@lobehub/chat 1.40.0 → 1.40.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/package.json +1 -1
- package/src/app/(main)/chat/(workspace)/_layout/Desktop/HotKeys.tsx +7 -0
- package/src/app/(main)/discover/(detail)/model/[...slugs]/features/Actions.tsx +1 -1
- package/src/app/(main)/discover/(detail)/model/[...slugs]/features/Header.tsx +1 -1
- package/src/app/(main)/discover/(detail)/model/[...slugs]/features/InfoSidebar/SuggestionItem.tsx +2 -2
- package/src/app/(main)/discover/(detail)/model/[...slugs]/features/ProviderList/ProviderItem.tsx +1 -1
- package/src/app/(main)/discover/(detail)/provider/[slug]/features/ModelList/ModelItem.tsx +3 -3
- package/src/app/(main)/discover/(list)/models/features/Card.tsx +6 -2
- package/src/app/(main)/settings/llm/ProviderList/Cloudflare/index.tsx +1 -5
- package/src/app/(main)/settings/llm/components/ProviderModelList/ModelFetcher.tsx +2 -2
- package/src/components/ModelSelect/index.tsx +7 -4
- package/src/config/__tests__/app.test.ts +6 -2
- package/src/config/app.ts +1 -2
- package/src/config/modelProviders/ai21.ts +2 -2
- package/src/config/modelProviders/ai360.ts +4 -4
- package/src/config/modelProviders/anthropic.ts +8 -8
- package/src/config/modelProviders/azure.ts +5 -5
- package/src/config/modelProviders/baichuan.ts +6 -6
- package/src/config/modelProviders/bedrock.ts +14 -14
- package/src/config/modelProviders/cloudflare.ts +12 -11
- package/src/config/modelProviders/deepseek.ts +1 -1
- package/src/config/modelProviders/fireworksai.ts +29 -27
- package/src/config/modelProviders/giteeai.ts +7 -7
- package/src/config/modelProviders/github.ts +29 -28
- package/src/config/modelProviders/google.ts +18 -19
- package/src/config/modelProviders/groq.ts +13 -13
- package/src/config/modelProviders/higress.ts +195 -194
- package/src/config/modelProviders/huggingface.ts +7 -7
- package/src/config/modelProviders/hunyuan.ts +25 -17
- package/src/config/modelProviders/internlm.ts +6 -4
- package/src/config/modelProviders/minimax.ts +5 -5
- package/src/config/modelProviders/mistral.ts +14 -16
- package/src/config/modelProviders/moonshot.ts +3 -3
- package/src/config/modelProviders/novita.ts +15 -15
- package/src/config/modelProviders/ollama.ts +46 -46
- package/src/config/modelProviders/openai.ts +23 -22
- package/src/config/modelProviders/openrouter.ts +20 -18
- package/src/config/modelProviders/perplexity.ts +7 -7
- package/src/config/modelProviders/qwen.ts +23 -25
- package/src/config/modelProviders/sensenova.ts +8 -8
- package/src/config/modelProviders/siliconcloud.ts +138 -92
- package/src/config/modelProviders/spark.ts +6 -6
- package/src/config/modelProviders/stepfun.ts +9 -9
- package/src/config/modelProviders/taichu.ts +2 -3
- package/src/config/modelProviders/togetherai.ts +57 -48
- package/src/config/modelProviders/upstage.ts +3 -3
- package/src/config/modelProviders/wenxin.ts +12 -12
- package/src/config/modelProviders/xai.ts +4 -4
- package/src/config/modelProviders/zeroone.ts +11 -11
- package/src/config/modelProviders/zhipu.ts +17 -16
- package/src/const/hotkeys.ts +1 -0
- package/src/database/_deprecated/core/model.ts +1 -1
- package/src/database/_deprecated/models/sessionGroup.ts +4 -1
- package/src/database/client/migrations.json +2 -5
- package/src/database/migrations/meta/0012_snapshot.json +176 -518
- package/src/database/schemas/agent.ts +1 -1
- package/src/database/schemas/message.ts +1 -0
- package/src/database/schemas/session.ts +1 -0
- package/src/database/server/models/topic.ts +19 -17
- package/src/features/DebugUI/Content.tsx +0 -1
- package/src/features/PluginStore/index.tsx +2 -2
- package/src/layout/GlobalProvider/AntdV5MonkeyPatch.tsx +4 -4
- package/src/libs/agent-runtime/google/index.ts +4 -3
- package/src/libs/agent-runtime/higress/index.ts +1 -1
- package/src/libs/agent-runtime/huggingface/index.ts +2 -4
- package/src/libs/agent-runtime/minimax/index.ts +5 -10
- package/src/libs/agent-runtime/mistral/index.ts +3 -6
- package/src/libs/agent-runtime/moonshot/index.ts +3 -6
- package/src/libs/agent-runtime/novita/__snapshots__/index.test.ts.snap +18 -18
