@lobehub/chat 1.40.0 → 1.40.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/package.json +1 -1
- package/src/app/(main)/chat/(workspace)/_layout/Desktop/HotKeys.tsx +7 -0
- package/src/app/(main)/discover/(detail)/model/[...slugs]/features/Actions.tsx +1 -1
- package/src/app/(main)/discover/(detail)/model/[...slugs]/features/Header.tsx +1 -1
- package/src/app/(main)/discover/(detail)/model/[...slugs]/features/InfoSidebar/SuggestionItem.tsx +2 -2
- package/src/app/(main)/discover/(detail)/model/[...slugs]/features/ProviderList/ProviderItem.tsx +1 -1
- package/src/app/(main)/discover/(detail)/provider/[slug]/features/ModelList/ModelItem.tsx +3 -3
- package/src/app/(main)/discover/(list)/models/features/Card.tsx +6 -2
- package/src/app/(main)/settings/llm/ProviderList/Cloudflare/index.tsx +1 -5
- package/src/app/(main)/settings/llm/components/ProviderModelList/ModelFetcher.tsx +2 -2
- package/src/components/ModelSelect/index.tsx +7 -4
- package/src/config/__tests__/app.test.ts +6 -2
- package/src/config/app.ts +1 -2
- package/src/config/modelProviders/ai21.ts +2 -2
- package/src/config/modelProviders/ai360.ts +4 -4
- package/src/config/modelProviders/anthropic.ts +8 -8
- package/src/config/modelProviders/azure.ts +5 -5
- package/src/config/modelProviders/baichuan.ts +6 -6
- package/src/config/modelProviders/bedrock.ts +14 -14
- package/src/config/modelProviders/cloudflare.ts +12 -11
- package/src/config/modelProviders/deepseek.ts +1 -1
- package/src/config/modelProviders/fireworksai.ts +29 -27
- package/src/config/modelProviders/giteeai.ts +7 -7
- package/src/config/modelProviders/github.ts +29 -28
- package/src/config/modelProviders/google.ts +18 -19
- package/src/config/modelProviders/groq.ts +13 -13
- package/src/config/modelProviders/higress.ts +195 -194
- package/src/config/modelProviders/huggingface.ts +7 -7
- package/src/config/modelProviders/hunyuan.ts +25 -17
- package/src/config/modelProviders/internlm.ts +6 -4
- package/src/config/modelProviders/minimax.ts +5 -5
- package/src/config/modelProviders/mistral.ts +14 -16
- package/src/config/modelProviders/moonshot.ts +3 -3
- package/src/config/modelProviders/novita.ts +15 -15
- package/src/config/modelProviders/ollama.ts +46 -46
- package/src/config/modelProviders/openai.ts +23 -22
- package/src/config/modelProviders/openrouter.ts +20 -18
- package/src/config/modelProviders/perplexity.ts +7 -7
- package/src/config/modelProviders/qwen.ts +23 -25
- package/src/config/modelProviders/sensenova.ts +8 -8
- package/src/config/modelProviders/siliconcloud.ts +138 -92
- package/src/config/modelProviders/spark.ts +6 -6
- package/src/config/modelProviders/stepfun.ts +9 -9
- package/src/config/modelProviders/taichu.ts +2 -3
- package/src/config/modelProviders/togetherai.ts +57 -48
- package/src/config/modelProviders/upstage.ts +3 -3
- package/src/config/modelProviders/wenxin.ts +12 -12
- package/src/config/modelProviders/xai.ts +4 -4
- package/src/config/modelProviders/zeroone.ts +11 -11
- package/src/config/modelProviders/zhipu.ts +17 -16
- package/src/const/hotkeys.ts +1 -0
- package/src/database/_deprecated/core/model.ts +1 -1
- package/src/database/_deprecated/models/sessionGroup.ts +4 -1
- package/src/database/client/migrations.json +2 -5
- package/src/database/migrations/meta/0012_snapshot.json +176 -518
- package/src/database/schemas/agent.ts +1 -1
- package/src/database/schemas/message.ts +1 -0
- package/src/database/schemas/session.ts +1 -0
- package/src/database/server/models/topic.ts +19 -17
- package/src/features/DebugUI/Content.tsx +0 -1
- package/src/features/PluginStore/index.tsx +2 -2
- package/src/layout/GlobalProvider/AntdV5MonkeyPatch.tsx +4 -4
- package/src/libs/agent-runtime/google/index.ts +4 -3
- package/src/libs/agent-runtime/higress/index.ts +1 -1
- package/src/libs/agent-runtime/huggingface/index.ts +2 -4
- package/src/libs/agent-runtime/minimax/index.ts +5 -10
- package/src/libs/agent-runtime/mistral/index.ts +3 -6
- package/src/libs/agent-runtime/moonshot/index.ts +3 -6
- package/src/libs/agent-runtime/novita/__snapshots__/index.test.ts.snap +18 -18
- package/src/libs/agent-runtime/novita/index.ts +1 -1
- package/src/libs/agent-runtime/openai/__snapshots__/index.test.ts.snap +10 -10
- package/src/libs/agent-runtime/openai/index.ts +2 -0
- package/src/libs/agent-runtime/openrouter/__snapshots__/index.test.ts.snap +168 -168
- package/src/libs/agent-runtime/openrouter/index.ts +1 -1
- package/src/libs/agent-runtime/perplexity/index.ts +4 -4
- package/src/libs/agent-runtime/sensenova/index.ts +9 -3
- package/src/libs/agent-runtime/taichu/index.ts +4 -10
- package/src/libs/agent-runtime/utils/streams/minimax.test.ts +5 -2
- package/src/libs/agent-runtime/utils/streams/minimax.ts +4 -1
- package/src/libs/agent-runtime/zhipu/index.ts +12 -13
- package/src/libs/langchain/loaders/index.ts +2 -2
- package/src/libs/langchain/types.ts +9 -1
- package/src/locales/default/modelProvider.ts +1 -1
- package/src/migrations/FromV3ToV4/fixtures/ollama-output-v4.json +1 -1
- package/src/migrations/FromV6ToV7/types/v7.ts +0 -2
- package/src/server/globalConfig/genServerLLMConfig.test.ts +4 -4
- package/src/server/globalConfig/genServerLLMConfig.ts +29 -24
- package/src/server/globalConfig/index.ts +1 -2
- package/src/server/routers/edge/config/__snapshots__/index.test.ts.snap +9 -9
- package/src/server/routers/lambda/_template.ts +1 -1
- package/src/server/routers/lambda/knowledgeBase.ts +1 -1
- package/src/server/routers/lambda/session.ts +1 -1
- package/src/server/routers/lambda/sessionGroup.ts +1 -1
- package/src/server/routers/lambda/thread.ts +1 -1
- package/src/server/services/nextAuthUser/index.ts +1 -1
- package/src/store/user/slices/modelList/__snapshots__/action.test.ts.snap +1 -1
- package/src/store/user/slices/modelList/action.test.ts +4 -4
- package/src/store/user/slices/modelList/reducers/customModelCard.test.ts +6 -6
- package/src/store/user/slices/modelList/selectors/modelProvider.ts +3 -2
- package/src/tools/dalle/Render/Item/index.tsx +1 -1
- package/src/types/files/index.ts +0 -1
- package/src/types/llm.ts +4 -5
- package/src/utils/__snapshots__/parseModels.test.ts.snap +2 -2
- package/src/utils/genUserLLMConfig.test.ts +4 -4
- package/src/utils/genUserLLMConfig.ts +6 -4
- package/src/utils/parseModels.test.ts +16 -16
- package/src/utils/parseModels.ts +1 -1
- package/src/utils/server/jwt.ts +2 -6
@@ -4,6 +4,7 @@ const Higress: ModelProviderCard = {
|
|
4
4
|
chatModels: [
|
5
5
|
//qwen
|
6
6
|
{
|
7
|
+
contextWindowTokens: 131_072,
|
7
8
|
description: '通义千问超大规模语言模型,支持中文、英文等不同语言输入。',
|
8
9
|
displayName: 'Qwen Turbo',
|
9
10
|
enabled: true,
|
@@ -14,9 +15,9 @@ const Higress: ModelProviderCard = {
|
|
14
15
|
input: 0.3,
|
15
16
|
output: 0.6,
|
16
17
|
},
|
17
|
-
tokens: 131_072,
|
18
18
|
},
|
19
19
|
{
|
20
|
+
contextWindowTokens: 131_072,
|
20
21
|
description: '通义千问超大规模语言模型增强版,支持中文、英文等不同语言输入。',
|
21
22
|
displayName: 'Qwen Plus',
|
22
23
|
enabled: true,
|
@@ -27,9 +28,9 @@ const Higress: ModelProviderCard = {
|
|
27
28
|
input: 0.8,
|
28
29
|
output: 2,
|
29
30
|
},
|
30
|
-
tokens: 131_072,
|
31
31
|
},
|
32
32
|
{
|
33
|
+
contextWindowTokens: 32_768,
|
33
34
|
description:
|
34
35
|
'通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入,当前通义千问2.5产品版本背后的API模型。',
|
35
36
|
displayName: 'Qwen Max',
|
@@ -41,9 +42,9 @@ const Higress: ModelProviderCard = {
|
|
41
42
|
input: 20,
|
42
43
|
output: 60,
|
43
44
|
},
|
44
|
-
tokens: 32_768,
|
45
45
|
},
|
46
46
|
{
|
47
|
+
contextWindowTokens: 1_000_000,
|
47
48
|
description:
|
48
49
|
'通义千问超大规模语言模型,支持长文本上下文,以及基于长文档、多文档等多个场景的对话功能。',
|
49
50
|
displayName: 'Qwen Long',
|
@@ -53,10 +54,10 @@ const Higress: ModelProviderCard = {
|
|
53
54
|
input: 0.5,
|
54
55
|
output: 2,
|
55
56
|
},
|
56
|
-
tokens: 1_000_000,
|
57
57
|
},
|
58
58
|
//后面几个qwen未知支持
|
59
59
|
{
|
60
|
+
contextWindowTokens: 32_000,
|
60
61
|
description:
|
61
62
|
'通义千问大规模视觉语言模型增强版。大幅提升细节识别能力和文字识别能力,支持超百万像素分辨率和任意长宽比规格的图像。',
|
62
63
|
displayName: 'Qwen VL Plus',
|
@@ -67,10 +68,10 @@ const Higress: ModelProviderCard = {
|
|
67
68
|
input: 8,
|
68
69
|
output: 8,
|
69
70
|
},
|
70
|
-
tokens: 32_000,
|
71
71
|
vision: true,
|
72
72
|
},
|
73
73
|
{
|
74
|
+
contextWindowTokens: 32_000,
|
74
75
|
description:
|
75
76
|
'通义千问超大规模视觉语言模型。相比增强版,再次提升视觉推理能力和指令遵循能力,提供更高的视觉感知和认知水平。',
|
76
77
|
displayName: 'Qwen VL Max',
|
@@ -81,10 +82,10 @@ const Higress: ModelProviderCard = {
|
|
81
82
|
input: 20,
|
82
83
|
output: 20,
|
83
84
|
},
|
84
|
-
tokens: 32_000,
|
85
85
|
vision: true,
|
86
86
|
},
|
87
87
|
{
|
88
|
+
contextWindowTokens: 4096,
|
88
89
|
description: '通义千问数学模型是专门用于数学解题的语言模型。',
|
89
90
|
displayName: 'Qwen Math Turbo',
|
90
91
|
id: 'qwen-math-turbo-latest',
|
@@ -93,9 +94,9 @@ const Higress: ModelProviderCard = {
|
|
93
94
|
input: 2,
|
94
95
|
output: 6,
|
95
96
|
},
|
96
|
-
tokens: 4096,
|
97
97
|
},
|
98
98
|
{
|
99
|
+
contextWindowTokens: 4096,
|
99
100
|
description: '通义千问数学模型是专门用于数学解题的语言模型。',
|
100
101
|
displayName: 'Qwen Math Plus',
|
101
102
|
id: 'qwen-math-plus-latest',
|
@@ -104,9 +105,9 @@ const Higress: ModelProviderCard = {
|
|
104
105
|
input: 4,
|
105
106
|
output: 12,
|
106
107
|
},
|
107
|
-
tokens: 4096,
|
108
108
|
},
|
109
109
|
{
|
110
|
+
contextWindowTokens: 131_072,
|
110
111
|
description: '通义千问代码模型。',
|
111
112
|
displayName: 'Qwen Coder Turbo',
|
112
113
|
id: 'qwen-coder-turbo-latest',
|
@@ -115,9 +116,9 @@ const Higress: ModelProviderCard = {
|
|
115
116
|
input: 2,
|
116
117
|
output: 6,
|
117
118
|
},
|
118
|
-
tokens: 131_072,
|
119
119
|
},
|
120
120
|
{
|
121
|
+
contextWindowTokens: 131_072,
|
121
122
|
description: '通义千问2.5对外开源的7B规模的模型。',
|
122
123
|
displayName: 'Qwen2.5 7B',
|
123
124
|
functionCall: true,
|
@@ -127,9 +128,9 @@ const Higress: ModelProviderCard = {
|
|
127
128
|
input: 1,
|
128
129
|
output: 2,
|
129
130
|
},
|
130
|
-
tokens: 131_072,
|
131
131
|
},
|
132
132
|
{
|
133
|
+
contextWindowTokens: 131_072,
|
133
134
|
description: '通义千问2.5对外开源的14B规模的模型。',
|
134
135
|
displayName: 'Qwen2.5 14B',
|
135
136
|
functionCall: true,
|
@@ -139,9 +140,9 @@ const Higress: ModelProviderCard = {
|
|
139
140
|
input: 2,
