large est le plus grand modèle MoE à architecture Transformer open source de l'industrie, avec un total de 389 milliards de paramètres et 52 milliards de paramètres activés."
|
295
|
-
},
|
296
|
-
"Vendor-A/Qwen/Qwen2-7B-Instruct": {
|
297
|
-
"description": "Qwen2-72B-Instruct est un modèle de langage à grande échelle de la série Qwen2, avec une taille de paramètre de 72B. Ce modèle est basé sur l'architecture Transformer, utilisant des fonctions d'activation SwiGLU, des biais d'attention QKV et des techniques d'attention par groupe. Il est capable de traiter de grandes entrées. Ce modèle excelle dans la compréhension du langage, la génération, les capacités multilingues, le codage, les mathématiques et le raisonnement dans plusieurs tests de référence, surpassant la plupart des modèles open source et montrant une compétitivité comparable à celle des modèles propriétaires dans certaines tâches."
|
298
|
-
},
|
299
287
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
300
288
|
"description": "Qwen2.5-72B-Instruct est l'un des derniers modèles de langage à grande échelle publiés par Alibaba Cloud. Ce modèle 72B présente des capacités considérablement améliorées dans des domaines tels que le codage et les mathématiques. Le modèle offre également un support multilingue, couvrant plus de 29 langues, y compris le chinois et l'anglais. Il a montré des améliorations significatives dans le suivi des instructions, la compréhension des données structurées et la génération de sorties structurées (en particulier JSON)."
|
301
289
|
},
|
@@ -521,12 +509,15 @@
|
|
521
509
|
"command-r-plus": {
|
522
510
|
"description": "Command R+ est un modèle de langage de grande taille à haute performance, conçu pour des scénarios d'entreprise réels et des applications complexes."
|
523
511
|
},
|
512
|
+
"dall-e-2": {
|
513
|
+
"description": "Le deuxième modèle DALL·E, prenant en charge la génération d'images plus réalistes et précises, avec une résolution quatre fois supérieure à celle de la première génération."
|
514
|
+
},
|
515
|
+
"dall-e-3": {
|
516
|
+
"description": "Le dernier modèle DALL·E, publié en novembre 2023. Prend en charge la génération d'images plus réalistes et précises, avec une meilleure expressivité des détails."
|
517
|
+
},
|
524
518
|
"databricks/dbrx-instruct": {
|
525
519
|
"description": "DBRX Instruct offre des capacités de traitement d'instructions hautement fiables, prenant en charge des applications dans divers secteurs."
|
526
520
|
},
|
527
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
528
|
-
"description": "DeepSeek-V2 est un puissant modèle de langage hybride (MoE) économique. Il a été pré-entraîné sur un corpus de haute qualité de 81 trillions de tokens et a été amélioré par un ajustement supervisé (SFT) et un apprentissage par renforcement (RL). Comparé à DeepSeek 67B, DeepSeek-V2 offre de meilleures performances tout en économisant 42,5 % des coûts d'entraînement, réduisant de 93,3 % le cache KV et augmentant le débit de génération maximal de 5,76 fois. Ce modèle prend en charge une longueur de contexte de 128k et excelle dans les tests de référence standard et les évaluations de génération ouverte."
|
529
|
-
},
|
530
521
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
522
|
"description": "DeepSeek V2.5 intègre les excellentes caractéristiques des versions précédentes, renforçant les capacités générales et de codage."
|
532
523
|
},
|
@@ -704,6 +695,9 @@
|
|
704
695
|
"gpt-3.5-turbo-1106": {
|
705
696
|
"description": "GPT 3.5 Turbo, adapté à diverses tâches de génération et de compréhension de texte, pointe actuellement vers gpt-3.5-turbo-0125."
|
706
697
|
},
|
698
|
+
"gpt-3.5-turbo-16k": {
|
699
|
+
"description": "GPT 3.5 Turbo 16k, un modèle de génération de texte à haute capacité, adapté aux tâches complexes."
|
700
|
+
},
|
707
701
|
"gpt-3.5-turbo-instruct": {
|
708
702
|
"description": "GPT 3.5 Turbo, adapté à diverses tâches de génération et de compréhension de texte, pointe actuellement vers gpt-3.5-turbo-0125."
|
709
703
|
},
|
@@ -755,9 +749,24 @@
|
|
755
749
|
"gpt-4o-2024-11-20": {
|
756
750
|
"description": "ChatGPT-4o est un modèle dynamique, mis à jour en temps réel pour rester à jour avec la dernière version. Il combine une compréhension linguistique puissante et des capacités de génération, adapté aux scénarios d'application à grande échelle, y compris le service client, l'éducation et le support technique."
|
757
751
|
},
|
752
|
+
"gpt-4o-audio-preview": {
|
753
|
+
"description": "Modèle audio GPT-4o, prenant en charge les entrées et sorties audio."
|
754
|
+
},
|
758
755
|
"gpt-4o-mini": {
|
759
756
|
"description": "GPT-4o mini est le dernier modèle lancé par OpenAI après le GPT-4 Omni, prenant en charge les entrées multimodales et produisant des sorties textuelles. En tant que leur modèle compact le plus avancé, il est beaucoup moins cher que d'autres modèles de pointe récents et coûte plus de 60 % de moins que le GPT-3.5 Turbo. Il maintient une intelligence de pointe tout en offrant un rapport qualité-prix significatif. Le GPT-4o mini a obtenu un score de 82 % au test MMLU et se classe actuellement au-dessus du GPT-4 en termes de préférences de chat."
|
760
757
|
},
|
758
|
+
"gpt-4o-mini-realtime-preview": {
|
759
|
+
"description": "Version mini en temps réel de GPT-4o, prenant en charge les entrées et sorties audio et textuelles en temps réel."
|
760
|
+
},
|
761
|
+
"gpt-4o-realtime-preview": {
|
762
|
+
"description": "Version en temps réel de GPT-4o, prenant en charge les entrées et sorties audio et textuelles en temps réel."
|
763
|
+
},
|
764
|
+
"gpt-4o-realtime-preview-2024-10-01": {
|
765
|
+
"description": "Version en temps réel de GPT-4o, prenant en charge les entrées et sorties audio et textuelles en temps réel."
|
766
|
+
},
|
767
|
+
"gpt-4o-realtime-preview-2024-12-17": {
|
768
|
+
"description": "Version en temps réel de GPT-4o, prenant en charge les entrées et sorties audio et textuelles en temps réel."
