@lobehub/chat 1.45.2 → 1.45.4
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/locales/ar/models.json +42 -24
- package/locales/bg-BG/models.json +42 -24
- package/locales/de-DE/models.json +42 -24
- package/locales/en-US/models.json +42 -24
- package/locales/es-ES/models.json +42 -24
- package/locales/fa-IR/models.json +42 -24
- package/locales/fr-FR/models.json +42 -24
- package/locales/it-IT/models.json +42 -24
- package/locales/ja-JP/models.json +42 -24
- package/locales/ko-KR/models.json +42 -24
- package/locales/nl-NL/models.json +42 -24
- package/locales/pl-PL/models.json +42 -24
- package/locales/pt-BR/models.json +42 -24
- package/locales/ru-RU/models.json +42 -24
- package/locales/tr-TR/models.json +42 -24
- package/locales/vi-VN/models.json +42 -24
- package/locales/zh-CN/models.json +55 -37
- package/locales/zh-TW/models.json +42 -24
- package/package.json +1 -1
- package/src/app/(main)/discover/(detail)/provider/[slug]/features/ProviderConfig.tsx +3 -2
- package/src/app/(main)/settings/provider/(detail)/github/page.tsx +4 -4
- package/src/app/(main)/settings/provider/(detail)/huggingface/page.tsx +4 -4
- package/src/database/repositories/aiInfra/index.ts +8 -5
- package/src/database/server/models/__tests__/aiModel.test.ts +1 -1
- package/src/database/server/models/aiModel.ts +14 -45
- package/src/locales/default/models.ts +2 -2
package/CHANGELOG.md
CHANGED
@@ -2,6 +2,56 @@
|
|
2
2
|
|
3
3
|
# Changelog
|
4
4
|
|
5
|
+
### [Version 1.45.4](https://github.com/lobehub/lobe-chat/compare/v1.45.3...v1.45.4)
|
6
|
+
|
7
|
+
<sup>Released on **2025-01-09**</sup>
|
8
|
+
|
9
|
+
#### 🐛 Bug Fixes
|
10
|
+
|
11
|
+
- **misc**: Fix GitHub and huggingface provider config unusable.
|
12
|
+
|
13
|
+
<br/>
|
14
|
+
|
15
|
+
<details>
|
16
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
17
|
+
|
18
|
+
#### What's fixed
|
19
|
+
|
20
|
+
- **misc**: Fix GitHub and huggingface provider config unusable, closes [#5366](https://github.com/lobehub/lobe-chat/issues/5366) ([aec67b4](https://github.com/lobehub/lobe-chat/commit/aec67b4))
|
21
|
+
|
22
|
+
</details>
|
23
|
+
|
24
|
+
<div align="right">
|
25
|
+
|
26
|
+
[](#readme-top)
|
27
|
+
|
28
|
+
</div>
|
29
|
+
|
30
|
+
### [Version 1.45.3](https://github.com/lobehub/lobe-chat/compare/v1.45.2...v1.45.3)
|
31
|
+
|
32
|
+
<sup>Released on **2025-01-09**</sup>
|
33
|
+
|
34
|
+
#### 🐛 Bug Fixes
|
35
|
+
|
36
|
+
- **misc**: Fix some ai provider known issues.
|
37
|
+
|
38
|
+
<br/>
|
39
|
+
|
40
|
+
<details>
|
41
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
42
|
+
|
43
|
+
#### What's fixed
|
44
|
+
|
45
|
+
- **misc**: Fix some ai provider known issues, closes [#5361](https://github.com/lobehub/lobe-chat/issues/5361) ([b2775b5](https://github.com/lobehub/lobe-chat/commit/b2775b5))
|
46
|
+
|
47
|
+
</details>
|
48
|
+
|
49
|
+
<div align="right">
|
50
|
+
|
51
|
+
[](#readme-top)
|
52
|
+
|
53
|
+
</div>
|
54
|
+
|
5
55
|
### [Version 1.45.2](https://github.com/lobehub/lobe-chat/compare/v1.45.1...v1.45.2)
|
6
56
|
|
7
57
|
<sup>Released on **2025-01-09**</sup>
|
package/changelog/v1.json
CHANGED
@@ -1,4 +1,22 @@
|
|
1
1
|
[
|
2
|
+
{
|
3
|
+
"children": {
|
4
|
+
"fixes": [
|
5
|
+
"Fix GitHub and huggingface provider config unusable."
|
6
|
+
]
|
7
|
+
},
|
8
|
+
"date": "2025-01-09",
|
9
|
+
"version": "1.45.4"
|
10
|
+
},
|
11
|
+
{
|
12
|
+
"children": {
|
13
|
+
"fixes": [
|
14
|
+
"Fix some ai provider known issues."
|
15
|
+
]
|
16
|
+
},
|
17
|
+
"date": "2025-01-09",
|
18
|
+
"version": "1.45.3"
|
19
|
+
},
|
2
20
|
{
|
3
21
|
"children": {
|
4
22
|
"improvements": [
|
package/locales/ar/models.json
CHANGED
@@ -119,9 +119,6 @@
|
|
119
119
|
"OpenGVLab/InternVL2-26B": {
|
120
120
|
"description": "أظهر InternVL2 أداءً رائعًا في مجموعة متنوعة من مهام اللغة البصرية، بما في ذلك فهم الوثائق والرسوم البيانية، وفهم النصوص في المشاهد، وOCR، وحل المشكلات العلمية والرياضية."
|
121
121
|
},
|
122
|
-
"OpenGVLab/InternVL2-Llama3-76B": {
|
123
|
-
"description": "أظهر InternVL2 أداءً رائعًا في مجموعة متنوعة من مهام اللغة البصرية، بما في ذلك فهم الوثائق والرسوم البيانية، وفهم النصوص في المشاهد، وOCR، وحل المشكلات العلمية والرياضية."
|
124
|
-
},
|
125
122
|
"Phi-3-medium-128k-instruct": {
|
126
123
|
"description": "نموذج Phi-3-medium نفسه، ولكن مع حجم سياق أكبر لـ RAG أو التوجيه القليل."
|
127
124
|
},
|
@@ -215,9 +212,6 @@
|
|
215
212
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
216
213
|
"description": "Qwen2.5-Coder-7B-Instruct هو أحدث إصدار من سلسلة نماذج اللغة الكبيرة المحددة للشيفرة التي أصدرتها Alibaba Cloud. تم تحسين هذا النموذج بشكل كبير في توليد الشيفرة، والاستدلال، وإصلاح الأخطاء، من خلال تدريب على 55 تريليون توكن."
|
217
214
|
},
|
218
|
-
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
219
|
-
"description": "Qwen2.5-Math يركز على حل المشكلات في مجال الرياضيات، ويقدم إجابات احترافية للأسئلة الصعبة."
|
220
|
-
},
|
221
215
|
"Qwen2-72B-Instruct": {
|
222
216
|
"description": "Qwen2 هو أحدث سلسلة من نموذج Qwen، ويدعم سياقًا يصل إلى 128 ألف، مقارنةً بأفضل النماذج مفتوحة المصدر الحالية، يتفوق Qwen2-72B بشكل ملحوظ في فهم اللغة الطبيعية والمعرفة والترميز والرياضيات والقدرات متعددة اللغات."
|
223
217
|
},
|
@@ -290,12 +284,6 @@
|
|
290
284
|
"TeleAI/TeleMM": {
|
291
285
|
"description": "نموذج TeleMM هو نموذج كبير لفهم متعدد الوسائط تم تطويره ذاتيًا من قبل China Telecom، يمكنه معالجة مدخلات متعددة الوسائط مثل النصوص والصور، ويدعم وظائف مثل فهم الصور، وتحليل الرسوم البيانية، مما يوفر خدمات فهم متعددة الوسائط للمستخدمين. يمكن للنموذج التفاعل مع المستخدمين بطرق متعددة الوسائط، وفهم المحتوى المدخل بدقة، والإجابة على الأسئلة، والمساعدة في الإبداع، وتوفير معلومات متعددة الوسائط ودعم الإلهام بكفاءة. أظهر أداءً ممتازًا في المهام متعددة الوسائط مثل الإدراك الدقيق، والاستدلال المنطقي."