|
140
141
|
output: 6,
|
141
142
|
},
|
142
|
-
tokens: 131_072,
|
143
143
|
},
|
144
144
|
{
|
145
|
+
contextWindowTokens: 131_072,
|
145
146
|
description: '通义千问2.5对外开源的32B规模的模型。',
|
146
147
|
displayName: 'Qwen2.5 32B',
|
147
148
|
functionCall: true,
|
@@ -151,9 +152,9 @@ const Higress: ModelProviderCard = {
|
|
151
152
|
input: 3.5,
|
152
153
|
output: 7,
|
153
154
|
},
|
154
|
-
tokens: 131_072,
|
155
155
|
},
|
156
156
|
{
|
157
|
+
contextWindowTokens: 131_072,
|
157
158
|
description: '通义千问2.5对外开源的72B规模的模型。',
|
158
159
|
displayName: 'Qwen2.5 72B',
|
159
160
|
functionCall: true,
|
@@ -163,9 +164,9 @@ const Higress: ModelProviderCard = {
|
|
163
164
|
input: 4,
|
164
165
|
output: 12,
|
165
166
|
},
|
166
|
-
tokens: 131_072,
|
167
167
|
},
|
168
168
|
{
|
169
|
+
contextWindowTokens: 4096,
|
169
170
|
description: 'Qwen-Math 模型具有强大的数学解题能力。',
|
170
171
|
displayName: 'Qwen2.5 Math 1.5B',
|
171
172
|
id: 'qwen2.5-math-1.5b-instruct',
|
@@ -174,9 +175,9 @@ const Higress: ModelProviderCard = {
|
|
174
175
|
input: 0,
|
175
176
|
output: 0,
|
176
177
|
},
|
177
|
-
tokens: 4096,
|
178
178
|
},
|
179
179
|
{
|
180
|
+
contextWindowTokens: 4096,
|
180
181
|
description: 'Qwen-Math 模型具有强大的数学解题能力。',
|
181
182
|
displayName: 'Qwen2.5 Math 7B',
|
182
183
|
id: 'qwen2.5-math-7b-instruct',
|
@@ -185,9 +186,9 @@ const Higress: ModelProviderCard = {
|
|
185
186
|
input: 1,
|
186
187
|
output: 2,
|
187
188
|
},
|
188
|
-
tokens: 4096,
|
189
189
|
},
|
190
190
|
{
|
191
|
+
contextWindowTokens: 4096,
|
191
192
|
description: 'Qwen-Math 模型具有强大的数学解题能力。',
|
192
193
|
displayName: 'Qwen2.5 Math 72B',
|
193
194
|
id: 'qwen2.5-math-72b-instruct',
|
@@ -196,9 +197,9 @@ const Higress: ModelProviderCard = {
|
|
196
197
|
input: 4,
|
197
198
|
output: 12,
|
198
199
|
},
|
199
|
-
tokens: 4096,
|
200
200
|
},
|
201
201
|
{
|
202
|
+
contextWindowTokens: 131_072,
|
202
203
|
description: '通义千问代码模型开源版。',
|
203
204
|
displayName: 'Qwen2.5 Coder 1.5B',
|
204
205
|
id: 'qwen2.5-coder-1.5b-instruct',
|
@@ -207,9 +208,9 @@ const Higress: ModelProviderCard = {
|
|
207
208
|
input: 0,
|
208
209
|
output: 0,
|
209
210
|
},
|
210
|
-
tokens: 131_072,
|
211
211
|
},
|
212
212
|
{
|
213
|
+
contextWindowTokens: 131_072,
|
213
214
|
description: '通义千问代码模型开源版。',
|
214
215
|
displayName: 'Qwen2.5 Coder 7B',
|
215
216
|
id: 'qwen2.5-coder-7b-instruct',
|
@@ -218,9 +219,9 @@ const Higress: ModelProviderCard = {
|
|
218
219
|
input: 1,
|
219
220
|
output: 2,
|
220
221
|
},
|
221
|
-
tokens: 131_072,
|
222
222
|
},
|
223
223
|
{
|
224
|
+
contextWindowTokens: 8000,
|
224
225
|
description: '以 Qwen-7B 语言模型初始化,添加图像模型,图像输入分辨率为448的预训练模型。',
|
225
226
|
displayName: 'Qwen VL',
|
226
227
|
id: 'qwen-vl-v1',
|
@@ -229,10 +230,10 @@ const Higress: ModelProviderCard = {
|
|
229
230
|
input: 0,
|
230
231
|
output: 0,
|
231
232
|
},
|
232
|
-
tokens: 8000,
|
233
233
|
vision: true,
|
234
234
|
},
|
235
235
|
{
|
236
|
+
contextWindowTokens: 8000,
|
236
237
|
description: '通义千问VL支持灵活的交互方式,包括多图、多轮问答、创作等能力的模型。',
|
237
238
|
displayName: 'Qwen VL Chat',
|
238
239
|
id: 'qwen-vl-chat-v1',
|
@@ -241,40 +242,40 @@ const Higress: ModelProviderCard = {
|
|
241
242
|
input: 0,
|
242
243
|
output: 0,
|
243
244
|
},
|
244
|
-
tokens: 8000,
|
245
245
|
vision: true,
|
246
246
|
},
|
247
247
|
|
248
248
|
//moonshot
|
249
249
|
{
|
250
|
+
contextWindowTokens: 8192,
|
250
251
|
description:
|
251
252
|
'Moonshot V1 8K 专为生成短文本任务设计,具有高效的处理性能,能够处理8,192个tokens,非常适合简短对话、速记和快速内容生成。',
|
252
253
|
displayName: 'Moonshot V1 8K',
|
253
254
|
enabled: true,
|
254
255
|
functionCall: true,
|
255
256
|
id: 'moonshot-v1-8k',
|
256
|
-
tokens: 8192,
|
257
257
|
},
|
258
258
|
{
|
259
|
+
contextWindowTokens: 32_768,
|
259
260
|
description:
|
260
261
|
'Moonshot V1 32K 提供中等长度的上下文处理能力,能够处理32,768个tokens,特别适合生成各种长文档和复杂对话,应用于内容创作、报告生成和对话系统等领域。',
|
261
262
|
displayName: 'Moonshot V1 32K',
|
262
263
|
enabled: true,
|
263
264
|
functionCall: true,
|
264
265
|
id: 'moonshot-v1-32k',
|
265
|
-
tokens: 32_768,
|
266
266
|
},
|
267
267
|
{
|
268
|
+
contextWindowTokens: 128_000,
|
268
269
|
description:
|
269
270
|
'Moonshot V1 128K 是一款拥有超长上下文处理能力的模型,适用于生成超长文本,满足复杂的生成任务需求,能够处理多达128,000个tokens的内容,非常适合科研、学术和大型文档生成等应用场景。',
|
270
271
|
displayName: 'Moonshot V1 128K',
|
271
272
|
enabled: true,
|
272
273
|
functionCall: true,
|
273
274
|
id: 'moonshot-v1-128k',
|
274
|
-
tokens: 128_000,
|
275
275
|
},
|
276
276
|
//百川智能
|
277
277
|
{
|
278
|
+
contextWindowTokens: 32_768,
|
278
279
|
description:
|
279
280
|
'模型能力国内第一,在知识百科、长文本、生成创作等中文任务上超越国外主流模型。还具备行业领先的多模态能力,多项权威评测基准表现优异。',
|
280
281
|
displayName: 'Baichuan 4',
|
@@ -287,7 +288,6 @@ const Higress: ModelProviderCard = {
|
|
287
288
|
input: 100,
|
288
289
|
output: 100,
|
289
290
|
},
|
290
|
-
tokens: 32_768,
|
291
291
|
},
|
292
292
|
{
|
293
293
|
description: '',
|
@@ -318,6 +318,7 @@ const Higress: ModelProviderCard = {
|
|
318
318
|
// tokens: 32_768,
|
319
319
|
},
|
320
320
|
{
|
321
|
+
contextWindowTokens: 32_768,
|
321
322
|
description:
|
322
323
|
'针对企业高频场景优化,效果大幅提升,高性价比。相对于Baichuan2模型,内容创作提升20%,知识问答提升17%, 角色扮演能力提升40%。整体效果比GPT3.5更优。',
|
323
324
|
displayName: 'Baichuan 3 Turbo',
|
@@ -330,9 +331,9 @@ const Higress: ModelProviderCard = {
|
|
330
331
|
input: 12,
|
331
332
|
output: 12,
|
332
333
|
},
|
333
|
-
tokens: 32_768,
|
334
334
|
},
|
335
335
|
{
|
336
|
+
contextWindowTokens: 128_000,
|
336
337
|
description:
|
337
338
|
'具备 128K 超长上下文窗口,针对企业高频场景优化,效果大幅提升,高性价比。相对于Baichuan2模型,内容创作提升20%,知识问答提升17%, 角色扮演能力提升40%。整体效果比GPT3.5更优。',
|
338
339
|
displayName: 'Baichuan 3 Turbo 128k',
|
@@ -344,9 +345,9 @@ const Higress: ModelProviderCard = {
|
|
344
345
|
input: 24,
|
345
346
|
output: 24,
|
346
347
|
},
|
347
|
-
tokens: 128_000,
|
348
348
|
},
|
349
349
|
{
|
350
|
+
contextWindowTokens: 32_768,
|
350
351
|
description:
|
351
352
|
'采用搜索增强技术实现大模型与领域知识、全网知识的全面链接。支持PDF、Word等多种文档上传及网址输入,信息获取及时、全面,输出结果准确、专业。',
|
352
353
|
displayName: 'Baichuan 2 Turbo',
|
@@ -357,10 +358,10 @@ const Higress: ModelProviderCard = {
|
|
357
358
|
input: 8,
|
358
359
|
output: 8,
|
359
360
|
},
|
360
|
-
tokens: 32_768,
|
361
361
|
},
|
362
362
|
//零一万物
|
363
363
|
{
|
364
|
+
contextWindowTokens: 16_384,
|
364
365
|
description: '最新高性能模型,保证高质量输出同时,推理速度大幅提升。',
|
365
366
|
displayName: 'Yi Lightning',
|
366
367
|
enabled: true,
|
@@ -370,9 +371,9 @@ const Higress: ModelProviderCard = {
|
|
370
371
|
input: 0.99,
|
371
372
|
output: 0.99,
|
372
373
|
},
|
373
|
-
tokens: 16_384,
|
374
374
|
},
|
375
375
|
{
|
376
|
+
contextWindowTokens: 16_384,
|
376
377
|
description: '小而精悍,轻量极速模型。提供强化数学运算和代码编写能力。',
|
377
378
|
displayName: 'Yi Spark',
|
378
379
|
enabled: true,
|
@@ -382,9 +383,9 @@ const Higress: ModelProviderCard = {
|
|
382
383
|
input: 1,
|
383
384
|
output: 1,
|
384
385
|
},
|
385
|
-
tokens: 16_384,
|
386
386
|
},
|
387
387
|
{
|
388
|
+
contextWindowTokens: 16_384,
|
388
389
|
description: '中型尺寸模型升级微调,能力均衡,性价比高。深度优化指令遵循能力。',
|
389
390
|
displayName: 'Yi Medium',
|
390
391
|
enabled: true,
|
@@ -394,9 +395,9 @@ const Higress: ModelProviderCard = {
|
|
394
395
|
input: 2.5,
|
395
396
|
output: 2.5,
|
396
397
|
},
|
397
|
-
tokens: 16_384,
|
398
398
|
},
|
399
399
|
{
|
400
|
+
contextWindowTokens: 200_000,
|
400
401
|
description: '200K 超长上下文窗口,提供长文本深度理解和生成能力。',
|
401
402
|
displayName: 'Yi Medium 200K',
|
402
403
|
enabled: true,
|
@@ -406,9 +407,9 @@ const Higress: ModelProviderCard = {
|
|
406
407
|
input: 12,
|
407
408
|
output: 12,
|
408
409
|
},
|
409
|
-
tokens: 200_000,
|
410
410
|
},
|
411
411
|
{
|
412
|
+
contextWindowTokens: 16_384,
|
412
413
|
description: '超高性价比、卓越性能。根据性能和推理速度、成本,进行平衡性高精度调优。',
|
413
414
|
displayName: 'Yi Large Turbo',
|
414
415
|
enabled: true,
|
@@ -418,9 +419,9 @@ const Higress: ModelProviderCard = {
|
|
418
419
|
input: 12,
|
419
420
|
output: 12,
|
420
421
|
},
|
421
|
-
tokens: 16_384,
|
422
422
|
},
|
423
423
|
{
|
424
|
+
contextWindowTokens: 16_384,
|
424
425
|
description:
|
425
426
|
'基于 yi-large 超强模型的高阶服务,结合检索与生成技术提供精准答案,实时全网检索信息服务。',
|
426
427
|
displayName: 'Yi Large RAG',
|
@@ -431,9 +432,9 @@ const Higress: ModelProviderCard = {
|
|
431
432
|
input: 25,
|
432
433
|
output: 25,
|
433
434
|
},
|
434
|
-
tokens: 16_384,
|
435
435
|
},
|
436
436
|
{
|
437
|
+
contextWindowTokens: 32_768,
|
437
438
|
description:
|
438
439
|
'在 yi-large 模型的基础上支持并强化了工具调用的能力,适用于各种需要搭建 agent 或 workflow 的业务场景。',
|
439
440
|
displayName: 'Yi Large FC',
|
@@ -445,9 +446,9 @@ const Higress: ModelProviderCard = {
|
|
445
446
|
input: 20,
|
446
447
|
output: 20,
|
447
448
|
},
|
448
|
-
tokens: 32_768,
|
449
449
|
},
|
450
450
|
{
|
451
|
+
contextWindowTokens: 32_768,
|
451
452
|
description: '全新千亿参数模型,提供超强问答及文本生成能力。',
|
452
453
|
displayName: 'Yi Large',
|
453
454
|
id: 'yi-large',
|
@@ -456,9 +457,9 @@ const Higress: ModelProviderCard = {
|
|
456
457
|
input: 20,
|
457
458
|
output: 20,
|
458
459
|
},
|
459
|
-
tokens: 32_768,
|
460
460
|
},
|
461
461
|
{
|
462
|
+
contextWindowTokens: 16_384,
|
462
463
|
description: '复杂视觉任务模型,提供高性能图片理解、分析能力。',
|
463
464
|
displayName: 'Yi Vision',
|
464
465
|
enabled: true,
|
@@ -468,10 +469,10 @@ const Higress: ModelProviderCard = {
|
|
468
469
|
input: 6,
|
469
470
|
output: 6,
|
470
471
|
},
|
471
|
-
tokens: 16_384,
|
472
472
|
vision: true,
|
473
473
|
},
|
474
474
|
{
|
475
|
+
contextWindowTokens: 16_384,
|
475
476
|
description: '初期版本,推荐使用 yi-large(新版本)。',
|
476
477
|
displayName: 'Yi Large Preview',
|
477
478
|
id: 'yi-large-preview',
|
@@ -480,9 +481,9 @@ const Higress: ModelProviderCard = {
|
|
480
481
|
input: 20,
|
481
482
|
output: 20,
|
482
483
|
},
|
483
|
-
tokens: 16_384,
|
484
484
|
},
|
485
485
|
{
|
486
|
+
contextWindowTokens: 16_384,
|
486
487
|
description: '轻量化版本,推荐使用 yi-lightning。',
|
487
488
|
displayName: 'Yi Lightning Lite',
|
488
489
|
id: 'yi-lightning-lite',
|
@@ -491,10 +492,10 @@ const Higress: ModelProviderCard = {
|
|
491
492
|
input: 0.99,
|
492
493
|
output: 0.99,
|
493
494
|
},
|
494
|
-
tokens: 16_384,
|
495
495
|
},
|
496
496
|
//智谱AI
|
497
497
|
{
|
498
|
+
contextWindowTokens: 128_000,
|
498
499
|
description: 'GLM-4-Flash 是处理简单任务的理想选择,速度最快且免费。',
|
499
500
|
displayName: 'GLM-4-Flash',
|
500
501
|
enabled: true,