|
769
|
+
},
|
761
770
|
"grok-2-1212": {
|
762
771
|
"description": "Ce modèle a été amélioré en termes de précision, de respect des instructions et de capacités multilingues."
|
763
772
|
},
|
@@ -935,6 +944,9 @@
|
|
935
944
|
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
936
945
|
"description": "LLaMA 3.2 est conçu pour traiter des tâches qui combinent des données visuelles et textuelles. Il excelle dans des tâches comme la description d'image et le questionnement visuel, comblant le fossé entre génération de langage et raisonnement visuel."
|
937
946
|
},
|
947
|
+
"meta-llama/Llama-3.3-70B-Instruct": {
|
948
|
+
"description": "Llama 3.3 est le modèle de langage open source multilingue le plus avancé de la série Llama, offrant une expérience comparable aux performances du modèle 405B à un coût très bas. Basé sur une architecture Transformer, il améliore l'utilité et la sécurité grâce à un ajustement supervisé (SFT) et un apprentissage par renforcement avec retour humain (RLHF). Sa version optimisée pour les instructions est spécialement conçue pour les dialogues multilingues, surpassant de nombreux modèles de chat open source et fermés sur plusieurs benchmarks industriels. Date limite de connaissance : décembre 2023."
|
949
|
+
},
|
938
950
|
"meta-llama/Llama-Vision-Free": {
|
939
951
|
"description": "LLaMA 3.2 est conçu pour traiter des tâches qui combinent des données visuelles et textuelles. Il excelle dans des tâches comme la description d'image et le questionnement visuel, comblant le fossé entre génération de langage et raisonnement visuel."
|
940
952
|
},
|
@@ -1091,18 +1103,12 @@
|
|
1091
1103
|
"nousresearch/hermes-2-pro-llama-3-8b": {
|
1092
1104
|
"description": "Hermes 2 Pro Llama 3 8B est une version améliorée de Nous Hermes 2, intégrant les derniers ensembles de données développés en interne."
|
1093
1105
|
},
|
1094
|
-
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
1095
|
-
"description": "Llama 3.1 Nemotron 70B est un modèle de langage de grande taille personnalisé par NVIDIA, conçu pour améliorer le degré d'aide des réponses générées par LLM aux requêtes des utilisateurs."
|
1096
|
-
},
|
1097
1106
|
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
|
1098
1107
|
"description": "Llama 3.1 Nemotron 70B est un modèle de langage à grande échelle personnalisé par NVIDIA, conçu pour améliorer l'aide fournie par les réponses générées par LLM aux requêtes des utilisateurs. Ce modèle a excellé dans des tests de référence tels que Arena Hard, AlpacaEval 2 LC et GPT-4-Turbo MT-Bench, se classant premier dans les trois tests d'alignement automatique au 1er octobre 2024. Le modèle utilise RLHF (en particulier REINFORCE), Llama-3.1-Nemotron-70B-Reward et HelpSteer2-Preference pour l'entraînement sur la base du modèle Llama-3.1-70B-Instruct."
|
1099
1108
|
},
|
1100
1109
|
"o1": {
|
1101
1110
|
"description": "Axé sur le raisonnement avancé et la résolution de problèmes complexes, y compris les tâches mathématiques et scientifiques. Idéal pour les applications nécessitant une compréhension approfondie du contexte et des flux de travail d'agent."
|
1102
1111
|
},
|
1103
|
-
"o1-2024-12-17": {
|
1104
|
-
"description": "o1 est le nouveau modèle de raisonnement d'OpenAI, prenant en charge les entrées multimodales et produisant du texte, adapté aux tâches complexes nécessitant des connaissances générales étendues. Ce modèle dispose d'un contexte de 200K et d'une date limite de connaissances en octobre 2023."
|
1105
|
-
},
|
1106
1112
|
"o1-mini": {
|
1107
1113
|
"description": "o1-mini est un modèle de raisonnement rapide et économique conçu pour les applications de programmation, de mathématiques et de sciences. Ce modèle dispose d'un contexte de 128K et d'une date limite de connaissance en octobre 2023."
|
1108
1114
|
},
|
@@ -1130,9 +1136,6 @@
|
|
1130
1136
|
"openai/gpt-4o-mini": {
|
1131
1137
|
"description": "GPT-4o mini est le dernier modèle d'OpenAI lancé après GPT-4 Omni, prenant en charge les entrées d'images et de texte et produisant du texte en sortie. En tant que leur modèle compact le plus avancé, il est beaucoup moins cher que d'autres modèles de pointe récents et coûte plus de 60 % de moins que GPT-3.5 Turbo. Il maintient une intelligence de pointe tout en offrant un rapport qualité-prix significatif. GPT-4o mini a obtenu un score de 82 % au test MMLU et se classe actuellement au-dessus de GPT-4 en termes de préférences de chat."
|
1132
1138
|
},
|
1133
|
-
"openai/o1": {
|
1134
|
-
"description": "o1 est le nouveau modèle de raisonnement d'OpenAI, prenant en charge les entrées multimodales et produisant du texte, adapté aux tâches complexes nécessitant des connaissances générales étendues. Ce modèle dispose d'un contexte de 200K et d'une date limite de connaissances en octobre 2023."
|
1135
|
-
},
|
1136
1139
|
"openai/o1-mini": {
|
1137
1140
|
"description": "o1-mini est un modèle de raisonnement rapide et économique conçu pour les applications de programmation, de mathématiques et de sciences. Ce modèle dispose d'un contexte de 128K et d'une date limite de connaissance en octobre 2023."
|
1138
1141
|
},
|
@@ -1307,15 +1310,30 @@
|
|
1307
1310
|
"taichu_llm": {
|
1308
1311
|
"description": "Le modèle de langage Taichu Zidong possède une forte capacité de compréhension linguistique ainsi que des compétences en création de texte, questions-réponses, programmation, calcul mathématique, raisonnement logique, analyse des sentiments, et résumé de texte. Il combine de manière innovante le pré-entraînement sur de grandes données avec des connaissances riches provenant de multiples sources, en perfectionnant continuellement la technologie algorithmique et en intégrant de nouvelles connaissances sur le vocabulaire, la structure, la grammaire et le sens à partir de vastes ensembles de données textuelles, offrant aux utilisateurs des informations et des services plus pratiques ainsi qu'une expérience plus intelligente."