- package/src/libs/agent-runtime/novita/index.ts +1 -1
- package/src/libs/agent-runtime/openai/__snapshots__/index.test.ts.snap +10 -10
- package/src/libs/agent-runtime/openai/index.ts +2 -0
- package/src/libs/agent-runtime/openrouter/__snapshots__/index.test.ts.snap +168 -168
- package/src/libs/agent-runtime/openrouter/index.ts +1 -1
- package/src/libs/agent-runtime/perplexity/index.ts +4 -4
- package/src/libs/agent-runtime/sensenova/index.ts +9 -3
- package/src/libs/agent-runtime/taichu/index.ts +4 -10
- package/src/libs/agent-runtime/utils/streams/minimax.test.ts +5 -2
- package/src/libs/agent-runtime/utils/streams/minimax.ts +4 -1
- package/src/libs/agent-runtime/zhipu/index.ts +12 -13
- package/src/libs/langchain/loaders/index.ts +2 -2
- package/src/libs/langchain/types.ts +9 -1
- package/src/locales/default/modelProvider.ts +1 -1
- package/src/migrations/FromV3ToV4/fixtures/ollama-output-v4.json +1 -1
- package/src/migrations/FromV6ToV7/types/v7.ts +0 -2
- package/src/server/globalConfig/genServerLLMConfig.test.ts +4 -4
- package/src/server/globalConfig/genServerLLMConfig.ts +29 -24
- package/src/server/globalConfig/index.ts +1 -2
- package/src/server/routers/edge/config/__snapshots__/index.test.ts.snap +9 -9
- package/src/server/routers/lambda/_template.ts +1 -1
- package/src/server/routers/lambda/knowledgeBase.ts +1 -1
- package/src/server/routers/lambda/session.ts +1 -1
- package/src/server/routers/lambda/sessionGroup.ts +1 -1
- package/src/server/routers/lambda/thread.ts +1 -1
- package/src/server/services/nextAuthUser/index.ts +1 -1
- package/src/store/user/slices/modelList/__snapshots__/action.test.ts.snap +1 -1
- package/src/store/user/slices/modelList/action.test.ts +4 -4
- package/src/store/user/slices/modelList/reducers/customModelCard.test.ts +6 -6
- package/src/store/user/slices/modelList/selectors/modelProvider.ts +3 -2
- package/src/tools/dalle/Render/Item/index.tsx +1 -1
- package/src/types/files/index.ts +0 -1
- package/src/types/llm.ts +4 -5
- package/src/utils/__snapshots__/parseModels.test.ts.snap +2 -2
- package/src/utils/genUserLLMConfig.test.ts +4 -4
- package/src/utils/genUserLLMConfig.ts +6 -4
- package/src/utils/parseModels.test.ts +16 -16
- package/src/utils/parseModels.ts +1 -1
- package/src/utils/server/jwt.ts +2 -6
@@ -4,7 +4,9 @@ import { ModelProviderCard } from '@/types/llm';
|
|
4
4
|
const SiliconCloud: ModelProviderCard = {
|
5
5
|
chatModels: [
|
6
6
|
{
|
7
|
-
|
7
|
+
contextWindowTokens: 32_768,
|
8
|
+
description:
|
9
|
+
'Hunyuan-Large 是业界最大的开源 Transformer 架构 MoE 模型,拥有 3890 亿总参数量和 520 亿激活参数量。',
|
8
10
|
displayName: 'Hunyuan A52B Instruct',
|
9
11
|
enabled: true,
|
10
12
|
id: 'Tencent/Hunyuan-A52B-Instruct',
|
@@ -13,10 +15,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
13
15
|
input: 21,
|
14
16
|
output: 21,
|
15
17
|
},
|
16
|
-
tokens: 32_768,
|
17
18
|
},
|
18
19
|
{
|
19
|
-
|
20
|
+
contextWindowTokens: 32_768,
|
21
|
+
description:
|
22
|
+
'DeepSeek-V2.5 是 DeepSeek-V2-Chat 和 DeepSeek-Coder-V2-Instruct 的升级版本,集成了两个先前版本的通用和编码能力。该模型在多个方面进行了优化,包括写作和指令跟随能力,更好地与人类偏好保持一致。DeepSeek-V2.5 在各种评估基准上都取得了显著的提升,如 AlpacaEval 2.0、ArenaHard、AlignBench 和 MT-Bench 等',
|
20
23
|
displayName: 'DeepSeek V2.5',
|
21
24
|
enabled: true,
|
22
25
|
functionCall: true,
|
@@ -26,10 +29,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
26
29
|
input: 1.33,
|
27
30
|
output: 1.33,
|
28
31
|
},
|
29
|
-
tokens: 32_768,
|
30
32
|
},
|
31
33
|
{
|
32
|
-
|
34
|
+
contextWindowTokens: 32_768,
|
35
|
+
description:
|
36
|
+
'DeepSeek-V2 是一个强大、经济高效的混合专家(MoE)语言模型。它在 8.1 万亿个 token 的高质量语料库上进行了预训练,并通过监督微调(SFT)和强化学习(RL)进一步提升了模型能力。与 DeepSeek 67B 相比, DeepSeek-V2 在性能更强的同时,节省了 42.5% 的训练成本,减少了 93.3% 的 KV 缓存,并将最大生成吞吐量提高到了 5.76 倍。该模型支持 128k 的上下文长度,在标准基准测试和开放式生成评估中都表现出色',
|
33
37
|
displayName: 'DeepSeek V2 Chat',
|
34
38
|
id: 'deepseek-ai/DeepSeek-V2-Chat',
|
35
39
|
pricing: {
|
@@ -37,10 +41,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
37
41
|
input: 1.33,
|
38
42
|
output: 1.33,
|
39
43
|
},
|
40
|
-
tokens: 32_768,
|
41
44
|
},
|