|
292
286
|
},
|
293
|
-
"Tencent/Hunyuan-A52B-Instruct": {
|
294
|
-
"description": "Hunyuan-Large هو أكبر نموذج MoE مفتوح المصدر في الصناعة، مع 389 مليار إجمالي عدد المعلمات و52 مليار عدد المعلمات النشطة."
|
295
|
-
},
|
296
|
-
"Vendor-A/Qwen/Qwen2-7B-Instruct": {
|
297
|
-
"description": "Qwen2-72B-Instruct هو نموذج لغوي كبير تم تعديله وفقًا للتعليمات في سلسلة Qwen2، بحجم 72B. يعتمد هذا النموذج على بنية Transformer، ويستخدم تقنيات مثل دالة تنشيط SwiGLU، وتحويل QKV، والانتباه الجماعي. يمكنه معالجة المدخلات الكبيرة. أظهر النموذج أداءً ممتازًا في فهم اللغة، والتوليد، والقدرات متعددة اللغات، والترميز، والرياضيات، والاستدلال في العديد من اختبارات المعايير، متجاوزًا معظم النماذج مفتوحة المصدر."
|
298
|
-
},
|
299
287
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
300
288
|
"description": "Qwen2.5-72B-Instruct هو أحد أحدث نماذج اللغة الكبيرة التي أصدرتها Alibaba Cloud. يتمتع هذا النموذج بقدرات محسنة بشكل ملحوظ في مجالات الترميز والرياضيات. كما يوفر دعمًا للغات متعددة، تغطي أكثر من 29 لغة، بما في ذلك الصينية والإنجليزية. أظهر النموذج تحسينات ملحوظة في اتباع التعليمات، وفهم البيانات الهيكلية، وتوليد المخرجات الهيكلية (خاصة JSON)."
|
301
289
|
},
|
@@ -521,12 +509,15 @@
|
|
521
509
|
"command-r-plus": {
|
522
510
|
"description": "Command R+ هو نموذج لغوي كبير عالي الأداء، مصمم لمشاهد الأعمال الحقيقية والتطبيقات المعقدة."
|
523
511
|
},
|
512
|
+
"dall-e-2": {
|
513
|
+
"description": "النموذج الثاني من DALL·E، يدعم توليد صور أكثر واقعية ودقة، بدقة تعادل أربعة أضعاف الجيل الأول."
|
514
|
+
},
|
515
|
+
"dall-e-3": {
|
516
|
+
"description": "أحدث نموذج DALL·E، تم إصداره في نوفمبر 2023. يدعم توليد صور أكثر واقعية ودقة، مع قدرة أكبر على التعبير عن التفاصيل."
|
517
|
+
},
|
524
518
|
"databricks/dbrx-instruct": {
|
525
519
|
"description": "DBRX Instruct يوفر قدرة معالجة تعليمات موثوقة، يدعم تطبيقات متعددة الصناعات."
|
526
520
|
},
|
527
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
528
|
-
"description": "DeepSeek-V2 هو نموذج لغوي قوي وفعال من حيث التكلفة يعتمد على الخبراء المختلطين (MoE). تم تدريبه مسبقًا على مجموعة بيانات عالية الجودة تحتوي على 8.1 تريليون توكن، وتم تحسين قدراته من خلال التعديل الخاضع للإشراف (SFT) والتعلم المعزز (RL). مقارنةً بـ DeepSeek 67B، يوفر DeepSeek-V2 أداءً أقوى مع توفير 42.5% من تكاليف التدريب، وتقليل 93.3% من ذاكرة التخزين المؤقت KV، وزيادة الحد الأقصى لمعدل الإنتاج إلى 5.76 مرة. يدعم النموذج طول سياق يصل إلى 128k، ويظهر أداءً ممتازًا في اختبارات المعايير القياسية وتقييمات التوليد المفتوحة."
|
529
|
-
},
|
530
521
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
522
|
"description": "DeepSeek V2.5 يجمع بين الميزات الممتازة للإصدارات السابقة، ويعزز القدرات العامة والترميز."
|
532
523
|
},
|
@@ -704,6 +695,9 @@
|
|
704
695
|
"gpt-3.5-turbo-1106": {
|
705
696
|
"description": "نموذج GPT 3.5 Turbo، مناسب لمجموعة متنوعة من مهام توليد وفهم النصوص، يشير حاليًا إلى gpt-3.5-turbo-0125."
|
706
697
|
},
|
698
|
+
"gpt-3.5-turbo-16k": {
|
699
|
+
"description": "نموذج GPT 3.5 Turbo 16k، نموذج توليد نصوص عالي السعة، مناسب للمهام المعقدة."
|
700
|
+
},
|
707
701
|
"gpt-3.5-turbo-instruct": {
|
708
702
|
"description": "نموذج GPT 3.5 Turbo، مناسب لمجموعة متنوعة من مهام توليد وفهم النصوص، يشير حاليًا إلى gpt-3.5-turbo-0125."
|
709
703
|
},
|
@@ -755,9 +749,24 @@
|
|
755
749
|
"gpt-4o-2024-11-20": {
|
756
750
|
"description": "تشات جي بي تي-4o هو نموذج ديناميكي يتم تحديثه في الوقت الفعلي للحفاظ على أحدث إصدار. يجمع بين الفهم اللغوي القوي وقدرة التوليد، مما يجعله مناسبًا لتطبيقات واسعة النطاق، بما في ذلك خدمة العملاء والتعليم والدعم الفني."
|
757
751
|
},
|
752
|
+
"gpt-4o-audio-preview": {
|
753
|
+
"description": "نموذج GPT-4o Audio، يدعم إدخال وإخراج الصوت."
|
754
|
+
},
|
758
755
|
"gpt-4o-mini": {
|
759
756
|
"description": "نموذج GPT-4o mini هو أحدث نموذج أطلقته OpenAI بعد GPT-4 Omni، ويدعم إدخال الصور والنصوص وإخراج النصوص. كأحد نماذجهم المتقدمة الصغيرة، فهو أرخص بكثير من النماذج الرائدة الأخرى في الآونة الأخيرة، وأرخص بأكثر من 60% من GPT-3.5 Turbo. يحتفظ بذكاء متقدم مع قيمة ممتازة. حصل GPT-4o mini على 82% في اختبار MMLU، وهو حاليًا يتفوق على GPT-4 في تفضيلات الدردشة."
|
760
757
|
},
|
758
|
+
"gpt-4o-mini-realtime-preview": {
|
759
|
+
"description": "الإصدار المصغر الفوري من GPT-4o، يدعم إدخال وإخراج الصوت والنص في الوقت الحقيقي."
|
760
|
+
},
|
761
|
+
"gpt-4o-realtime-preview": {
|
762
|
+
"description": "الإصدار الفوري من GPT-4o، يدعم إدخال وإخراج الصوت والنص في الوقت الحقيقي."
|
763
|
+
},
|
764
|
+
"gpt-4o-realtime-preview-2024-10-01": {
|
765
|
+
"description": "الإصدار الفوري من GPT-4o، يدعم إدخال وإخراج الصوت والنص في الوقت الحقيقي."
|
766
|
+
},
|
767
|
+
"gpt-4o-realtime-preview-2024-12-17": {
|
768
|
+
"description": "الإصدار الفوري من GPT-4o، يدعم إدخال وإخراج الصوت والنص في الوقت الحقيقي."
|
769
|
+
},
|
761
770
|
"grok-2-1212": {
|
762
771
|
"description": "لقد تم تحسين هذا النموذج في الدقة، والامتثال للتعليمات، والقدرة على التعامل مع لغات متعددة."