|
1309
1312
|
},
|
1313
|
+
"text-embedding-3-large": {
|
1314
|
+
"description": "Le modèle de vectorisation le plus puissant, adapté aux tâches en anglais et non-anglais."
|
1315
|
+
},
|
1316
|
+
"text-embedding-3-small": {
|
1317
|
+
"description": "Un modèle d'Embedding de nouvelle génération, efficace et économique, adapté à la recherche de connaissances, aux applications RAG, etc."
|
1318
|
+
},
|
1310
1319
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1311
1320
|
"description": "StripedHyena Nous (7B) offre une capacité de calcul améliorée grâce à des stratégies et une architecture de modèle efficaces."
|
1312
1321
|
},
|
1322
|
+
"tts-1": {
|
1323
|
+
"description": "Le dernier modèle de synthèse vocale, optimisé pour la vitesse dans des scénarios en temps réel."
|
1324
|
+
},
|
1325
|
+
"tts-1-hd": {
|
1326
|
+
"description": "Le dernier modèle de synthèse vocale, optimisé pour la qualité."
|
1327
|
+
},
|
1313
1328
|
"upstage/SOLAR-10.7B-Instruct-v1.0": {
|
1314
1329
|
"description": "Upstage SOLAR Instruct v1 (11B) est adapté aux tâches d'instructions détaillées, offrant d'excellentes capacités de traitement du langage."
|
1315
1330
|
},
|
1316
1331
|
"us.anthropic.claude-3-5-sonnet-20241022-v2:0": {
|
1317
1332
|
"description": "Claude 3.5 Sonnet élève les normes de l'industrie, surpassant les modèles concurrents et Claude 3 Opus, avec d'excellentes performances dans une large gamme d'évaluations, tout en offrant la vitesse et le coût de nos modèles de niveau intermédiaire."
|
1318
1333
|
},
|
1334
|
+
"whisper-1": {
|
1335
|
+
"description": "Modèle de reconnaissance vocale général, prenant en charge la reconnaissance vocale multilingue, la traduction vocale et la reconnaissance de langue."
|
1336
|
+
},
|
1319
1337
|
"wizardlm2": {
|
1320
1338
|
"description": "WizardLM 2 est un modèle de langage proposé par Microsoft AI, particulièrement performant dans les domaines des dialogues complexes, du multilinguisme, du raisonnement et des assistants intelligents."
|
1321
1339
|
},
|
@@ -119,9 +119,6 @@
|
|
119
119
|
"OpenGVLab/InternVL2-26B": {
|
120
120
|
"description": "InternVL2 ha dimostrato prestazioni eccezionali in una varietà di compiti visivi linguistici, tra cui comprensione di documenti e grafici, comprensione di testo in scena, OCR, risoluzione di problemi scientifici e matematici."
|
121
121
|
},
|
122
|
-
"OpenGVLab/InternVL2-Llama3-76B": {
|
123
|
-
"description": "InternVL2 ha dimostrato prestazioni eccezionali in una varietà di compiti visivi linguistici, tra cui comprensione di documenti e grafici, comprensione di testo in scena, OCR, risoluzione di problemi scientifici e matematici."
|
124
|
-
},
|
125
122
|
"Phi-3-medium-128k-instruct": {
|
126
123
|
"description": "Stesso modello Phi-3-medium, ma con una dimensione di contesto più grande per RAG o prompting a pochi colpi."
|
127
124
|
},
|
@@ -215,9 +212,6 @@
|
|
215
212
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
216
213
|
"description": "Qwen2.5-Coder-7B-Instruct è l'ultima versione della serie di modelli linguistici di grandi dimensioni specifici per il codice rilasciata da Alibaba Cloud. Questo modello, basato su Qwen2.5, ha migliorato significativamente le capacità di generazione, ragionamento e riparazione del codice grazie all'addestramento su 55 trilioni di token. Ha potenziato non solo le capacità di codifica, ma ha anche mantenuto i vantaggi nelle abilità matematiche e generali. Il modello fornisce una base più completa per applicazioni pratiche come agenti di codice."
|
217
214
|
},
|
218
|
-
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
219
|
-
"description": "Qwen2.5-Math si concentra sulla risoluzione di problemi nel campo della matematica, fornendo risposte professionali a domande di alta difficoltà."
|
220
|
-
},
|
221
215
|
"Qwen2-72B-Instruct": {
|
222
216
|
"description": "Qwen2 è l'ultima serie del modello Qwen, supporta un contesto di 128k, e rispetto ai modelli open source attualmente migliori, Qwen2-72B supera significativamente i modelli leader attuali in comprensione del linguaggio naturale, conoscenza, codice, matematica e capacità multilingue."
|
223
217
|
},
|
@@ -290,12 +284,6 @@
|
|
290
284
|
"TeleAI/TeleMM": {
|
291
285
|
"description": "Il grande modello multimodale TeleMM è un modello di comprensione multimodale sviluppato autonomamente da China Telecom, in grado di gestire input di diverse modalità, come testo e immagini, supportando funzioni di comprensione delle immagini e analisi dei grafici, fornendo servizi di comprensione multimodale agli utenti. Il modello è in grado di interagire con gli utenti in modo multimodale, comprendere accuratamente il contenuto dell'input, rispondere a domande, assistere nella creazione e fornire in modo efficiente supporto informativo e ispirazione multimodale. Ha mostrato prestazioni eccellenti in compiti multimodali come percezione fine e ragionamento logico."
|
292
286
|
},
|
293
|
-
"Tencent/Hunyuan-A52B-Instruct": {
|
294
|
-
"description": "Hunyuan-Large è il modello MoE con architettura Transformer open source più grande del settore, con un totale di 389 miliardi di parametri e 52 miliardi di parametri attivi."
|
295
|
-
},
|
296
|
-
"Vendor-A/Qwen/Qwen2-7B-Instruct": {
|
297
|
-
"description": "Qwen2-72B-Instruct è un modello linguistico di grandi dimensioni con fine-tuning per istruzioni nella serie Qwen2, con una dimensione di 72B parametri. Questo modello si basa sull'architettura Transformer, utilizzando funzioni di attivazione SwiGLU, bias QKV di attenzione e attenzione a query di gruppo. È in grado di gestire input di grandi dimensioni. Ha dimostrato prestazioni eccellenti in comprensione linguistica, generazione, capacità multilingue, codifica, matematica e ragionamento in vari benchmark, superando la maggior parte dei modelli open source e mostrando competitività paragonabile a modelli proprietari in alcuni compiti."
