@lobehub/chat 1.40.0 → 1.40.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/package.json +1 -1
- package/src/app/(main)/chat/(workspace)/_layout/Desktop/HotKeys.tsx +7 -0
- package/src/app/(main)/discover/(detail)/model/[...slugs]/features/Actions.tsx +1 -1
- package/src/app/(main)/discover/(detail)/model/[...slugs]/features/Header.tsx +1 -1
- package/src/app/(main)/discover/(detail)/model/[...slugs]/features/InfoSidebar/SuggestionItem.tsx +2 -2
- package/src/app/(main)/discover/(detail)/model/[...slugs]/features/ProviderList/ProviderItem.tsx +1 -1
- package/src/app/(main)/discover/(detail)/provider/[slug]/features/ModelList/ModelItem.tsx +3 -3
- package/src/app/(main)/discover/(list)/models/features/Card.tsx +6 -2
- package/src/app/(main)/settings/llm/ProviderList/Cloudflare/index.tsx +1 -5
- package/src/app/(main)/settings/llm/components/ProviderModelList/ModelFetcher.tsx +2 -2
- package/src/components/ModelSelect/index.tsx +7 -4
- package/src/config/__tests__/app.test.ts +6 -2
- package/src/config/app.ts +1 -2
- package/src/config/modelProviders/ai21.ts +2 -2
- package/src/config/modelProviders/ai360.ts +4 -4
- package/src/config/modelProviders/anthropic.ts +8 -8
- package/src/config/modelProviders/azure.ts +5 -5
- package/src/config/modelProviders/baichuan.ts +6 -6
- package/src/config/modelProviders/bedrock.ts +14 -14
- package/src/config/modelProviders/cloudflare.ts +12 -11
- package/src/config/modelProviders/deepseek.ts +1 -1
- package/src/config/modelProviders/fireworksai.ts +29 -27
- package/src/config/modelProviders/giteeai.ts +7 -7
- package/src/config/modelProviders/github.ts +29 -28
- package/src/config/modelProviders/google.ts +18 -19
- package/src/config/modelProviders/groq.ts +13 -13
- package/src/config/modelProviders/higress.ts +195 -194
- package/src/config/modelProviders/huggingface.ts +7 -7
- package/src/config/modelProviders/hunyuan.ts +25 -17
- package/src/config/modelProviders/internlm.ts +6 -4
- package/src/config/modelProviders/minimax.ts +5 -5
- package/src/config/modelProviders/mistral.ts +14 -16
- package/src/config/modelProviders/moonshot.ts +3 -3
- package/src/config/modelProviders/novita.ts +15 -15
- package/src/config/modelProviders/ollama.ts +46 -46
- package/src/config/modelProviders/openai.ts +23 -22
- package/src/config/modelProviders/openrouter.ts +20 -18
- package/src/config/modelProviders/perplexity.ts +7 -7
- package/src/config/modelProviders/qwen.ts +23 -25
- package/src/config/modelProviders/sensenova.ts +8 -8
- package/src/config/modelProviders/siliconcloud.ts +138 -92
- package/src/config/modelProviders/spark.ts +6 -6
- package/src/config/modelProviders/stepfun.ts +9 -9
- package/src/config/modelProviders/taichu.ts +2 -3
- package/src/config/modelProviders/togetherai.ts +57 -48
- package/src/config/modelProviders/upstage.ts +3 -3
- package/src/config/modelProviders/wenxin.ts +12 -12
- package/src/config/modelProviders/xai.ts +4 -4
- package/src/config/modelProviders/zeroone.ts +11 -11
- package/src/config/modelProviders/zhipu.ts +17 -16
- package/src/const/hotkeys.ts +1 -0
- package/src/database/_deprecated/core/model.ts +1 -1
- package/src/database/_deprecated/models/sessionGroup.ts +4 -1
- package/src/database/client/migrations.json +2 -5
- package/src/database/migrations/meta/0012_snapshot.json +176 -518
- package/src/database/schemas/agent.ts +1 -1
- package/src/database/schemas/message.ts +1 -0
- package/src/database/schemas/session.ts +1 -0