|
763
772
|
},
|
@@ -935,6 +944,9 @@
|
|
935
944
|
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
936
945
|
"description": "تم تصميم LLaMA 3.2 لمعالجة المهام التي تجمع بين البيانات البصرية والنصية. إنه يبرز في مهام وصف الصور والأسئلة البصرية، متجاوزًا الفجوة بين توليد اللغة واستدلال الرؤية."
|
937
946
|
},
|
947
|
+
"meta-llama/Llama-3.3-70B-Instruct": {
|
948
|
+
"description": "Llama 3.3 هو أحدث نموذج لغوي مفتوح المصدر متعدد اللغات من سلسلة Llama، يقدم تجربة مشابهة لأداء نموذج 405B بتكلفة منخفضة للغاية. يعتمد على هيكل Transformer، وتم تحسينه من خلال التعديل الإشرافي (SFT) والتعلم المعزز من خلال ردود الفعل البشرية (RLHF) لتعزيز الفائدة والأمان. تم تحسين نسخة التعديل الخاصة به للحوار متعدد اللغات، حيث يتفوق في العديد من المعايير الصناعية على العديد من نماذج الدردشة المفتوحة والمغلقة. تاريخ انتهاء المعرفة هو ديسمبر 2023."
|
949
|
+
},
|
938
950
|
"meta-llama/Llama-Vision-Free": {
|
939
951
|
"description": "تم تصميم LLaMA 3.2 لمعالجة المهام التي تجمع بين البيانات البصرية والنصية. إنه يبرز في مهام وصف الصور والأسئلة البصرية، متجاوزًا الفجوة بين توليد اللغة واستدلال الرؤية."
|
940
952
|
},
|
@@ -1091,18 +1103,12 @@
|
|
1091
1103
|
"nousresearch/hermes-2-pro-llama-3-8b": {
|
1092
1104
|
"description": "Hermes 2 Pro Llama 3 8B هو إصدار مطور من Nous Hermes 2، ويحتوي على أحدث مجموعات البيانات المطورة داخليًا."
|
1093
1105
|
},
|
1094
|
-
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
1095
|
-
"description": "Llama 3.1 Nemotron 70B هو نموذج لغوي كبير مُخصص من NVIDIA، يهدف إلى تحسين استجابة LLM لمساعدة استفسارات المستخدمين."
|
1096
|
-
},
|
1097
1106
|
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
|
1098
1107
|
"description": "Llama 3.1 Nemotron 70B هو نموذج لغوي كبير مخصص من NVIDIA، يهدف إلى تحسين استجابة LLM لمساعدة استفسارات المستخدمين. لقد أظهر النموذج أداءً ممتازًا في اختبارات المعايير مثل Arena Hard وAlpacaEval 2 LC وGPT-4-Turbo MT-Bench، حيث احتل المرتبة الأولى في جميع اختبارات المحاذاة التلقائية الثلاثة حتى 1 أكتوبر 2024. تم تدريب النموذج باستخدام RLHF (خاصة REINFORCE) وLlama-3.1-Nemotron-70B-Reward وHelpSteer2-Preference على أساس نموذج Llama-3.1-70B-Instruct."
|
1099
1108
|
},
|
1100
1109
|
"o1": {
|
1101
1110
|
"description": "يركز على الاستدلال المتقدم وحل المشكلات المعقدة، بما في ذلك المهام الرياضية والعلمية. مثالي للتطبيقات التي تتطلب فهمًا عميقًا للسياق وإدارة سير العمل."
|
1102
1111
|
},
|
1103
|
-
"o1-2024-12-17": {
|
1104
|
-
"description": "o1 هو نموذج الاستدلال الجديد من OpenAI، يدعم إدخال النصوص والصور وإخراج النصوص، وهو مناسب للمهام المعقدة التي تتطلب معرفة عامة واسعة. يحتوي هذا النموذج على 200K من السياق وتاريخ انتهاء المعرفة في أكتوبر 2023."
|
1105
|
-
},
|
1106
1112
|
"o1-mini": {
|
1107
1113
|
"description": "o1-mini هو نموذج استدلال سريع وفعال من حيث التكلفة مصمم لتطبيقات البرمجة والرياضيات والعلوم. يحتوي هذا النموذج على 128K من السياق وتاريخ انتهاء المعرفة في أكتوبر 2023."
|
1108
1114
|
},
|
@@ -1130,9 +1136,6 @@
|
|
1130
1136
|
"openai/gpt-4o-mini": {
|
1131
1137
|
"description": "GPT-4o mini هو أحدث نموذج من OpenAI تم إطلاقه بعد GPT-4 Omni، ويدعم إدخال النصوص والصور وإخراج النصوص. كأحد نماذجهم المتقدمة الصغيرة، فهو أرخص بكثير من النماذج الرائدة الأخرى في الآونة الأخيرة، وأرخص بأكثر من 60% من GPT-3.5 Turbo. يحتفظ بذكاء متقدم مع قيمة ممتازة. حصل GPT-4o mini على 82% في اختبار MMLU، وهو حاليًا يتفوق على GPT-4 في تفضيلات الدردشة."
|
1132
1138
|
},
|
1133
|
-
"openai/o1": {
|
1134
|
-
"description": "o1 هو نموذج الاستدلال الجديد من OpenAI، يدعم إدخال النصوص والصور وإخراج النصوص، وهو مناسب للمهام المعقدة التي تتطلب معرفة عامة واسعة. يحتوي هذا النموذج على 200K من السياق وتاريخ انتهاء المعرفة في أكتوبر 2023."
|
1135
|
-
},
|
1136
1139
|
"openai/o1-mini": {
|
1137
1140
|
"description": "o1-mini هو نموذج استدلال سريع وفعال من حيث التكلفة مصمم لتطبيقات البرمجة والرياضيات والعلوم. يحتوي هذا النموذج على 128K من السياق وتاريخ انتهاء المعرفة في أكتوبر 2023."
|
1138
1141
|
},
|
@@ -1307,15 +1310,30 @@
|
|
1307
1310
|
"taichu_llm": {
|
1308
1311
|
"description": "نموذج اللغة الكبير TaiChu يتمتع بقدرات قوية في فهم اللغة، بالإضافة إلى إنشاء النصوص، والإجابة على الأسئلة، وبرمجة الأكواد، والحسابات الرياضية، والاستدلال المنطقي، وتحليل المشاعر، وتلخيص النصوص. يجمع بشكل مبتكر بين التدريب المسبق على البيانات الضخمة والمعرفة الغنية من مصادر متعددة، من خلال تحسين تقنيات الخوارزميات باستمرار واستيعاب المعرفة الجديدة من البيانات النصية الضخمة، مما يحقق تطورًا مستمرًا في أداء النموذج. يوفر للمستخدمين معلومات وخدمات أكثر سهولة وتجربة أكثر ذكاءً."
|
1309
1312
|
},
|
1313
|
+
"text-embedding-3-large": {
|
1314
|
+
"description": "أقوى نموذج لتضمين النصوص، مناسب للمهام الإنجليزية وغير الإنجليزية."
|
1315
|
+
},
|
1316
|
+
"text-embedding-3-small": {
|
1317
|
+
"description": "نموذج التضمين من الجيل الجديد، فعال واقتصادي، مناسب لاسترجاع المعرفة وتطبيقات RAG وغيرها."
|
1318
|
+
},
|
1310
1319
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1311
1320
|
"description": "StripedHyena Nous (7B) يوفر قدرة حسابية معززة من خلال استراتيجيات فعالة وهندسة نموذجية."
|
1312
1321
|
},
|
1322
|
+
"tts-1": {
|
1323
|
+
"description": "أحدث نموذج لتحويل النص إلى كلام، تم تحسينه للسرعة في السيناريوهات الحية."
|
1324
|
+
},
|
1325
|
+
"tts-1-hd": {
|
1326
|
+
"description": "أحدث نموذج لتحويل النص إلى كلام، تم تحسينه للجودة."