|
298
|
-
},
|
299
287
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
300
288
|
"description": "Qwen2.5-72B-Instruct è uno dei più recenti modelli linguistici di grandi dimensioni rilasciati da Alibaba Cloud. Questo modello da 72B ha capacità notevolmente migliorate in codifica e matematica. Il modello offre anche supporto multilingue, coprendo oltre 29 lingue, tra cui cinese e inglese. Ha mostrato miglioramenti significativi nel seguire istruzioni, comprendere dati strutturati e generare output strutturati (soprattutto JSON)."
|
301
289
|
},
|
@@ -521,12 +509,15 @@
|
|
521
509
|
"command-r-plus": {
|
522
510
|
"description": "Command R+ è un modello di linguaggio di grandi dimensioni ad alte prestazioni, progettato per scenari aziendali reali e applicazioni complesse."
|
523
511
|
},
|
512
|
+
"dall-e-2": {
|
513
|
+
"description": "Seconda generazione del modello DALL·E, supporta la generazione di immagini più realistiche e accurate, con una risoluzione quattro volte superiore rispetto alla prima generazione."
|
514
|
+
},
|
515
|
+
"dall-e-3": {
|
516
|
+
"description": "L'ultimo modello DALL·E, rilasciato a novembre 2023. Supporta la generazione di immagini più realistiche e accurate, con una maggiore capacità di dettaglio."
|
517
|
+
},
|
524
518
|
"databricks/dbrx-instruct": {
|
525
519
|
"description": "DBRX Instruct offre capacità di elaborazione di istruzioni altamente affidabili, supportando applicazioni in vari settori."
|
526
520
|
},
|
527
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
528
|
-
"description": "DeepSeek-V2 è un potente e conveniente modello linguistico ibrido (MoE). È stato pre-addestrato su un corpus di alta qualità di 81 trilioni di token e ha ulteriormente migliorato le capacità del modello attraverso il fine-tuning supervisionato (SFT) e l'apprendimento per rinforzo (RL). Rispetto a DeepSeek 67B, DeepSeek-V2 offre prestazioni superiori, risparmiando il 42,5% dei costi di addestramento, riducendo il 93,3% della cache KV e aumentando il massimo throughput di generazione di 5,76 volte. Questo modello supporta una lunghezza di contesto di 128k e ha dimostrato prestazioni eccellenti nei benchmark standard e nelle valutazioni di generazione aperta."
|
529
|
-
},
|
530
521
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
522
|
"description": "DeepSeek V2.5 combina le eccellenti caratteristiche delle versioni precedenti, migliorando le capacità generali e di codifica."
|
532
523
|
},
|
@@ -704,6 +695,9 @@
|
|
704
695
|
"gpt-3.5-turbo-1106": {
|
705
696
|
"description": "GPT 3.5 Turbo, adatto a una varietà di compiti di generazione e comprensione del testo, attualmente punta a gpt-3.5-turbo-0125."
|
706
697
|
},
|
698
|
+
"gpt-3.5-turbo-16k": {
|
699
|
+
"description": "GPT 3.5 Turbo 16k, modello di generazione di testo ad alta capacità, adatto per compiti complessi."
|
700
|
+
},
|
707
701
|
"gpt-3.5-turbo-instruct": {
|
708
702
|
"description": "GPT 3.5 Turbo, adatto a una varietà di compiti di generazione e comprensione del testo, attualmente punta a gpt-3.5-turbo-0125."
|
709
703
|
},
|
@@ -755,9 +749,24 @@
|
|
755
749
|
"gpt-4o-2024-11-20": {
|
756
750
|
"description": "ChatGPT-4o è un modello dinamico che si aggiorna in tempo reale per mantenere sempre l'ultima versione. Combina una potente comprensione del linguaggio e capacità di generazione, rendendolo adatto a scenari di applicazione su larga scala, inclusi assistenza clienti, istruzione e supporto tecnico."
|
757
751
|
},
|
752
|
+
"gpt-4o-audio-preview": {
|
753
|
+
"description": "Modello GPT-4o Audio, supporta input e output audio."
|
754
|
+
},
|
758
755
|
"gpt-4o-mini": {
|
759
756
|
"description": "GPT-4o mini è il modello più recente lanciato da OpenAI dopo il GPT-4 Omni, supporta input visivi e testuali e produce output testuali. Come il loro modello di punta in formato ridotto, è molto più economico rispetto ad altri modelli all'avanguardia recenti e costa oltre il 60% in meno rispetto a GPT-3.5 Turbo. Mantiene un'intelligenza all'avanguardia, offrendo un rapporto qualità-prezzo significativo. GPT-4o mini ha ottenuto un punteggio dell'82% nel test MMLU e attualmente è classificato più in alto di GPT-4 per preferenze di chat."
|
760
757
|
},
|
758
|
+
"gpt-4o-mini-realtime-preview": {
|
759
|
+
"description": "Versione in tempo reale di GPT-4o-mini, supporta input e output audio e testuali in tempo reale."
|
760
|
+
},
|
761
|
+
"gpt-4o-realtime-preview": {
|
762
|
+
"description": "Versione in tempo reale di GPT-4o, supporta input e output audio e testuali in tempo reale."
|
763
|
+
},
|
764
|
+
"gpt-4o-realtime-preview-2024-10-01": {
|
765
|
+
"description": "Versione in tempo reale di GPT-4o, supporta input e output audio e testuali in tempo reale."
|
766
|
+
},
|
767
|
+
"gpt-4o-realtime-preview-2024-12-17": {
|
768
|
+
"description": "Versione in tempo reale di GPT-4o, supporta input e output audio e testuali in tempo reale."
|
769
|
+
},
|
761
770
|
"grok-2-1212": {
|
762
771
|
"description": "Questo modello ha migliorato l'accuratezza, il rispetto delle istruzioni e le capacità multilingue."
|
763
772
|
},
|
@@ -935,6 +944,9 @@
|
|
935
944
|
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
936
945
|
"description": "LLaMA 3.2 è progettato per gestire compiti che combinano dati visivi e testuali. Eccelle in compiti come la descrizione di immagini e le domande visive, colmando il divario tra generazione del linguaggio e ragionamento visivo."