42
45
|
{
|
43
|
-
|
46
|
+
contextWindowTokens: 32_768,
|
47
|
+
description:
|
48
|
+
'QwQ-32B-Preview是Qwen 最新的实验性研究模型,专注于提升AI推理能力。通过探索语言混合、递归推理等复杂机制,主要优势包括强大的推理分析能力、数学和编程能力。与此同时,也存在语言切换问题、推理循环、安全性考虑、其他能力方面的差异。',
|
44
49
|
displayName: 'QwQ 32B Preview',
|
45
50
|
enabled: true,
|
46
51
|
id: 'Qwen/QwQ-32B-Preview',
|
@@ -49,10 +54,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
49
54
|
input: 1.26,
|
50
55
|
output: 1.26,
|
51
56
|
},
|
52
|
-
tokens: 32_768,
|
53
57
|
},
|
54
58
|
{
|
55
|
-
|
59
|
+
contextWindowTokens: 32_768,
|
60
|
+
description:
|
61
|
+
'Qwen2.5-7B-Instruct 是阿里云发布的最新大语言模型系列之一。该 7B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
|
56
62
|
displayName: 'Qwen2.5 7B Instruct (Free)',
|
57
63
|
enabled: true,
|
58
64
|
functionCall: true,
|
@@ -62,10 +68,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
62
68
|
input: 0,
|
63
69
|
output: 0,
|
64
70
|
},
|
65
|
-
tokens: 32_768,
|
66
71
|
},
|
67
72
|
{
|
68
|
-
|
73
|
+
contextWindowTokens: 32_768,
|
74
|
+
description:
|
75
|
+
'Qwen2.5-7B-Instruct 是阿里云发布的最新大语言模型系列之一。该 7B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
|
69
76
|
displayName: 'Qwen2.5 7B Instruct (LoRA)',
|
70
77
|
id: 'LoRA/Qwen/Qwen2.5-7B-Instruct',
|
71
78
|
pricing: {
|
@@ -73,10 +80,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
73
80
|
input: 0.53,
|
74
81
|
output: 0.53,
|
75
82
|
},
|
76
|
-
tokens: 32_768,
|
77
83
|
},
|
78
84
|
{
|
79
|
-
|
85
|
+
contextWindowTokens: 32_768,
|
86
|
+
description:
|
87
|
+
'Qwen2.5-7B-Instruct 是阿里云发布的最新大语言模型系列之一。该 7B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
|
80
88
|
displayName: 'Qwen2.5 7B Instruct (Pro)',
|
81
89
|
functionCall: true,
|
82
90
|
id: 'Pro/Qwen/Qwen2.5-7B-Instruct',
|
@@ -85,10 +93,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
85
93
|
input: 0.35,
|
86
94
|
output: 0.35,
|
87
95
|
},
|
88
|
-
tokens: 32_768,
|
89
96
|
},
|
90
97
|
{
|
91
|
-
|
98
|
+
contextWindowTokens: 32_768,
|
99
|
+
description:
|
100
|
+
'Qwen2.5-14B-Instruct 是阿里云发布的最新大语言模型系列之一。该 14B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
|
92
101
|
displayName: 'Qwen2.5 14B Instruct',
|
93
102
|
functionCall: true,
|
94
103
|
id: 'Qwen/Qwen2.5-14B-Instruct',
|
@@ -97,10 +106,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
97
106
|
input: 0.7,
|
98
107
|
output: 0.7,
|
99
108
|
},
|
100
|
-
tokens: 32_768,
|
101
109
|
},
|
102
110
|
{
|
103
|
-
|
111
|
+
contextWindowTokens: 32_768,
|
112
|
+
description:
|
113
|
+
'Qwen2.5-32B-Instruct 是阿里云发布的最新大语言模型系列之一。该 32B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
|
104
114
|
displayName: 'Qwen2.5 32B Instruct',
|
105
115
|
functionCall: true,
|
106
116
|
id: 'Qwen/Qwen2.5-32B-Instruct',
|
@@ -109,10 +119,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
109
119
|
input: 1.26,
|
110
120
|
output: 1.26,
|
111
121
|
},
|
112
|
-
tokens: 32_768,
|
113
122
|
},
|
114
123
|
{
|
115
|
-
|
124
|
+
contextWindowTokens: 32_768,
|
125
|
+
description:
|
126
|
+
'Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
|
116
127
|
displayName: 'Qwen2.5 72B Instruct',
|
117
128
|
functionCall: true,
|
118
129
|
id: 'Qwen/Qwen2.5-72B-Instruct',
|
@@ -121,10 +132,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
121
132
|
input: 4.13,
|
122
133
|
output: 4.13,
|
123
134
|
},
|
124
|
-
tokens: 32_768,
|
125
135
|
},
|
126
136
|
{
|
127
|
-
|
137
|
+
contextWindowTokens: 32_768,
|
138
|
+
description:
|
139
|
+
'Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
|
128
140
|
displayName: 'Qwen2.5 72B Instruct (LoRA)',
|
129
141
|
id: 'LoRA/Qwen/Qwen2.5-72B-Instruct',
|
130
142
|
pricing: {
|
@@ -132,10 +144,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
132
144
|
input: 6.2,
|
133
145
|
output: 6.2,
|
134
146
|
},
|
135
|
-
tokens: 32_768,
|
136
147
|
},
|
137
148
|
{
|
138
|
-
|
149
|
+
contextWindowTokens: 32_768,
|
150
|
+
description:
|
151
|
+
'Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
|
139
152
|
displayName: 'Qwen2.5 72B Instruct (Vendor-A)',
|
140
153
|
functionCall: true,
|
141
154
|
id: 'Vendor-A/Qwen/Qwen2.5-72B-Instruct',