|
1327
|
+
},
|
1313
1328
|
"upstage/SOLAR-10.7B-Instruct-v1.0": {
|
1314
1329
|
"description": "Upstage SOLAR Instruct v1 (11B) مناسب لمهام التعليمات الدقيقة، يوفر قدرة معالجة لغوية ممتازة."
|
1315
1330
|
},
|
1316
1331
|
"us.anthropic.claude-3-5-sonnet-20241022-v2:0": {
|
1317
1332
|
"description": "Claude 3.5 Sonnet يرفع المعايير الصناعية، حيث يتفوق على نماذج المنافسين وClaude 3 Opus، ويظهر أداءً ممتازًا في تقييمات واسعة، مع سرعة وتكلفة تتناسب مع نماذجنا المتوسطة."
|
1318
1333
|
},
|
1334
|
+
"whisper-1": {
|
1335
|
+
"description": "نموذج التعرف على الصوت العام، يدعم التعرف على الصوت متعدد اللغات، والترجمة الصوتية، والتعرف على اللغات."
|
1336
|
+
},
|
1319
1337
|
"wizardlm2": {
|
1320
1338
|
"description": "WizardLM 2 هو نموذج لغوي تقدمه Microsoft AI، يتميز بأداء ممتاز في الحوار المعقد، واللغات المتعددة، والاستدلال، والمساعدين الذكيين."
|
1321
1339
|
},
|
@@ -119,9 +119,6 @@
|
|
119
119
|
"OpenGVLab/InternVL2-26B": {
|
120
120
|
"description": "InternVL2 демонстрира изключителни резултати в различни визуално-языкови задачи, включително разбиране на документи и графики, разбиране на текст в сцени, OCR, решаване на научни и математически проблеми."
|
121
121
|
},
|
122
|
-
"OpenGVLab/InternVL2-Llama3-76B": {
|
123
|
-
"description": "InternVL2 демонстрира изключителни резултати в различни визуално-языкови задачи, включително разбиране на документи и графики, разбиране на текст в сцени, OCR, решаване на научни и математически проблеми."
|
124
|
-
},
|
125
122
|
"Phi-3-medium-128k-instruct": {
|
126
123
|
"description": "Същият модел Phi-3-medium, но с по-голям размер на контекста за RAG или малко подканване."
|
127
124
|
},
|
@@ -215,9 +212,6 @@
|
|
215
212
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
216
213
|
"description": "Qwen2.5-Coder-7B-Instruct е най-новата версия на серията големи езикови модели, специфични за код, публикувана от Alibaba Cloud. Моделът значително подобрява способностите за генериране на код, разсъждения и корекции, след като е обучен с 55 трилиона токена на базата на Qwen2.5. Той не само подобрява кодовите умения, но и запазва предимствата в математиката и общите способности. Моделът предоставя по-пълна основа за практическите приложения като кодови интелигентни агенти."
|
217
214
|
},
|
218
|
-
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
219
|
-
"description": "Qwen2.5-Math се фокусира върху решаването на математически проблеми, предоставяйки професионални отговори на трудни задачи."
|
220
|
-
},
|
221
215
|
"Qwen2-72B-Instruct": {
|
222
216
|
"description": "Qwen2 е най-новата серия на модела Qwen, поддържаща 128k контекст. В сравнение с текущите най-добри отворени модели, Qwen2-72B значително надминава водещите модели в области като разбиране на естествен език, знания, код, математика и многоезичност."
|
223
217
|
},
|
@@ -290,12 +284,6 @@
|
|
290
284
|
"TeleAI/TeleMM": {
|
291
285
|
"description": "TeleMM е многомодален голям модел, разработен от China Telecom, способен да обработва текст, изображения и други видове входни данни, поддържащ функции като разбиране на изображения и анализ на графики, предоставяйки услуги за разбиране на потребителите в различни модалности. Моделът може да взаимодейства с потребителите в многомодални сценарии, точно разбирайки входното съдържание, отговаряйки на въпроси, помагайки в творчеството и ефективно предоставяйки многомодална информация и вдъхновение. Моделът показва отлични резултати в задачи с фина перцепция и логическо разсъждение."
|
292
286
|
},
|
293
|
-
"Tencent/Hunyuan-A52B-Instruct": {
|
294
|
-
"description": "Hunyuan-Large е най-голямата отворена трансформаторна архитектура MoE в индустрията, с общо 3890 милиарда параметри и 52 милиарда активни параметри."
|
295
|
-
},
|
296
|
-
"Vendor-A/Qwen/Qwen2-7B-Instruct": {
|
297
|
-
"description": "Qwen2-72B-Instruct е голям езиков модел с параметри 72B от серията Qwen2, специално настроен за инструкции. Моделът е базиран на архитектурата Transformer и използва технологии като SwiGLU активационна функция, QKV отклонение за внимание и групова внимание. Той може да обработва големи входни данни. Моделът показва отлични резултати в множество бенчмаркове за разбиране на езика, генериране, многоезични способности, кодиране, математика и разсъждения, надминавайки повечето отворени модели и показвайки конкурентоспособност на определени задачи в сравнение с патентовани модели."
|
298
|
-
},
|
299
287
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
300
288
|
"description": "Qwen2.5-72B-Instruct е един от най-новите големи езикови модели, публикувани от Alibaba Cloud. Този 72B модел показва значителни подобрения в областите на кодирането и математиката. Моделът предлага многоезична поддръжка, обхващаща над 29 езика, включително китайски, английски и др. Моделът показва значителни подобрения в следването на инструкции, разбирането на структурирани данни и генерирането на структурирани изходи (особено JSON)."
|
301
289
|
},
|
@@ -521,12 +509,15 @@
|
|
521
509
|
"command-r-plus": {
|
522
510
|
"description": "Command R+ е високопроизводителен голям езиков модел, проектиран за реални бизнес сценарии и сложни приложения."
|
523
511
|
},
|
512
|
+
"dall-e-2": {
|
513
|
+
"description": "Второ поколение модел DALL·E, поддържащ по-реалистично и точно генериране на изображения, с резолюция 4 пъти по-висока от първото поколение."
|
514
|
+
},
|
515
|
+
"dall-e-3": {
|
516
|
+
"description": "Най-новият модел DALL·E, пуснат през ноември 2023 г. Поддържа по-реалистично и точно генериране на изображения с по-силна детайлност."
|
517
|
+
},
|
524
518
|
"databricks/dbrx-instruct": {
|
525
519
|
"description": "DBRX Instruct предлага висока надеждност в обработката на инструкции, поддържаща приложения в множество индустрии."
|
526
520
|
},
|
527
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
528
|
-
"description": "DeepSeek-V2 е мощен и икономически ефективен хибриден експертен (MoE) езиков модел. Той е предварително обучен на висококачествен корпус от 81 трилиона токена и е допълнително подобрен чрез наблюдавано фино настройване (SFT) и обучение с подсилване (RL). В сравнение с DeepSeek 67B, DeepSeek-V2 постига по-добра производителност, спестявайки 42.5% от разходите за обучение, намалявайки KV кеша с 93.3% и увеличавайки максималната производителност на генериране с 5.76 пъти. Моделът поддържа контекстна дължина от 128k и показва отлични резултати в стандартни бенчмаркове и оценки на отворено генериране."
|
529
|
-
},
|
530
521
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
522
|
"description": "DeepSeek V2.5 обединява отличителните характеристики на предишните версии, подобрявайки общите и кодиращите способности."
|
532
523
|
},
|
@@ -704,6 +695,9 @@
|
|
704
695
|
"gpt-3.5-turbo-1106": {
|
705
696
|
"description": "GPT 3.5 Turbo, подходящ за различни задачи по генериране и разбиране на текст, в момента сочи към gpt-3.5-turbo-0125."