|
937
946
|
},
|
947
|
+
"meta-llama/Llama-3.3-70B-Instruct": {
|
948
|
+
"description": "Llama 3.3 è il modello di linguaggio open source multilingue più avanzato della serie Llama, che offre prestazioni paragonabili a un modello da 405B a costi molto bassi. Basato su architettura Transformer, migliorato tramite fine-tuning supervisionato (SFT) e apprendimento rinforzato con feedback umano (RLHF) per aumentarne l'utilità e la sicurezza. La sua versione ottimizzata per le istruzioni è progettata per dialoghi multilingue, superando molti modelli di chat open source e chiusi in vari benchmark di settore. Data di scadenza delle conoscenze: dicembre 2023."
|
949
|
+
},
|
938
950
|
"meta-llama/Llama-Vision-Free": {
|
939
951
|
"description": "LLaMA 3.2 è progettato per gestire compiti che combinano dati visivi e testuali. Eccelle in compiti come la descrizione di immagini e le domande visive, colmando il divario tra generazione del linguaggio e ragionamento visivo."
|
940
952
|
},
|
@@ -1091,18 +1103,12 @@
|
|
1091
1103
|
"nousresearch/hermes-2-pro-llama-3-8b": {
|
1092
1104
|
"description": "Hermes 2 Pro Llama 3 8B è una versione aggiornata di Nous Hermes 2, contenente i più recenti dataset sviluppati internamente."
|
1093
1105
|
},
|
1094
|
-
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
1095
|
-
"description": "Llama 3.1 Nemotron 70B è un modello linguistico di grandi dimensioni personalizzato da NVIDIA, progettato per migliorare il grado di aiuto delle risposte generate da LLM alle domande degli utenti."
|
1096
|
-
},
|
1097
1106
|
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
|
1098
1107
|
"description": "Llama 3.1 Nemotron 70B è un modello linguistico di grandi dimensioni personalizzato da NVIDIA, progettato per migliorare l'utilità delle risposte generate dai LLM alle domande degli utenti. Questo modello ha ottenuto risultati eccellenti nei benchmark come Arena Hard, AlpacaEval 2 LC e GPT-4-Turbo MT-Bench, classificandosi al primo posto in tutti e tre i benchmark di allineamento automatico fino al 1 ottobre 2024. Il modello è stato addestrato utilizzando RLHF (in particolare REINFORCE), Llama-3.1-Nemotron-70B-Reward e HelpSteer2-Preference come suggerimenti, basandosi sul modello Llama-3.1-70B-Instruct."
|
1099
1108
|
},
|
1100
1109
|
"o1": {
|
1101
1110
|
"description": "Focalizzato su inferenze avanzate e risoluzione di problemi complessi, inclusi compiti matematici e scientifici. È particolarmente adatto per applicazioni che richiedono una comprensione profonda del contesto e flussi di lavoro agenti."
|
1102
1111
|
},
|
1103
|
-
"o1-2024-12-17": {
|
1104
|
-
"description": "o1 è il nuovo modello di inferenza di OpenAI, che supporta input testuali e visivi e produce output testuali, adatto a compiti complessi che richiedono una vasta conoscenza generale. Questo modello ha un contesto di 200K e una data di scadenza della conoscenza di ottobre 2023."
|
1105
|
-
},
|
1106
1112
|
"o1-mini": {
|
1107
1113
|
"description": "o1-mini è un modello di inferenza rapido ed economico progettato per applicazioni di programmazione, matematica e scienza. Questo modello ha un contesto di 128K e una data di cutoff della conoscenza di ottobre 2023."
|
1108
1114
|
},
|
@@ -1130,9 +1136,6 @@
|
|
1130
1136
|
"openai/gpt-4o-mini": {
|
1131
1137
|
"description": "GPT-4o mini è il modello più recente di OpenAI, lanciato dopo GPT-4 Omni, che supporta input visivi e testuali e produce output testuali. Come il loro modello di piccole dimensioni più avanzato, è molto più economico rispetto ad altri modelli all'avanguardia recenti e costa oltre il 60% in meno rispetto a GPT-3.5 Turbo. Mantiene un'intelligenza all'avanguardia, offrendo un notevole rapporto qualità-prezzo. GPT-4o mini ha ottenuto un punteggio dell'82% nel test MMLU e attualmente è classificato più in alto di GPT-4 per preferenze di chat."
|
1132
1138
|
},
|
1133
|
-
"openai/o1": {
|
1134
|
-
"description": "o1 è il nuovo modello di inferenza di OpenAI, che supporta input testuali e visivi e produce output testuali, adatto a compiti complessi che richiedono una vasta conoscenza generale. Questo modello ha un contesto di 200K e una data di scadenza della conoscenza di ottobre 2023."
|
1135
|
-
},
|
1136
1139
|
"openai/o1-mini": {
|
1137
1140
|
"description": "o1-mini è un modello di inferenza rapido ed economico progettato per applicazioni di programmazione, matematica e scienza. Questo modello ha un contesto di 128K e una data di cutoff della conoscenza di ottobre 2023."
|
1138
1141
|
},
|
@@ -1307,15 +1310,30 @@
|
|
1307
1310
|
"taichu_llm": {
|
1308
1311
|
"description": "Il modello linguistico Taichu di Zīdōng ha una straordinaria capacità di comprensione del linguaggio e abilità in creazione di testi, domande di conoscenza, programmazione, calcoli matematici, ragionamento logico, analisi del sentimento e sintesi di testi. Combina in modo innovativo il pre-addestramento su grandi dati con una ricca conoscenza multi-sorgente, affinando continuamente la tecnologia degli algoritmi e assorbendo costantemente nuove conoscenze da dati testuali massivi, migliorando continuamente le prestazioni del modello. Fornisce agli utenti informazioni e servizi più convenienti e un'esperienza più intelligente."
|
1309
1312
|
},
|
1313
|
+
"text-embedding-3-large": {
|
1314
|
+
"description": "Il modello di vettorizzazione più potente, adatto per compiti in inglese e non inglese."
|
1315
|
+
},
|
1316
|
+
"text-embedding-3-small": {
|
1317
|
+
"description": "Modello di Embedding di nuova generazione, efficiente ed economico, adatto per la ricerca di conoscenza, applicazioni RAG e altri scenari."
|
1318
|
+
},
|
1310
1319
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1311
1320
|
"description": "StripedHyena Nous (7B) offre capacità di calcolo potenziate attraverso strategie e architetture di modelli efficienti."
