@lobehub/chat 1.45.2 → 1.45.4
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/locales/ar/models.json +42 -24
- package/locales/bg-BG/models.json +42 -24
- package/locales/de-DE/models.json +42 -24
- package/locales/en-US/models.json +42 -24
- package/locales/es-ES/models.json +42 -24
- package/locales/fa-IR/models.json +42 -24
- package/locales/fr-FR/models.json +42 -24
- package/locales/it-IT/models.json +42 -24
- package/locales/ja-JP/models.json +42 -24
- package/locales/ko-KR/models.json +42 -24
- package/locales/nl-NL/models.json +42 -24
- package/locales/pl-PL/models.json +42 -24
- package/locales/pt-BR/models.json +42 -24
- package/locales/ru-RU/models.json +42 -24
- package/locales/tr-TR/models.json +42 -24
- package/locales/vi-VN/models.json +42 -24
- package/locales/zh-CN/models.json +55 -37
- package/locales/zh-TW/models.json +42 -24
- package/package.json +1 -1
- package/src/app/(main)/discover/(detail)/provider/[slug]/features/ProviderConfig.tsx +3 -2
- package/src/app/(main)/settings/provider/(detail)/github/page.tsx +4 -4
- package/src/app/(main)/settings/provider/(detail)/huggingface/page.tsx +4 -4
- package/src/database/repositories/aiInfra/index.ts +8 -5
- package/src/database/server/models/__tests__/aiModel.test.ts +1 -1
- package/src/database/server/models/aiModel.ts +14 -45
- package/src/locales/default/models.ts +2 -2
@@ -119,9 +119,6 @@
|
|
119
119
|
"OpenGVLab/InternVL2-26B": {
|
120
120
|
"description": "InternVL2 demonstrates exceptional performance across various visual language tasks, including document and chart understanding, scene text understanding, OCR, and solving scientific and mathematical problems."
|
121
121
|
},
|
122
|
-
"OpenGVLab/InternVL2-Llama3-76B": {
|
123
|
-
"description": "InternVL2 demonstrates exceptional performance across various visual language tasks, including document and chart understanding, scene text understanding, OCR, and solving scientific and mathematical problems."
|
124
|
-
},
|
125
122
|
"Phi-3-medium-128k-instruct": {
|
126
123
|
"description": "The same Phi-3-medium model, but with a larger context size for RAG or few-shot prompting."
|
127
124
|
},
|
@@ -215,9 +212,6 @@
|
|
215
212
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
216
213
|
"description": "Qwen2.5-Coder-7B-Instruct is the latest version in Alibaba Cloud's series of code-specific large language models. This model significantly enhances code generation, reasoning, and repair capabilities based on Qwen2.5, trained on 55 trillion tokens. It not only improves coding abilities but also maintains advantages in mathematics and general capabilities, providing a more comprehensive foundation for practical applications such as code agents."
|
217
214
|
},
|
218
|
-
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
219
|
-
"description": "Qwen2.5-Math focuses on problem-solving in the field of mathematics, providing expert solutions for challenging problems."
|
220
|
-
},
|
221
215
|
"Qwen2-72B-Instruct": {
|
222
216
|
"description": "Qwen2 is the latest series of the Qwen model, supporting 128k context. Compared to the current best open-source models, Qwen2-72B significantly surpasses leading models in natural language understanding, knowledge, coding, mathematics, and multilingual capabilities."
|
223
217
|
},
|
@@ -290,12 +284,6 @@
|
|
290
284
|
"TeleAI/TeleMM": {
|
291
285
|
"description": "The TeleMM multimodal large model is a multimodal understanding model independently developed by China Telecom, capable of processing various modal inputs such as text and images, supporting functions like image understanding and chart analysis, providing users with cross-modal understanding services. The model can interact with users in a multimodal manner, accurately understand input content, answer questions, assist in creation, and efficiently provide multimodal information and inspiration support. It excels in fine-grained perception, logical reasoning, and other multimodal tasks."
|
292
286
|
},
|
293
|
-
"Tencent/Hunyuan-A52B-Instruct": {
|
294
|
-
"description": "Hunyuan-Large is the industry's largest open-source Transformer architecture MoE model, with a total of 389 billion parameters and 52 billion active parameters."
|
295
|
-
},
|
296
|
-
"Vendor-A/Qwen/Qwen2-7B-Instruct": {
|
297
|
-
"description": "Qwen2-72B-Instruct is an instruction-tuned large language model in the Qwen2 series, with a parameter size of 72B. This model is based on the Transformer architecture and employs techniques such as the SwiGLU activation function, attention QKV bias, and group query attention. It can handle large-scale inputs. The model excels in language understanding, generation, multilingual capabilities, coding, mathematics, and reasoning across multiple benchmark tests, surpassing most open-source models and demonstrating competitive performance comparable to proprietary models in certain tasks."
|
298
|
-
},
|
299
287
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
300
288
|
"description": "Qwen2.5-72B-Instruct is one of the latest large language models released by Alibaba Cloud. This 72B model shows significant improvements in coding and mathematics. It also provides multilingual support, covering over 29 languages, including Chinese and English. The model has made notable advancements in instruction following, understanding structured data, and generating structured outputs, especially JSON."
|
301
289
|
},
|
@@ -521,12 +509,15 @@
|
|
521
509
|
"command-r-plus": {
|
522
510
|
"description": "Command R+ is a high-performance large language model designed for real enterprise scenarios and complex applications."
|
523
511
|
},
|
512
|
+
"dall-e-2": {
|
513
|
+
"description": "The second generation DALL·E model, supporting more realistic and accurate image generation, with a resolution four times that of the first generation."
|
514
|
+
},
|
515
|
+
"dall-e-3": {
|
516
|
+
"description": "The latest DALL·E model, released in November 2023. It supports more realistic and accurate image generation with enhanced detail representation."
|
517
|
+
},
|
524
518
|
"databricks/dbrx-instruct": {
|
525
519
|
"description": "DBRX Instruct provides highly reliable instruction processing capabilities, supporting applications across multiple industries."
|
526
520
|
},
|
527
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
528
|
-
"description": "DeepSeek-V2 is a powerful and cost-effective mixture of experts (MoE) language model. It has been pre-trained on a high-quality corpus of 81 trillion tokens and further enhanced through supervised fine-tuning (SFT) and reinforcement learning (RL). Compared to DeepSeek 67B, DeepSeek-V2 offers stronger performance while saving 42.5% in training costs, reducing KV cache by 93.3%, and increasing maximum generation throughput by 5.76 times. The model supports a context length of 128k and performs excellently in standard benchmark tests and open-ended generation evaluations."
|
529
|
-
},
|
530
521
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
522
|
"description": "DeepSeek V2.5 combines the excellent features of previous versions, enhancing general and coding capabilities."