|
@@ -144,10 +157,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
144
157
|
input: 1,
|
145
158
|
output: 1,
|
146
159
|
},
|
147
|
-
tokens: 32_768,
|
148
160
|
},
|
149
161
|
{
|
150
|
-
|
162
|
+
contextWindowTokens: 131_072,
|
163
|
+
description:
|
164
|
+
'Qwen2.5-72B-Instruct 是阿里云发布的最新大语言模型系列之一。该 72B 模型在编码和数学等领域具有显著改进的能力。它支持长达 128K tokens 的输入,可以生成超过 8K tokens 的长文本。该模型还提供了多语言支持,覆盖超过 29 种语言,包括中文、英文等。模型在指令跟随、理解结构化数据以及生成结构化输出(尤其是 JSON)方面都有显著提升',
|
151
165
|
displayName: 'Qwen2.5 72B Instruct 128K',
|
152
166
|
enabled: true,
|
153
167
|
functionCall: true,
|
@@ -157,10 +171,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
157
171
|
input: 4.13,
|
158
172
|
output: 4.13,
|
159
173
|
},
|
160
|
-
tokens: 131_072,
|
161
174
|
},
|
162
175
|
{
|
163
|
-
|
176
|
+
contextWindowTokens: 32_768,
|
177
|
+
description:
|
178
|
+
'Qwen2.5-Coder-7B-Instruct 是阿里云发布的代码特定大语言模型系列的最新版本。该模型在 Qwen2.5 的基础上,通过 5.5 万亿个 tokens 的训练,显著提升了代码生成、推理和修复能力。它不仅增强了编码能力,还保持了数学和通用能力的优势。模型为代码智能体等实际应用提供了更全面的基础',
|
164
179
|
displayName: 'Qwen2.5 Coder 7B Instruct (Free)',
|
165
180
|
id: 'Qwen/Qwen2.5-Coder-7B-Instruct',
|
166
181
|
pricing: {
|
@@ -168,10 +183,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
168
183
|
input: 0,
|
169
184
|
output: 0,
|
170
185
|
},
|
171
|
-
tokens: 32_768,
|
172
186
|
},
|
173
187
|
{
|
174
|
-
|
188
|
+
contextWindowTokens: 32_768,
|
189
|
+
description:
|
190
|
+
'Qwen2.5-Coder-7B-Instruct 是阿里云发布的代码特定大语言模型系列的最新版本。该模型在 Qwen2.5 的基础上,通过 5.5 万亿个 tokens 的训练,显著提升了代码生成、推理和修复能力。它不仅增强了编码能力,还保持了数学和通用能力的优势。模型为代码智能体等实际应用提供了更全面的基础',
|
175
191
|
displayName: 'Qwen2.5 Coder 7B Instruct (Pro)',
|
176
192
|
id: 'Pro/Qwen/Qwen2.5-Coder-7B-Instruct',
|
177
193
|
pricing: {
|
@@ -179,10 +195,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
179
195
|
input: 0.35,
|
180
196
|
output: 0.35,
|
181
197
|
},
|
182
|
-
tokens: 32_768,
|
183
198
|
},
|
184
199
|
{
|
185
|
-
|
200
|
+
contextWindowTokens: 32_768,
|
201
|
+
description:
|
202
|
+
'Qwen2.5-Coder-32B-Instruct 是基于 Qwen2.5 开发的代码特定大语言模型。该模型通过 5.5 万亿 tokens 的训练,在代码生成、代码推理和代码修复方面都取得了显著提升。它是当前最先进的开源代码语言模型,编码能力可与 GPT-4 相媲美。模型不仅增强了编码能力,还保持了在数学和通用能力方面的优势,并支持长文本处理',
|
186
203
|
displayName: 'Qwen2.5 Coder 32B Instruct',
|
187
204
|
id: 'Qwen/Qwen2.5-Coder-32B-Instruct',
|
188
205
|
pricing: {
|
@@ -190,10 +207,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
190
207
|
input: 1.26,
|
191
208
|
output: 1.26,
|
192
209
|
},
|
193
|
-
tokens: 32_768,
|
194
210
|
},
|
195
211
|
{
|
196
|
-
|
212
|
+
contextWindowTokens: 4096,
|
213
|
+
description:
|
214
|
+
'Qwen2.5-Math-72B 是阿里云发布的 Qwen2.5-Math 系列数学大语言模型之一。该模型支持使用思维链(CoT)和工具集成推理(TIR)方法解决中文和英文数学问题。相比前代 Qwen2-Math 系列,Qwen2.5-Math 系列在中英文数学基准测试中取得了显著的性能提升。该模型在处理精确计算、符号操作和算法操作方面表现出色,尤其适合解决复杂的数学和算法推理任务',
|
197
215
|
displayName: 'Qwen2.5 Math 72B Instruct',
|
198
216
|
id: 'Qwen/Qwen2.5-Math-72B-Instruct',
|
199
217
|
pricing: {
|
@@ -201,10 +219,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
201
219
|
input: 4.13,
|
202
220
|
output: 4.13,
|
203
221
|
},
|
204
|
-
tokens: 4096,
|
205
222
|
},
|
206
223
|
{
|
207
|
-
|
224
|
+
contextWindowTokens: 32_768,
|
225
|
+
description:
|
226
|
+
'Qwen2-1.5B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 1.5B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型。与 Qwen1.5-1.8B-Chat 相比,Qwen2-1.5B-Instruct 在 MMLU、HumanEval、GSM8K、C-Eval 和 IFEval 等测试中均显示出显著的性能提升,尽管参数量略少',
|
208
227
|
displayName: 'Qwen2 1.5B Instruct (Free)',
|
209
228
|
id: 'Qwen/Qwen2-1.5B-Instruct',
|
210
229
|
pricing: {
|
@@ -212,10 +231,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
212
231
|
input: 0,
|
213
232
|
output: 0,
|
214
233
|
},
|
215
|
-
tokens: 32_768,
|
216
234
|
},
|
217
235
|
{
|
218
|
-
|
236
|
+
contextWindowTokens: 32_768,
|
237
|
+
description:
|
238
|
+
'Qwen2-1.5B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 1.5B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型。与 Qwen1.5-1.8B-Chat 相比,Qwen2-1.5B-Instruct 在 MMLU、HumanEval、GSM8K、C-Eval 和 IFEval 等测试中均显示出显著的性能提升,尽管参数量略少',
|
219
239
|
displayName: 'Qwen2 1.5B Instruct (Pro)',