|
1312
1321
|
},
|
1322
|
+
"tts-1": {
|
1323
|
+
"description": "L'ultimo modello di sintesi vocale, ottimizzato per la velocità in scenari in tempo reale."
|
1324
|
+
},
|
1325
|
+
"tts-1-hd": {
|
1326
|
+
"description": "L'ultimo modello di sintesi vocale, ottimizzato per la qualità."
|
1327
|
+
},
|
1313
1328
|
"upstage/SOLAR-10.7B-Instruct-v1.0": {
|
1314
1329
|
"description": "Upstage SOLAR Instruct v1 (11B) è adatto per compiti di istruzione dettagliati, offrendo eccellenti capacità di elaborazione linguistica."
|
1315
1330
|
},
|
1316
1331
|
"us.anthropic.claude-3-5-sonnet-20241022-v2:0": {
|
1317
1332
|
"description": "Claude 3.5 Sonnet ha elevato gli standard del settore, superando le prestazioni dei modelli concorrenti e di Claude 3 Opus, dimostrando eccellenza in una vasta gamma di valutazioni, mantenendo al contempo la velocità e i costi dei nostri modelli di livello medio."
|
1318
1333
|
},
|
1334
|
+
"whisper-1": {
|
1335
|
+
"description": "Modello di riconoscimento vocale universale, supporta il riconoscimento vocale multilingue, la traduzione vocale e il riconoscimento linguistico."
|
1336
|
+
},
|
1319
1337
|
"wizardlm2": {
|
1320
1338
|
"description": "WizardLM 2 è un modello di linguaggio fornito da Microsoft AI, particolarmente efficace in dialoghi complessi, multilingue, ragionamento e assistenti intelligenti."
|
1321
1339
|
},
|
@@ -119,9 +119,6 @@
|
|
119
119
|
"OpenGVLab/InternVL2-26B": {
|
120
120
|
"description": "InternVL2はさまざまな視覚と言語タスクで卓越した性能を発揮しており、文書や図表の理解、シーンテキストの理解、OCR、科学および数学の問題解決などを含みます。"
|
121
121
|
},
|
122
|
-
"OpenGVLab/InternVL2-Llama3-76B": {
|
123
|
-
"description": "InternVL2はさまざまな視覚と言語タスクで卓越した性能を発揮しており、文書や図表の理解、シーンテキストの理解、OCR、科学および数学の問題解決などを含みます。"
|
124
|
-
},
|
125
122
|
"Phi-3-medium-128k-instruct": {
|
126
123
|
"description": "同じPhi-3-mediumモデルですが、RAGまたは少数ショットプロンプティング用により大きなコンテキストサイズを持っています。"
|
127
124
|
},
|
@@ -215,9 +212,6 @@
|
|
215
212
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
216
213
|
"description": "Qwen2.5-Coder-7B-InstructはAlibaba Cloudが発表したコード特化型大規模言語モデルシリーズの最新バージョンです。このモデルはQwen2.5を基に、55兆トークンの訓練を通じて、コード生成、推論、修正能力を大幅に向上させました。コーディング能力を強化するだけでなく、数学および一般的な能力の利点も維持しています。このモデルはコードエージェントなどの実際のアプリケーションに対して、より包括的な基盤を提供します。"
|
217
214
|
},
|
218
|
-
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
219
|
-
"description": "Qwen2.5-Mathは、数学分野の問題解決に特化しており、高難度の問題に対して専門的な解答を提供します。"
|
220
|
-
},
|
221
215
|
"Qwen2-72B-Instruct": {
|
222
216
|
"description": "Qwen2はQwenモデルの最新シリーズで、128kのコンテキストをサポートしています。現在の最適なオープンソースモデルと比較して、Qwen2-72Bは自然言語理解、知識、コード、数学、そして多言語などの能力において、現在のリーディングモデルを大幅に上回っています。"
|
223
217
|
},
|
@@ -290,12 +284,6 @@
|
|
290
284
|
"TeleAI/TeleMM": {
|
291
285
|
"description": "TeleMM多モーダル大モデルは中国電信が自主開発した多モーダル理解大モデルで、テキスト、画像などの多様なモーダル入力を処理し、画像理解、グラフ分析などの機能をサポートし、ユーザーにクロスモーダルの理解サービスを提供します。モデルはユーザーと多モーダルでインタラクションし、入力内容を正確に理解し、質問に答え、創作を支援し、効率的に多モーダル情報とインスピレーションのサポートを提供します。細粒度の認識、論理推論などの多モーダルタスクで優れたパフォーマンスを示しています。"
|
292
286
|
},
|
293
|
-
"Tencent/Hunyuan-A52B-Instruct": {
|
294
|
-
"description": "Hunyuan-Largeは業界最大のオープンソースTransformerアーキテクチャMoEモデルで、3890億の総パラメータ数と520億のアクティブパラメータ数を持っています。"
|
295
|
-
},
|
296
|
-
"Vendor-A/Qwen/Qwen2-7B-Instruct": {
|
297
|
-
"description": "Qwen2-72B-InstructはQwen2シリーズの指示微調整大規模言語モデルで、パラメータ規模は72Bです。このモデルはTransformerアーキテクチャに基づき、SwiGLU活性化関数、注意QKVバイアス、グループクエリ注意などの技術を採用しています。大規模な入力を処理することができます。このモデルは言語理解、生成、多言語能力、コーディング、数学、推論などの複数のベンチマークテストで優れたパフォーマンスを示し、ほとんどのオープンソースモデルを超え、特定のタスクでは専有モデルと同等の競争力を示しています。"
|
298
|
-
},
|
299
287
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
300
288
|
"description": "Qwen2.5-72B-InstructはAlibaba Cloudが発表した最新の大規模言語モデルシリーズの一つです。この72Bモデルはコーディングや数学などの分野で顕著な能力の改善を持っています。このモデルは29以上の言語をカバーする多言語サポートも提供しており、中国語、英語などが含まれています。モデルは指示の遵守、構造化データの理解、特にJSONのような構造化出力の生成において顕著な向上を示しています。"