|
532
523
|
},
|
@@ -704,6 +695,9 @@
|
|
704
695
|
"gpt-3.5-turbo-1106": {
|
705
696
|
"description": "GPT 3.5 Turbo is suitable for various text generation and understanding tasks. Currently points to gpt-3.5-turbo-0125."
|
706
697
|
},
|
698
|
+
"gpt-3.5-turbo-16k": {
|
699
|
+
"description": "GPT 3.5 Turbo 16k, a high-capacity text generation model suitable for complex tasks."
|
700
|
+
},
|
707
701
|
"gpt-3.5-turbo-instruct": {
|
708
702
|
"description": "GPT 3.5 Turbo is suitable for various text generation and understanding tasks. Currently points to gpt-3.5-turbo-0125."
|
709
703
|
},
|
@@ -755,9 +749,24 @@
|
|
755
749
|
"gpt-4o-2024-11-20": {
|
756
750
|
"description": "ChatGPT-4o is a dynamic model that updates in real-time to maintain the latest version. It combines powerful language understanding and generation capabilities, making it suitable for large-scale applications including customer service, education, and technical support."
|
757
751
|
},
|
752
|
+
"gpt-4o-audio-preview": {
|
753
|
+
"description": "GPT-4o Audio model, supporting audio input and output."
|
754
|
+
},
|
758
755
|
"gpt-4o-mini": {
|
759
756
|
"description": "GPT-4o mini is the latest model released by OpenAI after GPT-4 Omni, supporting both image and text input while outputting text. As their most advanced small model, it is significantly cheaper than other recent cutting-edge models, costing over 60% less than GPT-3.5 Turbo. It maintains state-of-the-art intelligence while offering remarkable cost-effectiveness. GPT-4o mini scored 82% on the MMLU test and currently ranks higher than GPT-4 in chat preferences."
|
760
757
|
},
|
758
|
+
"gpt-4o-mini-realtime-preview": {
|
759
|
+
"description": "GPT-4o-mini real-time version, supporting real-time audio and text input and output."
|
760
|
+
},
|
761
|
+
"gpt-4o-realtime-preview": {
|
762
|
+
"description": "GPT-4o real-time version, supporting real-time audio and text input and output."
|
763
|
+
},
|
764
|
+
"gpt-4o-realtime-preview-2024-10-01": {
|
765
|
+
"description": "GPT-4o real-time version, supporting real-time audio and text input and output."
|
766
|
+
},
|
767
|
+
"gpt-4o-realtime-preview-2024-12-17": {
|
768
|
+
"description": "GPT-4o real-time version, supporting real-time audio and text input and output."
|
769
|
+
},
|
761
770
|
"grok-2-1212": {
|
762
771
|
"description": "This model has improved in accuracy, instruction adherence, and multilingual capabilities."
|
763
772
|
},
|
@@ -935,6 +944,9 @@
|
|
935
944
|
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
936
945
|
"description": "LLaMA 3.2 is designed for tasks involving both visual and textual data. It excels in tasks like image description and visual question answering, bridging the gap between language generation and visual reasoning."
|
937
946
|
},
|
947
|
+
"meta-llama/Llama-3.3-70B-Instruct": {
|
948
|
+
"description": "Llama 3.3 is the most advanced multilingual open-source large language model in the Llama series, offering performance comparable to 405B models at a very low cost. Based on the Transformer architecture, it enhances usability and safety through supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF). Its instruction-tuned version is optimized for multilingual dialogue and outperforms many open-source and closed chat models on multiple industry benchmarks. Knowledge cutoff date is December 2023."
|
949
|
+
},
|
938
950
|
"meta-llama/Llama-Vision-Free": {
|
939
951
|
"description": "LLaMA 3.2 is designed for tasks involving both visual and textual data. It excels in tasks like image description and visual question answering, bridging the gap between language generation and visual reasoning."
|
940
952
|
},
|
@@ -1091,18 +1103,12 @@
|
|
1091
1103
|
"nousresearch/hermes-2-pro-llama-3-8b": {
|
1092
1104
|
"description": "Hermes 2 Pro Llama 3 8B is an upgraded version of Nous Hermes 2, featuring the latest internally developed datasets."
|
1093
1105
|
},
|
1094
|
-
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
1095
|
-
"description": "Llama 3.1 Nemotron 70B is a large language model customized by NVIDIA, designed to enhance the help provided by LLM-generated responses to user queries."
|
1096
|
-
},
|
1097
1106
|
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
|
1098
1107
|
"description": "Llama 3.1 Nemotron 70B is a large language model customized by NVIDIA, designed to enhance the helpfulness of LLM-generated responses to user queries. The model has excelled in benchmark tests such as Arena Hard, AlpacaEval 2 LC, and GPT-4-Turbo MT-Bench, ranking first in all three automatic alignment benchmarks as of October 1, 2024. The model is trained using RLHF (specifically REINFORCE), Llama-3.1-Nemotron-70B-Reward, and HelpSteer2-Preference prompts based on the Llama-3.1-70B-Instruct model."
|
1099
1108
|
},
|
1100
1109
|
"o1": {
|
1101
1110
|
"description": "Focused on advanced reasoning and solving complex problems, including mathematical and scientific tasks. It is particularly well-suited for applications that require deep contextual understanding and agent workflow."
|
1102
1111
|
},
|
1103
|
-
"o1-2024-12-17": {
|
1104
|
-
"description": "O1 is OpenAI's new reasoning model that supports both image and text input and outputs text, suitable for complex tasks requiring extensive general knowledge. This model has a context length of 200K and a knowledge cutoff date of October 2023."
|
1105
|
-
},
|
1106
1112
|
"o1-mini": {
|
1107
1113
|
"description": "o1-mini is a fast and cost-effective reasoning model designed for programming, mathematics, and scientific applications. This model features a 128K context and has a knowledge cutoff date of October 2023."
|
1108
1114
|
},
|
@@ -1130,9 +1136,6 @@
|
|
1130
1136
|
"openai/gpt-4o-mini": {
|
1131
1137
|
"description": "GPT-4o mini is the latest model released by OpenAI following GPT-4 Omni, supporting both text and image input while outputting text. As their most advanced small model, it is significantly cheaper than other recent cutting-edge models and over 60% cheaper than GPT-3.5 Turbo. It maintains state-of-the-art intelligence while offering remarkable cost-effectiveness. GPT-4o mini scored 82% on the MMLU test and currently ranks higher than GPT-4 in chat preferences."
|
1132
1138
|
},
|
1133
|
-
"openai/o1": {
|
1134
|
-
"description": "O1 is OpenAI's new reasoning model that supports both image and text input and outputs text, suitable for complex tasks requiring extensive general knowledge. This model has a context length of 200K and a knowledge cutoff date of October 2023."
|
1135
|
-
},
|
1136
1139
|
"openai/o1-mini": {
|
1137
1140
|
"description": "o1-mini is a fast and cost-effective reasoning model designed for programming, mathematics, and scientific applications. This model features a 128K context and has a knowledge cutoff date of October 2023."