- package/src/database/server/models/topic.ts +19 -17
- package/src/features/DebugUI/Content.tsx +0 -1
- package/src/features/PluginStore/index.tsx +2 -2
- package/src/layout/GlobalProvider/AntdV5MonkeyPatch.tsx +4 -4
- package/src/libs/agent-runtime/google/index.ts +4 -3
- package/src/libs/agent-runtime/higress/index.ts +1 -1
- package/src/libs/agent-runtime/huggingface/index.ts +2 -4
- package/src/libs/agent-runtime/minimax/index.ts +5 -10
- package/src/libs/agent-runtime/mistral/index.ts +3 -6
- package/src/libs/agent-runtime/moonshot/index.ts +3 -6
- package/src/libs/agent-runtime/novita/__snapshots__/index.test.ts.snap +18 -18
- package/src/libs/agent-runtime/novita/index.ts +1 -1
- package/src/libs/agent-runtime/openai/__snapshots__/index.test.ts.snap +10 -10
- package/src/libs/agent-runtime/openai/index.ts +2 -0
- package/src/libs/agent-runtime/openrouter/__snapshots__/index.test.ts.snap +168 -168
- package/src/libs/agent-runtime/openrouter/index.ts +1 -1
- package/src/libs/agent-runtime/perplexity/index.ts +4 -4
- package/src/libs/agent-runtime/sensenova/index.ts +9 -3
- package/src/libs/agent-runtime/taichu/index.ts +4 -10
- package/src/libs/agent-runtime/utils/streams/minimax.test.ts +5 -2
- package/src/libs/agent-runtime/utils/streams/minimax.ts +4 -1
- package/src/libs/agent-runtime/zhipu/index.ts +12 -13
- package/src/libs/langchain/loaders/index.ts +2 -2
- package/src/libs/langchain/types.ts +9 -1
- package/src/locales/default/modelProvider.ts +1 -1
- package/src/migrations/FromV3ToV4/fixtures/ollama-output-v4.json +1 -1
- package/src/migrations/FromV6ToV7/types/v7.ts +0 -2
- package/src/server/globalConfig/genServerLLMConfig.test.ts +4 -4
- package/src/server/globalConfig/genServerLLMConfig.ts +29 -24
- package/src/server/globalConfig/index.ts +1 -2
- package/src/server/routers/edge/config/__snapshots__/index.test.ts.snap +9 -9
- package/src/server/routers/lambda/_template.ts +1 -1
- package/src/server/routers/lambda/knowledgeBase.ts +1 -1
- package/src/server/routers/lambda/session.ts +1 -1
- package/src/server/routers/lambda/sessionGroup.ts +1 -1
- package/src/server/routers/lambda/thread.ts +1 -1
- package/src/server/services/nextAuthUser/index.ts +1 -1
- package/src/store/user/slices/modelList/__snapshots__/action.test.ts.snap +1 -1
- package/src/store/user/slices/modelList/action.test.ts +4 -4
- package/src/store/user/slices/modelList/reducers/customModelCard.test.ts +6 -6
- package/src/store/user/slices/modelList/selectors/modelProvider.ts +3 -2
- package/src/tools/dalle/Render/Item/index.tsx +1 -1
- package/src/types/files/index.ts +0 -1
- package/src/types/llm.ts +4 -5
- package/src/utils/__snapshots__/parseModels.test.ts.snap +2 -2
- package/src/utils/genUserLLMConfig.test.ts +4 -4
- package/src/utils/genUserLLMConfig.ts +6 -4
- package/src/utils/parseModels.test.ts +16 -16
- package/src/utils/parseModels.ts +1 -1
- package/src/utils/server/jwt.ts +2 -6
@@ -3,334 +3,334 @@ import { ModelProviderCard } from '@/types/llm';
|
|
3
3
|
const Ollama: ModelProviderCard = {
|
4
4
|
chatModels: [
|
5
5
|
{
|
6
|
+
contextWindowTokens: 128_000,
|
6
7
|
description:
|
7
8
|
'Llama 3.1 是 Meta 推出的领先模型,支持高达 405B 参数,可应用于复杂对话、多语言翻译和数据分析领域。',
|
8
9
|
displayName: 'Llama 3.1 8B',
|
9
10
|
enabled: true,
|
10
11
|
functionCall: true,
|
11
12
|
id: 'llama3.1',
|
12
|
-
tokens: 128_000,
|
13
13
|
},
|
14
14
|
{
|
15
|
+
contextWindowTokens: 128_000,
|
15
16
|
description:
|
16
17
|
'Llama 3.1 是 Meta 推出的领先模型,支持高达 405B 参数,可应用于复杂对话、多语言翻译和数据分析领域。',
|
17
18
|
displayName: 'Llama 3.1 70B',
|
18
19
|
id: 'llama3.1:70b',
|
19
|
-
tokens: 128_000,
|
20
20
|
},
|
21
21
|
{
|
22
|
+
contextWindowTokens: 128_000,
|
22
23
|
description:
|
23
24
|
'Llama 3.1 是 Meta 推出的领先模型,支持高达 405B 参数,可应用于复杂对话、多语言翻译和数据分析领域。',
|
24
25
|
displayName: 'Llama 3.1 405B',
|
25
26
|
id: 'llama3.1:405b',
|
26
|
-
tokens: 128_000,
|
27
27
|
},
|
28
28
|
{
|
29
|
+
contextWindowTokens: 16_384,
|
29
30
|
description:
|
30
31
|
'Code Llama 是一款专注于代码生成和讨论的 LLM,结合广泛的编程语言支持,适用于开发者环境。',
|
31
32
|
displayName: 'Code Llama 7B',
|
32
33
|
enabled: true,
|
33
34
|
id: 'codellama',
|
34
|
-
tokens: 16_384,
|
35
35
|
},
|
36
36
|
{
|
37
|
+
contextWindowTokens: 16_384,
|
37
38
|
description:
|
38
39
|
'Code Llama 是一款专注于代码生成和讨论的 LLM,结合广泛的编程语言支持,适用于开发者环境。',
|
39
40
|
displayName: 'Code Llama 13B',
|
40
41
|
id: 'codellama:13b',
|
41
|
-
tokens: 16_384,
|
42
42
|
},
|
43
43
|
{
|
44
|
+
contextWindowTokens: 16_384,
|
44
45
|
description:
|
45
46
|
'Code Llama 是一款专注于代码生成和讨论的 LLM,结合广泛的编程语言支持,适用于开发者环境。',
|
46
47
|
displayName: 'Code Llama 34B',
|
47
48
|
id: 'codellama:34b',
|
48
|
-
tokens: 16_384,
|
49
49
|
},
|
50
50
|
{
|
51
|
+
contextWindowTokens: 16_384,
|
51
52
|
description:
|
52
53
|
'Code Llama 是一款专注于代码生成和讨论的 LLM,结合广泛的编程语言支持,适用于开发者环境。',
|
53
54
|
displayName: 'Code Llama 70B',
|
54
55
|
id: 'codellama:70b',
|
55
|
-
tokens: 16_384,
|
56
56
|
},
|
57
57
|
{
|
58
|
+
contextWindowTokens: 128_000,
|
58
59
|
description: 'QwQ 是一个实验研究模型,专注于提高 AI 推理能力。',
|
59
60
|
displayName: 'QwQ 32B',
|
60
61
|
enabled: true,
|
61
62
|
functionCall: true,
|
62
63
|
id: 'qwq',
|
63
64
|
releasedAt: '2024-11-28',
|
64
|
-
tokens: 128_000,
|
65
65
|
},
|
66
66
|
{
|
67
|
+
contextWindowTokens: 128_000,
|
67
68
|
description: 'Qwen2.5 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。',
|
68
69
|
displayName: 'Qwen2.5 0.5B',
|
69
70
|
id: 'qwen2.5:0.5b',
|
70
|
-
tokens: 128_000,
|
71
71
|
},
|
72
72
|
{
|
73
|
+
contextWindowTokens: 128_000,
|
73
74
|
description: 'Qwen2.5 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。',
|
74
75
|
displayName: 'Qwen2.5 1.5B',
|
75
76
|
id: 'qwen2.5:1.5b',
|
76
|
-
tokens: 128_000,
|
77
77
|
},
|
78
78
|
{
|
79
|
+
contextWindowTokens: 128_000,
|
79
80
|
description: 'Qwen2.5 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。',
|
80
81
|
displayName: 'Qwen2.5 7B',
|
81
82
|
enabled: true,
|
82
83
|
functionCall: true,
|
83
84
|
id: 'qwen2.5',
|
84
|
-
tokens: 128_000,
|
85
85
|
},
|
86
86
|
{
|
87
|
+
contextWindowTokens: 128_000,
|
87
88
|
description: 'Qwen2.5 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。',
|
88
89
|
displayName: 'Qwen2.5 72B',
|
89
90
|
id: 'qwen2.5:72b',
|
90
|
-
tokens: 128_000,
|
91
91
|
},
|
92
92
|
{
|
93
|
+
contextWindowTokens: 128_000,
|
93
94
|
description: 'Qwen2.5 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。',
|
94
95
|
displayName: 'Qwen2.5 7B',
|
95
96
|
enabled: true,
|
96
97
|
functionCall: true,
|
97
98
|
id: 'qwen2.5',
|
98
|
-
tokens: 128_000,
|
99
99
|
},
|
100
100
|
{
|
101
|
+
contextWindowTokens: 65_536,
|
101
102
|
description: 'CodeQwen1.5 是基于大量代码数据训练的大型语言模型,专为解决复杂编程任务。',
|
102
103
|
displayName: 'CodeQwen1.5 7B',
|
103
104
|
functionCall: true,
|
104
105
|
id: 'codeqwen',
|
105
|
-
tokens: 65_536,
|
106
106
|
},
|
107
107
|
{
|
108
|
+
contextWindowTokens: 128_000,
|
108
109
|