|
301
289
|
},
|
@@ -521,12 +509,15 @@
|
|
521
509
|
"command-r-plus": {
|
522
510
|
"description": "Command R+は、リアルな企業シーンと複雑なアプリケーションのために設計された高性能な大規模言語モデルです。"
|
523
511
|
},
|
512
|
+
"dall-e-2": {
|
513
|
+
"description": "第二世代DALL·Eモデル、よりリアルで正確な画像生成をサポートし、解像度は第一世代の4倍です"
|
514
|
+
},
|
515
|
+
"dall-e-3": {
|
516
|
+
"description": "最新のDALL·Eモデル、2023年11月にリリース。よりリアルで正確な画像生成をサポートし、詳細表現力が向上しています"
|
517
|
+
},
|
524
518
|
"databricks/dbrx-instruct": {
|
525
519
|
"description": "DBRX Instructは、高い信頼性の指示処理能力を提供し、多業界アプリケーションをサポートします。"
|
526
520
|
},
|
527
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
528
|
-
"description": "DeepSeek-V2は強力でコスト効率の高い混合専門家(MoE)言語モデルです。8.1兆トークンの高品質コーパスで事前訓練され、監視微調整(SFT)と強化学習(RL)を通じてモデルの能力をさらに向上させました。DeepSeek 67Bと比較して、DeepSeek-V2は性能が向上し、42.5%の訓練コストを節約し、93.3%のKVキャッシュを削減し、最大生成スループットを5.76倍に向上させました。このモデルは128kのコンテキスト長をサポートし、標準ベンチマークテストおよびオープン生成評価で優れたパフォーマンスを示しています。"
|
529
|
-
},
|
530
521
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
522
|
"description": "DeepSeek V2.5は以前のバージョンの優れた特徴を集約し、汎用性とコーディング能力を強化しました。"
|
532
523
|
},
|
@@ -704,6 +695,9 @@
|
|
704
695
|
"gpt-3.5-turbo-1106": {
|
705
696
|
"description": "GPT 3.5 Turboは、さまざまなテキスト生成と理解タスクに適しており、現在はgpt-3.5-turbo-0125を指しています。"
|
706
697
|
},
|
698
|
+
"gpt-3.5-turbo-16k": {
|
699
|
+
"description": "GPT 3.5 Turbo 16k、高容量テキスト生成モデル、複雑なタスクに適しています。"
|
700
|
+
},
|
707
701
|
"gpt-3.5-turbo-instruct": {
|
708
702
|
"description": "GPT 3.5 Turboは、さまざまなテキスト生成と理解タスクに適しており、現在はgpt-3.5-turbo-0125を指しています。"
|
709
703
|
},
|
@@ -755,9 +749,24 @@
|
|
755
749
|
"gpt-4o-2024-11-20": {
|
756
750
|
"description": "ChatGPT-4oは動的モデルで、リアルタイムで更新され、常に最新バージョンを保持します。 powerfulな言語理解と生成能力を組み合わせており、カスタマーサービス、教育、技術サポートなどの大規模なアプリケーションに適しています。"
|
757
751
|
},
|
752
|
+
"gpt-4o-audio-preview": {
|
753
|
+
"description": "GPT-4o Audio モデル、音声の入力と出力をサポート"
|
754
|
+
},
|
758
755
|
"gpt-4o-mini": {
|
759
756
|
"description": "GPT-4o miniは、OpenAIがGPT-4 Omniの後に発表した最新のモデルで、画像とテキストの入力をサポートし、テキストを出力します。最先端の小型モデルとして、最近の他の先進モデルよりもはるかに安価で、GPT-3.5 Turboよりも60%以上安価です。最先端の知能を維持しつつ、コストパフォーマンスが大幅に向上しています。GPT-4o miniはMMLUテストで82%のスコアを獲得し、現在チャットの好みではGPT-4よりも高い評価を得ています。"
|
760
757
|
},
|
758
|
+
"gpt-4o-mini-realtime-preview": {
|
759
|
+
"description": "GPT-4o-miniリアルタイムバージョン、音声とテキストのリアルタイム入力と出力をサポート"
|
760
|
+
},
|
761
|
+
"gpt-4o-realtime-preview": {
|
762
|
+
"description": "GPT-4oリアルタイムバージョン、音声とテキストのリアルタイム入力と出力をサポート"
|
763
|
+
},
|
764
|
+
"gpt-4o-realtime-preview-2024-10-01": {
|
765
|
+
"description": "GPT-4oリアルタイムバージョン、音声とテキストのリアルタイム入力と出力をサポート"
|
766
|
+
},
|
767
|
+
"gpt-4o-realtime-preview-2024-12-17": {
|
768
|
+
"description": "GPT-4oリアルタイムバージョン、音声とテキストのリアルタイム入力と出力をサポート"
|
769
|
+
},
|
761
770
|
"grok-2-1212": {
|
762
771
|
"description": "このモデルは、精度、指示の遵守、そして多言語能力において改善されています。"
|
763
772
|
},
|
@@ -935,6 +944,9 @@
|
|
935
944
|
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
936
945
|
"description": "LLaMA 3.2は視覚データとテキストデータを組み合わせたタスクを処理することを目的としています。画像の説明や視覚的質問応答などのタスクで優れた性能を発揮し、言語生成と視覚推論の間のギャップを埋めます。"
|
937
946
|
},
|
947
|
+
"meta-llama/Llama-3.3-70B-Instruct": {
|
948
|
+
"description": "Llama 3.3はLlamaシリーズの最先端の多言語オープンソース大規模言語モデルで、非常に低コストで405Bモデルに匹敵する性能を体験できます。Transformer構造に基づき、監視付き微調整(SFT)と人間のフィードバック強化学習(RLHF)を通じて有用性と安全性を向上させています。その指示調整バージョンは多言語対話に最適化されており、複数の業界ベンチマークで多くのオープンソースおよびクローズドチャットモデルを上回る性能を発揮します。知識のカットオフ日は2023年12月です"
|
949
|
+
},
|
938
950
|
"meta-llama/Llama-Vision-Free": {
|
939
951
|
"description": "LLaMA 3.2は視覚データとテキストデータを組み合わせたタスクを処理することを目的としています。画像の説明や視覚的質問応答などのタスクで優れた性能を発揮し、言語生成と視覚推論の間のギャップを埋めます。"
|
940
952
|
},
|
@@ -1091,18 +1103,12 @@