|
220
240
|
id: 'Pro/Qwen/Qwen2-1.5B-Instruct',
|
221
241
|
pricing: {
|
@@ -223,10 +243,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
223
243
|
input: 0.14,
|
224
244
|
output: 0.14,
|
225
245
|
},
|
226
|
-
tokens: 32_768,
|
227
246
|
},
|
228
247
|
{
|
229
|
-
|
248
|
+
contextWindowTokens: 32_768,
|
249
|
+
description:
|
250
|
+
'Qwen2-7B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 7B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力。Qwen2-7B-Instruct 在多项评测中均优于 Qwen1.5-7B-Chat,显示出显著的性能提升',
|
230
251
|
displayName: 'Qwen2 7B Instruct (Free)',
|
231
252
|
id: 'Qwen/Qwen2-7B-Instruct',
|
232
253
|
pricing: {
|
@@ -234,10 +255,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
234
255
|
input: 0,
|
235
256
|
output: 0,
|
236
257
|
},
|
237
|
-
tokens: 32_768,
|
238
258
|
},
|
239
259
|
{
|
240
|
-
|
260
|
+
contextWindowTokens: 32_768,
|
261
|
+
description:
|
262
|
+
'Qwen2-7B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 7B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力。Qwen2-7B-Instruct 在多项评测中均优于 Qwen1.5-7B-Chat,显示出显著的性能提升',
|
241
263
|
displayName: 'Qwen2 7B Instruct (Pro)',
|
242
264
|
id: 'Pro/Qwen/Qwen2-7B-Instruct',
|
243
265
|
pricing: {
|
@@ -245,10 +267,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
245
267
|
input: 0.35,
|
246
268
|
output: 0.35,
|
247
269
|
},
|
248
|
-
tokens: 32_768,
|
249
270
|
},
|
250
271
|
{
|
251
|
-
|
272
|
+
contextWindowTokens: 32_768,
|
273
|
+
description:
|
274
|
+
'Qwen2-72B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 72B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力',
|
252
275
|
displayName: 'Qwen2 72B Instruct',
|
253
276
|
id: 'Qwen/Qwen2-7B-Instruct',
|
254
277
|
pricing: {
|
@@ -256,10 +279,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
256
279
|
input: 4.13,
|
257
280
|
output: 4.13,
|
258
281
|
},
|
259
|
-
tokens: 32_768,
|
260
282
|
},
|
261
283
|
{
|
262
|
-
|
284
|
+
contextWindowTokens: 32_768,
|
285
|
+
description:
|
286
|
+
'Qwen2-72B-Instruct 是 Qwen2 系列中的指令微调大语言模型,参数规模为 72B。该模型基于 Transformer 架构,采用了 SwiGLU 激活函数、注意力 QKV 偏置和组查询注意力等技术。它能够处理大规模输入。该模型在语言理解、生成、多语言能力、编码、数学和推理等多个基准测试中表现出色,超越了大多数开源模型,并在某些任务上展现出与专有模型相当的竞争力',
|
263
287
|
displayName: 'Qwen2 72B Instruct (Vendor-A)',
|
264
288
|
id: 'Vendor-A/Qwen/Qwen2-7B-Instruct',
|
265
289
|
pricing: {
|
@@ -267,10 +291,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
267
291
|
input: 1,
|
268
292
|
output: 1,
|
269
293
|
},
|
270
|
-
tokens: 32_768,
|
271
294
|
},
|
272
295
|
{
|
273
|
-
|
296
|
+
contextWindowTokens: 32_768,
|
297
|
+
description:
|
298
|
+
'Qwen2-VL-7B-Instruct 是 Qwen-VL 模型的最新迭代版本,在视觉理解基准测试中达到了最先进的性能,包括 MathVista、DocVQA、RealWorldQA 和 MTVQA 等。Qwen2-VL 能够用于高质量的基于视频的问答、对话和内容创作,还具备复杂推理和决策能力,可以与移动设备、机器人等集成,基于视觉环境和文本指令进行自动操作。除了英语和中文,Qwen2-VL 现在还支持理解图像中不同语言的文本,包括大多数欧洲语言、日语、韩语、阿拉伯语和越南语等',
|
274
299
|
displayName: 'Qwen2 VL 7B Instruct (Pro)',
|
275
300
|
enabled: true,
|
276
301
|
id: 'Pro/Qwen/Qwen2-VL-7B-Instruct',
|
@@ -279,11 +304,12 @@ const SiliconCloud: ModelProviderCard = {
|
|
279
304
|
input: 0.35,
|
280
305
|
output: 0.35,
|
281
306
|
},
|
282
|
-
tokens: 32_768,
|
283
307
|
vision: true,
|
284
308
|
},
|
285
309
|
{
|
286
|
-
|
310
|
+
contextWindowTokens: 32_768,
|
311
|
+
description:
|
312
|
+
'Qwen2-VL 是 Qwen-VL 模型的最新迭代版本,在视觉理解基准测试中达到了最先进的性能,包括 MathVista、DocVQA、RealWorldQA 和 MTVQA 等。Qwen2-VL 能够理解超过 20 分钟的视频,用于高质量的基于视频的问答、对话和内容创作。它还具备复杂推理和决策能力,可以与移动设备、机器人等集成,基于视觉环境和文本指令进行自动操作。除了英语和中文,Qwen2-VL 现在还支持理解图像中不同语言的文本,包括大多数欧洲语言、日语、韩语、阿拉伯语和越南语等',
|
287
313
|
displayName: 'Qwen2 VL 72B Instruct',
|
288
314
|
enabled: true,
|
289
315
|
id: 'Qwen/Qwen2-VL-72B-Instruct',
|
@@ -292,11 +318,12 @@ const SiliconCloud: ModelProviderCard = {
|
|
292
318
|
input: 4.13,
|
293
319
|
output: 4.13,
|
294
320
|
},
|
295
|
-
tokens: 32_768,
|
296
321
|
vision: true,
|
297
322
|
},
|
298
323
|
{
|
299
|
-
|
324
|
+
contextWindowTokens: 32_768,
|
325
|
+
description:
|
326
|
+
'InternLM2.5-7B-Chat 是一个开源的对话模型,基于 InternLM2 架构开发。该 7B 参数规模的模型专注于对话生成任务,支持中英双语交互。模型采用了最新的训练技术,旨在提供流畅、智能的对话体验。InternLM2.5-7B-Chat 适用于各种对话应用场景,包括但不限于智能客服、个人助手等领域',