|
@@ -505,9 +506,9 @@ const Higress: ModelProviderCard = {
|
|
505
506
|
input: 0,
|
506
507
|
output: 0,
|
507
508
|
},
|
508
|
-
tokens: 128_000,
|
509
509
|
},
|
510
510
|
{
|
511
|
+
contextWindowTokens: 128_000,
|
511
512
|
description: 'GLM-4-FlashX 是Flash的增强版本,超快推理速度。',
|
512
513
|
displayName: 'GLM-4-FlashX',
|
513
514
|
enabled: true,
|
@@ -518,9 +519,9 @@ const Higress: ModelProviderCard = {
|
|
518
519
|
input: 0.1,
|
519
520
|
output: 0.1,
|
520
521
|
},
|
521
|
-
tokens: 128_000,
|
522
522
|
},
|
523
523
|
{
|
524
|
+
contextWindowTokens: 1_024_000,
|
524
525
|
description: 'GLM-4-Long 支持超长文本输入,适合记忆型任务与大规模文档处理。',
|
525
526
|
displayName: 'GLM-4-Long',
|
526
527
|
functionCall: true,
|
@@ -530,9 +531,9 @@ const Higress: ModelProviderCard = {
|
|
530
531
|
input: 1,
|
531
532
|
output: 1,
|
532
533
|
},
|
533
|
-
tokens: 1_024_000,
|
534
534
|
},
|
535
535
|
{
|
536
|
+
contextWindowTokens: 128_000,
|
536
537
|
description: 'GLM-4-Air 是性价比高的版本,性能接近GLM-4,提供快速度和实惠的价格。',
|
537
538
|
displayName: 'GLM-4-Air',
|
538
539
|
enabled: true,
|
@@ -543,9 +544,9 @@ const Higress: ModelProviderCard = {
|
|
543
544
|
input: 1,
|
544
545
|
output: 1,
|
545
546
|
},
|
546
|
-
tokens: 128_000,
|
547
547
|
},
|
548
548
|
{
|
549
|
+
contextWindowTokens: 8192,
|
549
550
|
description: 'GLM-4-AirX 提供 GLM-4-Air 的高效版本,推理速度可达其2.6倍。',
|
550
551
|
displayName: 'GLM-4-AirX',
|
551
552
|
enabled: true,
|
@@ -556,9 +557,9 @@ const Higress: ModelProviderCard = {
|
|
556
557
|
input: 10,
|
557
558
|
output: 10,
|
558
559
|
},
|
559
|
-
tokens: 8192,
|
560
560
|
},
|
561
561
|
{
|
562
|
+
contextWindowTokens: 128_000,
|
562
563
|
description:
|
563
564
|
'GLM-4-AllTools 是一个多功能智能体模型,优化以支持复杂指令规划与工具调用,如网络浏览、代码解释和文本生成,适用于多任务执行。',
|
564
565
|
displayName: 'GLM-4-AllTools',
|
@@ -569,9 +570,9 @@ const Higress: ModelProviderCard = {
|
|
569
570
|
input: 100,
|
570
571
|
output: 100,
|
571
572
|
},
|
572
|
-
tokens: 128_000,
|
573
573
|
},
|
574
574
|
{
|
575
|
+
contextWindowTokens: 128_000,
|
575
576
|
description:
|
576
577
|
'GLM-4-Plus 作为高智能旗舰,具备强大的处理长文本和复杂任务的能力,性能全面提升。',
|
577
578
|
displayName: 'GLM-4-Plus',
|
@@ -583,9 +584,9 @@ const Higress: ModelProviderCard = {
|
|
583
584
|
input: 50,
|
584
585
|
output: 50,
|
585
586
|
},
|
586
|
-
tokens: 128_000,
|
587
587
|
},
|
588
588
|
{
|
589
|
+
contextWindowTokens: 128_000,
|
589
590
|
description: 'GLM-4-0520 是最新模型版本,专为高度复杂和多样化任务设计,表现卓越。',
|
590
591
|
displayName: 'GLM-4-0520',
|
591
592
|
functionCall: true,
|
@@ -595,9 +596,9 @@ const Higress: ModelProviderCard = {
|
|
595
596
|
input: 100,
|
596
597
|
output: 100,
|
597
598
|
},
|
598
|
-
tokens: 128_000,
|
599
599
|
},
|
600
600
|
{
|
601
|
+
contextWindowTokens: 128_000,
|
601
602
|
description: 'GLM-4 是发布于2024年1月的旧旗舰版本,目前已被更强的 GLM-4-0520 取代。',
|
602
603
|
displayName: 'GLM-4',
|
603
604
|
functionCall: true,
|
@@ -607,9 +608,9 @@ const Higress: ModelProviderCard = {
|
|
607
608
|
input: 100,
|
608
609
|
output: 100,
|
609
610
|
},
|
610
|
-
tokens: 128_000,
|
611
611
|
},
|
612
612
|
{
|
613
|
+
contextWindowTokens: 8192,
|
613
614
|
description: 'GLM-4V-Plus 具备对视频内容及多图片的理解能力,适合多模态任务。',
|
614
615
|
displayName: 'GLM-4V-Plus',
|
615
616
|
enabled: true,
|
@@ -619,10 +620,10 @@ const Higress: ModelProviderCard = {
|
|
619
620
|
input: 10,
|
620
621
|
output: 10,
|
621
622
|
},
|
622
|
-
tokens: 8192,
|
623
623
|
vision: true,
|
624
624
|
},
|
625
625
|
{
|
626
|
+
contextWindowTokens: 2048,
|
626
627
|
description: 'GLM-4V 提供强大的图像理解与推理能力,支持多种视觉任务。',
|
627
628
|
displayName: 'GLM-4V',
|
628
629
|
id: 'glm-4v',
|
@@ -631,10 +632,10 @@ const Higress: ModelProviderCard = {
|
|
631
632
|
input: 50,
|
632
633
|
output: 50,
|
633
634
|
},
|
634
|
-
tokens: 2048,
|
635
635
|
vision: true,
|
636
636
|
},
|
637
637
|
{
|
638
|
+
contextWindowTokens: 4096,
|
638
639
|
description: 'CharGLM-3 专为角色扮演与情感陪伴设计,支持超长多轮记忆与个性化对话,应用广泛。',
|
639
640
|
displayName: 'CharGLM-3',
|
640
641
|
id: 'charglm-3',
|
@@ -643,9 +644,9 @@ const Higress: ModelProviderCard = {
|
|
643
644
|
input: 15,
|
644
645
|
output: 15,
|
645
646
|
},
|
646
|
-
tokens: 4096,
|
647
647
|
},
|
648
648
|
{
|
649
|
+
contextWindowTokens: 8192,
|
649
650
|
description: 'Emohaa 是心理模型,具备专业咨询能力,帮助用户理解情感问题。',
|
650
651
|
displayName: 'Emohaa',
|
651
652
|
id: 'emohaa',
|
@@ -654,10 +655,10 @@ const Higress: ModelProviderCard = {
|
|
654
655
|
input: 15,
|
655
656
|
output: 15,
|
656
657
|
},
|
657
|
-
tokens: 8192,
|
658
658
|
},
|
659
659
|
//360智脑
|
660
660
|
{
|
661
|
+
contextWindowTokens: 8192,
|
661
662
|
description:
|
662
663
|
'360GPT2 Pro 是 360 公司推出的高级自然语言处理模型,具备卓越的文本生成和理解能力,尤其在生成与创作领域表现出色,能够处理复杂的语言转换和角色演绎任务。',
|
663
664
|
displayName: '360GPT2 Pro',
|
@@ -669,9 +670,9 @@ const Higress: ModelProviderCard = {
|
|
669
670
|
input: 5,
|
670
671
|
output: 5,
|
671
672
|
},
|
672
|
-
tokens: 8192,
|
673
673
|
},
|
674
674
|
{
|
675
|
+
contextWindowTokens: 8192,
|
675
676
|
description:
|
676
677
|
'360GPT Pro 作为 360 AI 模型系列的重要成员,以高效的文本处理能力满足多样化的自然语言应用场景,支持长文本理解和多轮对话等功能。',
|
677
678
|
displayName: '360GPT Pro',
|
@@ -684,9 +685,9 @@ const Higress: ModelProviderCard = {
|
|
684
685
|
input: 5,
|
685
686
|
output: 5,
|
686
687
|
},
|
687
|
-
tokens: 8192,
|
688
688
|
},
|
689
689
|
{
|
690
|
+
contextWindowTokens: 8192,
|
690
691
|
description:
|
691
692
|
'360GPT Turbo 提供强大的计算和对话能力,具备出色的语义理解和生成效率,是企业和开发者理想的智能助理解决方案。',
|
692
693
|
displayName: '360GPT Turbo',
|
@@ -698,9 +699,9 @@ const Higress: ModelProviderCard = {
|
|
698
699
|
input: 2,
|
699
700
|
output: 2,
|
700
701
|
},
|
701
|
-
tokens: 8192,
|
702
702
|
},
|
703
703
|
{
|
704
|
+
contextWindowTokens: 8192,
|
704
705
|
description:
|
705
706
|
'360GPT Turbo Responsibility 8K 强调语义安全和责任导向,专为对内容安全有高度要求的应用场景设计,确保用户体验的准确性与稳健性。',
|
706
707
|
displayName: '360GPT Turbo Responsibility 8K',
|
@@ -712,10 +713,10 @@ const Higress: ModelProviderCard = {
|
|
712
713
|
input: 2,
|
713
714
|
output: 2,
|
714
715
|
},
|
715
|
-
tokens: 8192,
|
716
716
|
},
|
717
717
|
//文心一言
|
718
718
|
{
|
719
|
+
contextWindowTokens: 8192,
|
719
720
|
description:
|
720
721
|
'百度自研的旗舰级大规模⼤语⾔模型,覆盖海量中英文语料,具有强大的通用能力,可满足绝大部分对话问答、创作生成、插件应用场景要求;支持自动对接百度搜索插件,保障问答信息时效。',
|
721
722
|
displayName: 'ERNIE 3.5 8K',
|
@@ -726,9 +727,9 @@ const Higress: ModelProviderCard = {
|
|
726
727
|
input: 0.8,
|
727
728
|
output: 2,
|
728
729
|
},
|
729
|
-
tokens: 8192,
|
730
730
|
},
|
731
731
|
{
|
732
|
+
contextWindowTokens: 8192,
|
732
733
|
description:
|
733
734
|
'百度自研的旗舰级大规模⼤语⾔模型,覆盖海量中英文语料,具有强大的通用能力,可满足绝大部分对话问答、创作生成、插件应用场景要求;支持自动对接百度搜索插件,保障问答信息时效。',
|
734
735
|
displayName: 'ERNIE 3.5 8K Preview',
|
@@ -738,9 +739,9 @@ const Higress: ModelProviderCard = {
|
|
738
739
|
input: 0.8,
|
739
740
|
output: 2,
|
740
741
|
},
|
741
|
-
tokens: 8192,
|
742
742
|
},
|
743
743
|
{
|
744
|
+
contextWindowTokens: 128_000,
|
744
745
|
description:
|
745
746
|
'百度自研的旗舰级大规模⼤语⾔模型,覆盖海量中英文语料,具有强大的通用能力,可满足绝大部分对话问答、创作生成、插件应用场景要求;支持自动对接百度搜索插件,保障问答信息时效。',
|
746
747
|
displayName: 'ERNIE 3.5 128K',
|
@@ -751,9 +752,9 @@ const Higress: ModelProviderCard = {
|
|
751
752
|
input: 0.8,
|
752
753
|
output: 2,
|
753
754
|
},
|
754
|
-
tokens: 128_000,
|
755
755
|
},
|
756
756
|
{
|
757
|
+
contextWindowTokens: 8192,
|
757
758
|
description:
|
758
759
|
'百度自研的旗舰级超大规模⼤语⾔模型,相较ERNIE 3.5实现了模型能力全面升级,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。',
|
759
760
|
displayName: 'ERNIE 4.0 8K',
|
@@ -764,9 +765,9 @@ const Higress: ModelProviderCard = {
|
|
764
765
|
input: 30,
|
765
766
|
output: 90,
|
766
767
|
},
|
767
|
-
tokens: 8192,
|
768
768
|
},
|
769
769
|
{
|
770
|
+
contextWindowTokens: 8192,
|
770
771
|
description:
|
771
772
|
'百度自研的旗舰级超大规模⼤语⾔模型,相较ERNIE 3.5实现了模型能力全面升级,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。',
|
772
773
|
displayName: 'ERNIE 4.0 8K Preview',
|
@@ -776,9 +777,9 @@ const Higress: ModelProviderCard = {
|
|
776
777
|
input: 30,
|
777
778
|
output: 90,
|
778
779
|
},
|
779
|
-
tokens: 8192,
|
780
780
|
},
|
781
781
|
{
|
782
|
+
contextWindowTokens: 8192,
|
782
783
|
description:
|
783
784
|
'百度自研的旗舰级超大规模⼤语⾔模型,综合效果表现出色,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。相较于ERNIE 4.0在性能表现上更优秀',
|
784
785
|
displayName: 'ERNIE 4.0 Turbo 8K',
|
@@ -789,9 +790,9 @@ const Higress: ModelProviderCard = {
|
|
789
790
|
input: 20,
|
790
791
|
output: 60,
|
791
792
|
},
|
792
|
-
tokens: 8192,
|
793
793
|
},
|
794
794
|
{
|
795
|
+
contextWindowTokens: 8192,
|
795
796
|
description:
|
796
797
|
'百度自研的旗舰级超大规模⼤语⾔模型,综合效果表现出色,广泛适用于各领域复杂任务场景;支持自动对接百度搜索插件,保障问答信息时效。相较于ERNIE 4.0在性能表现上更优秀',
|
797
798
|
displayName: 'ERNIE 4.0 Turbo 8K Preview',
|
@@ -801,9 +802,9 @@ const Higress: ModelProviderCard = {
|
|
801
802
|
input: 20,
|
802
803
|
output: 60,
|
803
804
|
},
|
804
|
-
tokens: 8192,
|
805
805
|
},
|
806
806
|
{
|
807
|
+
contextWindowTokens: 128_000,
|
807
808
|
description:
|
808
809
|
'百度自研的轻量级大语言模型,兼顾优异的模型效果与推理性能,效果比ERNIE Lite更优,适合低算力AI加速卡推理使用。',
|
809
810
|
displayName: 'ERNIE Lite Pro 128K',
|
@@ -814,9 +815,9 @@ const Higress: ModelProviderCard = {
|
|
814
815
|
input: 0.2,
|
815
816
|
output: 0.4,
|
816
817
|
},
|
817
|
-
tokens: 128_000,
|
818
818
|
},
|
819
819
|
{
|
820
|
+
contextWindowTokens: 128_000,
|
820
821
|
description:
|
821
822
|
'百度2024年最新发布的自研高性能大语言模型,通用能力优异,效果比ERNIE Speed更优,适合作为基座模型进行精调,更好地处理特定场景问题,同时具备极佳的推理性能。',
|
822
823
|
displayName: 'ERNIE Speed Pro 128K',
|
@@ -827,9 +828,9 @@ const Higress: ModelProviderCard = {
|
|
827
828
|
input: 0.3,
|
828
829
|
output: 0.6,
|
829
830
|
},
|
830
|
-
tokens: 128_000,
|
831
831
|
},
|
832
832
|
{
|
833
|
+
contextWindowTokens: 128_000,
|
833
834
|
description:
|
834
835
|
'百度2024年最新发布的自研高性能大语言模型,通用能力优异,适合作为基座模型进行精调,更好地处理特定场景问题,同时具备极佳的推理性能。',
|
835
836
|
displayName: 'ERNIE Speed 128K',
|
@@ -839,9 +840,9 @@ const Higress: ModelProviderCard = {
|
|
839
840
|
input: 0,
|
840
841
|
output: 0,
|
841
842
|
},
|
842
|
-
tokens: 128_000,
|
843
843
|
},
|
844
844
|
{
|
845
|
+
contextWindowTokens: 8192,
|
845
846
|
description:
|
846
847
|
'百度自研的垂直场景大语言模型,适合游戏NPC、客服对话、对话角色扮演等应用场景,人设风格更为鲜明、一致,指令遵循能力更强,推理性能更优。',
|
847
848
|
displayName: 'ERNIE Character 8K',
|
@@ -851,10 +852,10 @@ const Higress: ModelProviderCard = {
|
|
851
852
|
input: 4,
|
852
853
|
output: 8,
|