|
706
697
|
},
|
698
|
+
"gpt-3.5-turbo-16k": {
|
699
|
+
"description": "GPT 3.5 Turbo 16k, модел за генериране на текст с висока капацитет, подходящ за сложни задачи."
|
700
|
+
},
|
707
701
|
"gpt-3.5-turbo-instruct": {
|
708
702
|
"description": "GPT 3.5 Turbo, подходящ за различни задачи по генериране и разбиране на текст, в момента сочи към gpt-3.5-turbo-0125."
|
709
703
|
},
|
@@ -755,9 +749,24 @@
|
|
755
749
|
"gpt-4o-2024-11-20": {
|
756
750
|
"description": "ChatGPT-4o е динамичен модел, който се актуализира в реално време, за да поддържа най-новата версия. Той съчетава мощно разбиране и генериране на език и е подходящ за мащабни приложения, включително обслужване на клиенти, образование и техническа поддръжка."
|
757
751
|
},
|
752
|
+
"gpt-4o-audio-preview": {
|
753
|
+
"description": "Модел GPT-4o Audio, поддържащ вход и изход на аудио."
|
754
|
+
},
|
758
755
|
"gpt-4o-mini": {
|
759
756
|
"description": "GPT-4o mini е най-новият модел на OpenAI, след GPT-4 Omni, който поддържа текстово и визуално въвеждане и генерира текст. Като най-напредналият им малък модел, той е значително по-евтин от другите нови модели и е с над 60% по-евтин от GPT-3.5 Turbo. Запазва най-съвременната интелигентност, като същевременно предлага значителна стойност за парите. GPT-4o mini получи 82% на теста MMLU и в момента е с по-висок рейтинг от GPT-4 по предпочитания за чат."
|
760
757
|
},
|
758
|
+
"gpt-4o-mini-realtime-preview": {
|
759
|
+
"description": "Реален вариант на GPT-4o-mini, поддържащ вход и изход на аудио и текст в реално време."
|
760
|
+
},
|
761
|
+
"gpt-4o-realtime-preview": {
|
762
|
+
"description": "Реален вариант на GPT-4o, поддържащ вход и изход на аудио и текст в реално време."
|
763
|
+
},
|
764
|
+
"gpt-4o-realtime-preview-2024-10-01": {
|
765
|
+
"description": "Реален вариант на GPT-4o, поддържащ вход и изход на аудио и текст в реално време."
|
766
|
+
},
|
767
|
+
"gpt-4o-realtime-preview-2024-12-17": {
|
768
|
+
"description": "Реален вариант на GPT-4o, поддържащ вход и изход на аудио и текст в реално време."
|
769
|
+
},
|
761
770
|
"grok-2-1212": {
|
762
771
|
"description": "Този модел е подобрен по отношение на точност, спазване на инструкции и многоезични способности."
|
763
772
|
},
|
@@ -935,6 +944,9 @@
|
|
935
944
|
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
936
945
|
"description": "LLaMA 3.2 е проектирана да обработва задачи, комбиниращи визуални и текстови данни. Тя демонстрира отлични резултати в задачи като описание на изображения и визуални въпроси и отговори, преодолявайки пропастта между генерирането на езици и визуалното разсъждение."
|
937
946
|
},
|
947
|
+
"meta-llama/Llama-3.3-70B-Instruct": {
|
948
|
+
"description": "Llama 3.3 е най-напредналият многоезичен отворен голям езиков модел от серията Llama, предлагащ производителност, сравнима с 405B моделите на изключително ниска цена. Базиран на структурата Transformer и подобрен чрез супервизирано фино настройване (SFT) и обучение с човешка обратна връзка (RLHF) за повишаване на полезността и безопасността. Неговата версия за оптимизация на инструкции е специално проектирана за многоезични диалози и показва по-добри резултати от много от отворените и затворените чат модели в множество индустриални бенчмаркове. Краен срок за знания: декември 2023 г."
|
949
|
+
},
|
938
950
|
"meta-llama/Llama-Vision-Free": {
|
939
951
|
"description": "LLaMA 3.2 е проектирана да обработва задачи, комбиниращи визуални и текстови данни. Тя демонстрира отлични резултати в задачи като описание на изображения и визуални въпроси и отговори, преодолявайки пропастта между генерирането на езици и визуалното разсъждение."
|
940
952
|
},
|
@@ -1091,18 +1103,12 @@
|
|
1091
1103
|
"nousresearch/hermes-2-pro-llama-3-8b": {
|
1092
1104
|
"description": "Hermes 2 Pro Llama 3 8B е обновена версия на Nous Hermes 2, включваща най-новите вътрешно разработени набори от данни."
|
1093
1105
|
},
|
1094
|
-
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
1095
|
-
"description": "Llama 3.1 Nemotron 70B е голям езиков модел, персонализиран от NVIDIA с цел подобряване на отговорите на потребителските запитвания."
|
1096
|
-
},
|
1097
1106
|
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
|
1098
1107
|
"description": "Llama 3.1 Nemotron 70B е голям езиков модел, персонализиран от NVIDIA, предназначен да увеличи полезността на отговорите, генерирани от LLM на потребителските запитвания. Моделът показва отлични резултати в бенчмаркове като Arena Hard, AlpacaEval 2 LC и GPT-4-Turbo MT-Bench, като заема първо място в трите автоматизирани теста за подравняване към 1 октомври 2024 г. Моделът е обучен с RLHF (по-специално REINFORCE), Llama-3.1-Nemotron-70B-Reward и HelpSteer2-Preference подсказки на базата на Llama-3.1-70B-Instruct модела."
|
1099
1108
|
},
|
1100
1109
|
"o1": {
|
1101
1110
|
"description": "Фокусиран върху напреднали изводи и решаване на сложни проблеми, включително математически и научни задачи. Изключително подходящ за приложения, изискващи дълбочинно разбиране на контекста и управление на работни потоци."
|
1102
1111
|
},
|
1103
|
-
"o1-2024-12-17": {
|
1104
|
-
"description": "o1 е новият модел за извод на OpenAI, който поддържа вход и изход на текст и изображения, подходящ за сложни задачи, изискващи обширни общи знания. Моделът разполага с контекст от 200K и крайна дата на знанията от октомври 2023 г."
|
1105
|
-
},
|
1106
1112
|
"o1-mini": {
|
1107
1113
|
"description": "o1-mini е бърз и икономичен модел за изводи, проектиран за приложения в програмирането, математиката и науката. Моделът разполага с контекст от 128K и дата на знание до октомври 2023."
|
1108
1114
|
},
|
@@ -1130,9 +1136,6 @@
|
|
1130
1136
|
"openai/gpt-4o-mini": {
|
1131
1137
|
"description": "GPT-4o mini е най-новият модел на OpenAI, пуснат след GPT-4 Omni, който поддържа вход и изход на текст и изображения. Като най-напредналият им малък модел, той е значително по-евтин от другите нови модели и е с над 60% по-евтин от GPT-3.5 Turbo. Запазва най-съвременната интелигентност, като предлага значителна стойност за парите. GPT-4o mini получи 82% на теста MMLU и в момента е с по-висок рейтинг от GPT-4 в предпочитанията за чат."
|
1132
1138
|
},
|
1133
|
-
"openai/o1": {
|
1134
|
-
"description": "o1 е новият модел за извод на OpenAI, който поддържа вход и изход на текст и изображения, подходящ за сложни задачи, изискващи обширни общи знания. Моделът разполага с контекст от 200K и крайна дата на знанията от октомври 2023 г."
|
1135
|
-
},
|
1136
1139
|
"openai/o1-mini": {
|
1137
1140
|
"description": "o1-mini е бърз и икономичен модел за изводи, проектиран за приложения в програмирането, математиката и науката. Моделът разполага с контекст от 128K и дата на знание до октомври 2023."