|
300
327
|
displayName: 'InternLM2.5 7B Chat (Free)',
|
301
328
|
functionCall: true,
|
302
329
|
id: 'internlm/internlm2_5-7b-chat',
|
@@ -305,10 +332,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
305
332
|
input: 0,
|
306
333
|
output: 0,
|
307
334
|
},
|
308
|
-
tokens: 32_768,
|
309
335
|
},
|
310
336
|
{
|
311
|
-
|
337
|
+
contextWindowTokens: 32_768,
|
338
|
+
description:
|
339
|
+
'InternLM2.5-20B-Chat 是一个开源的大规模对话模型,基于 InternLM2 架构开发。该模型拥有 200 亿参数,在数学推理方面表现出色,超越了同量级的 Llama3 和 Gemma2-27B 模型。InternLM2.5-20B-Chat 在工具调用能力方面有显著提升,支持从上百个网页收集信息进行分析推理,并具备更强的指令理解、工具选择和结果反思能力。它适用于构建复杂智能体,可进行多轮工具调用以完成复杂任务',
|
312
340
|
displayName: 'InternLM2.5 20B Chat',
|
313
341
|
functionCall: true,
|
314
342
|
id: 'internlm/internlm2_5-20b-chat',
|
@@ -317,10 +345,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
317
345
|
input: 1,
|
318
346
|
output: 1,
|
319
347
|
},
|
320
|
-
tokens: 32_768,
|
321
348
|
},
|
322
349
|
{
|
323
|
-
|
350
|
+
contextWindowTokens: 32_768,
|
351
|
+
description:
|
352
|
+
'InternVL2-8B 是 InternVL 2.0 系列多模态大语言模型中的一员。该模型由 InternViT-300M-448px 视觉模型、MLP 投影层和 internlm2_5-7b-chat 语言模型组成。它在各种视觉语言任务上展现出了卓越的性能,包括文档和图表理解、场景文本理解、OCR、科学和数学问题解决等。InternVL2-8B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力',
|
324
353
|
displayName: 'InternVL2 8B (Pro)',
|
325
354
|
id: 'Pro/OpenGVLab/InternVL2-8B',
|
326
355
|
pricing: {
|
@@ -328,11 +357,12 @@ const SiliconCloud: ModelProviderCard = {
|
|
328
357
|
input: 0.35,
|
329
358
|
output: 0.35,
|
330
359
|
},
|
331
|
-
tokens: 32_768,
|
332
360
|
vision: true,
|
333
361
|
},
|
334
362
|
{
|
335
|
-
|
363
|
+
contextWindowTokens: 32_768,
|
364
|
+
description:
|
365
|
+
'InternVL2-26B 是 InternVL 2.0 系列多模态大语言模型中的一员。该模型由 InternViT-6B-448px-V1-5 视觉模型、MLP 投影层和 internlm2-chat-20b 语言模型组成。它在各种视觉语言任务上展现出了卓越的性能,包括文档和图表理解、场景文本理解、OCR、科学和数学问题解决等。InternVL2-26B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力',
|
336
366
|
displayName: 'InternVL2 26B',
|
337
367
|
id: 'OpenGVLab/InternVL2-26B',
|
338
368
|
pricing: {
|
@@ -340,11 +370,12 @@ const SiliconCloud: ModelProviderCard = {
|
|
340
370
|
input: 1,
|
341
371
|
output: 1,
|
342
372
|
},
|
343
|
-
tokens: 32_768,
|
344
373
|
vision: true,
|
345
374
|
},
|
346
375
|
{
|
347
|
-
|
376
|
+
contextWindowTokens: 8192,
|
377
|
+
description:
|
378
|
+
'InternVL2-Llama3-76B 是 InternVL 2.0 系列中的大规模多模态模型。它由 InternViT-6B-448px-V1-5 视觉模型、MLP 投影层和 Hermes-2-Theta-Llama-3-70B 语言模型组成。该模型在各种视觉语言任务上表现出色,包括文档和图表理解、信息图表问答、场景文本理解和 OCR 任务等。InternVL2-Llama3-76B 使用 8K 上下文窗口训练,能够处理长文本、多图像和视频输入,显著提升了模型在这些任务上的处理能力,在多项基准测试中达到或接近最先进的商业模型水平',
|
348
379
|
displayName: 'InternVL2 Llama3 76B',
|
349
380
|
id: 'OpenGVLab/InternVL2-Llama3-76B',
|
350
381
|
pricing: {
|
@@ -352,11 +383,12 @@ const SiliconCloud: ModelProviderCard = {
|
|
352
383
|
input: 4.13,
|
353
384
|
output: 4.13,
|
354
385
|
},
|
355
|
-
tokens: 8192,
|
356
386
|
vision: true,
|
357
387
|
},
|
358
388
|
{
|
359
|
-
|
389
|
+
contextWindowTokens: 131_072,
|
390
|
+
description:
|
391
|
+
'GLM-4-9B-Chat 是智谱 AI 推出的 GLM-4 系列预训练模型中的开源版本。该模型在语义、数学、推理、代码和知识等多个方面表现出色。除了支持多轮对话外,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理等高级功能。模型支持 26 种语言,包括中文、英文、日语、韩语和德语等。在多项基准测试中,GLM-4-9B-Chat 展现了优秀的性能,如 AlignBench-v2、MT-Bench、MMLU 和 C-Eval 等。该模型支持最大 128K 的上下文长度,适用于学术研究和商业应用',
|
360
392
|
displayName: 'GLM-4 9B Chat (Free)',
|
361
393
|
functionCall: true,
|
362
394
|
id: 'THUDM/glm-4-9b-chat',
|
@@ -365,10 +397,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
365
397
|
input: 0,
|
366
398
|
output: 0,
|
367
399
|
},
|
368
|
-
tokens: 131_072,
|
369
400
|
},
|
370
401
|
{
|
371
|
-
|
402
|
+
contextWindowTokens: 131_072,
|
403
|
+
description:
|
404
|
+
'GLM-4-9B-Chat 是智谱 AI 推出的 GLM-4 系列预训练模型中的开源版本。该模型在语义、数学、推理、代码和知识等多个方面表现出色。除了支持多轮对话外,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理等高级功能。模型支持 26 种语言,包括中文、英文、日语、韩语和德语等。在多项基准测试中,GLM-4-9B-Chat 展现了优秀的性能,如 AlignBench-v2、MT-Bench、MMLU 和 C-Eval 等。该模型支持最大 128K 的上下文长度,适用于学术研究和商业应用',
|
372
405
|
displayName: 'GLM-4 9B Chat (Pro)',
|
373
406
|
functionCall: true,
|
374
407
|