description: 'Qwen2 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。',
|
109
110
|
displayName: 'Qwen2 0.5B',
|
110
111
|
functionCall: true,
|
111
112
|
id: 'qwen2:0.5b',
|
112
|
-
tokens: 128_000,
|
113
113
|
},
|
114
114
|
{
|
115
|
+
contextWindowTokens: 128_000,
|
115
116
|
description: 'Qwen2 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。',
|
116
117
|
displayName: 'Qwen2 1.5B',
|
117
118
|
functionCall: true,
|
118
119
|
id: 'qwen2:1.5b',
|
119
|
-
tokens: 128_000,
|
120
120
|
},
|
121
121
|
{
|
122
|
+
contextWindowTokens: 128_000,
|
122
123
|
description: 'Qwen2 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。',
|
123
124
|
displayName: 'Qwen2 7B',
|
124
125
|
functionCall: true,
|
125
126
|
id: 'qwen2',
|
126
|
-
tokens: 128_000,
|
127
127
|
},
|
128
128
|
{
|
129
|
+
contextWindowTokens: 128_000,
|
129
130
|
description: 'Qwen2 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。',
|
130
131
|
displayName: 'Qwen2 72B',
|
131
132
|
functionCall: true,
|
132
133
|
id: 'qwen2:72b',
|
133
|
-
tokens: 128_000,
|
134
134
|
},
|
135
135
|
{
|
136
|
+
contextWindowTokens: 8192,
|
136
137
|
description: 'Gemma 2 是 Google 推出的高效模型,涵盖从小型应用到复杂数据处理的多种应用场景。',
|
137
138
|
displayName: 'Gemma 2 2B',
|
138
139
|
id: 'gemma2:2b',
|
139
|
-
tokens: 8192,
|
140
140
|
},
|
141
141
|
{
|
142
|
+
contextWindowTokens: 8192,
|
142
143
|
description: 'Gemma 2 是 Google 推出的高效模型,涵盖从小型应用到复杂数据处理的多种应用场景。',
|
143
144
|
displayName: 'Gemma 2 9B',
|
144
145
|
id: 'gemma2',
|
145
|
-
tokens: 8192,
|
146
146
|
},
|
147
147
|
{
|
148
|
+
contextWindowTokens: 8192,
|
148
149
|
description: 'Gemma 2 是 Google 推出的高效模型,涵盖从小型应用到复杂数据处理的多种应用场景。',
|
149
150
|
displayName: 'Gemma 2 27B',
|
150
151
|
id: 'gemma2:27b',
|
151
|
-
tokens: 8192,
|
152
152
|
},
|
153
153
|
{
|
154
|
+
contextWindowTokens: 8192,
|
154
155
|
description: 'CodeGemma 专用于不同编程任务的轻量级语言模型,支持快速迭代和集成。',
|
155
156
|
displayName: 'CodeGemma 2B',
|
156
157
|
id: 'codegemma:2b',
|
157
|
-
tokens: 8192,
|
158
158
|
},
|
159
159
|
{
|
160
|
+
contextWindowTokens: 8192,
|
160
161
|
description: 'CodeGemma 专用于不同编程任务的轻量级语言模型,支持快速迭代和集成。',
|
161
162
|
displayName: 'CodeGemma 7B',
|
162
163
|
id: 'codegemma',
|
163
|
-
tokens: 8192,
|
164
164
|
},
|
165
165
|
{
|
166
|
+
contextWindowTokens: 128_000,
|
166
167
|
description: 'Phi-3 是微软推出的轻量级开放模型,适用于高效集成和大规模知识推理。',
|
167
168
|
displayName: 'Phi-3 3.8B',
|
168
169
|
enabled: true,
|
169
170
|
id: 'phi3',
|
170
|
-
tokens: 128_000,
|
171
171
|
},
|
172
172
|
{
|
173
|
+
contextWindowTokens: 128_000,
|
173
174
|
description: 'Phi-3 是微软推出的轻量级开放模型,适用于高效集成和大规模知识推理。',
|
174
175
|
displayName: 'Phi-3 14B',
|
175
176
|
id: 'phi3:14b',
|
176
|
-
tokens: 128_000,
|
177
177
|
},
|
178
178
|
{
|
179
|
+
contextWindowTokens: 32_768,
|
179
180
|
description:
|
180
181
|
'WizardLM 2 是微软AI提供的语言模型,在复杂对话、多语言、推理和智能助手领域表现尤为出色。',
|
181
182
|
displayName: 'WizardLM 2 7B',
|
182
183
|
enabled: true,
|
183
184
|
id: 'wizardlm2',
|
184
|
-
tokens: 32_768,
|
185
185
|
},
|
186
186
|
{
|
187
|
+
contextWindowTokens: 65_536,
|
187
188
|
description:
|
188
189
|
'WizardLM 2 是微软AI提供的语言模型,在复杂对话、多语言、推理和智能助手领域表现尤为出色。',
|
189
190
|
displayName: 'WizardLM 2 8x22B',
|
190
191
|
id: 'wizardlm2:8x22b',
|
191
|
-
tokens: 65_536,
|
192
192
|
},
|
193
193
|
{
|
194
|
+
contextWindowTokens: 32_768,
|
194
195
|
description: 'MathΣtral 专为科学研究和数学推理设计,提供有效的计算能力和结果解释。',
|
195
196
|
displayName: 'MathΣtral 7B',
|
196
197
|
enabled: true,
|
197
198
|
id: 'mathstral',
|
198
|
-