853
854
|
},
|
854
|
-
tokens: 8192,
|
855
855
|
},
|
856
856
|
//混元
|
857
857
|
{
|
858
|
+
contextWindowTokens: 256_000,
|
858
859
|
description:
|
859
860
|
'升级为 MOE 结构,上下文窗口为 256k ,在 NLP,代码,数学,行业等多项评测集上领先众多开源模型。',
|
860
861
|
displayName: 'Hunyuan Lite',
|
@@ -866,9 +867,9 @@ const Higress: ModelProviderCard = {
|
|
866
867
|
input: 0,
|
867
868
|
output: 0,
|
868
869
|
},
|
869
|
-
tokens: 256_000,
|
870
870
|
},
|
871
871
|
{
|
872
|
+
contextWindowTokens: 32_000,
|
872
873
|
description:
|
873
874
|
'采用更优的路由策略,同时缓解了负载均衡和专家趋同的问题。长文方面,大海捞针指标达到99.9%。MOE-32K 性价比相对更高,在平衡效果、价格的同时,可对实现对长文本输入的处理。',
|
874
875
|
displayName: 'Hunyuan Standard',
|
@@ -880,9 +881,9 @@ const Higress: ModelProviderCard = {
|
|
880
881
|
input: 4.5,
|
881
882
|
output: 5,
|
882
883
|
},
|
883
|
-
tokens: 32_000,
|
884
884
|
},
|
885
885
|
{
|
886
|
+
contextWindowTokens: 256_000,
|
886
887
|
description:
|
887
888
|
'采用更优的路由策略,同时缓解了负载均衡和专家趋同的问题。长文方面,大海捞针指标达到99.9%。MOE-256K 在长度和效果上进一步突破,极大的扩展了可输入长度。',
|
888
889
|
displayName: 'Hunyuan Standard 256K',
|
@@ -894,9 +895,9 @@ const Higress: ModelProviderCard = {
|
|
894
895
|
input: 15,
|
895
896
|
output: 60,
|
896
897
|
},
|
897
|
-
tokens: 256_000,
|
898
898
|
},
|
899
899
|
{
|
900
|
+
contextWindowTokens: 32_000,
|
900
901
|
description:
|
901
902
|
'混元全新一代大语言模型的预览版,采用全新的混合专家模型(MoE)结构,相比hunyuan-pro推理效率更快,效果表现更强。',
|
902
903
|
displayName: 'Hunyuan Turbo',
|
@@ -909,9 +910,9 @@ const Higress: ModelProviderCard = {
|
|
909
910
|
input: 15,
|
910
911
|
output: 50,
|
911
912
|
},
|
912
|
-
tokens: 32_000,
|
913
913
|
},
|
914
914
|
{
|
915
|
+
contextWindowTokens: 32_000,
|
915
916
|
description:
|
916
917
|
'万亿级参数规模 MOE-32K 长文模型。在各种 benchmark 上达到绝对领先的水平,复杂指令和推理,具备复杂数学能力,支持 functioncall,在多语言翻译、金融法律医疗等领域应用重点优化。',
|
917
918
|
displayName: 'Hunyuan Pro',
|
@@ -924,7 +925,6 @@ const Higress: ModelProviderCard = {
|
|
924
925
|
input: 30,
|
925
926
|
output: 100,
|
926
927
|
},
|
927
|
-
tokens: 32_000,
|
928
928
|
},
|
929
929
|
{
|
930
930
|
description: '',
|
@@ -941,6 +941,7 @@ const Higress: ModelProviderCard = {
|
|
941
941
|
// tokens: 32_000,
|
942
942
|
},
|
943
943
|
{
|
944
|
+
contextWindowTokens: 8000,
|
944
945
|
description: '混元最新多模态模型,支持图片+文本输入生成文本内容。',
|
945
946
|
displayName: 'Hunyuan Vision',
|
946
947
|
enabled: true,
|
@@ -951,10 +952,10 @@ const Higress: ModelProviderCard = {
|
|
951
952
|
input: 18,
|
952
953
|
output: 18,
|
953
954
|
},
|
954
|
-
tokens: 8000,
|
955
955
|
vision: true,
|
956
956
|
},
|
957
957
|
{
|
958
|
+
contextWindowTokens: 8000,
|
958
959
|
description:
|
959
960
|
'混元最新代码生成模型,经过 200B 高质量代码数据增训基座模型,迭代半年高质量 SFT 数据训练,上下文长窗口长度增大到 8K,五大语言代码生成自动评测指标上位居前列;五大语言10项考量各方面综合代码任务人工高质量评测上,性能处于第一梯队',
|
960
961
|
displayName: 'Hunyuan Code',
|
@@ -965,9 +966,9 @@ const Higress: ModelProviderCard = {
|
|
965
966
|
input: 4,
|
966
967
|
output: 8,
|
967
968
|
},
|
968
|
-
tokens: 8000,
|
969
969
|
},
|
970
970
|
{
|
971
|
+
contextWindowTokens: 32_000,
|
971
972
|
description:
|
972
973
|
'混元最新 MOE 架构 FunctionCall 模型,经过高质量的 FunctionCall 数据训练,上下文窗口达 32K,在多个维度的评测指标上处于领先。',
|
973
974
|
displayName: 'Hunyuan FunctionCall',
|
@@ -979,9 +980,9 @@ const Higress: ModelProviderCard = {
|
|
979
980
|
input: 4,
|
980
981
|
output: 8,
|
981
982
|
},
|
982
|
-
tokens: 32_000,
|
983
983
|
},
|
984
984
|
{
|
985
|
+
contextWindowTokens: 8000,
|
985
986
|
description:
|
986
987
|
'混元最新版角色扮演模型,混元官方精调训练推出的角色扮演模型,基于混元模型结合角色扮演场景数据集进行增训,在角色扮演场景具有更好的基础效果。',
|
987
988
|
displayName: 'Hunyuan Role',
|
@@ -992,10 +993,10 @@ const Higress: ModelProviderCard = {
|
|
992
993
|
input: 4,
|
993
994
|
output: 8,
|
994
995
|
},
|
995
|
-
tokens: 8000,
|
996
996
|
},
|
997
997
|
//阶跃星辰
|
998
998
|
{
|
999
|
+
contextWindowTokens: 8000,
|
999
1000
|
description: '高速模型,适合实时对话。',
|
1000
1001
|
displayName: 'Step 1 Flash',
|
1001
1002
|
enabled: true,
|
@@ -1006,9 +1007,9 @@ const Higress: ModelProviderCard = {
|
|
1006
1007
|
input: 1,
|
1007
1008
|
output: 4,
|
1008
1009
|
},
|
1009
|
-
tokens: 8000,
|
1010
1010
|
},
|
1011
1011
|
{
|
1012
|
+
contextWindowTokens: 8000,
|
1012
1013
|
description: '小型模型,适合轻量级任务。',
|
1013
1014
|
displayName: 'Step 1 8K',
|
1014
1015
|
enabled: true,
|
@@ -1019,9 +1020,9 @@ const Higress: ModelProviderCard = {
|
|
1019
1020
|
input: 5,
|
1020
1021
|
output: 20,
|
1021
1022
|
},
|
1022
|
-
tokens: 8000,
|
1023
1023
|
},
|
1024
1024
|
{
|
1025
|
+
contextWindowTokens: 32_000,
|
1025
1026
|
description: '支持中等长度的对话,适用于多种应用场景。',
|
1026
1027
|
displayName: 'Step 1 32K',
|
1027
1028
|
enabled: true,
|
@@ -1032,9 +1033,9 @@ const Higress: ModelProviderCard = {
|
|
1032
1033
|
input: 15,
|
1033
1034
|
output: 70,
|
1034
1035
|
},
|
1035
|
-
tokens: 32_000,
|
1036
1036
|
},
|
1037
1037
|
{
|
1038
|
+
contextWindowTokens: 128_000,
|
1038
1039
|
description: '平衡性能与成本,适合一般场景。',
|
1039
1040
|
displayName: 'Step 1 128K',
|
1040
1041
|
enabled: true,
|
@@ -1045,9 +1046,9 @@ const Higress: ModelProviderCard = {
|
|
1045
1046
|
input: 40,
|
1046
1047
|
output: 200,
|
1047
1048
|
},
|
1048
|
-
tokens: 128_000,
|
1049
1049
|
},
|
1050
1050
|
{
|
1051
|
+
contextWindowTokens: 256_000,
|
1051
1052
|
description: '具备超长上下文处理能力,尤其适合长文档分析。',
|
1052
1053
|
displayName: 'Step 1 256K',
|
1053
1054
|
functionCall: true,
|
@@ -1057,9 +1058,9 @@ const Higress: ModelProviderCard = {
|
|
1057
1058
|
input: 95,
|
1058
1059
|
output: 300,
|
1059
1060
|
},
|
1060
|
-
tokens: 256_000,
|
1061
1061
|
},
|
1062
1062
|
{
|
1063
|
+
contextWindowTokens: 16_000,
|
1063
1064
|
description: '支持大规模上下文交互,适合复杂对话场景。',
|
1064
1065
|
displayName: 'Step 2 16K',
|
1065
1066
|
enabled: true,
|
@@ -1070,9 +1071,9 @@ const Higress: ModelProviderCard = {
|
|
1070
1071
|
input: 38,
|
1071
1072
|
output: 120,
|
1072
1073
|
},
|
1073
|
-
tokens: 16_000,
|
1074
1074
|
},
|
1075
1075
|
{
|
1076
|
+
contextWindowTokens: 8000,
|
1076
1077
|
description: '小型视觉模型,适合基本的图文任务。',
|
1077
1078
|
displayName: 'Step 1V 8K',
|
1078
1079
|
enabled: true,
|
@@ -1083,10 +1084,10 @@ const Higress: ModelProviderCard = {
|
|
1083
1084
|
input: 5,
|
1084
1085
|
output: 20,
|
1085
1086
|
},
|
1086
|
-
tokens: 8000,
|
1087
1087
|
vision: true,
|
1088
1088
|
},
|
1089
1089
|
{
|
1090
|
+
contextWindowTokens: 32_000,
|
1090
1091
|
description: '支持视觉输入,增强多模态交互体验。',
|
1091
1092
|
displayName: 'Step 1V 32K',
|
1092
1093
|
enabled: true,
|
@@ -1097,10 +1098,10 @@ const Higress: ModelProviderCard = {
|
|
1097
1098
|
input: 15,
|
1098
1099
|
output: 70,
|
1099
1100
|
},
|
1100
|
-
tokens: 32_000,
|
1101
1101
|
vision: true,
|
1102
1102
|
},
|
1103
1103
|
{
|
1104
|
+
contextWindowTokens: 32_000,
|
1104
1105
|
description: '该模型拥有强大的视频理解能力。',
|
1105
1106
|
displayName: 'Step 1.5V Mini',
|
1106
1107
|
enabled: true,
|
@@ -1110,10 +1111,10 @@ const Higress: ModelProviderCard = {
|
|
1110
1111
|
input: 8,
|
1111
1112
|
output: 35,
|
1112
1113
|
},
|
1113
|
-
tokens: 32_000,
|
1114
1114
|
vision: true,
|
1115
1115
|
},
|
1116
1116
|
{
|
1117
|
+
contextWindowTokens: 8192,
|
1117
1118
|
description:
|
1118
1119
|
'Spark Lite 是一款轻量级大语言模型,具备极低的延迟与高效的处理能力,完全免费开放,支持实时在线搜索功能。其快速响应的特性使其在低算力设备上的推理应用和模型微调中表现出色,为用户带来出色的成本效益和智能体验,尤其在知识问答、内容生成及搜索场景下表现不俗。',
|
1119
1120
|
displayName: 'Spark Lite',
|
@@ -1121,9 +1122,9 @@ const Higress: ModelProviderCard = {
|
|
1121
1122
|
functionCall: false,
|
1122
1123
|
id: 'lite',
|
1123
1124
|
maxOutput: 4096,
|
1124
|
-
tokens: 8192,
|
1125
1125
|
},
|
1126
1126
|
{
|
1127
|
+
contextWindowTokens: 8192,
|
1127
1128
|
description:
|
1128
1129
|
'Spark Pro 是一款为专业领域优化的高性能大语言模型,专注数学、编程、医疗、教育等多个领域,并支持联网搜索及内置天气、日期等插件。其优化后模型在复杂知识问答、语言理解及高层次文本创作中展现出色表现和高效性能,是适合专业应用场景的理想选择。',
|
1129
1130
|
displayName: 'Spark Pro',
|
@@ -1131,9 +1132,9 @@ const Higress: ModelProviderCard = {
|
|
1131
1132
|
functionCall: false,
|
1132
1133
|
id: 'generalv3',
|
1133
1134
|
maxOutput: 8192,
|
1134
|
-
tokens: 8192,
|
1135
1135
|
},
|
1136
1136
|
{
|
1137
|
+
contextWindowTokens: 131_072,
|
1137
1138
|
description:
|
1138
1139
|
'Spark Pro 128K 配置了特大上下文处理能力,能够处理多达128K的上下文信息,特别适合需通篇分析和长期逻辑关联处理的长文内容,可在复杂文本沟通中提供流畅一致的逻辑与多样的引用支持。',
|
1139
1140
|
displayName: 'Spark Pro 128K',
|
@@ -1141,9 +1142,9 @@ const Higress: ModelProviderCard = {
|
|
1141
1142
|
functionCall: false,
|
1142
1143
|
id: 'pro-128k',
|
1143
1144
|
maxOutput: 4096,
|
1144
|
-
tokens: 131_072,
|
1145
1145
|
},
|
1146
1146
|
{
|
1147
|
+
contextWindowTokens: 8192,
|
1147
1148
|
description:
|
1148
1149
|
'Spark Max 为功能最为全面的版本,支持联网搜索及众多内置插件。其全面优化的核心能力以及系统角色设定和函数调用功能,使其在各种复杂应用场景中的表现极为优异和出色。',
|
1149
1150
|
displayName: 'Spark Max',
|
@@ -1151,9 +1152,9 @@ const Higress: ModelProviderCard = {
|
|
1151
1152
|
functionCall: false,
|
1152
1153
|
id: 'generalv3.5',
|
1153
1154
|
maxOutput: 8192,
|
1154
|
-
tokens: 8192,
|
1155
1155
|
},
|
1156
1156
|
{
|
1157
|
+
contextWindowTokens: 32_768,
|
1157
1158
|
description:
|
1158
1159
|
'Spark Max 32K 配置了大上下文处理能力,更强的上下文理解和逻辑推理能力,支持32K tokens的文本输入,适用于长文档阅读、私有知识问答等场景',
|
1159
1160
|
displayName: 'Spark Max 32K',
|
@@ -1161,9 +1162,9 @@ const Higress: ModelProviderCard = {
|
|
1161
1162
|
functionCall: false,
|
1162
1163
|
id: 'max-32k',
|
1163
1164
|
maxOutput: 8192,
|
1164
|
-
tokens: 32_768,
|
1165
1165
|
},
|
1166
1166
|
{
|
1167
|
+
contextWindowTokens: 8192,
|
1167
1168
|
description:
|
1168
1169
|
'Spark Ultra 是星火大模型系列中最为强大的版本,在升级联网搜索链路同时,提升对文本内容的理解和总结能力。它是用于提升办公生产力和准确响应需求的全方位解决方案,是引领行业的智能产品。',
|
1169
1170
|
displayName: 'Spark 4.0 Ultra',
|
@@ -1171,10 +1172,10 @@ const Higress: ModelProviderCard = {
|
|
1171
1172
|
functionCall: false,
|
1172
1173
|
id: '4.0Ultra',
|
1173
1174
|
maxOutput: 8192,
|
1174
|
-
tokens: 8192,
|
1175
1175
|
},
|
1176
1176
|
//openai
|
1177
1177
|
{
|
1178
|
+
contextWindowTokens: 128_000,
|
1178
1179
|
description:
|
1179
1180
|
'o1-mini是一款针对编程、数学和科学应用场景而设计的快速、经济高效的推理模型。该模型具有128K上下文和2023年10月的知识截止日期。',
|
1180
1181
|
displayName: 'OpenAI o1-mini',
|
@@ -1186,9 +1187,9 @@ const Higress: ModelProviderCard = {
|
|
1186
1187
|
output: 12,
|
1187
1188
|
},
|
1188
1189
|
releasedAt: '2024-09-12',
|
1189
|
-
tokens: 128_000,
|
1190
1190
|
},
|
1191
1191
|
{
|
1192
|
+
contextWindowTokens: 128_000,
|
1192
1193
|
description:
|
1193
1194
|
'o1是OpenAI新的推理模型,适用于需要广泛通用知识的复杂任务。该模型具有128K上下文和2023年10月的知识截止日期。',