|
1138
1141
|
},
|
@@ -1307,15 +1310,30 @@
|
|
1307
1310
|
"taichu_llm": {
|
1308
1311
|
"description": "The ZD Taichu language model possesses strong language understanding capabilities and excels in text creation, knowledge Q&A, code programming, mathematical calculations, logical reasoning, sentiment analysis, and text summarization. It innovatively combines large-scale pre-training with rich knowledge from multiple sources, continuously refining algorithmic techniques and absorbing new knowledge in vocabulary, structure, grammar, and semantics from vast text data, resulting in an evolving model performance. It provides users with more convenient information and services, as well as a more intelligent experience."
|
1309
1312
|
},
|
1313
|
+
"text-embedding-3-large": {
|
1314
|
+
"description": "The most powerful vectorization model, suitable for both English and non-English tasks."
|
1315
|
+
},
|
1316
|
+
"text-embedding-3-small": {
|
1317
|
+
"description": "An efficient and cost-effective next-generation embedding model, suitable for knowledge retrieval, RAG applications, and more."
|
1318
|
+
},
|
1310
1319
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1311
1320
|
"description": "StripedHyena Nous (7B) provides enhanced computational capabilities through efficient strategies and model architecture."
|
1312
1321
|
},
|
1322
|
+
"tts-1": {
|
1323
|
+
"description": "The latest text-to-speech model, optimized for speed in real-time scenarios."
|
1324
|
+
},
|
1325
|
+
"tts-1-hd": {
|
1326
|
+
"description": "The latest text-to-speech model, optimized for quality."
|
1327
|
+
},
|
1313
1328
|
"upstage/SOLAR-10.7B-Instruct-v1.0": {
|
1314
1329
|
"description": "Upstage SOLAR Instruct v1 (11B) is suitable for refined instruction tasks, offering excellent language processing capabilities."
|
1315
1330
|
},
|
1316
1331
|
"us.anthropic.claude-3-5-sonnet-20241022-v2:0": {
|
1317
1332
|
"description": "Claude 3.5 Sonnet raises the industry standard, outperforming competitor models and Claude 3 Opus, excelling in a wide range of evaluations while maintaining the speed and cost of our mid-tier models."
|
1318
1333
|
},
|
1334
|
+
"whisper-1": {
|
1335
|
+
"description": "A universal speech recognition model that supports multilingual speech recognition, speech translation, and language identification."
|
1336
|
+
},
|
1319
1337
|
"wizardlm2": {
|
1320
1338
|
"description": "WizardLM 2 is a language model provided by Microsoft AI, excelling in complex dialogues, multilingual capabilities, reasoning, and intelligent assistant applications."
|
1321
1339
|
},
|
@@ -119,9 +119,6 @@
|
|
119
119
|
"OpenGVLab/InternVL2-26B": {
|
120
120
|
"description": "InternVL2 ha demostrado un rendimiento sobresaliente en diversas tareas de lenguaje visual, incluidas la comprensión de documentos y gráficos, comprensión de texto en escenas, OCR, resolución de problemas científicos y matemáticos."
|
121
121
|
},
|
122
|
-
"OpenGVLab/InternVL2-Llama3-76B": {
|
123
|
-
"description": "InternVL2 ha demostrado un rendimiento sobresaliente en diversas tareas de lenguaje visual, incluidas la comprensión de documentos y gráficos, comprensión de texto en escenas, OCR, resolución de problemas científicos y matemáticos."
|
124
|
-
},
|
125
122
|
"Phi-3-medium-128k-instruct": {
|
126
123
|
"description": "El mismo modelo Phi-3-medium, pero con un tamaño de contexto más grande para RAG o indicaciones de pocos disparos."
|
127
124
|
},
|
@@ -215,9 +212,6 @@
|
|
215
212
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
216
213
|
"description": "Qwen2.5-Coder-7B-Instruct es la última versión de la serie de modelos de lenguaje a gran escala específicos para código lanzada por Alibaba Cloud. Este modelo, basado en Qwen2.5, ha mejorado significativamente la generación, razonamiento y reparación de código a través de un entrenamiento con 55 billones de tokens. No solo ha mejorado la capacidad de codificación, sino que también ha mantenido ventajas en habilidades matemáticas y generales. El modelo proporciona una base más completa para aplicaciones prácticas como agentes de código."
|
217
214
|
},
|
218
|
-
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
219
|
-
"description": "Qwen2.5-Math se centra en la resolución de problemas en el ámbito de las matemáticas, proporcionando respuestas profesionales a preguntas de alta dificultad."
|
220
|
-
},
|
221
215
|
"Qwen2-72B-Instruct": {
|
222
216
|
"description": "Qwen2 es la última serie del modelo Qwen, que admite un contexto de 128k. En comparación con los modelos de código abierto más óptimos actuales, Qwen2-72B supera significativamente a los modelos líderes actuales en comprensión del lenguaje natural, conocimiento, código, matemáticas y capacidades multilingües."
|
223
217
|
},
|
@@ -290,12 +284,6 @@
|
|
290
284
|
"TeleAI/TeleMM": {
|
291
285
|
"description": "El modelo multimodal TeleMM ha sido desarrollado de manera independiente por China Telecom, siendo un modelo de comprensión multimodal que puede manejar entradas de múltiples modalidades como texto e imágenes, apoyando funciones como comprensión de imágenes y análisis de gráficos, proporcionando servicios de comprensión cruzada para los usuarios. El modelo puede interactuar con los usuarios de manera multimodal, entendiendo con precisión el contenido de entrada, respondiendo preguntas, asistiendo en la creación y proporcionando de manera eficiente información y apoyo inspirador multimodal. Ha mostrado un rendimiento excepcional en tareas multimodales como percepción de alta resolución y razonamiento lógico."
|
292
286
|
},
|
293
|
-
"Tencent/Hunyuan-A52B-Instruct": {
|
294
|
-
"description": "Hunyuan-Large es el modelo MoE de Transformer de código abierto más grande de la industria, con un total de 389 mil millones de parámetros y 52 mil millones de parámetros activados."
|
295
|
-
},
|
296
|
-
"Vendor-A/Qwen/Qwen2-7B-Instruct": {
|
297
|
-
"description": "Qwen2-72B-Instruct es un modelo de lenguaje a gran escala de ajuste fino por instrucciones dentro de la serie Qwen2, con un tamaño de parámetros de 72B. Este modelo se basa en la arquitectura Transformer, utilizando funciones de activación SwiGLU, sesgos de atención QKV y atención de consulta agrupada, entre otras técnicas. Es capaz de manejar entradas a gran escala. Este modelo ha destacado en múltiples pruebas de referencia en comprensión del lenguaje, generación, capacidad multilingüe, codificación, matemáticas y razonamiento, superando a la mayoría de los modelos de código abierto y mostrando competitividad comparable a modelos propietarios en ciertas tareas."