id: 'Pro/THUDM/glm-4-9b-chat',
|
@@ -377,10 +410,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
377
410
|
input: 0.6,
|
378
411
|
output: 0.6,
|
379
412
|
},
|
380
|
-
tokens: 131_072,
|
381
413
|
},
|
382
414
|
{
|
383
|
-
|
415
|
+
contextWindowTokens: 32_768,
|
416
|
+
description:
|
417
|
+
'ChatGLM3-6B 是 ChatGLM 系列的开源模型,由智谱 AI 开发。该模型保留了前代模型的优秀特性,如对话流畅和部署门槛低,同时引入了新的特性。它采用了更多样的训练数据、更充分的训练步数和更合理的训练策略,在 10B 以下的预训练模型中表现出色。ChatGLM3-6B 支持多轮对话、工具调用、代码执行和 Agent 任务等复杂场景。除对话模型外,还开源了基础模型 ChatGLM-6B-Base 和长文本对话模型 ChatGLM3-6B-32K。该模型对学术研究完全开放,在登记后也允许免费商业使用',
|
384
418
|
displayName: 'ChatGLM3 6B (Free)',
|
385
419
|
id: 'THUDM/chatglm3-6b',
|
386
420
|
pricing: {
|
@@ -388,10 +422,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
388
422
|
input: 0,
|
389
423
|
output: 0,
|
390
424
|
},
|
391
|
-
tokens: 32_768,
|
392
425
|
},
|
393
426
|
{
|
394
|
-
|
427
|
+
contextWindowTokens: 4096,
|
428
|
+
description:
|
429
|
+
'Yi-1.5-6B-Chat 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型具有 4K、16K 和 32K 的上下文长度版本,预训练总量达到 3.6T 个 token',
|
395
430
|
displayName: 'Yi-1.5 6B Chat (Free)',
|
396
431
|
id: '01-ai/Yi-1.5-6B-Chat',
|
397
432
|
pricing: {
|
@@ -399,10 +434,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
399
434
|
input: 0,
|
400
435
|
output: 0,
|
401
436
|
},
|
402
|
-
tokens: 4096,
|
403
437
|
},
|
404
438
|
{
|
405
|
-
|
439
|
+
contextWindowTokens: 16_384,
|
440
|
+
description:
|
441
|
+
'Yi-1.5-9B-Chat-16K 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型在同等规模的开源模型中表现最佳',
|
406
442
|
displayName: 'Yi-1.5 9B Chat 16K (Free)',
|
407
443
|
id: '01-ai/Yi-1.5-9B-Chat-16K',
|
408
444
|
pricing: {
|
@@ -410,10 +446,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
410
446
|
input: 0,
|
411
447
|
output: 0,
|
412
448
|
},
|
413
|
-
tokens: 16_384,
|
414
449
|
},
|
415
450
|
{
|
416
|
-
|
451
|
+
contextWindowTokens: 16_384,
|
452
|
+
description:
|
453
|
+
'Yi-1.5-34B-Chat-16K 是 Yi-1.5 系列的一个变体,属于开源聊天模型。Yi-1.5 是 Yi 的升级版本,在 500B 个高质量语料上进行了持续预训练,并在 3M 多样化的微调样本上进行了微调。相比于 Yi,Yi-1.5 在编码、数学、推理和指令遵循能力方面表现更强,同时保持了出色的语言理解、常识推理和阅读理解能力。该模型在大多数基准测试中与更大的模型相当或表现更佳,具有 16K 的上下文长度',
|
417
454
|
displayName: 'Yi-1.5 34B Chat 16K',
|
418
455
|
id: '01-ai/Yi-1.5-34B-Chat-16K',
|
419
456
|
pricing: {
|
@@ -421,10 +458,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
421
458
|
input: 1.26,
|
422
459
|
output: 1.26,
|
423
460
|
},
|
424
|
-
tokens: 16_384,
|
425
461
|
},
|
426
462
|
{
|
427
|
-
|
463
|
+
contextWindowTokens: 8192,
|
464
|
+
description:
|
465
|
+
'Gemma 是 Google 开发的轻量级、最先进的开放模型系列之一。它是一个仅解码器的大型语言模型,支持英语,提供开放权重、预训练变体和指令微调变体。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。该 9B 模型是通过 8 万亿个 tokens 训练而成。其相对较小的规模使其可以在资源有限的环境中部署,如笔记本电脑、台式机或您自己的云基础设施,从而使更多人能够访问最先进的 AI 模型并促进创新',
|
428
466
|
displayName: 'Gemma 2 9B (Free)',
|
429
467
|
enabled: true,
|
430
468
|
id: 'google/gemma-2-9b-it',
|
@@ -433,10 +471,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
433
471
|
input: 0,
|
434
472
|
output: 0,
|
435
473
|
},
|
436
|
-
tokens: 8192,
|
437
474
|
},
|
438
475
|
{
|
439
|
-
|
476
|
+
contextWindowTokens: 8192,
|
477
|
+
description:
|
478
|
+
'Gemma 是 Google 开发的轻量级、最先进的开放模型系列之一。它是一个仅解码器的大型语言模型,支持英语,提供开放权重、预训练变体和指令微调变体。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。该 9B 模型是通过 8 万亿个 tokens 训练而成。其相对较小的规模使其可以在资源有限的环境中部署,如笔记本电脑、台式机或您自己的云基础设施,从而使更多人能够访问最先进的 AI 模型并促进创新',
|
440
479
|
displayName: 'Gemma 2 9B (Pro)',
|
441
480
|
id: 'Pro/google/gemma-2-9b-it',
|
442
481
|
pricing: {
|
@@ -444,10 +483,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
444
483
|
input: 0.6,
|
445
484
|
output: 0.6,
|
446
485
|
},
|
447
|
-
tokens: 8192,
|
448
486
|
},
|
449
487
|
{
|
450
|
-
|
488
|
+
contextWindowTokens: 8192,
|
489
|
+
description:
|
490
|
+
'Gemma 是由 Google 开发的轻量级、最先进的开放模型系列,采用与 Gemini 模型相同的研究和技术构建。这些模型是仅解码器的大型语言模型,支持英语,提供预训练和指令微调两种变体的开放权重。Gemma 模型适用于各种文本生成任务,包括问答、摘要和推理。其相对较小的规模使其能够部署在资源有限的环境中,如笔记本电脑、台式机或个人云基础设施,从而让所有人都能获得最先进的 AI 模型,促进创新',
|
451
491
|
displayName: 'Gemma 2 27B',
|
452
492
|
enabled: true,
|
453
493
|
id: 'google/gemma-2-27b-it',
|