|
1194
1195
|
displayName: 'OpenAI o1-preview',
|
@@ -1200,9 +1201,9 @@ const Higress: ModelProviderCard = {
|
|
1200
1201
|
output: 60,
|
1201
1202
|
},
|
1202
1203
|
releasedAt: '2024-09-12',
|
1203
|
-
tokens: 128_000,
|
1204
1204
|
},
|
1205
1205
|
{
|
1206
|
+
contextWindowTokens: 128_000,
|
1206
1207
|
description:
|
1207
1208
|
'GPT-4o mini是OpenAI在GPT-4 Omni之后推出的最新模型,支持图文输入并输出文本。作为他们最先进的小型模型,它比其他近期的前沿模型便宜很多,并且比GPT-3.5 Turbo便宜超过60%。它保持了最先进的智能,同时具有显著的性价比。GPT-4o mini在MMLU测试中获得了 82% 的得分,目前在聊天偏好上排名高于 GPT-4。',
|
1208
1209
|
displayName: 'GPT-4o mini',
|
@@ -1214,10 +1215,10 @@ const Higress: ModelProviderCard = {
|
|
1214
1215
|
input: 0.15,
|
1215
1216
|
output: 0.6,
|
1216
1217
|
},
|
1217
|
-
tokens: 128_000,
|
1218
1218
|
vision: true,
|
1219
1219
|
},
|
1220
1220
|
{
|
1221
|
+
contextWindowTokens: 128_000,
|
1221
1222
|
description:
|
1222
1223
|
'ChatGPT-4o 是一款动态模型,实时更新以保持当前最新版本。它结合了强大的语言理解与生成能力,适合于大规模应用场景,包括客户服务、教育和技术支持。',
|
1223
1224
|
displayName: 'GPT-4o',
|
@@ -1228,10 +1229,10 @@ const Higress: ModelProviderCard = {
|
|
1228
1229
|
input: 2.5,
|
1229
1230
|
output: 10,
|
1230
1231
|
},
|
1231
|
-
tokens: 128_000,
|
1232
1232
|
vision: true,
|
1233
1233
|
},
|
1234
1234
|
{
|
1235
|
+
contextWindowTokens: 128_000,
|
1235
1236
|
description:
|
1236
1237
|
'ChatGPT-4o 是一款动态模型,实时更新以保持当前最新版本。它结合了强大的语言理解与生成能力,适合于大规模应用场景,包括客户服务、教育和技术支持。',
|
1237
1238
|
displayName: 'GPT-4o 0806',
|
@@ -1241,10 +1242,10 @@ const Higress: ModelProviderCard = {
|
|
1241
1242
|
input: 2.5,
|
1242
1243
|
output: 10,
|
1243
1244
|
},
|
1244
|
-
tokens: 128_000,
|
1245
1245
|
vision: true,
|
1246
1246
|
},
|
1247
1247
|
{
|
1248
|
+
contextWindowTokens: 128_000,
|
1248
1249
|
description:
|
1249
1250
|
'ChatGPT-4o 是一款动态模型,实时更新以保持当前最新版本。它结合了强大的语言理解与生成能力,适合于大规模应用场景,包括客户服务、教育和技术支持。',
|
1250
1251
|
displayName: 'GPT-4o 0513',
|
@@ -1254,10 +1255,10 @@ const Higress: ModelProviderCard = {
|
|
1254
1255
|
input: 5,
|
1255
1256
|
output: 15,
|
1256
1257
|
},
|
1257
|
-
tokens: 128_000,
|
1258
1258
|
vision: true,
|
1259
1259
|
},
|
1260
1260
|
{
|
1261
|
+
contextWindowTokens: 128_000,
|
1261
1262
|
description:
|
1262
1263
|
'ChatGPT-4o 是一款动态模型,实时更新以保持当前最新版本。它结合了强大的语言理解与生成能力,适合于大规模应用场景,包括客户服务、教育和技术支持。',
|
1263
1264
|
displayName: 'ChatGPT-4o',
|
@@ -1267,10 +1268,10 @@ const Higress: ModelProviderCard = {
|
|
1267
1268
|
input: 5,
|
1268
1269
|
output: 15,
|
1269
1270
|
},
|
1270
|
-
tokens: 128_000,
|
1271
1271
|
vision: true,
|
1272
1272
|
},
|
1273
1273
|
{
|
1274
|
+
contextWindowTokens: 128_000,
|
1274
1275
|
description:
|
1275
1276
|
'最新的 GPT-4 Turbo 模型具备视觉功能。现在,视觉请求可以使用 JSON 模式和函数调用。 GPT-4 Turbo 是一个增强版本,为多模态任务提供成本效益高的支持。它在准确性和效率之间找到平衡,适合需要进行实时交互的应用程序场景。',
|
1276
1277
|
displayName: 'GPT-4 Turbo',
|
@@ -1280,10 +1281,10 @@ const Higress: ModelProviderCard = {
|
|
1280
1281
|
input: 10,
|
1281
1282
|
output: 30,
|
1282
1283
|
},
|
1283
|
-
tokens: 128_000,
|
1284
1284
|
vision: true,
|
1285
1285
|
},
|
1286
1286
|
{
|
1287
|
+
contextWindowTokens: 128_000,
|
1287
1288
|
description:
|
1288
1289
|
'最新的 GPT-4 Turbo 模型具备视觉功能。现在,视觉请求可以使用 JSON 模式和函数调用。 GPT-4 Turbo 是一个增强版本,为多模态任务提供成本效益高的支持。它在准确性和效率之间找到平衡,适合需要进行实时交互的应用程序场景。',
|
1289
1290
|
displayName: 'GPT-4 Turbo Vision 0409',
|
@@ -1293,10 +1294,10 @@ const Higress: ModelProviderCard = {
|
|
1293
1294
|
input: 10,
|
1294
1295
|
output: 30,
|
1295
1296
|
},
|
1296
|
-
tokens: 128_000,
|
1297
1297
|
vision: true,
|
1298
1298
|
},
|
1299
1299
|
{
|
1300
|
+
contextWindowTokens: 128_000,
|
1300
1301
|
description:
|
1301
1302
|
'最新的 GPT-4 Turbo 模型具备视觉功能。现在,视觉请求可以使用 JSON 模式和函数调用。 GPT-4 Turbo 是一个增强版本,为多模态任务提供成本效益高的支持。它在准确性和效率之间找到平衡,适合需要进行实时交互的应用程序场景。',
|
1302
1303
|
displayName: 'GPT-4 Turbo Preview',
|
@@ -1306,9 +1307,9 @@ const Higress: ModelProviderCard = {
|
|
1306
1307
|
input: 10,
|
1307
1308
|
output: 30,
|
1308
1309
|
},
|
1309
|
-
tokens: 128_000,
|
1310
1310
|
},
|
1311
1311
|
{
|
1312
|
+
contextWindowTokens: 128_000,
|
1312
1313
|
description:
|
1313
1314
|
'最新的 GPT-4 Turbo 模型具备视觉功能。现在,视觉请求可以使用 JSON 模式和函数调用。 GPT-4 Turbo 是一个增强版本,为多模态任务提供成本效益高的支持。它在准确性和效率之间找到平衡,适合需要进行实时交互的应用程序场景。',
|
1314
1315
|
displayName: 'GPT-4 Turbo Preview 0125',
|
@@ -1318,9 +1319,9 @@ const Higress: ModelProviderCard = {
|
|
1318
1319
|
input: 10,
|
1319
1320
|
output: 30,
|
1320
1321
|
},
|
1321
|
-
tokens: 128_000,
|
1322
1322
|
},
|
1323
1323
|
{
|
1324
|
+
contextWindowTokens: 128_000,
|
1324
1325
|
description:
|
1325
1326
|
'最新的 GPT-4 Turbo 模型具备视觉功能。现在,视觉请求可以使用 JSON 模式和函数调用。 GPT-4 Turbo 是一个增强版本,为多模态任务提供成本效益高的支持。它在准确性和效率之间找到平衡,适合需要进行实时交互的应用程序场景。',
|
1326
1327
|
displayName: 'GPT-4 Turbo Preview 1106',
|
@@ -1330,9 +1331,9 @@ const Higress: ModelProviderCard = {
|
|
1330
1331
|
input: 10,
|
1331
1332
|
output: 30,
|
1332
1333
|
},
|
1333
|
-
tokens: 128_000,
|
1334
1334
|
},
|
1335
1335
|
{
|
1336
|
+
contextWindowTokens: 8192,
|
1336
1337
|
description:
|
1337
1338
|
'GPT-4 提供了一个更大的上下文窗口,能够处理更长的文本输入,适用于需要广泛信息整合和数据分析的场景。',
|
1338
1339
|
displayName: 'GPT-4',
|
@@ -1342,9 +1343,9 @@ const Higress: ModelProviderCard = {
|
|
1342
1343
|
input: 30,
|
1343
1344
|
output: 60,
|
1344
1345
|
},
|
1345
|
-
tokens: 8192,
|
1346
1346
|
},
|
1347
1347
|
{
|
1348
|
+
contextWindowTokens: 8192,
|
1348
1349
|
description:
|
1349
1350
|
'GPT-4 提供了一个更大的上下文窗口,能够处理更长的文本输入,适用于需要广泛信息整合和数据分析的场景。',
|
1350
1351
|
displayName: 'GPT-4 0613',
|
@@ -1354,11 +1355,12 @@ const Higress: ModelProviderCard = {
|
|
1354
1355
|
input: 30,
|
1355
1356
|
output: 60,
|
1356
1357
|
},
|
1357
|
-
tokens: 8192,
|
1358
1358
|
},
|
1359
1359
|
{
|
1360
|
+
contextWindowTokens: 32_768,
|
1360
1361
|
description:
|
1361
|
-
'GPT-4 提供了一个更大的上下文窗口,能够处理更长的文本输入,适用于需要广泛信息整合和数据分析的场景。',
|
1362
|
+
'GPT-4 提供了一个更大的上下文窗口,能够处理更长的文本输入,适用于需要广泛信息整合和数据分析的场景。',
|
1363
|
+
// Will be discontinued on June 6, 2025
|
1362
1364
|
displayName: 'GPT-4 32K',
|
1363
1365
|
functionCall: true,
|
1364
1366
|
id: 'gpt-4-32k',
|
@@ -1366,9 +1368,9 @@ const Higress: ModelProviderCard = {
|
|
1366
1368
|
input: 60,
|
1367
1369
|
output: 120,
|
1368
1370
|
},
|
1369
|
-
tokens: 32_768,
|
1370
1371
|
},
|
1371
1372
|
{
|
1373
|
+
contextWindowTokens: 32_768,
|
1372
1374
|
// Will be discontinued on June 6, 2025
|
1373
1375
|
description:
|
1374
1376
|
'GPT-4 提供了一个更大的上下文窗口,能够处理更长的文本输入,适用于需要广泛信息整合和数据分析的场景。',
|
@@ -1379,9 +1381,9 @@ const Higress: ModelProviderCard = {
|
|
1379
1381
|
input: 60,
|
1380
1382
|
output: 120,
|
1381
1383
|
},
|
1382
|
-
tokens: 32_768,
|
1383
1384
|
},
|
1384
1385
|
{
|
1386
|
+
contextWindowTokens: 16_385,
|
1385
1387
|
description:
|
1386
1388
|
'GPT 3.5 Turbo,适用于各种文本生成和理解任务,Currently points to gpt-3.5-turbo-0125',
|
1387
1389
|
displayName: 'GPT-3.5 Turbo',
|
@@ -1391,9 +1393,9 @@ const Higress: ModelProviderCard = {
|
|
1391
1393
|
input: 0.5,
|
1392
1394
|
output: 1.5,
|
1393
1395
|
},
|
1394
|
-
tokens: 16_385,
|
1395
1396
|
},
|
1396
1397
|
{
|
1398
|
+
contextWindowTokens: 16_385,
|
1397
1399
|
description:
|
1398
1400
|
'GPT 3.5 Turbo,适用于各种文本生成和理解任务,Currently points to gpt-3.5-turbo-0125',
|
1399
1401
|
displayName: 'GPT-3.5 Turbo 0125',
|
@@ -1403,9 +1405,9 @@ const Higress: ModelProviderCard = {
|
|
1403
1405
|
input: 0.5,
|
1404
1406
|
output: 1.5,
|
1405
1407
|
},
|
1406
|
-
tokens: 16_385,
|
1407
1408
|
},
|
1408
1409
|
{
|
1410
|
+
contextWindowTokens: 16_385,
|
1409
1411
|
description:
|
1410
1412
|
'GPT 3.5 Turbo,适用于各种文本生成和理解任务,Currently points to gpt-3.5-turbo-0125',
|
1411
1413
|
displayName: 'GPT-3.5 Turbo 1106',
|
@@ -1415,9 +1417,9 @@ const Higress: ModelProviderCard = {
|
|
1415
1417
|
input: 1,
|
1416
1418
|
output: 2,
|
1417
1419
|
},
|
1418
|
-
tokens: 16_385,
|
1419
1420
|
},
|
1420
1421
|
{
|
1422
|
+
contextWindowTokens: 4096,
|
1421
1423
|
description:
|
1422
1424
|
'GPT 3.5 Turbo,适用于各种文本生成和理解任务,Currently points to gpt-3.5-turbo-0125',
|
1423
1425
|
displayName: 'GPT-3.5 Turbo Instruct',
|
@@ -1426,10 +1428,10 @@ const Higress: ModelProviderCard = {
|
|
1426
1428
|
input: 1.5,
|
1427
1429
|
output: 2,
|
1428
1430
|
},
|
1429
|
-
tokens: 4096,
|
1430
1431
|
},
|
1431
1432
|
//azure
|
1432
1433
|
{
|
1434
|
+
contextWindowTokens: 16_385,
|
1433
1435
|
deploymentName: 'gpt-35-turbo',
|
1434
1436
|
description:
|
1435
1437
|
'GPT 3.5 Turbo,OpenAI提供的高效模型,适用于聊天和文本生成任务,支持并行函数调用。',
|
@@ -1438,66 +1440,66 @@ const Higress: ModelProviderCard = {
|
|
1438
1440
|
functionCall: true,
|
1439
1441
|
id: 'gpt-35-turbo',
|
1440
1442
|
maxOutput: 4096,
|
1441
|
-
tokens: 16_385,
|
1442
1443
|
},
|
1443
1444
|
{
|
1445
|
+
contextWindowTokens: 16_384,
|
1444
1446
|
deploymentName: 'gpt-35-turbo-16k',
|
1445
1447
|
description: 'GPT 3.5 Turbo 16k,高容量文本生成模型,适合复杂任务。',
|
1446
1448
|
displayName: 'GPT 3.5 Turbo',
|
1447
1449
|
functionCall: true,
|
1448
1450
|
id: 'gpt-35-turbo-16k',
|
1449
|
-
tokens: 16_384,
|
1450
1451
|
},
|
1451
1452
|
{
|
1453
|
+
contextWindowTokens: 128_000,
|
1452
1454
|
deploymentName: 'gpt-4-turbo',
|
1453
1455
|
description: 'GPT 4 Turbo,多模态模型,提供杰出的语言理解和生成能力,同时支持图像输入。',
|
1454
1456
|
displayName: 'GPT 4 Turbo',
|
1455
1457
|
enabled: true,
|
1456
1458
|
functionCall: true,
|
1457
1459
|
id: 'gpt-4',
|
1458
|
-
tokens: 128_000,
|
1459
1460
|
vision: true,
|
1460
1461
|
},
|
1461
1462
|
{
|
1463
|
+
contextWindowTokens: 128_000,
|
1462
1464
|
deploymentName: 'gpt-4-vision',
|
1463
1465
|
description: 'GPT-4 视觉预览版,专为图像分析和处理任务设计。',
|
1464
1466
|
displayName: 'GPT 4 Turbo with Vision Preview',
|
1465
1467
|
id: 'gpt-4-vision-preview',
|
1466
|
-
tokens: 128_000,
|
1467
1468
|
vision: true,
|
1468
1469
|
},
|
1469
1470
|
{
|
1471
|
+
contextWindowTokens: 128_000,
|
1470
1472
|
deploymentName: 'gpt-4o-mini',
|
1471
1473
|
description: 'GPT-4o Mini,小型高效模型,具备与GPT-4o相似的卓越性能。',
|
1472
1474
|
displayName: 'GPT 4o Mini',
|
1473
1475
|
enabled: true,
|
1474
1476
|
functionCall: true,
|
1475
1477
|
id: 'gpt-4o-mini',
|
1476
|
-
tokens: 128_000,
|
1477
1478
|
vision: true,
|
1478
1479
|
},
|
1479
1480
|
{
|
1481
|
+
contextWindowTokens: 128_000,
|
1480
1482
|
deploymentName: 'gpt-4o',
|
1481
1483
|
description: 'GPT-4o 是最新的多模态模型,结合高级文本和图像处理能力。',
|
1482
1484
|
displayName: 'GPT 4o',
|
1483
1485
|
enabled: true,
|
1484
1486
|
functionCall: true,
|
1485
1487
|
id: 'gpt-4o',
|
1486
|
-