|
298
|
-
},
|
299
287
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
300
288
|
"description": "Qwen2.5-72B-Instruct es uno de los últimos modelos de lenguaje a gran escala lanzados por Alibaba Cloud. Este modelo de 72B ha mejorado significativamente en áreas como codificación y matemáticas. También ofrece soporte multilingüe, abarcando más de 29 idiomas, incluidos chino e inglés. El modelo ha mostrado mejoras significativas en el seguimiento de instrucciones, comprensión de datos estructurados y generación de salidas estructuradas (especialmente JSON)."
|
301
289
|
},
|
@@ -521,12 +509,15 @@
|
|
521
509
|
"command-r-plus": {
|
522
510
|
"description": "Command R+ es un modelo de lenguaje de gran tamaño de alto rendimiento, diseñado para escenarios empresariales reales y aplicaciones complejas."
|
523
511
|
},
|
512
|
+
"dall-e-2": {
|
513
|
+
"description": "El segundo modelo DALL·E, que admite generación de imágenes más realistas y precisas, con una resolución cuatro veces mayor que la de la primera generación."
|
514
|
+
},
|
515
|
+
"dall-e-3": {
|
516
|
+
"description": "El modelo DALL·E más reciente, lanzado en noviembre de 2023. Admite generación de imágenes más realistas y precisas, con una mayor capacidad de detalle."
|
517
|
+
},
|
524
518
|
"databricks/dbrx-instruct": {
|
525
519
|
"description": "DBRX Instruct ofrece capacidades de procesamiento de instrucciones de alta fiabilidad, soportando aplicaciones en múltiples industrias."
|
526
520
|
},
|
527
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
528
|
-
"description": "DeepSeek-V2 es un potente y rentable modelo de lenguaje de expertos mixtos (MoE). Se ha preentrenado en un corpus de alta calidad de 81 billones de tokens y ha mejorado aún más sus capacidades a través de ajuste fino supervisado (SFT) y aprendizaje por refuerzo (RL). En comparación con DeepSeek 67B, DeepSeek-V2 no solo ofrece un rendimiento superior, sino que también ahorra un 42.5% en costos de entrenamiento, reduce un 93.3% en caché KV y aumenta la máxima tasa de generación a 5.76 veces. Este modelo admite una longitud de contexto de 128k y ha destacado en pruebas de referencia estándar y evaluaciones de generación abierta."
|
529
|
-
},
|
530
521
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
522
|
"description": "DeepSeek V2.5 combina las excelentes características de versiones anteriores, mejorando la capacidad general y de codificación."
|
532
523
|
},
|
@@ -704,6 +695,9 @@
|
|
704
695
|
"gpt-3.5-turbo-1106": {
|
705
696
|
"description": "GPT 3.5 Turbo, adecuado para diversas tareas de generación y comprensión de texto, actualmente apunta a gpt-3.5-turbo-0125."
|
706
697
|
},
|
698
|
+
"gpt-3.5-turbo-16k": {
|
699
|
+
"description": "GPT 3.5 Turbo 16k, un modelo de generación de texto de alta capacidad, adecuado para tareas complejas."
|
700
|
+
},
|
707
701
|
"gpt-3.5-turbo-instruct": {
|
708
702
|
"description": "GPT 3.5 Turbo, adecuado para diversas tareas de generación y comprensión de texto, actualmente apunta a gpt-3.5-turbo-0125."
|
709
703
|
},
|
@@ -755,9 +749,24 @@
|
|
755
749
|
"gpt-4o-2024-11-20": {
|
756
750
|
"description": "ChatGPT-4o es un modelo dinámico que se actualiza en tiempo real para mantener la versión más reciente. Combina una poderosa comprensión del lenguaje con habilidades de generación, adecuada para escenarios de aplicación a gran escala, incluidos servicio al cliente, educación y soporte técnico."
|
757
751
|
},
|
752
|
+
"gpt-4o-audio-preview": {
|
753
|
+
"description": "Modelo de audio GPT-4o, que admite entrada y salida de audio."
|
754
|
+
},
|
758
755
|
"gpt-4o-mini": {
|
759
756
|
"description": "GPT-4o mini es el último modelo lanzado por OpenAI después de GPT-4 Omni, que admite entradas de texto e imagen y genera texto como salida. Como su modelo más avanzado de menor tamaño, es mucho más económico que otros modelos de vanguardia recientes y es más de un 60% más barato que GPT-3.5 Turbo. Mantiene una inteligencia de vanguardia mientras ofrece una relación calidad-precio significativa. GPT-4o mini obtuvo un puntaje del 82% en la prueba MMLU y actualmente se clasifica por encima de GPT-4 en preferencias de chat."
|
760
757
|
},
|
758
|
+
"gpt-4o-mini-realtime-preview": {
|
759
|
+
"description": "Versión en tiempo real de GPT-4o-mini, que admite entrada y salida de audio y texto en tiempo real."
|
760
|
+
},
|
761
|
+
"gpt-4o-realtime-preview": {
|
762
|
+
"description": "Versión en tiempo real de GPT-4o, que admite entrada y salida de audio y texto en tiempo real."
|
763
|
+
},
|
764
|
+
"gpt-4o-realtime-preview-2024-10-01": {
|
765
|
+
"description": "Versión en tiempo real de GPT-4o, que admite entrada y salida de audio y texto en tiempo real."
|
766
|
+
},
|
767
|
+
"gpt-4o-realtime-preview-2024-12-17": {
|
768
|
+
"description": "Versión en tiempo real de GPT-4o, que admite entrada y salida de audio y texto en tiempo real."
|
769
|
+
},
|
761
770
|
"grok-2-1212": {
|
762
771
|
"description": "Este modelo ha mejorado en precisión, cumplimiento de instrucciones y capacidades multilingües."
|
763
772
|
},
|
@@ -935,6 +944,9 @@
|
|
935
944
|
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
936
945
|
"description": "LLaMA 3.2 está diseñado para manejar tareas que combinan datos visuales y textuales. Se destaca en tareas como descripción de imágenes y preguntas visuales, cruzando la brecha entre la generación de lenguaje y el razonamiento visual."
|
937
946
|
},
|
947
|
+
"meta-llama/Llama-3.3-70B-Instruct": {
|
948
|
+
"description": "Llama 3.3 es el modelo de lenguaje de código abierto multilingüe más avanzado de la serie Llama, que ofrece un rendimiento comparable al modelo de 405B a un costo muy bajo. Basado en la estructura Transformer, y mejorado en utilidad y seguridad a través de ajuste fino supervisado (SFT) y aprendizaje por refuerzo con retroalimentación humana (RLHF). Su versión ajustada por instrucciones está optimizada para diálogos multilingües, superando a muchos modelos de chat de código abierto y cerrado en múltiples benchmarks de la industria. La fecha de corte de conocimiento es diciembre de 2023."