tokens: 32_768,
|
199
199
|
},
|
200
200
|
{
|
201
|
+
contextWindowTokens: 32_768,
|
201
202
|
description: 'Mistral 是 Mistral AI 发布的 7B 模型,适合多变的语言处理需求。',
|
202
203
|
displayName: 'Mistral 7B',
|
203
204
|
enabled: true,
|
204
205
|
functionCall: true,
|
205
206
|
id: 'mistral',
|
206
|
-
tokens: 32_768,
|
207
207
|
},
|
208
208
|
{
|
209
|
+
contextWindowTokens: 32_768,
|
209
210
|
description:
|
210
211
|
'Mixtral 是 Mistral AI 的专家模型,具有开源权重,并在代码生成和语言理解方面提供支持。',
|
211
212
|
displayName: 'Mixtral 8x7B',
|
212
213
|
enabled: true,
|
213
214
|
functionCall: true,
|
214
215
|
id: 'mixtral',
|
215
|
-
tokens: 32_768,
|
216
216
|
},
|
217
217
|
{
|
218
|
+
contextWindowTokens: 65_536,
|
218
219
|
description:
|
219
220
|
'Mixtral 是 Mistral AI 的专家模型,具有开源权重,并在代码生成和语言理解方面提供支持。',
|
220
221
|
displayName: 'Mixtral 8x22B',
|
221
222
|
functionCall: true,
|
222
223
|
id: 'mixtral:8x22b',
|
223
|
-
tokens: 65_536,
|
224
224
|
},
|
225
225
|
{
|
226
|
+
contextWindowTokens: 128_000,
|
226
227
|
description:
|
227
228
|
'Mixtral Large 是 Mistral 的旗舰模型,结合代码生成、数学和推理的能力,支持 128k 上下文窗口。',
|
228
229
|
displayName: 'Mixtral Large 123B',
|
229
230
|
enabled: true,
|
230
231
|
id: 'mistral-large',
|
231
|
-
tokens: 128_000,
|
232
232
|
},
|
233
233
|
{
|
234
|
+
contextWindowTokens: 128_000,
|
234
235
|
description: 'Mistral Nemo 由 Mistral AI 和 NVIDIA 合作推出,是高效性能的 12B 模型。',
|
235
236
|
displayName: 'Mixtral Nemo 12B',
|
236
237
|
enabled: true,
|
237
238
|
functionCall: true,
|
238
239
|
id: 'mistral-nemo',
|
239
|
-
tokens: 128_000,
|
240
240
|
},
|
241
241
|
{
|
242
|
+
contextWindowTokens: 32_768,
|
242
243
|
description: 'Codestral 是 Mistral AI 的首款代码模型,为代码生成任务提供优异支持。',
|
243
244
|
displayName: 'Codestral 22B',
|
244
245
|
enabled: true,
|
245
246
|
id: 'codestral',
|
246
|
-
tokens: 32_768,
|
247
247
|
},
|
248
248
|
{
|
249
|
+
contextWindowTokens: 8192,
|
249
250
|
description: 'Aya 23 是 Cohere 推出的多语言模型,支持 23 种语言,为多元化语言应用提供便利。',
|
250
251
|
displayName: 'Aya 23 8B',
|
251
252
|
enabled: true,
|
252
253
|
id: 'aya',
|
253
|
-
tokens: 8192,
|
254
254
|
},
|
255
255
|
{
|
256
|
+
contextWindowTokens: 8192,
|
256
257
|
description: 'Aya 23 是 Cohere 推出的多语言模型,支持 23 种语言,为多元化语言应用提供便利。',
|
257
258
|
displayName: 'Aya 23 35B',
|
258
259
|
id: 'aya:35b',
|
259
|
-
tokens: 8192,
|
260
260
|
},
|
261
261
|
{
|
262
|
+
contextWindowTokens: 131_072,
|
262
263
|
description: 'Command R 是优化用于对话和长上下文任务的LLM,特别适合动态交互与知识管理。',
|
263
264
|
displayName: 'Command R 35B',
|
264
265
|
enabled: true,
|
265
266
|
functionCall: true,
|
266
267
|
id: 'command-r',
|
267
|
-
tokens: 131_072,
|
268
268
|
},
|
269
269
|
{
|
270
|
+
contextWindowTokens: 131_072,
|
270
271
|
description: 'Command R+ 是一款高性能的大型语言模型,专为真实企业场景和复杂应用而设计。',
|
271
272
|
displayName: 'Command R+ 104B',
|
272
273
|
enabled: true,
|
273
274
|
functionCall: true,
|
274
275
|
id: 'command-r-plus',
|
275
|
-
tokens: 131_072,
|
276
276
|
},
|
277
277
|
{
|
278
|
+
contextWindowTokens: 32_768,
|
278
279
|
description: 'DeepSeek V2 是高效的 Mixture-of-Experts 语言模型,适用于经济高效的处理需求。',
|
279
280
|
displayName: 'DeepSeek V2 16B',
|
280
281
|
enabled: true,
|
281
282
|
id: 'deepseek-v2',
|
282
|
-
tokens: 32_768,
|
283
283
|
},
|
284
284
|
{
|
285
|
+
contextWindowTokens: 128_000,
|
285
286
|
description: 'DeepSeek V2 236B 是 DeepSeek 的设计代码模型,提供强大的代码生成能力。',
|
286
287
|
displayName: 'DeepSeek V2 236B',
|
287
288
|
id: 'deepseek-v2:236b',
|
288
|
-
tokens: 128_000,
|
289
289
|
},
|
290
290