|
|
1091
1103
|
"nousresearch/hermes-2-pro-llama-3-8b": {
|
1092
1104
|
"description": "Hermes 2 Pro Llama 3 8BはNous Hermes 2のアップグレード版で、最新の内部開発データセットを含んでいます。"
|
1093
1105
|
},
|
1094
|
-
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
1095
|
-
"description": "Llama 3.1 Nemotron 70BはNVIDIAがカスタマイズした大型言語モデルで、LLMが生成した応答がユーザーの問い合わせをサポートする程度を向上させることを目的としています。"
|
1096
|
-
},
|
1097
1106
|
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
|
1098
1107
|
"description": "Llama 3.1 Nemotron 70BはNVIDIAによってカスタマイズされた大規模言語モデルで、LLMが生成する応答がユーザーのクエリにどれだけ役立つかを向上させることを目的としています。このモデルはArena Hard、AlpacaEval 2 LC、GPT-4-Turbo MT-Benchなどのベンチマークテストで優れたパフォーマンスを示し、2024年10月1日現在、すべての自動整合ベンチマークテストで1位にランクされています。このモデルはRLHF(特にREINFORCE)、Llama-3.1-Nemotron-70B-Reward、HelpSteer2-Preferenceプロンプトを使用してLlama-3.1-70B-Instructモデルの基盤の上で訓練されています。"
|
1099
1108
|
},
|
1100
1109
|
"o1": {
|
1101
1110
|
"description": "高度な推論と複雑な問題の解決に焦点を当てており、数学や科学のタスクを含みます。深いコンテキスト理解とエージェントワークフローを必要とするアプリケーションに非常に適しています。"
|
1102
1111
|
},
|
1103
|
-
"o1-2024-12-17": {
|
1104
|
-
"description": "o1はOpenAIの新しい推論モデルで、画像とテキストの入力をサポートし、テキストを出力します。広範な一般知識を必要とする複雑なタスクに適しています。このモデルは200Kのコンテキストを持ち、2023年10月の知識のカットオフがあります。"
|
1105
|
-
},
|
1106
1112
|
"o1-mini": {
|
1107
1113
|
"description": "o1-miniは、プログラミング、数学、科学のアプリケーションシーンに特化して設計された迅速で経済的な推論モデルです。このモデルは128Kのコンテキストを持ち、2023年10月の知識のカットオフがあります。"
|
1108
1114
|
},
|
@@ -1130,9 +1136,6 @@
|
|
1130
1136
|
"openai/gpt-4o-mini": {
|
1131
1137
|
"description": "GPT-4o miniはOpenAIがGPT-4 Omniの後に発表した最新モデルで、画像とテキストの入力をサポートし、テキストを出力します。彼らの最先端の小型モデルとして、最近の他の最前線モデルよりもはるかに安価で、GPT-3.5 Turboよりも60%以上安価です。最先端の知能を維持しつつ、顕著なコストパフォーマンスを誇ります。GPT-4o miniはMMLUテストで82%のスコアを獲得し、現在チャットの好みでGPT-4よりも高い評価を得ています。"
|
1132
1138
|
},
|
1133
|
-
"openai/o1": {
|
1134
|
-
"description": "o1はOpenAIの新しい推論モデルで、画像とテキストの入力をサポートし、テキストを出力します。広範な一般知識を必要とする複雑なタスクに適しています。このモデルは200Kのコンテキストを持ち、2023年10月の知識のカットオフがあります。"
|
1135
|
-
},
|
1136
1139
|
"openai/o1-mini": {
|
1137
1140
|
"description": "o1-miniは、プログラミング、数学、科学のアプリケーションシーンに特化して設計された迅速で経済的な推論モデルです。このモデルは128Kのコンテキストを持ち、2023年10月の知識のカットオフがあります。"
|
1138
1141
|
},
|
@@ -1307,15 +1310,30 @@
|
|
1307
1310
|
"taichu_llm": {
|
1308
1311
|
"description": "紫東太初言語大モデルは、強力な言語理解能力とテキスト創作、知識問答、コードプログラミング、数学計算、論理推論、感情分析、テキスト要約などの能力を備えています。革新的に大データの事前学習と多源の豊富な知識を組み合わせ、アルゴリズム技術を継続的に磨き、膨大なテキストデータから語彙、構造、文法、意味などの新しい知識を吸収し、モデルの効果を進化させています。ユーザーにより便利な情報とサービス、よりインテリジェントな体験を提供します。"
|
1309
1312
|
},
|
1313
|
+
"text-embedding-3-large": {
|
1314
|
+
"description": "最も強力なベクトル化モデル、英語および非英語のタスクに適しています"
|
1315
|
+
},
|
1316
|
+
"text-embedding-3-small": {
|
1317
|
+
"description": "効率的で経済的な次世代埋め込みモデル、知識検索やRAGアプリケーションなどのシーンに適しています"
|
1318
|
+
},
|
1310
1319
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1311
1320
|
"description": "StripedHyena Nous (7B)は、高効率の戦略とモデルアーキテクチャを通じて、強化された計算能力を提供します。"
|
1312
1321
|
},
|
1322
|
+
"tts-1": {
|
1323
|
+
"description": "最新のテキスト音声合成モデル、リアルタイムシーン向けに速度を最適化"
|
1324
|
+
},
|
1325
|
+
"tts-1-hd": {
|
1326
|
+
"description": "最新のテキスト音声合成モデル、品質を最適化"
|
1327
|
+
},
|
1313
1328
|
"upstage/SOLAR-10.7B-Instruct-v1.0": {
|
1314
1329
|
"description": "Upstage SOLAR Instruct v1 (11B)は、精密な指示タスクに適しており、優れた言語処理能力を提供します。"
|
1315
1330
|
},
|
1316
1331
|
"us.anthropic.claude-3-5-sonnet-20241022-v2:0": {
|
1317
1332
|
"description": "Claude 3.5 Sonnetは業界標準を向上させ、競合モデルやClaude 3 Opusを超える性能を持ち、広範な評価で優れた結果を示し、我々の中程度のモデルの速度とコストを兼ね備えています。"
|
1318
1333
|
},
|
1334
|
+
"whisper-1": {
|
1335
|
+
"description": "汎用音声認識モデル、多言語音声認識、音声翻訳、言語認識をサポート"
|
1336
|
+
},
|
1319
1337
|
"wizardlm2": {
|
1320
1338
|
"description": "WizardLM 2は、Microsoft AIが提供する言語モデルであり、複雑な対話、多言語、推論、インテリジェントアシスタントの分野で特に優れた性能を発揮します。"
|
1321
1339
|
},
|