|
949
|
+
},
|
938
950
|
"meta-llama/Llama-Vision-Free": {
|
939
951
|
"description": "LLaMA 3.2 está diseñado para manejar tareas que combinan datos visuales y textuales. Se destaca en tareas como descripción de imágenes y preguntas visuales, cruzando la brecha entre la generación de lenguaje y el razonamiento visual."
|
940
952
|
},
|
@@ -1091,18 +1103,12 @@
|
|
1091
1103
|
"nousresearch/hermes-2-pro-llama-3-8b": {
|
1092
1104
|
"description": "Hermes 2 Pro Llama 3 8B es una versión mejorada de Nous Hermes 2, que incluye los conjuntos de datos más recientes desarrollados internamente."
|
1093
1105
|
},
|
1094
|
-
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
1095
|
-
"description": "Llama 3.1 Nemotron 70B es un modelo de lenguaje de gran tamaño personalizado por NVIDIA, diseñado para aumentar el grado de ayuda que las respuestas generadas por LLM ofrecen a las consultas de los usuarios."
|
1096
|
-
},
|
1097
1106
|
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
|
1098
1107
|
"description": "Llama 3.1 Nemotron 70B es un modelo de lenguaje a gran escala personalizado por NVIDIA, diseñado para mejorar la utilidad de las respuestas generadas por LLM a las consultas de los usuarios. Este modelo ha destacado en pruebas de referencia como Arena Hard, AlpacaEval 2 LC y GPT-4-Turbo MT-Bench, ocupando el primer lugar en los tres benchmarks de alineación automática hasta el 1 de octubre de 2024. El modelo se entrena utilizando RLHF (especialmente REINFORCE), Llama-3.1-Nemotron-70B-Reward y HelpSteer2-Preference sobre la base del modelo Llama-3.1-70B-Instruct."
|
1099
1108
|
},
|
1100
1109
|
"o1": {
|
1101
1110
|
"description": "Se centra en el razonamiento avanzado y la resolución de problemas complejos, incluidas tareas matemáticas y científicas. Es muy adecuado para aplicaciones que requieren una comprensión profunda del contexto y flujos de trabajo de agentes."
|
1102
1111
|
},
|
1103
|
-
"o1-2024-12-17": {
|
1104
|
-
"description": "o1 es el nuevo modelo de inferencia de OpenAI, que admite entradas de texto e imagen y produce texto como salida, adecuado para tareas complejas que requieren un amplio conocimiento general. Este modelo tiene un contexto de 200K y una fecha límite de conocimiento de octubre de 2023."
|
1105
|
-
},
|
1106
1112
|
"o1-mini": {
|
1107
1113
|
"description": "o1-mini es un modelo de inferencia rápido y rentable diseñado para aplicaciones de programación, matemáticas y ciencias. Este modelo tiene un contexto de 128K y una fecha de corte de conocimiento en octubre de 2023."
|
1108
1114
|
},
|
@@ -1130,9 +1136,6 @@
|
|
1130
1136
|
"openai/gpt-4o-mini": {
|
1131
1137
|
"description": "GPT-4o mini es el modelo más reciente de OpenAI, lanzado después de GPT-4 Omni, que admite entradas de texto e imagen y genera texto como salida. Como su modelo más avanzado de tamaño pequeño, es mucho más económico que otros modelos de vanguardia recientes y más de un 60% más barato que GPT-3.5 Turbo. Mantiene una inteligencia de vanguardia mientras ofrece una relación calidad-precio notable. GPT-4o mini obtuvo un puntaje del 82% en la prueba MMLU y actualmente se clasifica por encima de GPT-4 en preferencias de chat."
|
1132
1138
|
},
|
1133
|
-
"openai/o1": {
|
1134
|
-
"description": "o1 es el nuevo modelo de inferencia de OpenAI, que admite entradas de texto e imagen y produce texto como salida, adecuado para tareas complejas que requieren un amplio conocimiento general. Este modelo tiene un contexto de 200K y una fecha límite de conocimiento de octubre de 2023."
|
1135
|
-
},
|
1136
1139
|
"openai/o1-mini": {
|
1137
1140
|
"description": "o1-mini es un modelo de inferencia rápido y rentable diseñado para aplicaciones de programación, matemáticas y ciencias. Este modelo tiene un contexto de 128K y una fecha de corte de conocimiento en octubre de 2023."
|
1138
1141
|
},
|
@@ -1307,15 +1310,30 @@
|
|
1307
1310
|
"taichu_llm": {
|
1308
1311
|
"description": "El modelo de lenguaje Taichu de Zīdōng tiene una poderosa capacidad de comprensión del lenguaje, así como habilidades en creación de textos, preguntas y respuestas, programación de código, cálculos matemáticos, razonamiento lógico, análisis de sentimientos y resúmenes de texto. Combina de manera innovadora el preentrenamiento con grandes datos y un conocimiento rico de múltiples fuentes, perfeccionando continuamente la tecnología algorítmica y absorbiendo nuevos conocimientos en vocabulario, estructura, gramática y semántica de grandes volúmenes de datos textuales, logrando una evolución constante del modelo. Proporciona a los usuarios información y servicios más convenientes, así como una experiencia más inteligente."
|
1309
1312
|
},
|
1313
|
+
"text-embedding-3-large": {
|
1314
|
+
"description": "El modelo de vectorización más potente, adecuado para tareas en inglés y no inglés."
|
1315
|
+
},
|
1316
|
+
"text-embedding-3-small": {
|
1317
|
+
"description": "Un modelo de Embedding de nueva generación, eficiente y económico, adecuado para la recuperación de conocimiento, aplicaciones RAG y más."
|
1318
|
+
},
|
1310
1319
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1311
1320
|
"description": "StripedHyena Nous (7B) proporciona una capacidad de cálculo mejorada a través de estrategias y arquitecturas de modelos eficientes."
|
1312
1321
|
},
|
1322
|
+
"tts-1": {
|
1323
|
+
"description": "El modelo más reciente de texto a voz, optimizado para velocidad en escenarios en tiempo real."
|
1324
|
+
},
|
1325
|
+
"tts-1-hd": {
|
1326
|
+
"description": "El modelo más reciente de texto a voz, optimizado para calidad."
|
1327
|
+
},
|
1313
1328
|
"upstage/SOLAR-10.7B-Instruct-v1.0": {
|
1314
1329
|
"description": "Upstage SOLAR Instruct v1 (11B) es adecuado para tareas de instrucciones detalladas, ofreciendo una excelente capacidad de procesamiento de lenguaje."
|
1315
1330
|
},
|
1316
1331
|
"us.anthropic.claude-3-5-sonnet-20241022-v2:0": {
|
1317
1332
|
"description": "Claude 3.5 Sonnet eleva el estándar de la industria, superando a modelos competidores y a Claude 3 Opus, destacándose en evaluaciones amplias, mientras mantiene la velocidad y costo de nuestros modelos de nivel medio."