tokens: 128_000,
|
1487
1488
|
vision: true,
|
1488
1489
|
},
|
1489
1490
|
//github
|
1490
1491
|
{
|
1492
|
+
contextWindowTokens: 128_000,
|
1491
1493
|
description: '比 o1-preview 更小、更快,成本低80%,在代码生成和小上下文操作方面表现良好。',
|
1492
1494
|
displayName: 'OpenAI o1-mini',
|
1493
1495
|
enabled: true,
|
1494
1496
|
functionCall: false,
|
1495
1497
|
id: 'o1-mini',
|
1496
1498
|
maxOutput: 65_536,
|
1497
|
-
tokens: 128_000,
|
1498
1499
|
vision: true,
|
1499
1500
|
},
|
1500
1501
|
{
|
1502
|
+
contextWindowTokens: 128_000,
|
1501
1503
|
description:
|
1502
1504
|
'专注于高级推理和解决复杂问题,包括数学和科学任务。非常适合需要深度上下文理解和自主工作流程的应用。',
|
1503
1505
|
displayName: 'OpenAI o1-preview',
|
@@ -1505,199 +1507,199 @@ const Higress: ModelProviderCard = {
|
|
1505
1507
|
functionCall: false,
|
1506
1508
|
id: 'o1-preview',
|
1507
1509
|
maxOutput: 32_768,
|
1508
|
-
tokens: 128_000,
|
1509
1510
|
vision: true,
|
1510
1511
|
},
|
1511
1512
|
{
|
1513
|
+
contextWindowTokens: 128_000,
|
1512
1514
|
description: '一种经济高效的AI解决方案,适用于多种文本和图像任务。',
|
1513
1515
|
displayName: 'OpenAI GPT-4o mini',
|
1514
1516
|
enabled: true,
|
1515
1517
|
functionCall: true,
|
1516
1518
|
id: 'gpt-4o-mini',
|
1517
1519
|
maxOutput: 4096,
|
1518
|
-
tokens: 128_000,
|
1519
1520
|
vision: true,
|
1520
1521
|
},
|
1521
1522
|
{
|
1523
|
+
contextWindowTokens: 128_000,
|
1522
1524
|
description: 'OpenAI GPT-4系列中最先进的多模态模型,可以处理文本和图像输入。',
|
1523
1525
|
displayName: 'OpenAI GPT-4o',
|
1524
1526
|
enabled: true,
|
1525
1527
|
functionCall: true,
|
1526
1528
|
id: 'gpt-4o',
|
1527
1529
|
maxOutput: 4096,
|
1528
|
-
tokens: 128_000,
|
1529
1530
|
vision: true,
|
1530
1531
|
},
|
1531
1532
|
{
|
1533
|
+
contextWindowTokens: 262_144,
|
1532
1534
|
description:
|
1533
1535
|
'一个52B参数(12B活跃)的多语言模型,提供256K长上下文窗口、函数调用、结构化输出和基于事实的生成。',
|
1534
1536
|
displayName: 'AI21 Jamba 1.5 Mini',
|
1535
1537
|
functionCall: true,
|
1536
1538
|
id: 'ai21-jamba-1.5-mini',
|
1537
1539
|
maxOutput: 4096,
|
1538
|
-
tokens: 262_144,
|
1539
1540
|
},
|
1540
1541
|
{
|
1542
|
+
contextWindowTokens: 262_144,
|
1541
1543
|
description:
|
1542
1544
|
'一个398B参数(94B活跃)的多语言模型,提供256K长上下文窗口、函数调用、结构化输出和基于事实的生成。',
|
1543
1545
|
displayName: 'AI21 Jamba 1.5 Large',
|
1544
1546
|
functionCall: true,
|
1545
1547
|
id: 'ai21-jamba-1.5-large',
|
1546
1548
|
maxOutput: 4096,
|
1547
|
-
tokens: 262_144,
|
1548
1549
|
},
|
1549
1550
|
{
|
1551
|
+
contextWindowTokens: 131_072,
|
1550
1552
|
description:
|
1551
1553
|
'Command R是一个可扩展的生成模型,旨在针对RAG和工具使用,使企业能够实现生产级AI。',
|
1552
1554
|
displayName: 'Cohere Command R',
|
1553
1555
|
id: 'cohere-command-r',
|
1554
1556
|
maxOutput: 4096,
|
1555
|
-
tokens: 131_072,
|
1556
1557
|
},
|
1557
1558
|
{
|
1559
|
+
contextWindowTokens: 131_072,
|
1558
1560
|
description: 'Command R+是一个最先进的RAG优化模型,旨在应对企业级工作负载。',
|
1559
1561
|
displayName: 'Cohere Command R+',
|
1560
1562
|
id: 'cohere-command-r-plus',
|
1561
1563
|
maxOutput: 4096,
|
1562
|
-
tokens: 131_072,
|
1563
1564
|
},
|
1564
1565
|
{
|
1566
|
+
contextWindowTokens: 131_072,
|
1565
1567
|
description:
|
1566
1568
|
'Mistral Nemo是一种尖端的语言模型(LLM),在其尺寸类别中拥有最先进的推理、世界知识和编码能力。',
|
1567
1569
|
displayName: 'Mistral Nemo',
|
1568
1570
|
id: 'mistral-nemo',
|
1569
1571
|
maxOutput: 4096,
|
1570
|
-
tokens: 131_072,
|
1571
1572
|
},
|
1572
1573
|
{
|
1574
|
+
contextWindowTokens: 131_072,
|
1573
1575
|
description: 'Mistral Small可用于任何需要高效率和低延迟的基于语言的任务。',
|
1574
1576
|
displayName: 'Mistral Small',
|
1575
1577
|
id: 'mistral-small',
|
1576
1578
|
maxOutput: 4096,
|
1577
|
-
tokens: 131_072,
|
1578
1579
|
},
|
1579
1580
|
{
|
1581
|
+
contextWindowTokens: 131_072,
|
1580
1582
|
description:
|
1581
1583
|
'Mistral的旗舰模型,适合需要大规模推理能力或高度专业化的复杂任务(合成文本生成、代码生成、RAG或代理)。',
|
1582
1584
|
displayName: 'Mistral Large',
|
1583
1585
|
id: 'mistral-large',
|
1584
1586
|
maxOutput: 4096,
|
1585
|
-
tokens: 131_072,
|
1586
1587
|
},
|
1587
1588
|
{
|
1589
|
+
contextWindowTokens: 131_072,
|
1588
1590
|
description: '在高分辨率图像上表现出色的图像推理能力,适用于视觉理解应用。',
|
1589
1591
|
displayName: 'Llama 3.2 11B Vision',
|
1590
1592
|
id: 'llama-3.2-11b-vision-instruct',
|
1591
1593
|
maxOutput: 4096,
|
1592
|
-
tokens: 131_072,
|
1593
1594
|
vision: true,
|
1594
1595
|
},
|
1595
1596
|
{
|
1597
|
+
contextWindowTokens: 131_072,
|
1596
1598
|
description: '适用于视觉理解代理应用的高级图像推理能力。',
|
1597
1599
|
displayName: 'Llama 3.2 90B Vision',
|
1598
1600
|
id: 'llama-3.2-90b-vision-instruct',
|
1599
1601
|
maxOutput: 4096,
|
1600
|
-
tokens: 131_072,
|
1601
1602
|
vision: true,
|
1602
1603
|
},
|
1603
1604
|
{
|
1605
|
+
contextWindowTokens: 131_072,
|
1604
1606
|
description:
|
1605
1607
|
'Llama 3.1指令调优的文本模型,针对多语言对话用例进行了优化,在许多可用的开源和封闭聊天模型中,在常见行业基准上表现优异。',
|
1606
1608
|
displayName: 'Meta Llama 3.1 8B',
|
1607
1609
|
id: 'meta-llama-3.1-8b-instruct',
|
1608
1610
|
maxOutput: 4096,
|
1609
|
-
tokens: 131_072,
|
1610
1611
|
},
|
1611
1612
|
{
|
1613
|
+
contextWindowTokens: 131_072,
|
1612
1614
|
description:
|
1613
1615
|
'Llama 3.1指令调优的文本模型,针对多语言对话用例进行了优化,在许多可用的开源和封闭聊天模型中,在常见行业基准上表现优异。',
|
1614
1616
|
displayName: 'Meta Llama 3.1 70B',
|
1615
1617
|
id: 'meta-llama-3.1-70b-instruct',
|
1616
1618
|
maxOutput: 4096,
|
1617
|
-
tokens: 131_072,
|
1618
1619
|
},
|
1619
1620
|
{
|
1621
|
+
contextWindowTokens: 131_072,
|
1620
1622
|
description:
|
1621
1623
|
'Llama 3.1指令调优的文本模型,针对多语言对话用例进行了优化,在许多可用的开源和封闭聊天模型中,在常见行业基准上表现优异。',
|
1622
1624
|
displayName: 'Meta Llama 3.1 405B',
|
1623
1625
|
id: 'meta-llama-3.1-405b-instruct',
|
1624
1626
|
maxOutput: 4096,
|
1625
|
-
tokens: 131_072,
|
1626
1627
|
},
|
1627
1628
|
{
|
1629
|
+
contextWindowTokens: 8192,
|
1628
1630
|
description: '一个多功能的80亿参数模型,针对对话和文本生成任务进行了优化。',
|
1629
1631
|
displayName: 'Meta Llama 3 8B',
|
1630
1632
|
id: 'meta-llama-3-8b-instruct',
|
1631
1633
|
maxOutput: 4096,
|
1632
|
-
tokens: 8192,
|
1633
1634
|
},
|
1634
1635
|
{
|
1636
|
+
contextWindowTokens: 8192,
|
1635
1637
|
description: '一个强大的700亿参数模型,在推理、编码和广泛的语言应用方面表现出色。',
|
1636
1638
|
displayName: 'Meta Llama 3 70B',
|
1637
1639
|
id: 'meta-llama-3-70b-instruct',
|
1638
1640
|
maxOutput: 4096,
|
1639
|
-
tokens: 8192,
|
1640
1641
|
},
|
1641
1642
|
{
|
1643
|
+
contextWindowTokens: 131_072,
|
1642
1644
|
description: 'Phi-3-mini模型的更新版。',
|
1643
1645
|
displayName: 'Phi-3.5-mini 128K',
|
1644
1646
|
id: 'Phi-3.5-mini-instruct',
|
1645
1647
|
maxOutput: 4096,
|
1646
|
-
tokens: 131_072,
|
1647
1648
|
},
|
1648
1649
|
{
|
1650
|
+
contextWindowTokens: 131_072,
|
1649
1651
|
description: 'Phi-3-vision模型的更新版。',
|
1650
1652
|
displayName: 'Phi-3.5-vision 128K',
|
1651
1653
|
id: 'Phi-3.5-vision-instrust',
|
1652
1654
|
maxOutput: 4096,
|
1653
|
-
tokens: 131_072,
|
1654
1655
|
vision: true,
|
1655
1656
|
},
|
1656
1657
|
{
|
1658
|
+
contextWindowTokens: 4096,
|
1657
1659
|
description: 'Phi-3家族中最小的成员,针对质量和低延迟进行了优化。',
|
1658
1660
|
displayName: 'Phi-3-mini 4K',
|
1659
1661
|
id: 'Phi-3-mini-4k-instruct',
|
1660
1662
|
maxOutput: 4096,
|
1661
|
-
tokens: 4096,
|
1662
1663
|
},
|
1663
1664
|
{
|
1665
|
+
contextWindowTokens: 131_072,
|
1664
1666
|
description: '相同的Phi-3-mini模型,但具有更大的上下文大小,适用于RAG或少量提示。',
|
1665
1667
|
displayName: 'Phi-3-mini 128K',
|
1666
1668
|
id: 'Phi-3-mini-128k-instruct',
|
1667
1669
|
maxOutput: 4096,
|
1668
|
-
tokens: 131_072,
|
1669
1670
|
},
|
1670
1671
|
{
|
1672
|
+
contextWindowTokens: 8192,
|
1671
1673
|
description: '一个70亿参数模型,质量优于Phi-3-mini,重点关注高质量、推理密集型数据。',
|
1672
1674
|
displayName: 'Phi-3-small 8K',
|
1673
1675
|
id: 'Phi-3-small-8k-instruct',
|
1674
1676
|
maxOutput: 4096,
|
1675
|
-
tokens: 8192,
|
1676
1677
|
},
|
1677
1678
|
{
|
1679
|
+
contextWindowTokens: 131_072,
|
1678
1680
|
description: '相同的Phi-3-small模型,但具有更大的上下文大小,适用于RAG或少量提示。',
|
1679
1681
|
displayName: 'Phi-3-small 128K',
|
1680
1682
|
id: 'Phi-3-small-128k-instruct',
|
1681
1683
|
maxOutput: 4096,
|
1682
|
-
tokens: 131_072,
|
1683
1684
|
},
|
1684
1685
|
{
|
1686
|
+
contextWindowTokens: 4096,
|
1685
1687
|
description: '一个140亿参数模型,质量优于Phi-3-mini,重点关注高质量、推理密集型数据。',
|
1686
1688
|
displayName: 'Phi-3-medium 4K',
|
1687
1689
|
id: 'Phi-3-medium-4k-instruct',
|
1688
1690
|
maxOutput: 4096,
|
1689
|
-
tokens: 4096,
|
1690
1691
|
},
|
1691
1692
|
{
|
1693
|
+
contextWindowTokens: 131_072,
|
1692
1694
|
description: '相同的Phi-3-medium模型,但具有更大的上下文大小,适用于RAG或少量提示。',
|
1693
1695
|
displayName: 'Phi-3-medium 128K',
|
1694
1696
|
id: 'Phi-3-medium-128k-instruct',
|
1695
1697
|
maxOutput: 4096,
|
1696
|
-
tokens: 131_072,
|
1697
1698
|
},
|
1698
1699
|
|
1699
1700
|
//groq
|
1700
1701
|
{
|
1702
|
+
contextWindowTokens: 8192,
|
1701
1703
|
description:
|
1702
1704
|
'Llama 3.2 旨在处理结合视觉和文本数据的任务。它在图像描述和视觉问答等任务中表现出色,跨越了语言生成和视觉推理之间的鸿沟。',
|
1703
1705
|
displayName: 'Llama 3.2 11B Vision (Preview)',
|
@@ -1708,10 +1710,10 @@ const Higress: ModelProviderCard = {
|
|
1708
1710
|
input: 0.05,
|
1709
1711
|
output: 0.08,
|
1710
1712
|
},
|
1711
|
-
tokens: 8192,
|
1712
1713
|
vision: true,
|
1713
1714
|
},
|
1714
1715
|
{
|
1716
|
+
contextWindowTokens: 8192,
|
1715
1717
|
description:
|
1716
1718
|
'Llama 3.2 旨在处理结合视觉和文本数据的任务。它在图像描述和视觉问答等任务中表现出色,跨越了语言生成和视觉推理之间的鸿沟。',
|
1717
1719
|
displayName: 'Llama 3.2 90B Vision (Preview)',
|
@@ -1722,10 +1724,10 @@ const Higress: ModelProviderCard = {
|
|
1722
1724
|
input: 0.59,
|
1723
1725
|
output: 0.79,
|
1724
1726
|
},
|
1725
|
-
tokens: 8192,
|
1726
1727
|
vision: true,
|
1727
1728
|
},
|
1728
1729
|
{
|
1730
|
+
contextWindowTokens: 131_072,
|
1729
1731
|
description:
|
1730
1732
|
'Llama 3.1 8B 是一款高效能模型,提供了快速的文本生成能力,非常适合需要大规模效率和成本效益的应用场景。',
|
1731
1733
|
displayName: 'Llama 3.1 8B',
|
@@ -1737,9 +1739,9 @@ const Higress: ModelProviderCard = {
|
|
1737
1739
|
input: 0.05,
|
1738
1740
|
output: 0.08,
|
1739
1741
|
},
|
1740
|
-
tokens: 131_072,
|
1741
1742
|
},
|
1742
1743
|
{
|
1744
|
+
contextWindowTokens: 131_072,
|
1743
1745
|
description:
|
1744
1746
|
'Llama 3.1 70B 提供更强大的AI推理能力,适合复杂应用,支持超多的计算处理并保证高效和准确率。',
|
1745
1747
|
displayName: 'Llama 3.1 70B',
|
@@ -1751,7 +1753,6 @@ const Higress: ModelProviderCard = {
|
|
1751
1753
|
input: 0.59,
|
1752
1754
|
output: 0.79,
|
1753
1755
|
},
|
1754
|
-
tokens: 131_072,
|
1755
1756
|
},
|
1756
1757
|
/*
|
1757
1758
|
// Offline due to overwhelming demand! Stay tuned for updates.