|
1138
1141
|
},
|
@@ -1307,15 +1310,30 @@
|
|
1307
1310
|
"taichu_llm": {
|
1308
1311
|
"description": "Моделът на езика TaiChu е с изключителни способности за разбиране на езика, текстово генериране, отговори на знания, програмиране, математически изчисления, логическо разсъждение, анализ на емоции, резюмиране на текст и др. Иновативно комбинира предварително обучение с големи данни и разнообразни източници на знания, чрез непрекъснато усъвършенстване на алгоритмичните технологии и усвояване на нови знания от масивни текстови данни, за да осигури на потребителите по-удобна информация и услуги, както и по-интелигентно изживяване."
|
1309
1312
|
},
|
1313
|
+
"text-embedding-3-large": {
|
1314
|
+
"description": "Най-мощният модел за векторизация, подходящ за английски и неанглийски задачи."
|
1315
|
+
},
|
1316
|
+
"text-embedding-3-small": {
|
1317
|
+
"description": "Ефективен и икономичен ново поколение модел за вграждане, подходящ за извличане на знания, RAG приложения и други сценарии."
|
1318
|
+
},
|
1310
1319
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1311
1320
|
"description": "StripedHyena Nous (7B) предлага подобрена изчислителна мощ чрез ефективни стратегии и архитектура на модела."
|
1312
1321
|
},
|
1322
|
+
"tts-1": {
|
1323
|
+
"description": "Най-новият модел за текст в реч, оптимизиран за скорост в реални сценарии."
|
1324
|
+
},
|
1325
|
+
"tts-1-hd": {
|
1326
|
+
"description": "Най-новият модел за текст в реч, оптимизиран за качество."
|
1327
|
+
},
|
1313
1328
|
"upstage/SOLAR-10.7B-Instruct-v1.0": {
|
1314
1329
|
"description": "Upstage SOLAR Instruct v1 (11B) е подходящ за прецизни задачи с инструкции, предлагащи отлични способности за обработка на език."
|
1315
1330
|
},
|
1316
1331
|
"us.anthropic.claude-3-5-sonnet-20241022-v2:0": {
|
1317
1332
|
"description": "Claude 3.5 Sonnet повишава индустриалните стандарти, с производителност, надминаваща конкурентните модели и Claude 3 Opus, показвайки отлични резултати в широк спектър от оценки, като същевременно предлага скорост и разходи, сравними с нашите модели от средно ниво."
|
1318
1333
|
},
|
1334
|
+
"whisper-1": {
|
1335
|
+
"description": "Универсален модел за разпознаване на реч, поддържащ многоезично разпознаване на реч, превод на реч и разпознаване на езици."
|
1336
|
+
},
|
1319
1337
|
"wizardlm2": {
|
1320
1338
|
"description": "WizardLM 2 е езиков модел, предоставен от Microsoft AI, който се отличава в сложни диалози, многоезичност, разсъждение и интелигентни асистенти."
|
1321
1339
|
},
|
@@ -119,9 +119,6 @@
|
|
119
119
|
"OpenGVLab/InternVL2-26B": {
|
120
120
|
"description": "InternVL2 zeigt herausragende Leistungen in verschiedenen visuellen Sprachaufgaben, einschließlich Dokumenten- und Diagrammverständnis, Szenentexterkennung, OCR, wissenschaftlicher und mathematischer Problemlösung."
|
121
121
|
},
|
122
|
-
"OpenGVLab/InternVL2-Llama3-76B": {
|
123
|
-
"description": "InternVL2 zeigt herausragende Leistungen in verschiedenen visuellen Sprachaufgaben, einschließlich Dokumenten- und Diagrammverständnis, Szenentexterkennung, OCR, wissenschaftlicher und mathematischer Problemlösung."
|
124
|
-
},
|
125
122
|
"Phi-3-medium-128k-instruct": {
|
126
123
|
"description": "Das gleiche Phi-3-medium-Modell, jedoch mit einer größeren Kontextgröße für RAG oder Few-Shot-Prompting."
|
127
124
|
},
|
@@ -215,9 +212,6 @@
|
|
215
212
|
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
216
213
|
"description": "Qwen2.5-Coder-7B-Instruct ist die neueste Version der von Alibaba Cloud veröffentlichten Reihe von code-spezifischen großen Sprachmodellen. Dieses Modell basiert auf Qwen2.5 und wurde mit 55 Billionen Tokens trainiert, um die Fähigkeiten zur Codegenerierung, Inferenz und Fehlerbehebung erheblich zu verbessern. Es verbessert nicht nur die Codierungsfähigkeiten, sondern bewahrt auch die Vorteile in Mathematik und allgemeinen Fähigkeiten. Das Modell bietet eine umfassendere Grundlage für praktische Anwendungen wie Code-Agenten."
|
217
214
|
},
|
218
|
-
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
219
|
-
"description": "Qwen2.5-Math konzentriert sich auf die Problemlösung im Bereich Mathematik und bietet professionelle Lösungen für schwierige Aufgaben."
|
220
|
-
},
|
221
215
|
"Qwen2-72B-Instruct": {
|
222
216
|
"description": "Qwen2 ist die neueste Reihe des Qwen-Modells, das 128k Kontext unterstützt. Im Vergleich zu den derzeit besten Open-Source-Modellen übertrifft Qwen2-72B in den Bereichen natürliche Sprachverständnis, Wissen, Code, Mathematik und Mehrsprachigkeit deutlich die führenden Modelle."
|
223
217
|
},
|
@@ -290,12 +284,6 @@
|
|
290
284
|
"TeleAI/TeleMM": {
|
291
285
|
"description": "Das TeleMM-Modell ist ein multimodales Großmodell, das von China Telecom entwickelt wurde und in der Lage ist, Texte, Bilder und andere Modalitäten zu verarbeiten. Es unterstützt Funktionen wie Bildverständnis und Diagrammanalyse und bietet Benutzern multimodale Verständnisdienste. Das Modell kann mit Benutzern multimodal interagieren, den Eingabeinhalt genau verstehen, Fragen beantworten, bei der Erstellung helfen und effizient multimodale Informationen und Inspirationsunterstützung bereitstellen. Es zeigt hervorragende Leistungen in multimodalen Aufgaben wie feinkörniger Wahrnehmung und logischem Schlussfolgern."
|
292
286
|
},
|
293
|
-
"Tencent/Hunyuan-A52B-Instruct": {
|
294
|
-
"description": "Hunyuan-Large ist das größte Open-Source-Transformer-Architektur MoE-Modell der Branche mit insgesamt 389 Milliarden Parametern und 52 Milliarden aktiven Parametern."
|
295
|
-
},
|
296
|
-
"Vendor-A/Qwen/Qwen2-7B-Instruct": {
|
297
|
-
"description": "Qwen2-72B-Instruct ist das anweisungsfeinabgestimmte große Sprachmodell der Qwen2-Serie mit einer Parametergröße von 72B. Dieses Modell basiert auf der Transformer-Architektur und verwendet Technologien wie die SwiGLU-Aktivierungsfunktion, QKV-Offsets und gruppierte Abfrageaufmerksamkeit. Es kann große Eingaben verarbeiten. Das Modell zeigt hervorragende Leistungen in der Sprachverständnis, -generierung, Mehrsprachigkeit, Codierung, Mathematik und Inferenz in mehreren Benchmark-Tests und übertrifft die meisten Open-Source-Modelle und zeigt in bestimmten Aufgaben eine vergleichbare Wettbewerbsfähigkeit mit proprietären Modellen."
|
298
|
-
},
|
299
287
|
"Vendor-A/Qwen/Qwen2.5-72B-Instruct": {
|
300
288
|
"description": "Qwen2.5-72B-Instruct ist eines der neuesten großen Sprachmodelle, die von Alibaba Cloud veröffentlicht wurden. Dieses 72B-Modell hat signifikante Verbesserungen in den Bereichen Codierung und Mathematik. Das Modell bietet auch mehrsprachige Unterstützung und deckt über 29 Sprachen ab, einschließlich Chinesisch und Englisch. Es zeigt signifikante Verbesserungen in der Befolgung von Anweisungen, im Verständnis strukturierter Daten und in der Generierung strukturierter Ausgaben (insbesondere JSON)."