|
1318
1333
|
},
|
1334
|
+
"whisper-1": {
|
1335
|
+
"description": "Modelo de reconocimiento de voz general, que admite reconocimiento de voz multilingüe, traducción de voz y reconocimiento de idiomas."
|
1336
|
+
},
|
1319
1337
|
"wizardlm2": {
|
1320
1338
|
"description": "WizardLM 2 es un modelo de lenguaje proporcionado por Microsoft AI, que destaca en diálogos complejos, multilingües, razonamiento y asistentes inteligentes."
|
1321
1339
|
},
|
@@ -119,9 +119,6 @@
|
|
119
119
|
"OpenGVLab/InternVL2-26B": {
|
120
120
|
"description": "InternVL2 در وظایف مختلف زبان تصویری عملکرد برجستهای از خود نشان داده است، از جمله درک اسناد و نمودارها، درک متن صحنه، OCR، حل مسائل علمی و ریاضی و غیره."
|
121
121
|
},
|
122
|
-
"OpenGVLab/InternVL2-Llama3-76B": {
|
123
|
-
"description": "InternVL2 در وظایف مختلف زبان تصویری عملکرد برجستهای از خود نشان داده است، از جمله درک اسناد و نمودارها، درک متن صحنه، OCR، حل مسائل علمی و ریاضی و غیره."
|
124
|
-
},
|
125
122
|
"Phi-3-medium-128k-instruct": {
|
126
123
|
"description": "همان مدل Phi-3-medium، اما با اندازه بزرگتر زمینه، مناسب برای RAG یا تعداد کمی از دستورات."
|
127
124
|
},
|
@@ -215,9 +212,6 @@
|
|
215
212
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
216
213
|
"description": "Qwen2.5-Coder-7B-Instruct جدیدترین نسخه از سری مدلهای زبانی بزرگ خاص کد است که توسط Alibaba Cloud منتشر شده است. این مدل بر اساس Qwen2.5 و با آموزش 5.5 تریلیون توکن، توانایی تولید کد، استدلال و اصلاح را به طور قابل توجهی افزایش داده است. این مدل نه تنها توانایی کدنویسی را تقویت کرده بلکه مزایای ریاضی و عمومی را نیز حفظ کرده است. این مدل پایهای جامعتر برای کاربردهای عملی مانند عاملهای کد فراهم میکند."
|
217
214
|
},
|
218
|
-
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
219
|
-
"description": "Qwen2.5-Math بر حل مسائل در حوزه ریاضیات تمرکز دارد و پاسخهای حرفهای برای مسائل پیچیده ارائه میدهد."
|
220
|
-
},
|
221
215
|
"Qwen2-72B-Instruct": {
|
222
216
|
"description": "Qwen2 جدیدترین سری مدلهای Qwen است که از 128k زمینه پشتیبانی میکند. در مقایسه با بهترین مدلهای متنباز فعلی، Qwen2-72B در درک زبان طبیعی، دانش، کد، ریاضی و چندزبانگی به طور قابل توجهی از مدلهای پیشرو فعلی فراتر رفته است."
|
223
217
|
},
|
@@ -290,12 +284,6 @@
|
|
290
284
|
"TeleAI/TeleMM": {
|
291
285
|
"description": "مدل بزرگ چندرسانهای TeleMM یک مدل بزرگ درک چندرسانهای است که توسط China Telecom به طور مستقل توسعه یافته و قادر به پردازش ورودیهای چندرسانهای از جمله متن و تصویر است و از قابلیتهایی مانند درک تصویر و تحلیل نمودار پشتیبانی میکند و خدمات درک چندرسانهای را به کاربران ارائه میدهد. این مدل قادر به تعامل چندرسانهای با کاربران است و محتوا را به دقت درک کرده و به سوالات پاسخ میدهد، به خلاقیت کمک میکند و به طور کارآمد اطلاعات و الهام چندرسانهای را ارائه میدهد. این مدل در وظایف چندرسانهای مانند درک دقیق، استدلال منطقی و غیره عملکرد خوبی دارد."
|
292
286
|
},
|
293
|
-
"Tencent/Hunyuan-A52B-Instruct": {
|
294
|
-
"description": "Hunyuan-Large بزرگترین مدل MoE با ساختار Transformer متن باز در صنعت است که دارای ۳۸۹۰ میلیارد پارامتر کل و ۵۲۰ میلیارد پارامتر فعال است."
|
295
|
-
},
|
296
|
-
"Vendor-A/Qwen/Qwen2-7B-Instruct": {
|
297
|
-
"description": "Qwen2-72B-Instruct یک مدل زبانی بزرگ با تنظیم دقیق دستوری در سری Qwen2 است که اندازه پارامتر آن 72B است. این مدل بر اساس معماری Transformer ساخته شده و از تکنیکهای SwiGLU،偏置 QKV توجه و توجه گروهی استفاده میکند. این مدل قادر به پردازش ورودیهای بزرگ مقیاس است. این مدل در درک زبان، تولید، توانایی چند زبانه، کدنویسی، ریاضی و استدلال در چندین آزمون معیار عملکرد عالی دارد و از اکثر مدلهای متن باز پیشی گرفته و در برخی وظایف رقابت قابل توجهی با مدلهای اختصاصی نشان میدهد."
|
298
|
-
},
|
299
287
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
300
288
|
"description": "Qwen2.5-72B-Instruct یکی از جدیدترین سری مدلهای زبانی بزرگ منتشر شده توسط Alibaba Cloud است. این مدل 72B در زمینههای کدنویسی و ریاضی دارای تواناییهای بهبود یافته قابل توجهی است. این مدل همچنین از پشتیبانی چند زبانه برخوردار است و بیش از 29 زبان از جمله چینی و انگلیسی را پوشش میدهد. این مدل در پیروی از دستورات، درک دادههای ساختاری و تولید خروجیهای ساختاری (به ویژه JSON) به طور قابل توجهی بهبود یافته است."
|
301
289
|
},
|
@@ -521,12 +509,15 @@
|
|
521
509
|
"command-r-plus": {
|
522
510
|
"description": "Command R+ یک مدل زبان بزرگ با عملکرد بالا است که برای سناریوهای واقعی کسبوکار و کاربردهای پیچیده طراحی شده است."
|
523
511
|
},
|
512
|
+
"dall-e-2": {
|
513
|
+
"description": "مدل نسل دوم DALL·E، پشتیبانی از تولید تصاویر واقعیتر و دقیقتر، با وضوح 4 برابر نسل اول."
|
514
|
+
},
|
515
|
+
"dall-e-3": {
|
516
|
+
"description": "جدیدترین مدل DALL·E، منتشر شده در نوامبر 2023. پشتیبانی از تولید تصاویر واقعیتر و دقیقتر، با جزئیات بیشتر."