|
@@ -1763,6 +1764,7 @@ const Higress: ModelProviderCard = {
|
|
1763
1764
|
},
|
1764
1765
|
*/
|
1765
1766
|
{
|
1767
|
+
contextWindowTokens: 8192,
|
1766
1768
|
description: 'Llama 3 Groq 8B Tool Use 是针对高效工具使用优化的模型,支持快速并行计算。',
|
1767
1769
|
displayName: 'Llama 3 Groq 8B Tool Use (Preview)',
|
1768
1770
|
functionCall: true,
|
@@ -1771,9 +1773,9 @@ const Higress: ModelProviderCard = {
|
|
1771
1773
|
input: 0.19,
|
1772
1774
|
output: 0.19,
|
1773
1775
|
},
|
1774
|
-
tokens: 8192,
|
1775
1776
|
},
|
1776
1777
|
{
|
1778
|
+
contextWindowTokens: 8192,
|
1777
1779
|
description: 'Llama 3 Groq 70B Tool Use 提供强大的工具调用能力,支持复杂任务的高效处理。',
|
1778
1780
|
displayName: 'Llama 3 Groq 70B Tool Use (Preview)',
|
1779
1781
|
functionCall: true,
|
@@ -1782,9 +1784,9 @@ const Higress: ModelProviderCard = {
|
|
1782
1784
|
input: 0.89,
|
1783
1785
|
output: 0.89,
|
1784
1786
|
},
|
1785
|
-
tokens: 8192,
|
1786
1787
|
},
|
1787
1788
|
{
|
1789
|
+
contextWindowTokens: 8192,
|
1788
1790
|
description: 'Meta Llama 3 8B 带来优质的推理效能,适合多场景应用需求。',
|
1789
1791
|
displayName: 'Meta Llama 3 8B',
|
1790
1792
|
functionCall: true,
|
@@ -1793,9 +1795,9 @@ const Higress: ModelProviderCard = {
|
|
1793
1795
|
input: 0.05,
|
1794
1796
|
output: 0.08,
|
1795
1797
|
},
|
1796
|
-
tokens: 8192,
|
1797
1798
|
},
|
1798
1799
|
{
|
1800
|
+
contextWindowTokens: 8192,
|
1799
1801
|
description: 'Meta Llama 3 70B 提供无与伦比的复杂性处理能力,为高要求项目量身定制。',
|
1800
1802
|
displayName: 'Meta Llama 3 70B',
|
1801
1803
|
functionCall: true,
|
@@ -1804,9 +1806,9 @@ const Higress: ModelProviderCard = {
|
|
1804
1806
|
input: 0.59,
|
1805
1807
|
output: 0.79,
|
1806
1808
|
},
|
1807
|
-
tokens: 8192,
|
1808
1809
|
},
|
1809
1810
|
{
|
1811
|
+
contextWindowTokens: 8192,
|
1810
1812
|
description: 'Gemma 2 9B 是一款优化用于特定任务和工具整合的模型。',
|
1811
1813
|
displayName: 'Gemma 2 9B',
|
1812
1814
|
enabled: true,
|
@@ -1816,9 +1818,9 @@ const Higress: ModelProviderCard = {
|
|
1816
1818
|
input: 0.2,
|
1817
1819
|
output: 0.2,
|
1818
1820
|
},
|
1819
|
-
tokens: 8192,
|
1820
1821
|
},
|
1821
1822
|
{
|
1823
|
+
contextWindowTokens: 8192,
|
1822
1824
|
description: 'Gemma 7B 适合中小规模任务处理,兼具成本效益。',
|
1823
1825
|
displayName: 'Gemma 7B',
|
1824
1826
|
functionCall: true,
|
@@ -1827,9 +1829,9 @@ const Higress: ModelProviderCard = {
|
|
1827
1829
|
input: 0.07,
|
1828
1830
|
output: 0.07,
|
1829
1831
|
},
|
1830
|
-
tokens: 8192,
|
1831
1832
|
},
|
1832
1833
|
{
|
1834
|
+
contextWindowTokens: 32_768,
|
1833
1835
|
description: 'Mixtral 8x7B 提供高容错的并行计算能力,适合复杂任务。',
|
1834
1836
|
displayName: 'Mixtral 8x7B',
|
1835
1837
|
functionCall: true,
|
@@ -1838,17 +1840,17 @@ const Higress: ModelProviderCard = {
|
|
1838
1840
|
input: 0.24,
|
1839
1841
|
output: 0.24,
|
1840
1842
|
},
|
1841
|
-
tokens: 32_768,
|
1842
1843
|
},
|
1843
1844
|
{
|
1845
|
+
contextWindowTokens: 4096,
|
1844
1846
|
description: 'LLaVA 1.5 7B 提供视觉处理能力融合,通过视觉信息输入生成复杂输出。',
|
1845
1847
|
displayName: 'LLaVA 1.5 7B',
|
1846
1848
|
id: 'llava-v1.5-7b-4096-preview',
|
1847
|
-
tokens: 4096,
|
1848
1849
|
vision: true,
|
1849
1850
|
},
|
1850
1851
|
//deepseek
|
1851
1852
|
{
|
1853
|
+
contextWindowTokens: 128_000,
|
1852
1854
|
description:
|
1853
1855
|
'融合通用与代码能力的全新开源模型, 不仅保留了原有 Chat 模型的通用对话能力和 Coder 模型的强大代码处理能力,还更好地对齐了人类偏好。此外,DeepSeek-V2.5 在写作任务、指令跟随等多个方面也实现了大幅提升。',
|
1854
1856
|
displayName: 'DeepSeek V2.5',
|
@@ -1861,10 +1863,10 @@ const Higress: ModelProviderCard = {
|
|
1861
1863
|
output: 0.28,
|
1862
1864
|
},
|
1863
1865
|
releasedAt: '2024-09-05',
|
1864
|
-
tokens: 128_000,
|
1865
1866
|
},
|
1866
1867
|
//claude
|
1867
1868
|
{
|
1869
|
+
contextWindowTokens: 200_000,
|
1868
1870
|
description:
|
1869
1871
|
'Claude 3.5 Haiku 是 Anthropic 最快的下一代模型。与 Claude 3 Haiku 相比,Claude 3.5 Haiku 在各项技能上都有所提升,并在许多智力基准测试中超越了上一代最大的模型 Claude 3 Opus。',
|
1870
1872
|
displayName: 'Claude 3.5 Haiku',
|
@@ -1879,9 +1881,9 @@ const Higress: ModelProviderCard = {
|
|
1879
1881
|
writeCacheInput: 1.25,
|
1880
1882
|
},
|
1881
1883
|
releasedAt: '2024-11-05',
|
1882
|
-
tokens: 200_000,
|
1883
1884
|
},
|
1884
1885
|
{
|
1886
|
+
contextWindowTokens: 200_000,
|
1885
1887
|
description:
|
1886
1888
|
'Claude 3.5 Sonnet 提供了超越 Opus 的能力和比 Sonnet 更快的速度,同时保持与 Sonnet 相同的价格。Sonnet 特别擅长编程、数据科学、视觉处理、代理任务。',
|
1887
1889
|
displayName: 'Claude 3.5 Sonnet',
|
@@ -1896,10 +1898,10 @@ const Higress: ModelProviderCard = {
|
|
1896
1898
|
writeCacheInput: 3.75,
|
1897
1899
|
},
|
1898
1900
|
releasedAt: '2024-10-22',
|
1899
|
-
tokens: 200_000,
|
1900
1901
|
vision: true,
|
1901
1902
|
},
|
1902
1903
|
{
|
1904
|
+
contextWindowTokens: 200_000,
|
1903
1905
|
description:
|
1904
1906
|
'Claude 3.5 Sonnet 提供了超越 Opus 的能力和比 Sonnet 更快的速度,同时保持与 Sonnet 相同的价格。Sonnet 特别擅长编程、数据科学、视觉处理、代理任务。',
|
1905
1907
|
displayName: 'Claude 3.5 Sonnet 0620',
|
@@ -1913,10 +1915,10 @@ const Higress: ModelProviderCard = {
|
|
1913
1915
|
writeCacheInput: 3.75,
|
1914
1916
|
},
|
1915
1917
|
releasedAt: '2024-06-20',
|
1916
|
-
tokens: 200_000,
|
1917
1918
|
vision: true,
|
1918
1919
|
},
|
1919
1920
|
{
|
1921
|
+
contextWindowTokens: 200_000,
|
1920
1922
|
description:
|
1921
1923
|
'Claude 3 Haiku 是 Anthropic 的最快且最紧凑的模型,旨在实现近乎即时的响应。它具有快速且准确的定向性能。',
|
1922
1924
|
displayName: 'Claude 3 Haiku',
|
@@ -1928,10 +1930,10 @@ const Higress: ModelProviderCard = {
|
|
1928
1930
|
output: 1.25,
|
1929
1931
|
},
|
1930
1932
|
releasedAt: '2024-03-07',
|
1931
|
-
tokens: 200_000,
|
1932
1933
|
vision: true,
|
1933
1934
|
},
|
1934
1935
|
{
|
1936
|
+
contextWindowTokens: 200_000,
|
1935
1937
|
description:
|
1936
1938
|
'Claude 3 Sonnet 在智能和速度方面为企业工作负载提供了理想的平衡。它以更低的价格提供最大效用,可靠且适合大规模部署。',
|
1937
1939
|
displayName: 'Claude 3 Sonnet',
|
@@ -1943,10 +1945,10 @@ const Higress: ModelProviderCard = {
|
|
1943
1945
|
output: 15,
|
1944
1946
|
},
|
1945
1947
|
releasedAt: '2024-02-29',
|
1946
|
-
tokens: 200_000,
|
1947
1948
|
vision: true,
|
1948
1949
|
},
|
1949
1950
|
{
|
1951
|
+
contextWindowTokens: 200_000,
|
1950
1952
|
description:
|
1951
1953
|
'Claude 3 Opus 是 Anthropic 用于处理高度复杂任务的最强大模型。它在性能、智能、流畅性和理解力方面表现卓越。',
|
1952
1954
|
displayName: 'Claude 3 Opus',
|
@@ -1959,10 +1961,10 @@ const Higress: ModelProviderCard = {
|
|
1959
1961
|
output: 75,
|
1960
1962
|
},
|
1961
1963
|
releasedAt: '2024-02-29',
|
1962
|
-
tokens: 200_000,
|
1963
1964
|
vision: true,
|
1964
1965
|
},
|
1965
1966
|
{
|
1967
|
+
contextWindowTokens: 200_000,
|
1966
1968
|
description:
|
1967
1969
|
'Claude 2 为企业提供了关键能力的进步,包括业界领先的 200K token 上下文、大幅降低模型幻觉的发生率、系统提示以及一个新的测试功能:工具调用。',
|
1968
1970
|
displayName: 'Claude 2.1',
|
@@ -1973,9 +1975,9 @@ const Higress: ModelProviderCard = {
|
|
1973
1975
|
output: 24,
|
1974
1976
|
},
|
1975
1977
|
releasedAt: '2023-11-21',
|
1976
|
-
tokens: 200_000,
|
1977
1978
|
},
|
1978
1979
|
{
|
1980
|
+
contextWindowTokens: 100_000,
|
1979
1981
|
description:
|
1980
1982
|
'Claude 2 为企业提供了关键能力的进步,包括业界领先的 200K token 上下文、大幅降低模型幻觉的发生率、系统提示以及一个新的测试功能:工具调用。',
|
1981
1983
|
displayName: 'Claude 2.0',
|
@@ -1986,10 +1988,10 @@ const Higress: ModelProviderCard = {
|
|
1986
1988
|
output: 24,
|
1987
1989
|
},
|
1988
1990
|
releasedAt: '2023-07-11',
|
1989
|
-
tokens: 100_000,
|
1990
1991
|
},
|
1991
1992
|
//gemini
|
1992
1993
|
{
|
1994
|
+
contextWindowTokens: 1_000_000 + 8192,
|
1993
1995
|
description:
|
1994
1996
|
'Gemini 1.5 Flash 是Google最新的多模态AI模型,具备快速处理能力,支持文本、图像和视频输入,适用于多种任务的高效扩展。',
|
1995
1997
|
displayName: 'Gemini 1.5 Flash',
|
@@ -2002,10 +2004,10 @@ const Higress: ModelProviderCard = {
|
|
2002
2004
|
input: 0.075,
|
2003
2005
|
output: 0.3,
|
2004
2006
|
},
|
2005
|
-
tokens: 1_000_000 + 8192,
|
2006
2007
|
vision: true,
|
2007
2008
|
},
|
2008
2009
|
{
|
2010
|
+
contextWindowTokens: 1_000_000 + 8192,
|
2009
2011
|
description: 'Gemini 1.5 Flash 002 是一款高效的多模态模型,支持广泛应用的扩展。',
|
2010
2012
|
displayName: 'Gemini 1.5 Flash 002',
|
2011
2013
|
enabled: true,
|
@@ -2018,10 +2020,10 @@ const Higress: ModelProviderCard = {
|
|
2018
2020
|
output: 0.3,
|
2019
2021
|
},
|
2020
2022
|
releasedAt: '2024-09-25',
|
2021
|
-
tokens: 1_000_000 + 8192,
|
2022
2023
|
vision: true,
|
2023
2024
|
},
|
2024
2025
|
{
|
2026
|
+
contextWindowTokens: 1_000_000 + 8192,
|
2025
2027
|
description: 'Gemini 1.5 Flash 001 是一款高效的多模态模型,支持广泛应用的扩展。',
|
2026
2028
|
displayName: 'Gemini 1.5 Flash 001',
|
2027
2029
|
functionCall: true,
|
@@ -2032,10 +2034,10 @@ const Higress: ModelProviderCard = {
|
|
2032
2034
|
input: 0.075,
|
2033
2035
|
output: 0.3,
|
2034
2036
|
},
|
2035
|
-
tokens: 1_000_000 + 8192,
|
2036
2037
|
vision: true,
|
2037
2038
|
},
|
2038
2039
|
{
|
2040
|
+
contextWindowTokens: 1_000_000 + 8192,
|
2039
2041
|
description: 'Gemini 1.5 Flash 0827 提供了优化后的多模态处理能力,适用多种复杂任务场景。',
|
2040
2042
|
displayName: 'Gemini 1.5 Flash 0827',
|
2041
2043
|
functionCall: true,
|
@@ -2047,10 +2049,10 @@ const Higress: ModelProviderCard = {
|
|
2047
2049
|
output: 0.3,
|
2048
2050
|
},
|
2049
2051
|
releasedAt: '2024-08-27',
|
2050
|
-
tokens: 1_000_000 + 8192,
|
2051
2052
|
vision: true,
|
2052
2053
|
},
|
2053
2054
|
{
|
2055
|
+
contextWindowTokens: 1_000_000 + 8192,
|
2054
2056
|
description: 'Gemini 1.5 Flash 8B 是一款高效的多模态模型,支持广泛应用的扩展。',
|
2055
2057
|
displayName: 'Gemini 1.5 Flash 8B',
|
2056
2058
|
enabled: true,
|
@@ -2063,10 +2065,10 @@ const Higress: ModelProviderCard = {
|
|
2063
2065
|
output: 0.3,
|
2064
2066
|
},
|
2065
2067
|
releasedAt: '2024-10-03',
|
2066
|
-
tokens: 1_000_000 + 8192,
|
2067
2068
|
vision: true,
|
2068
2069
|
},
|
2069
2070
|
{
|
2071
|
+
contextWindowTokens: 1_000_000 + 8192,
|
2070
2072
|
description:
|
2071
2073
|
'Gemini 1.5 Flash 8B 0924 是最新的实验性模型,在文本和多模态用例中都有显著的性能提升。',