|
{
|
291
|
+
contextWindowTokens: 128_000,
|
291
292
|
description:
|
292
293
|
'DeepSeek Coder V2 是开源的混合专家代码模型,在代码任务方面表现优异,与 GPT4-Turbo 相媲美。',
|
293
294
|
displayName: 'DeepSeek Coder V2 16B',
|
294
295
|
enabled: true,
|
295
296
|
id: 'deepseek-coder-v2',
|
296
|
-
tokens: 128_000,
|
297
297
|
},
|
298
298
|
{
|
299
|
+
contextWindowTokens: 128_000,
|
299
300
|
description:
|
300
301
|
'DeepSeek Coder V2 是开源的混合专家代码模型,在代码任务方面表现优异,与 GPT4-Turbo 相媲美。',
|
301
302
|
displayName: 'DeepSeek Coder V2 236B',
|
302
303
|
id: 'deepseek-coder-v2:236b',
|
303
|
-
tokens: 128_000,
|
304
304
|
},
|
305
305
|
{
|
306
|
+
contextWindowTokens: 4096,
|
306
307
|
description: 'LLaVA 是结合视觉编码器和 Vicuna 的多模态模型,用于强大的视觉和语言理解。',
|
307
308
|
displayName: 'LLaVA 7B',
|
308
309
|
enabled: true,
|
309
310
|
id: 'llava',
|
310
|
-
tokens: 4096,
|
311
311
|
vision: true,
|
312
312
|
},
|
313
313
|
{
|
314
|
+
contextWindowTokens: 4096,
|
314
315
|
description: 'LLaVA 是结合视觉编码器和 Vicuna 的多模态模型,用于强大的视觉和语言理解。',
|
315
316
|
displayName: 'LLaVA 13B',
|
316
317
|
id: 'llava:13b',
|
317
|
-
tokens: 4096,
|
318
318
|
vision: true,
|
319
319
|
},
|
320
320
|
{
|
321
|
+
contextWindowTokens: 4096,
|
321
322
|
description: 'LLaVA 是结合视觉编码器和 Vicuna 的多模态模型,用于强大的视觉和语言理解。',
|
322
323
|
displayName: 'LLaVA 34B',
|
323
324
|
id: 'llava:34b',
|
324
|
-
tokens: 4096,
|
325
325
|
vision: true,
|
326
326
|
},
|
327
327
|
{
|
328
|
+
contextWindowTokens: 128_000,
|
328
329
|
description:
|
329
330
|
'MiniCPM-V 是 OpenBMB 推出的新一代多模态大模型,具备卓越的 OCR 识别和多模态理解能力,支持广泛的应用场景。',
|
330
331
|
displayName: 'MiniCPM-V 8B',
|
331
332
|
enabled: true,
|
332
333
|
id: 'minicpm-v',
|
333
|
-
tokens: 128_000,
|
334
334
|
vision: true,
|
335
335
|
},
|
336
336
|
],
|
@@ -4,6 +4,7 @@ import { ModelProviderCard } from '@/types/llm';
|
|
4
4
|
const OpenAI: ModelProviderCard = {
|
5
5
|
chatModels: [
|
6
6
|
{
|
7
|
+
contextWindowTokens: 128_000,
|
7
8
|
description:
|
8
9
|
'o1-mini是一款针对编程、数学和科学应用场景而设计的快速、经济高效的推理模型。该模型具有128K上下文和2023年10月的知识截止日期。',
|
9
10
|
displayName: 'OpenAI o1-mini',
|
@@ -15,9 +16,9 @@ const OpenAI: ModelProviderCard = {
|
|
15
16
|
output: 12,
|
16
17
|
},
|
17
18
|
releasedAt: '2024-09-12',
|
18
|
-
tokens: 128_000,
|
19
19
|
},
|
20
20
|
{
|
21
|
+
contextWindowTokens: 128_000,
|
21
22
|
description:
|
22
23
|
'o1是OpenAI新的推理模型,适用于需要广泛通用知识的复杂任务。该模型具有128K上下文和2023年10月的知识截止日期。',
|
23
24
|
displayName: 'OpenAI o1-preview',
|
@@ -29,9 +30,9 @@ const OpenAI: ModelProviderCard = {
|
|
29
30
|
output: 60,
|
30
31
|
},
|
31
32
|
releasedAt: '2024-09-12',
|
32
|
-
tokens: 128_000,
|
33
33
|
},
|
34
34
|
{
|
35
|
+
contextWindowTokens: 128_000,
|
35
36
|
description:
|
36
37
|
'GPT-4o mini是OpenAI在GPT-4 Omni之后推出的最新模型,支持图文输入并输出文本。作为他们最先进的小型模型,它比其他近期的前沿模型便宜很多,并且比GPT-3.5 Turbo便宜超过60%。它保持了最先进的智能,同时具有显著的性价比。GPT-4o mini在MMLU测试中获得了 82% 的得分,目前在聊天偏好上排名高于 GPT-4。',
|
37
38
|
displayName: 'GPT-4o mini',
|
@@ -43,10 +44,10 @@ const OpenAI: ModelProviderCard = {
|
|
43
44
|
input: 0.15,
|
44
45
|
output: 0.6,
|
45
46
|
},
|
46
|
-
tokens: 128_000,
|
47
47
|
vision: true,
|
48
48
|
},
|
49
49
|
{
|
50
|
+
contextWindowTokens: 128_000,
|
50
51
|
description:
|
51
52
|
'ChatGPT-4o 是一款动态模型,实时更新以保持当前最新版本。它结合了强大的语言理解与生成能力,适合于大规模应用场景,包括客户服务、教育和技术支持。',
|
52
53
|
displayName: 'GPT-4o 1120',
|
@@ -58,10 +59,10 @@ const OpenAI: ModelProviderCard = {
|
|
58
59
|
output: 10,
|
59
60
|
},
|
60
61
|
releasedAt: '2024-11-20',
|
61
|
-
tokens: 128_000,
|
62
62
|
vision: true,
|
63
63