|
517
|
+
},
|
524
518
|
"databricks/dbrx-instruct": {
|
525
519
|
"description": "DBRX Instruct قابلیت پردازش دستورات با قابلیت اطمینان بالا را فراهم میکند و از کاربردهای چندین صنعت پشتیبانی میکند."
|
526
520
|
},
|
527
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
528
|
-
"description": "DeepSeek-V2 یک مدل زبانی ترکیبی (MoE) قوی و اقتصادی است. این مدل بر روی 8.1 تریلیون توکن از یک مجموعه داده با کیفیت بالا پیشآموزش دیده و از طریق تنظیم دقیق نظارتی (SFT) و یادگیری تقویتی (RL) تواناییهای مدل را بیشتر افزایش داده است. در مقایسه با DeepSeek 67B، DeepSeek-V2 در حالی که 42.5% از هزینههای آموزشی را صرفهجویی کرده و 93.3% از کش KV را کاهش داده، عملکرد بهتری دارد و حداکثر توان تولید را به 5.76 برابر افزایش داده است. این مدل از طول زمینه 128k پشتیبانی میکند و در آزمونهای معیار استاندارد و ارزیابی تولید باز عملکرد عالی دارد."
|
529
|
-
},
|
530
521
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
522
|
"description": "DeepSeek V2.5 ویژگیهای برجسته نسخههای قبلی را گرد هم آورده و تواناییهای عمومی و کدنویسی را تقویت کرده است."
|
532
523
|
},
|
@@ -704,6 +695,9 @@
|
|
704
695
|
"gpt-3.5-turbo-1106": {
|
705
696
|
"description": "GPT 3.5 توربو، مناسب برای انواع وظایف تولید و درک متن، در حال حاضر به gpt-3.5-turbo-0125 اشاره میکند"
|
706
697
|
},
|
698
|
+
"gpt-3.5-turbo-16k": {
|
699
|
+
"description": "مدل تولید متن با ظرفیت بالا GPT 3.5 Turbo 16k، مناسب برای وظایف پیچیده."
|
700
|
+
},
|
707
701
|
"gpt-3.5-turbo-instruct": {
|
708
702
|
"description": "GPT 3.5 توربو، مناسب برای انواع وظایف تولید و درک متن، در حال حاضر به gpt-3.5-turbo-0125 اشاره میکند"
|
709
703
|
},
|
@@ -755,9 +749,24 @@
|
|
755
749
|
"gpt-4o-2024-11-20": {
|
756
750
|
"description": "ChatGPT-4o یک مدل پویا است که به طور مداوم بهروز رسانی میشود تا نسخه فعلی و جدیدی را حفظ کند. این مدل قدرت فهم و تولید زبان را ترکیب کرده و مناسب برای کاربردهای مقیاس بزرگ مانند خدمات مشتری، آموزش و پشتیبانی فنی است."
|
757
751
|
},
|
752
|
+
"gpt-4o-audio-preview": {
|
753
|
+
"description": "مدل صوتی GPT-4o، پشتیبانی از ورودی و خروجی صوتی."
|
754
|
+
},
|
758
755
|
"gpt-4o-mini": {
|
759
756
|
"description": "یک راهحل هوش مصنوعی مقرونبهصرفه که برای انواع وظایف متنی و تصویری مناسب است."
|
760
757
|
},
|
758
|
+
"gpt-4o-mini-realtime-preview": {
|
759
|
+
"description": "نسخه زنده GPT-4o-mini، پشتیبانی از ورودی و خروجی صوتی و متنی به صورت زنده."
|
760
|
+
},
|
761
|
+
"gpt-4o-realtime-preview": {
|
762
|
+
"description": "نسخه زنده GPT-4o، پشتیبانی از ورودی و خروجی صوتی و متنی به صورت زنده."
|
763
|
+
},
|
764
|
+
"gpt-4o-realtime-preview-2024-10-01": {
|
765
|
+
"description": "نسخه زنده GPT-4o، پشتیبانی از ورودی و خروجی صوتی و متنی به صورت زنده."
|
766
|
+
},
|
767
|
+
"gpt-4o-realtime-preview-2024-12-17": {
|
768
|
+
"description": "نسخه زنده GPT-4o، پشتیبانی از ورودی و خروجی صوتی و متنی به صورت زنده."
|
769
|
+
},
|
761
770
|
"grok-2-1212": {
|
762
771
|
"description": "این مدل در دقت، پیروی از دستورات و توانایی چند زبانه بهبود یافته است."
|
763
772
|
},
|
@@ -935,6 +944,9 @@
|
|
935
944
|
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
936
945
|
"description": "LLaMA 3.2 برای انجام وظایفی که ترکیبی از دادههای بصری و متنی هستند طراحی شده است. این مدل در وظایفی مانند توصیف تصویر و پرسش و پاسخ بصری عملکرد بسیار خوبی دارد و فاصله بین تولید زبان و استدلال بصری را پر میکند."
|
937
946
|
},
|
947
|
+
"meta-llama/Llama-3.3-70B-Instruct": {
|
948
|
+
"description": "Llama 3.3 پیشرفتهترین مدل زبان بزرگ چند زبانه متن باز از سری Llama، با هزینه بسیار کم، تجربهای مشابه با عملکرد مدل 405B. بر پایه ساختار Transformer و با بهبود کارایی و ایمنی از طریق تنظیم دقیق نظارتی (SFT) و یادگیری تقویتی با بازخورد انسانی (RLHF). نسخه بهینهسازی شده برای دستورالعملها به طور خاص برای مکالمات چند زبانه بهینهسازی شده و در چندین معیار صنعتی بهتر از بسیاری از مدلهای چت متن باز و بسته عمل میکند. تاریخ قطع دانش تا دسامبر 2023."
|
949
|
+
},
|
938
950
|
"meta-llama/Llama-Vision-Free": {
|
939
951
|
"description": "LLaMA 3.2 برای انجام وظایفی که ترکیبی از دادههای بصری و متنی هستند طراحی شده است. این مدل در وظایفی مانند توصیف تصویر و پرسش و پاسخ بصری عملکرد بسیار خوبی دارد و فاصله بین تولید زبان و استدلال بصری را پر میکند."
|
940
952
|
},
|
@@ -1091,18 +1103,12 @@
|
|
1091
1103
|
"nousresearch/hermes-2-pro-llama-3-8b": {
|
1092
1104
|
"description": "هرمس ۲ پرو لاما ۳ ۸B نسخه ارتقاء یافته Nous Hermes 2 است که شامل جدیدترین مجموعه دادههای توسعهیافته داخلی میباشد."
|
1093
1105
|
},
|
1094
|
-
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
1095
|
-
"description": "Llama 3.1 Nemotron 70B یک مدل زبان بزرگ است که توسط NVIDIA سفارشیسازی شده و هدف آن افزایش مفید بودن پاسخهای تولید شده توسط LLM به پرسشهای کاربران است."