@@ -456,10 +496,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
456
496
|
input: 1.26,
|
457
497
|
output: 1.26,
|
458
498
|
},
|
459
|
-
tokens: 8192,
|
460
499
|
},
|
461
500
|
{
|
462
|
-
|
501
|
+
contextWindowTokens: 32_768,
|
502
|
+
description:
|
503
|
+
'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 8B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
|
463
504
|
displayName: 'Llama 3.1 8B Instruct (Free)',
|
464
505
|
enabled: true,
|
465
506
|
functionCall: true,
|
@@ -469,10 +510,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
469
510
|
input: 0,
|
470
511
|
output: 0,
|
471
512
|
},
|
472
|
-
tokens: 32_768,
|
473
513
|
},
|
474
514
|
{
|
475
|
-
|
515
|
+
contextWindowTokens: 32_768,
|
516
|
+
description:
|
517
|
+
'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 8B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
|
476
518
|
displayName: 'Llama 3.1 8B Instruct (Pro)',
|
477
519
|
id: 'Pro/meta-llama/Meta-Llama-3.1-8B-Instruct',
|
478
520
|
pricing: {
|
@@ -480,10 +522,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
480
522
|
input: 0.42,
|
481
523
|
output: 0.42,
|
482
524
|
},
|
483
|
-
tokens: 32_768,
|
484
525
|
},
|
485
526
|
{
|
486
|
-
|
527
|
+
contextWindowTokens: 32_768,
|
528
|
+
description:
|
529
|
+
'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 70B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
|
487
530
|
displayName: 'Llama 3.1 70B Instruct',
|
488
531
|
enabled: true,
|
489
532
|
functionCall: true,
|
@@ -493,10 +536,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
493
536
|
input: 4.13,
|
494
537
|
output: 4.13,
|
495
538
|
},
|
496
|
-
tokens: 32_768,
|
497
539
|
},
|
498
540
|
{
|
499
|
-
|
541
|
+
contextWindowTokens: 32_768,
|
542
|
+
description:
|
543
|
+
'Meta Llama 3.1 是由 Meta 开发的多语言大型语言模型家族,包括 8B、70B 和 405B 三种参数规模的预训练和指令微调变体。该 405B 指令微调模型针对多语言对话场景进行了优化,在多项行业基准测试中表现优异。模型训练使用了超过 15 万亿个 tokens 的公开数据,并采用了监督微调和人类反馈强化学习等技术来提升模型的有用性和安全性。Llama 3.1 支持文本生成和代码生成,知识截止日期为 2023 年 12 月',
|
500
544
|
displayName: 'Llama 3.1 405B Instruct',
|
501
545
|
enabled: true,
|
502
546
|
id: 'meta-llama/Meta-Llama-3.1-405B-Instruct',
|
@@ -505,10 +549,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
505
549
|
input: 21,
|
506
550
|
output: 21,
|
507
551
|
},
|
508
|
-
tokens: 32_768,
|
509
552
|
},
|
510
553
|
{
|
511
|
-
|
554
|
+
contextWindowTokens: 32_768,
|
555
|
+
description:
|
556
|
+
'Llama-3.1-Nemotron-70B-Instruct 是由 NVIDIA 定制的大型语言模型,旨在提高 LLM 生成的响应对用户查询的帮助程度。该模型在 Arena Hard、AlpacaEval 2 LC 和 GPT-4-Turbo MT-Bench 等基准测试中表现出色,截至 2024 年 10 月 1 日,在所有三个自动对齐基准测试中排名第一。该模型使用 RLHF(特别是 REINFORCE)、Llama-3.1-Nemotron-70B-Reward 和 HelpSteer2-Preference 提示在 Llama-3.1-70B-Instruct 模型基础上进行训练',
|
512
557
|
displayName: 'Llama 3.1 Nemotron 70B Instruct',
|
513
558
|
enabled: true,
|
514
559
|
id: 'nvidia/Llama-3.1-Nemotron-70B-Instruct',
|
@@ -517,10 +562,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
517
562
|
input: 4.13,
|
518
563
|
output: 4.13,
|
519
564
|
},
|
520
|
-
tokens: 32_768,
|
521
565
|
},
|
522
566
|
{
|
523
|
-
|
567
|
+
contextWindowTokens: 8192,
|
568
|
+
description:
|
569
|
+
'TeleChat2大模型是由中国电信从0到1自主研发的生成式语义大模型,支持百科问答、代码生成、长文生成等功能,为用户提供对话咨询服务,能够与用户进行对话互动,回答问题,协助创作,高效便捷地帮助用户获取信息、知识和灵感。模型在幻觉问题、长文生成、逻辑理解等方面均有较出色表现。',
|
524
570
|
displayName: 'TeleChat2',
|
525
571
|
id: 'TeleAI/TeleChat2',
|
526
572
|
pricing: {
|
@@ -528,10 +574,11 @@ const SiliconCloud: ModelProviderCard = {
|
|
528
574
|
input: 1.33,
|
529
575
|
output: 1.33,
|
530
576
|
},
|
531
|
-
tokens: 8192,
|
532
577
|
},
|
533
578
|
{
|
534
|
-
|
579
|
+
contextWindowTokens: 32_768,
|
580
|
+
description:
|
581
|
+
'TeleMM多模态大模型是由中国电信自主研发的多模态理解大模型,能够处理文本、图像等多种模态输入,支持图像理解、图表分析等功能,为用户提供跨模态的理解服务。模型能够与用户进行多模态交互,准确理解输入内容,回答问题、协助创作,并高效提供多模态信息和灵感支持。在细粒度感知,逻辑推理等多模态任务上有出色表现',
|
535
582
|
displayName: 'TeleMM',
|
536
583
|
id: 'TeleAI/TeleMM',
|
537
584
|
pricing: {
|
@@ -539,7 +586,6 @@ const SiliconCloud: ModelProviderCard = {
|
|
539
586
|
input: 1.33,
|
540
587
|
output: 1.33,
|
541
588
|
},
|
542
|
-
tokens: 32_768,
|
543
589
|
vision: true,
|
544
590
|
},
|
545
591
|
],
|