|
301
289
|
},
|
@@ -521,12 +509,15 @@
|
|
521
509
|
"command-r-plus": {
|
522
510
|
"description": "Command R+ ist ein leistungsstarkes großes Sprachmodell, das speziell für reale Unternehmensszenarien und komplexe Anwendungen entwickelt wurde."
|
523
511
|
},
|
512
|
+
"dall-e-2": {
|
513
|
+
"description": "Zweite Generation des DALL·E-Modells, unterstützt realistischere und genauere Bildgenerierung, mit einer Auflösung, die viermal so hoch ist wie die der ersten Generation."
|
514
|
+
},
|
515
|
+
"dall-e-3": {
|
516
|
+
"description": "Das neueste DALL·E-Modell, veröffentlicht im November 2023. Unterstützt realistischere und genauere Bildgenerierung mit verbesserter Detailgenauigkeit."
|
517
|
+
},
|
524
518
|
"databricks/dbrx-instruct": {
|
525
519
|
"description": "DBRX Instruct bietet zuverlässige Anweisungsverarbeitungsfähigkeiten und unterstützt Anwendungen in verschiedenen Branchen."
|
526
520
|
},
|
527
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
528
|
-
"description": "DeepSeek-V2 ist ein leistungsstarkes, kosteneffizientes hybrides Expertenmodell (MoE). Es wurde auf einem hochwertigen Korpus von 81 Billionen Tokens vortrainiert und durch überwachte Feinabstimmung (SFT) und verstärkendes Lernen (RL) weiter verbessert. Im Vergleich zu DeepSeek 67B bietet DeepSeek-V2 eine stärkere Leistung, spart 42,5 % der Trainingskosten, reduziert den KV-Cache um 93,3 % und erhöht die maximale Generierungsdurchsatzrate um das 5,76-fache. Dieses Modell unterstützt eine Kontextlänge von 128k und schneidet sowohl in Standard-Benchmark-Tests als auch in offenen Generierungsbewertungen hervorragend ab."
|
529
|
-
},
|
530
521
|
"deepseek-ai/DeepSeek-V2.5": {
|
531
522
|
"description": "DeepSeek V2.5 vereint die hervorragenden Merkmale früherer Versionen und verbessert die allgemeinen und kodierenden Fähigkeiten."
|
532
523
|
},
|
@@ -704,6 +695,9 @@
|
|
704
695
|
"gpt-3.5-turbo-1106": {
|
705
696
|
"description": "GPT 3.5 Turbo eignet sich für eine Vielzahl von Textgenerierungs- und Verständnisaufgaben. Derzeit verweist es auf gpt-3.5-turbo-0125."
|
706
697
|
},
|
698
|
+
"gpt-3.5-turbo-16k": {
|
699
|
+
"description": "GPT 3.5 Turbo 16k, ein leistungsstarkes Textgenerierungsmodell, geeignet für komplexe Aufgaben."
|
700
|
+
},
|
707
701
|
"gpt-3.5-turbo-instruct": {
|
708
702
|
"description": "GPT 3.5 Turbo eignet sich für eine Vielzahl von Textgenerierungs- und Verständnisaufgaben. Derzeit verweist es auf gpt-3.5-turbo-0125."
|
709
703
|
},
|
@@ -755,9 +749,24 @@
|
|
755
749
|
"gpt-4o-2024-11-20": {
|
756
750
|
"description": "ChatGPT-4o ist ein dynamisches Modell, das in Echtzeit aktualisiert wird, um die neueste Version zu gewährleisten. Es kombiniert starke Sprachverständnis- und Generierungsfähigkeiten und eignet sich für großangelegte Anwendungsbereiche, einschließlich Kundenservice, Bildung und technischen Support."
|
757
751
|
},
|
752
|
+
"gpt-4o-audio-preview": {
|
753
|
+
"description": "GPT-4o Audio-Modell, unterstützt Audioeingabe und -ausgabe."
|
754
|
+
},
|
758
755
|
"gpt-4o-mini": {
|
759
756
|
"description": "GPT-4o mini ist das neueste Modell von OpenAI, das nach GPT-4 Omni veröffentlicht wurde und sowohl Text- als auch Bildinput unterstützt. Als ihr fortschrittlichstes kleines Modell ist es viel günstiger als andere neueste Modelle und kostet über 60 % weniger als GPT-3.5 Turbo. Es behält die fortschrittliche Intelligenz bei und bietet gleichzeitig ein hervorragendes Preis-Leistungs-Verhältnis. GPT-4o mini erzielte 82 % im MMLU-Test und rangiert derzeit in den Chat-Präferenzen über GPT-4."
|
760
757
|
},
|
758
|
+
"gpt-4o-mini-realtime-preview": {
|
759
|
+
"description": "Echtzeitversion von GPT-4o-mini, unterstützt Audio- und Texteingabe sowie -ausgabe in Echtzeit."
|
760
|
+
},
|
761
|
+
"gpt-4o-realtime-preview": {
|
762
|
+
"description": "Echtzeitversion von GPT-4o, unterstützt Audio- und Texteingabe sowie -ausgabe in Echtzeit."
|
763
|
+
},
|
764
|
+
"gpt-4o-realtime-preview-2024-10-01": {
|
765
|
+
"description": "Echtzeitversion von GPT-4o, unterstützt Audio- und Texteingabe sowie -ausgabe in Echtzeit."
|
766
|
+
},
|
767
|
+
"gpt-4o-realtime-preview-2024-12-17": {
|
768
|
+
"description": "Echtzeitversion von GPT-4o, unterstützt Audio- und Texteingabe sowie -ausgabe in Echtzeit."
|
769
|
+
},
|
761
770
|
"grok-2-1212": {
|
762
771
|
"description": "Dieses Modell hat Verbesserungen in Bezug auf Genauigkeit, Befolgung von Anweisungen und Mehrsprachigkeit erfahren."
|
763
772
|
},
|
@@ -935,6 +944,9 @@
|
|
935
944
|
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo": {
|
936
945
|
"description": "LLaMA 3.2 ist darauf ausgelegt, Aufgaben zu bewältigen, die sowohl visuelle als auch Textdaten kombinieren. Es erzielt hervorragende Ergebnisse bei Aufgaben wie Bildbeschreibung und visueller Fragebeantwortung und überbrückt die Kluft zwischen Sprachgenerierung und visueller Schlussfolgerung."
|
937
946
|
},
|
947
|
+
"meta-llama/Llama-3.3-70B-Instruct": {
|
948
|
+
"description": "Llama 3.3 ist das fortschrittlichste mehrsprachige Open-Source-Sprachmodell der Llama-Serie, das zu extrem niedrigen Kosten eine Leistung bietet, die mit der eines 405B-Modells vergleichbar ist. Basierend auf der Transformer-Architektur und verbessert durch überwachte Feinabstimmung (SFT) und verstärkendes Lernen mit menschlichem Feedback (RLHF) für Nützlichkeit und Sicherheit. Die optimierte Version für Anweisungen ist speziell für mehrsprachige Dialoge optimiert und übertrifft in mehreren Branchenbenchmarks viele Open-Source- und geschlossene Chat-Modelle. Wissensstichtag ist der 31. Dezember 2023."
|
949
|
+
},
|
938
950
|
"meta-llama/Llama-Vision-Free": {
|
939
951
|
"description": "LLaMA 3.2 ist darauf ausgelegt, Aufgaben zu bewältigen, die sowohl visuelle als auch Textdaten kombinieren. Es erzielt hervorragende Ergebnisse bei Aufgaben wie Bildbeschreibung und visueller Fragebeantwortung und überbrückt die Kluft zwischen Sprachgenerierung und visueller Schlussfolgerung."