|
1096
|
-
},
|
1097
1106
|
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
|
1098
1107
|
"description": "Llama 3.1 Nemotron 70B یک مدل زبانی بزرگ سفارشی شده توسط NVIDIA است که به منظور افزایش کمک به پاسخهای تولید شده توسط LLM برای پرسشهای کاربران طراحی شده است. این مدل در آزمونهای معیار مانند Arena Hard، AlpacaEval 2 LC و GPT-4-Turbo MT-Bench عملکرد عالی داشته و تا تاریخ 1 اکتبر 2024 در تمامی سه آزمون خودکار همراستایی در رتبه اول قرار دارد. این مدل با استفاده از RLHF (به ویژه REINFORCE)، Llama-3.1-Nemotron-70B-Reward و HelpSteer2-Preference در مدل Llama-3.1-70B-Instruct آموزش دیده است."
|
1099
1108
|
},
|
1100
1109
|
"o1": {
|
1101
1110
|
"description": "متمرکز بر استدلال پیشرفته و حل مسائل پیچیده، از جمله وظایف ریاضی و علمی. بسیار مناسب برای برنامههایی که به درک عمیق زمینه و مدیریت جریانهای کاری نیاز دارند."
|
1102
1111
|
},
|
1103
|
-
"o1-2024-12-17": {
|
1104
|
-
"description": "o1 مدل استدلال جدید OpenAI است که ورودیهای متنی و تصویری را پشتیبانی میکند و خروجی متنی تولید میکند و برای وظایف پیچیدهای که به دانش عمومی گسترده نیاز دارند، مناسب است. این مدل دارای 200K زمینه و تاریخ قطع دانش در اکتبر 2023 است."
|
1105
|
-
},
|
1106
1112
|
"o1-mini": {
|
1107
1113
|
"description": "کوچکتر و سریعتر از o1-preview، با ۸۰٪ هزینه کمتر، و عملکرد خوب در تولید کد و عملیات با زمینههای کوچک."
|
1108
1114
|
},
|
@@ -1130,9 +1136,6 @@
|
|
1130
1136
|
"openai/gpt-4o-mini": {
|
1131
1137
|
"description": "GPT-4o mini جدیدترین مدل OpenAI است که پس از GPT-4 Omni عرضه شده و از ورودیهای تصویری و متنی پشتیبانی میکند و خروجی متنی ارائه میدهد. به عنوان پیشرفتهترین مدل کوچک آنها، این مدل بسیار ارزانتر از سایر مدلهای پیشرفته اخیر است و بیش از ۶۰٪ ارزانتر از GPT-3.5 Turbo میباشد. این مدل هوشمندی پیشرفته را حفظ کرده و در عین حال از نظر اقتصادی بسیار مقرون به صرفه است. GPT-4o mini در آزمون MMLU امتیاز ۸۲٪ را کسب کرده و در حال حاضر در ترجیحات چت بالاتر از GPT-4 رتبهبندی شده است."
|
1132
1138
|
},
|
1133
|
-
"openai/o1": {
|
1134
|
-
"description": "o1 مدل استدلال جدید OpenAI است که ورودیهای متنی و تصویری را پشتیبانی میکند و خروجی متنی تولید میکند و برای وظایف پیچیدهای که به دانش عمومی گسترده نیاز دارند، مناسب است. این مدل دارای 200K زمینه و تاریخ قطع دانش در اکتبر 2023 است."
|
1135
|
-
},
|
1136
1139
|
"openai/o1-mini": {
|
1137
1140
|
"description": "o1-mini یک مدل استنتاج سریع و مقرونبهصرفه است که برای برنامهنویسی، ریاضیات و کاربردهای علمی طراحی شده است. این مدل دارای ۱۲۸ هزار بایت زمینه و تاریخ قطع دانش تا اکتبر ۲۰۲۳ میباشد."
|
1138
1141
|
},
|
@@ -1307,15 +1310,30 @@
|
|
1307
1310
|
"taichu_llm": {
|
1308
1311
|
"description": "Taichu 2.0 بر اساس حجم زیادی از دادههای با کیفیت بالا آموزش دیده است و دارای تواناییهای قویتری در درک متن، تولید محتوا، پرسش و پاسخ در مکالمه و غیره میباشد."
|
1309
1312
|
},
|
1313
|
+
"text-embedding-3-large": {
|
1314
|
+
"description": "قدرتمندترین مدل وکتور سازی، مناسب برای وظایف انگلیسی و غیرانگلیسی."
|
1315
|
+
},
|
1316
|
+
"text-embedding-3-small": {
|
1317
|
+
"description": "مدل جدید و کارآمد Embedding، مناسب برای جستجوی دانش، کاربردهای RAG و سایر سناریوها."
|
1318
|
+
},
|
1310
1319
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1311
1320
|
"description": "StripedHyena Nous (7B) با استفاده از استراتژیها و معماری مدل کارآمد، توان محاسباتی بهبودیافتهای را ارائه میدهد."
|
1312
1321
|
},
|
1322
|
+
"tts-1": {
|
1323
|
+
"description": "جدیدترین مدل تبدیل متن به گفتار، بهینهسازی شده برای سرعت در سناریوهای زنده."
|
1324
|
+
},
|
1325
|
+
"tts-1-hd": {
|
1326
|
+
"description": "جدیدترین مدل تبدیل متن به گفتار، بهینهسازی شده برای کیفیت."
|
1327
|
+
},
|
1313
1328
|
"upstage/SOLAR-10.7B-Instruct-v1.0": {
|
1314
1329
|
"description": "Upstage SOLAR Instruct v1 (11B) مناسب برای وظایف دقیق دستوری، ارائهدهنده تواناییهای برجسته در پردازش زبان."
|
1315
1330
|
},
|
1316
1331
|
"us.anthropic.claude-3-5-sonnet-20241022-v2:0": {
|
1317
1332
|
"description": "Claude 3.5 Sonnet استانداردهای صنعتی را ارتقا داده و عملکردی فراتر از مدلهای رقیب و Claude 3 Opus دارد و در ارزیابیهای گستردهای عملکرد عالی از خود نشان میدهد، در حالی که سرعت و هزینه مدلهای سطح متوسط ما را نیز داراست."
|
1318
1333
|
},
|
1334
|
+
"whisper-1": {
|
1335
|
+
"description": "مدل شناسایی گفتار عمومی، پشتیبانی از شناسایی گفتار چند زبانه، ترجمه گفتار و شناسایی زبان."
|
1336
|
+
},
|
1319
1337
|
"wizardlm2": {
|
1320
1338
|
"description": "WizardLM 2 یک مدل زبانی ارائه شده توسط هوش مصنوعی مایکروسافت است که در مکالمات پیچیده، چندزبانه، استدلال و دستیارهای هوشمند عملکرد برجستهای دارد."
|
1321
1339
|
},
|