|
},
|
64
64
|
{
|
65
|
+
contextWindowTokens: 128_000,
|
65
66
|
description:
|
66
67
|
'ChatGPT-4o 是一款动态模型,实时更新以保持当前最新版本。它结合了强大的语言理解与生成能力,适合于大规模应用场景,包括客户服务、教育和技术支持。',
|
67
68
|
displayName: 'GPT-4o',
|
@@ -72,10 +73,10 @@ const OpenAI: ModelProviderCard = {
|
|
72
73
|
input: 2.5,
|
73
74
|
output: 10,
|
74
75
|
},
|
75
|
-
tokens: 128_000,
|
76
76
|
vision: true,
|
77
77
|
},
|
78
78
|
{
|
79
|
+
contextWindowTokens: 128_000,
|
79
80
|
description:
|
80
81
|
'ChatGPT-4o 是一款动态模型,实时更新以保持当前最新版本。它结合了强大的语言理解与生成能力,适合于大规模应用场景,包括客户服务、教育和技术支持。',
|
81
82
|
displayName: 'GPT-4o 0806',
|
@@ -86,10 +87,10 @@ const OpenAI: ModelProviderCard = {
|
|
86
87
|
output: 10,
|
87
88
|
},
|
88
89
|
releasedAt: '2024-08-06',
|
89
|
-
tokens: 128_000,
|
90
90
|
vision: true,
|
91
91
|
},
|
92
92
|
{
|
93
|
+
contextWindowTokens: 128_000,
|
93
94
|
description:
|
94
95
|
'ChatGPT-4o 是一款动态模型,实时更新以保持当前最新版本。它结合了强大的语言理解与生成能力,适合于大规模应用场景,包括客户服务、教育和技术支持。',
|
95
96
|
displayName: 'GPT-4o 0513',
|
@@ -100,10 +101,10 @@ const OpenAI: ModelProviderCard = {
|
|
100
101
|
output: 15,
|
101
102
|
},
|
102
103
|
releasedAt: '2024-05-13',
|
103
|
-
tokens: 128_000,
|
104
104
|
vision: true,
|
105
105
|
},
|
106
106
|
{
|
107
|
+
contextWindowTokens: 128_000,
|
107
108
|
description:
|
108
109
|
'ChatGPT-4o 是一款动态模型,实时更新以保持当前最新版本。它结合了强大的语言理解与生成能力,适合于大规模应用场景,包括客户服务、教育和技术支持。',
|
109
110
|
displayName: 'ChatGPT-4o',
|
@@ -113,10 +114,10 @@ const OpenAI: ModelProviderCard = {
|
|
113
114
|
input: 5,
|
114
115
|
output: 15,
|
115
116
|
},
|
116
|
-
tokens: 128_000,
|
117
117
|
vision: true,
|
118
118
|
},
|
119
119
|
{
|
120
|
+
contextWindowTokens: 128_000,
|
120
121
|
description:
|
121
122
|
'最新的 GPT-4 Turbo 模型具备视觉功能。现在,视觉请求可以使用 JSON 模式和函数调用。 GPT-4 Turbo 是一个增强版本,为多模态任务提供成本效益高的支持。它在准确性和效率之间找到平衡,适合需要进行实时交互的应用程序场景。',
|
122
123
|
displayName: 'GPT-4 Turbo',
|
@@ -126,10 +127,10 @@ const OpenAI: ModelProviderCard = {
|
|
126
127
|
input: 10,
|
127
128
|
output: 30,
|
128
129
|
},
|
129
|
-
tokens: 128_000,
|
130
130
|
vision: true,
|
131
131
|
},
|
132
132
|
{
|
133
|
+
contextWindowTokens: 128_000,
|
133
134
|
description:
|
134
135
|
'最新的 GPT-4 Turbo 模型具备视觉功能。现在,视觉请求可以使用 JSON 模式和函数调用。 GPT-4 Turbo 是一个增强版本,为多模态任务提供成本效益高的支持。它在准确性和效率之间找到平衡,适合需要进行实时交互的应用程序场景。',
|
135
136
|
displayName: 'GPT-4 Turbo Vision 0409',
|
@@ -139,10 +140,10 @@ const OpenAI: ModelProviderCard = {
|
|
139
140
|
input: 10,
|
140
141
|
output: 30,
|
141
142
|
},
|
142
|
-
tokens: 128_000,
|
143
143
|
vision: true,
|
144
144
|
},
|
145
145
|
{
|
146
|
+
contextWindowTokens: 128_000,
|
146
147
|
description:
|
147
148
|
'最新的 GPT-4 Turbo 模型具备视觉功能。现在,视觉请求可以使用 JSON 模式和函数调用。 GPT-4 Turbo 是一个增强版本,为多模态任务提供成本效益高的支持。它在准确性和效率之间找到平衡,适合需要进行实时交互的应用程序场景。',
|
148
149
|
displayName: 'GPT-4 Turbo Preview',
|
@@ -152,9 +153,9 @@ const OpenAI: ModelProviderCard = {
|
|
152
153
|
input: 10,
|
153
154
|
output: 30,
|
154
155
|
},
|
155
|
-
tokens: 128_000,
|
156
156
|
},
|
157
157
|
{
|
158
|
+
contextWindowTokens: 128_000,
|
158
159
|
description:
|
159
160
|
'最新的 GPT-4 Turbo 模型具备视觉功能。现在,视觉请求可以使用 JSON 模式和函数调用。 GPT-4 Turbo 是一个增强版本,为多模态任务提供成本效益高的支持。它在准确性和效率之间找到平衡,适合需要进行实时交互的应用程序场景。',
|
160
161
|
displayName: 'GPT-4 Turbo Preview 0125',
|
@@ -164,9 +165,9 @@ const OpenAI: ModelProviderCard = {
|
|
164
165
|
input: 10,
|
165
166
|
output: 30,
|
166
167
|
},
|
167
|
-
tokens: 128_000,
|
168
168
|
},
|
169
169
|
{
|
170
|
+
contextWindowTokens: 128_000,
|
170
171
|
description:
|
171
172
|