|
940
952
|
},
|
@@ -1091,18 +1103,12 @@
|
|
1091
1103
|
"nousresearch/hermes-2-pro-llama-3-8b": {
|
1092
1104
|
"description": "Hermes 2 Pro Llama 3 8B ist die aktualisierte Version von Nous Hermes 2 und enthält die neuesten intern entwickelten Datensätze."
|
1093
1105
|
},
|
1094
|
-
"nvidia/Llama-3.1-Nemotron-70B-Instruct": {
|
1095
|
-
"description": "Llama 3.1 Nemotron 70B ist ein großes Sprachmodell, das von NVIDIA maßgeschneidert wurde, um die Hilfe von LLM-generierten Antworten auf Benutzeranfragen zu erhöhen."
|
1096
|
-
},
|
1097
1106
|
"nvidia/Llama-3.1-Nemotron-70B-Instruct-HF": {
|
1098
1107
|
"description": "Llama 3.1 Nemotron 70B ist ein von NVIDIA maßgeschneidertes großes Sprachmodell, das darauf abzielt, die Hilfsfähigkeit der von LLM generierten Antworten auf Benutzeranfragen zu verbessern. Dieses Modell hat in Benchmark-Tests wie Arena Hard, AlpacaEval 2 LC und GPT-4-Turbo MT-Bench hervorragende Leistungen gezeigt und belegt bis zum 1. Oktober 2024 den ersten Platz in allen drei automatischen Ausrichtungsbenchmarks. Das Modell wurde mit RLHF (insbesondere REINFORCE), Llama-3.1-Nemotron-70B-Reward und HelpSteer2-Preference-Prompts auf dem Llama-3.1-70B-Instruct-Modell trainiert."
|
1099
1108
|
},
|
1100
1109
|
"o1": {
|
1101
1110
|
"description": "Konzentriert sich auf fortgeschrittene Inferenz und die Lösung komplexer Probleme, einschließlich mathematischer und wissenschaftlicher Aufgaben. Besonders geeignet für Anwendungen, die ein tiefes Verständnis des Kontexts und die Abwicklung von Arbeitsabläufen erfordern."
|
1102
1111
|
},
|
1103
|
-
"o1-2024-12-17": {
|
1104
|
-
"description": "o1 ist OpenAIs neues Inferenzmodell, das Text- und Bildinput unterstützt und Textausgaben erzeugt. Es eignet sich für komplexe Aufgaben, die umfassendes Allgemeinwissen erfordern. Dieses Modell hat einen Kontext von 200K und einen Wissensstand bis Oktober 2023."
|
1105
|
-
},
|
1106
1112
|
"o1-mini": {
|
1107
1113
|
"description": "o1-mini ist ein schnelles und kosteneffizientes Inferenzmodell, das für Programmier-, Mathematik- und Wissenschaftsanwendungen entwickelt wurde. Das Modell hat einen Kontext von 128K und einen Wissensstand bis Oktober 2023."
|
1108
1114
|
},
|
@@ -1130,9 +1136,6 @@
|
|
1130
1136
|
"openai/gpt-4o-mini": {
|
1131
1137
|
"description": "GPT-4o mini ist das neueste Modell von OpenAI, das nach GPT-4 Omni veröffentlicht wurde und Text- und Bild-Eingaben unterstützt. Als ihr fortschrittlichstes kleines Modell ist es viel günstiger als andere neueste Modelle und über 60 % günstiger als GPT-3.5 Turbo. Es behält die fortschrittlichste Intelligenz bei und bietet gleichzeitig ein hervorragendes Preis-Leistungs-Verhältnis. GPT-4o mini erzielte 82 % im MMLU-Test und rangiert derzeit in den Chat-Präferenzen über GPT-4."
|
1132
1138
|
},
|
1133
|
-
"openai/o1": {
|
1134
|
-
"description": "o1 ist OpenAIs neues Inferenzmodell, das Text- und Bildinput unterstützt und Textausgaben erzeugt. Es eignet sich für komplexe Aufgaben, die umfassendes Allgemeinwissen erfordern. Dieses Modell hat einen Kontext von 200K und einen Wissensstand bis Oktober 2023."
|
1135
|
-
},
|
1136
1139
|
"openai/o1-mini": {
|
1137
1140
|
"description": "o1-mini ist ein schnelles und kosteneffizientes Inferenzmodell, das für Programmier-, Mathematik- und Wissenschaftsanwendungen entwickelt wurde. Das Modell hat einen Kontext von 128K und einen Wissensstand bis Oktober 2023."
|
1138
1141
|
},
|
@@ -1307,15 +1310,30 @@
|
|
1307
1310
|
"taichu_llm": {
|
1308
1311
|
"description": "Das Zīdōng Taichu Sprachmodell verfügt über außergewöhnliche Sprachverständnisfähigkeiten sowie Fähigkeiten in Textgenerierung, Wissensabfrage, Programmierung, mathematischen Berechnungen, logischem Denken, Sentimentanalyse und Textzusammenfassung. Es kombiniert innovativ große Datenvortrainings mit reichhaltigem Wissen aus mehreren Quellen, verfeinert kontinuierlich die Algorithmen und absorbiert ständig neues Wissen aus umfangreichen Textdaten in Bezug auf Vokabular, Struktur, Grammatik und Semantik, um die Leistung des Modells kontinuierlich zu verbessern. Es bietet den Nutzern bequemere Informationen und Dienstleistungen sowie ein intelligenteres Erlebnis."
|
1309
1312
|
},
|
1313
|
+
"text-embedding-3-large": {
|
1314
|
+
"description": "Das leistungsstärkste Vektormodell, geeignet für englische und nicht-englische Aufgaben."
|
1315
|
+
},
|
1316
|
+
"text-embedding-3-small": {
|
1317
|
+
"description": "Effizientes und kostengünstiges neues Embedding-Modell, geeignet für Wissensabruf, RAG-Anwendungen und andere Szenarien."
|
1318
|
+
},
|
1310
1319
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1311
1320
|
"description": "StripedHyena Nous (7B) bietet durch effiziente Strategien und Modellarchitekturen verbesserte Rechenfähigkeiten."
|
1312
1321
|
},
|
1322
|
+
"tts-1": {
|
1323
|
+
"description": "Das neueste Text-zu-Sprache-Modell, optimiert für Geschwindigkeit in Echtzeitszenarien."
|
1324
|
+
},
|
1325
|
+
"tts-1-hd": {
|
1326
|
+
"description": "Das neueste Text-zu-Sprache-Modell, optimiert für Qualität."
|
1327
|
+
},
|
1313
1328
|
"upstage/SOLAR-10.7B-Instruct-v1.0": {
|
1314
1329
|
"description": "Upstage SOLAR Instruct v1 (11B) eignet sich für präzise Anweisungsaufgaben und bietet hervorragende Sprachverarbeitungsfähigkeiten."
|
1315
1330
|
},
|
1316
1331
|
"us.anthropic.claude-3-5-sonnet-20241022-v2:0": {
|
1317
1332
|
"description": "Claude 3.5 Sonnet hebt den Branchenstandard an, übertrifft die Konkurrenzmodelle und Claude 3 Opus und zeigt in umfangreichen Bewertungen hervorragende Leistungen, während es die Geschwindigkeit und Kosten unserer mittelgroßen Modelle beibehält."
|
1318
1333
|
},
|
1334
|
+
"whisper-1": {
|
1335
|
+
"description": "Allgemeines Spracherkennungsmodell, unterstützt mehrsprachige Spracherkennung, Sprachübersetzung und Spracherkennung."
|
1336
|
+
},
|
1319
1337
|
"wizardlm2": {
|
1320
1338
|
"description": "WizardLM 2 ist ein Sprachmodell von Microsoft AI, das in komplexen Dialogen, mehrsprachigen Anwendungen, Schlussfolgerungen und intelligenten Assistenten besonders gut abschneidet."
|
1321
1339
|
},
|