|
2072
2074
|
displayName: 'Gemini 1.5 Flash 8B 0924',
|
@@ -2079,10 +2081,10 @@ const Higress: ModelProviderCard = {
|
|
2079
2081
|
output: 0.3,
|
2080
2082
|
},
|
2081
2083
|
releasedAt: '2024-09-24',
|
2082
|
-
tokens: 1_000_000 + 8192,
|
2083
2084
|
vision: true,
|
2084
2085
|
},
|
2085
2086
|
{
|
2087
|
+
contextWindowTokens: 2_000_000 + 8192,
|
2086
2088
|
description:
|
2087
2089
|
'Gemini 1.5 Pro 支持高达200万个tokens,是中型多模态模型的理想选择,适用于复杂任务的多方面支持。',
|
2088
2090
|
displayName: 'Gemini 1.5 Pro',
|
@@ -2096,10 +2098,10 @@ const Higress: ModelProviderCard = {
|
|
2096
2098
|
output: 10.5,
|
2097
2099
|
},
|
2098
2100
|
releasedAt: '2024-02-15',
|
2099
|
-
tokens: 2_000_000 + 8192,
|
2100
2101
|
vision: true,
|
2101
2102
|
},
|
2102
2103
|
{
|
2104
|
+
contextWindowTokens: 2_000_000 + 8192,
|
2103
2105
|
description:
|
2104
2106
|
'Gemini 1.5 Pro 002 是最新的生产就绪模型,提供更高质量的输出,特别在数学、长上下文和视觉任务方面有显著提升。',
|
2105
2107
|
displayName: 'Gemini 1.5 Pro 002',
|
@@ -2113,10 +2115,10 @@ const Higress: ModelProviderCard = {
|
|
2113
2115
|
output: 2.5,
|
2114
2116
|
},
|
2115
2117
|
releasedAt: '2024-09-24',
|
2116
|
-
tokens: 2_000_000 + 8192,
|
2117
2118
|
vision: true,
|
2118
2119
|
},
|
2119
2120
|
{
|
2121
|
+
contextWindowTokens: 2_000_000 + 8192,
|
2120
2122
|
description: 'Gemini 1.5 Pro 001 是可扩展的多模态AI解决方案,支持广泛的复杂任务。',
|
2121
2123
|
displayName: 'Gemini 1.5 Pro 001',
|
2122
2124
|
functionCall: true,
|
@@ -2128,10 +2130,10 @@ const Higress: ModelProviderCard = {
|
|
2128
2130
|
output: 10.5,
|
2129
2131
|
},
|
2130
2132
|
releasedAt: '2024-02-15',
|
2131
|
-
tokens: 2_000_000 + 8192,
|
2132
2133
|
vision: true,
|
2133
2134
|
},
|
2134
2135
|
{
|
2136
|
+
contextWindowTokens: 2_000_000 + 8192,
|
2135
2137
|
description: 'Gemini 1.5 Pro 0827 结合最新优化技术,带来更高效的多模态数据处理能力。',
|
2136
2138
|
displayName: 'Gemini 1.5 Pro 0827',
|
2137
2139
|
functionCall: true,
|
@@ -2143,10 +2145,10 @@ const Higress: ModelProviderCard = {
|
|
2143
2145
|
output: 10.5,
|
2144
2146
|
},
|
2145
2147
|
releasedAt: '2024-08-27',
|
2146
|
-
tokens: 2_000_000 + 8192,
|
2147
2148
|
vision: true,
|
2148
2149
|
},
|
2149
2150
|
{
|
2151
|
+
contextWindowTokens: 2_000_000 + 8192,
|
2150
2152
|
description: 'Gemini 1.5 Pro 0801 提供出色的多模态处理能力,为应用开发带来更大灵活性。',
|
2151
2153
|
displayName: 'Gemini 1.5 Pro 0801',
|
2152
2154
|
functionCall: true,
|
@@ -2158,10 +2160,10 @@ const Higress: ModelProviderCard = {
|
|
2158
2160
|
output: 10.5,
|
2159
2161
|
},
|
2160
2162
|
releasedAt: '2024-08-01',
|
2161
|
-
tokens: 2_000_000 + 8192,
|
2162
2163
|
vision: true,
|
2163
2164
|
},
|
2164
2165
|
{
|
2166
|
+
contextWindowTokens: 30_720 + 2048,
|
2165
2167
|
description: 'Gemini 1.0 Pro 是Google的高性能AI模型,专为广泛任务扩展而设计。',
|
2166
2168
|
displayName: 'Gemini 1.0 Pro',
|
2167
2169
|
id: 'gemini-1.0-pro-latest',
|
@@ -2171,9 +2173,9 @@ const Higress: ModelProviderCard = {
|
|
2171
2173
|
output: 1.5,
|
2172
2174
|
},
|
2173
2175
|
releasedAt: '2023-12-06',
|
2174
|
-
tokens: 30_720 + 2048,
|
2175
2176
|
},
|
2176
2177
|
{
|
2178
|
+
contextWindowTokens: 30_720 + 2048,
|
2177
2179
|
description:
|
2178
2180
|
'Gemini 1.0 Pro 001 (Tuning) 提供稳定并可调优的性能,是复杂任务解决方案的理想选择。',
|
2179
2181
|
displayName: 'Gemini 1.0 Pro 001 (Tuning)',
|
@@ -2185,9 +2187,9 @@ const Higress: ModelProviderCard = {
|
|
2185
2187
|
output: 1.5,
|
2186
2188
|
},
|
2187
2189
|
releasedAt: '2023-12-06',
|
2188
|
-
tokens: 30_720 + 2048,
|
2189
2190
|
},
|
2190
2191
|
{
|
2192
|
+
contextWindowTokens: 30_720 + 2048,
|
2191
2193
|
description: 'Gemini 1.0 Pro 002 (Tuning) 提供出色的多模态支持,专注于复杂任务的有效解决。',
|
2192
2194
|
displayName: 'Gemini 1.0 Pro 002 (Tuning)',
|
2193
2195
|
id: 'gemini-1.0-pro-002',
|
@@ -2197,11 +2199,11 @@ const Higress: ModelProviderCard = {
|
|
2197
2199
|
output: 1.5,
|
2198
2200
|
},
|
2199
2201
|
releasedAt: '2023-12-06',
|
2200
|
-
tokens: 30_720 + 2048,
|
2201
2202
|
},
|
2202
2203
|
//mistral
|
2203
2204
|
|
2204
2205
|
{
|
2206
|
+
contextWindowTokens: 128_000,
|
2205
2207
|
description:
|
2206
2208
|
'Mistral Nemo是一个与Nvidia合作开发的12B模型,提供出色的推理和编码性能,易于集成和替换。',
|
2207
2209
|
displayName: 'Mistral Nemo',
|
@@ -2212,9 +2214,9 @@ const Higress: ModelProviderCard = {
|
|
2212
2214
|
input: 0.15,
|
2213
2215
|
output: 0.15,
|
2214
2216
|
},
|
2215
|
-
tokens: 128_000,
|
2216
2217
|
},
|
2217
2218
|
{
|
2219
|
+
contextWindowTokens: 128_000,
|
2218
2220
|
description:
|
2219
2221
|
'Mistral Small是成本效益高、快速且可靠的选项,适用于翻译、摘要和情感分析等用例。',
|
2220
2222
|
displayName: 'Mistral Small',
|
@@ -2225,9 +2227,9 @@ const Higress: ModelProviderCard = {
|
|
2225
2227
|
input: 0.2,
|
2226
2228
|
output: 0.6,
|
2227
2229
|
},
|
2228
|
-
tokens: 128_000,
|
2229
2230
|
},
|
2230
2231
|
{
|
2232
|
+
contextWindowTokens: 128_000,
|
2231
2233
|
description:
|
2232
2234
|
'Mistral Large是旗舰大模型,擅长多语言任务、复杂推理和代码生成,是高端应用的理想选择。',
|
2233
2235
|
displayName: 'Mistral Large',
|
@@ -2238,9 +2240,9 @@ const Higress: ModelProviderCard = {
|
|
2238
2240
|
input: 2,
|
2239
2241
|
output: 6,
|
2240
2242
|
},
|
2241
|
-
tokens: 128_000,
|
2242
2243
|
},
|
2243
2244
|
{
|
2245
|
+
contextWindowTokens: 32_768,
|
2244
2246
|
description: 'Codestral是专注于代码生成的尖端生成模型,优化了中间填充和代码补全任务。',
|
2245
2247
|
displayName: 'Codestral',
|
2246
2248
|
id: 'codestral-latest',
|
@@ -2248,9 +2250,9 @@ const Higress: ModelProviderCard = {
|
|
2248
2250
|
input: 0.2,
|
2249
2251
|
output: 0.6,
|
2250
2252
|
},
|
2251
|
-
tokens: 32_768,
|
2252
2253
|
},
|
2253
2254
|
{
|
2255
|
+
contextWindowTokens: 128_000,
|
2254
2256
|
description:
|
2255
2257
|
'Pixtral 模型在图表和图理解、文档问答、多模态推理和指令遵循等任务上表现出强大的能力,能够以自然分辨率和宽高比摄入图像,还能够在长达 128K 令牌的长上下文窗口中处理任意数量的图像。',
|
2256
2258
|
displayName: 'Pixtral 12B',
|
@@ -2260,10 +2262,10 @@ const Higress: ModelProviderCard = {
|
|
2260
2262
|
input: 0.15,
|
2261
2263
|
output: 0.15,
|
2262
2264
|
},
|
2263
|
-
tokens: 128_000,
|
2264
2265
|
vision: true,
|
2265
2266
|
},
|
2266
2267
|
{
|
2268
|
+
contextWindowTokens: 128_000,
|
2267
2269
|
description: 'Ministral 3B 是Mistral的世界顶级边缘模型。',
|
2268
2270
|
displayName: 'Ministral 3B',
|
2269
2271
|
id: 'ministral-3b-latest',
|
@@ -2271,9 +2273,9 @@ const Higress: ModelProviderCard = {
|
|
2271
2273
|
input: 0.04,
|
2272
2274
|
output: 0.04,
|
2273
2275
|
},
|
2274
|
-
tokens: 128_000,
|
2275
2276
|
},
|
2276
2277
|
{
|
2278
|
+
contextWindowTokens: 128_000,
|
2277
2279
|
description: 'Ministral 8B 是Mistral的性价比极高的边缘模型。',
|
2278
2280
|
displayName: 'Ministral 8B',
|
2279
2281
|
id: 'ministral-8b-latest',
|
@@ -2281,9 +2283,9 @@ const Higress: ModelProviderCard = {
|
|
2281
2283
|
input: 0.1,
|
2282
2284
|
output: 0.1,
|
2283
2285
|
},
|
2284
|
-
tokens: 128_000,
|
2285
2286
|
},
|
2286
2287
|
{
|
2288
|
+
contextWindowTokens: 32_768,
|
2287
2289
|
description:
|
2288
2290
|
'Mistral 7B是一款紧凑但高性能的模型,擅长批量处理和简单任务,如分类和文本生成,具有良好的推理能力。',
|
2289
2291
|
displayName: 'Mistral 7B',
|
@@ -2292,9 +2294,9 @@ const Higress: ModelProviderCard = {
|
|
2292
2294
|
input: 0.25,
|
2293
2295
|
output: 0.25,
|
2294
2296
|
},
|
2295
|
-
tokens: 32_768,
|
2296
2297
|
},
|
2297
2298
|
{
|
2299
|
+
contextWindowTokens: 32_768,
|
2298
2300
|
description:
|
2299
2301
|
'Mixtral 8x7B是一个稀疏专家模型,利用多个参数提高推理速度,适合处理多语言和代码生成任务。',
|
2300
2302
|
displayName: 'Mixtral 8x7B',
|
@@ -2303,9 +2305,9 @@ const Higress: ModelProviderCard = {
|
|
2303
2305
|
input: 0.7,
|
2304
2306
|
output: 0.7,
|
2305
2307
|
},
|
2306
|
-
tokens: 32_768,
|
2307
2308
|
},
|
2308
2309
|
{
|
2310
|
+
contextWindowTokens: 65_536,
|
2309
2311
|
description:
|
2310
2312
|
'Mixtral 8x22B是一个更大的专家模型,专注于复杂任务,提供出色的推理能力和更高的吞吐量。',
|
2311
2313
|
displayName: 'Mixtral 8x22B',
|
@@ -2315,9 +2317,9 @@ const Higress: ModelProviderCard = {
|
|
2315
2317
|
input: 2,
|
2316
2318
|
output: 6,
|
2317
2319
|
},
|
2318
|
-
tokens: 65_536,
|
2319
2320
|
},
|
2320
2321
|
{
|
2322
|
+
contextWindowTokens: 256_000,
|
2321
2323
|
description:
|
2322
2324
|
'Codestral Mamba是专注于代码生成的Mamba 2语言模型,为先进的代码和推理任务提供强力支持。',
|
2323
2325
|
displayName: 'Codestral Mamba',
|
@@ -2326,44 +2328,43 @@ const Higress: ModelProviderCard = {
|
|
2326
2328
|
input: 0.15,
|
2327
2329
|
output: 0.15,
|
2328
2330
|
},
|
2329
|
-
tokens: 256_000,
|
2330
2331
|
},
|
2331
2332
|
//minimax
|
2332
2333
|
{
|
2334
|
+
contextWindowTokens: 245_760,
|
2333
2335
|
description: '适用于广泛的自然语言处理任务,包括文本生成、对话系统等。',
|
2334
2336
|
displayName: 'abab6.5s',
|
2335
2337
|
enabled: true,
|
2336
2338
|
functionCall: true,
|
2337
2339
|
id: 'abab6.5s-chat',
|
2338
|
-
tokens: 245_760,
|
2339
2340
|
},
|
2340
2341
|
{
|
2342
|
+
contextWindowTokens: 8192,
|
2341
2343
|
description: '专为多语种人设对话设计,支持英文及其他多种语言的高质量对话生成。',
|
2342
2344
|
displayName: 'abab6.5g',
|
2343
2345
|
enabled: true,
|
2344
2346
|
functionCall: true,
|
2345
2347
|
id: 'abab6.5g-chat',
|
2346
|
-
tokens: 8192,
|
2347
2348
|
},
|
2348
2349
|
{
|
2350
|
+
contextWindowTokens: 8192,
|
2349
2351
|
description: '针对中文人设对话场景优化,提供流畅且符合中文表达习惯的对话生成能力。',
|
2350
2352
|
displayName: 'abab6.5t',
|
2351
2353
|
enabled: true,
|
2352
2354
|
functionCall: true,
|
2353
2355
|
id: 'abab6.5t-chat',
|
2354
|
-
tokens: 8192,
|
2355
2356
|
},
|
2356
2357
|
{
|
2358
|
+
contextWindowTokens: 16_384,
|
2357
2359
|
description: '面向生产力场景,支持复杂任务处理和高效文本生成,适用于专业领域应用。',
|
2358
2360
|
displayName: 'abab5.5',
|
2359
2361
|
id: 'abab5.5-chat',
|
2360
|
-
tokens: 16_384,
|
2361
2362
|
},
|
2362
2363
|
{
|
2364
|
+
contextWindowTokens: 8192,
|
2363
2365
|
description: '专为中文人设对话场景设计,提供高质量的中文对话生成能力,适用于多种应用场景。',
|
2364
2366
|
displayName: 'abab5.5s',
|
2365
2367
|
id: 'abab5.5s-chat',
|
2366
|
-
tokens: 8192,
|
2367
2368
|
},
|
2368
2369
|
//cohere
|
2369
2370
|
{
|