'最新的 GPT-4 Turbo 模型具备视觉功能。现在,视觉请求可以使用 JSON 模式和函数调用。 GPT-4 Turbo 是一个增强版本,为多模态任务提供成本效益高的支持。它在准确性和效率之间找到平衡,适合需要进行实时交互的应用程序场景。',
|
172
173
|
displayName: 'GPT-4 Turbo Preview 1106',
|
@@ -176,9 +177,9 @@ const OpenAI: ModelProviderCard = {
|
|
176
177
|
input: 10,
|
177
178
|
output: 30,
|
178
179
|
},
|
179
|
-
tokens: 128_000,
|
180
180
|
},
|
181
181
|
{
|
182
|
+
contextWindowTokens: 8192,
|
182
183
|
description:
|
183
184
|
'GPT-4 提供了一个更大的上下文窗口,能够处理更长的文本输入,适用于需要广泛信息整合和数据分析的场景。',
|
184
185
|
displayName: 'GPT-4',
|
@@ -188,9 +189,9 @@ const OpenAI: ModelProviderCard = {
|
|
188
189
|
input: 30,
|
189
190
|
output: 60,
|
190
191
|
},
|
191
|
-
tokens: 8192,
|
192
192
|
},
|
193
193
|
{
|
194
|
+
contextWindowTokens: 8192,
|
194
195
|
description:
|
195
196
|
'GPT-4 提供了一个更大的上下文窗口,能够处理更长的文本输入,适用于需要广泛信息整合和数据分析的场景。',
|
196
197
|
displayName: 'GPT-4 0613',
|
@@ -200,11 +201,12 @@ const OpenAI: ModelProviderCard = {
|
|
200
201
|
input: 30,
|
201
202
|
output: 60,
|
202
203
|
},
|
203
|
-
tokens: 8192,
|
204
204
|
},
|
205
205
|
{
|
206
|
+
contextWindowTokens: 32_768,
|
206
207
|
description:
|
207
|
-
'GPT-4 提供了一个更大的上下文窗口,能够处理更长的文本输入,适用于需要广泛信息整合和数据分析的场景。',
|
208
|
+
'GPT-4 提供了一个更大的上下文窗口,能够处理更长的文本输入,适用于需要广泛信息整合和数据分析的场景。',
|
209
|
+
// Will be discontinued on June 6, 2025
|
208
210
|
displayName: 'GPT-4 32K',
|
209
211
|
functionCall: true,
|
210
212
|
id: 'gpt-4-32k',
|
@@ -212,9 +214,9 @@ const OpenAI: ModelProviderCard = {
|
|
212
214
|
input: 60,
|
213
215
|
output: 120,
|
214
216
|
},
|
215
|
-
tokens: 32_768,
|
216
217
|
},
|
217
218
|
{
|
219
|
+
contextWindowTokens: 32_768,
|
218
220
|
// Will be discontinued on June 6, 2025
|
219
221
|
description:
|
220
222
|
'GPT-4 提供了一个更大的上下文窗口,能够处理更长的文本输入,适用于需要广泛信息整合和数据分析的场景。',
|
@@ -225,9 +227,9 @@ const OpenAI: ModelProviderCard = {
|
|
225
227
|
input: 60,
|
226
228
|
output: 120,
|
227
229
|
},
|
228
|
-
tokens: 32_768,
|
229
230
|
},
|
230
231
|
{
|
232
|
+
contextWindowTokens: 16_385,
|
231
233
|
description:
|
232
234
|
'GPT 3.5 Turbo,适用于各种文本生成和理解任务,Currently points to gpt-3.5-turbo-0125',
|
233
235
|
displayName: 'GPT-3.5 Turbo',
|
@@ -237,9 +239,9 @@ const OpenAI: ModelProviderCard = {
|
|
237
239
|
input: 0.5,
|
238
240
|
output: 1.5,
|
239
241
|
},
|
240
|
-
tokens: 16_385,
|
241
242
|
},
|
242
243
|
{
|
244
|
+
contextWindowTokens: 16_385,
|
243
245
|
description:
|
244
246
|
'GPT 3.5 Turbo,适用于各种文本生成和理解任务,Currently points to gpt-3.5-turbo-0125',
|
245
247
|
displayName: 'GPT-3.5 Turbo 0125',
|
@@ -249,9 +251,9 @@ const OpenAI: ModelProviderCard = {
|
|
249
251
|
input: 0.5,
|
250
252
|
output: 1.5,
|
251
253
|
},
|
252
|
-
tokens: 16_385,
|
253
254
|
},
|
254
255
|
{
|
256
|
+
contextWindowTokens: 16_385,
|
255
257
|
description:
|
256
258
|
'GPT 3.5 Turbo,适用于各种文本生成和理解任务,Currently points to gpt-3.5-turbo-0125',
|
257
259
|
displayName: 'GPT-3.5 Turbo 1106',
|
@@ -261,9 +263,9 @@ const OpenAI: ModelProviderCard = {
|
|
261
263
|
input: 1,
|
262
264
|
output: 2,
|
263
265
|
},
|
264
|
-
tokens: 16_385,
|
265
266
|
},
|
266
267
|
{
|
268
|
+
contextWindowTokens: 4096,
|
267
269
|
description:
|
268
270
|
'GPT 3.5 Turbo,适用于各种文本生成和理解任务,Currently points to gpt-3.5-turbo-0125',
|
269
271
|
displayName: 'GPT-3.5 Turbo Instruct',
|
@@ -272,7 +274,6 @@ const OpenAI: ModelProviderCard = {
|
|
272
274
|
input: 1.5,
|
273
275
|
output: 2,
|
274
276
|
},
|
275
|
-
tokens: 4096,
|
276
277
|
},
|
277
278
|
],
|
278
279
|
checkModel: 'gpt-4o-mini',
|