@lobehub/chat 1.19.14 → 1.19.16

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (40) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/locales/ar/models.json +116 -48
  3. package/locales/ar/providers.json +4 -0
  4. package/locales/bg-BG/models.json +116 -48
  5. package/locales/bg-BG/providers.json +4 -0
  6. package/locales/de-DE/models.json +116 -48
  7. package/locales/de-DE/providers.json +4 -0
  8. package/locales/en-US/models.json +116 -48
  9. package/locales/en-US/providers.json +4 -0
  10. package/locales/es-ES/models.json +116 -48
  11. package/locales/es-ES/providers.json +4 -0
  12. package/locales/fr-FR/models.json +116 -48
  13. package/locales/fr-FR/providers.json +4 -0
  14. package/locales/it-IT/models.json +116 -48
  15. package/locales/it-IT/providers.json +4 -0
  16. package/locales/ja-JP/models.json +116 -48
  17. package/locales/ja-JP/providers.json +4 -0
  18. package/locales/ko-KR/models.json +116 -48
  19. package/locales/ko-KR/providers.json +4 -0
  20. package/locales/nl-NL/models.json +116 -48
  21. package/locales/nl-NL/providers.json +4 -0
  22. package/locales/pl-PL/models.json +0 -60
  23. package/locales/pl-PL/providers.json +4 -0
  24. package/locales/pt-BR/models.json +116 -48
  25. package/locales/pt-BR/providers.json +4 -0
  26. package/locales/ru-RU/models.json +116 -48
  27. package/locales/ru-RU/providers.json +4 -0
  28. package/locales/tr-TR/models.json +116 -48
  29. package/locales/tr-TR/providers.json +4 -0
  30. package/locales/vi-VN/models.json +0 -60
  31. package/locales/zh-CN/models.json +122 -54
  32. package/locales/zh-CN/providers.json +4 -0
  33. package/locales/zh-TW/models.json +116 -48
  34. package/locales/zh-TW/providers.json +4 -0
  35. package/package.json +1 -1
  36. package/src/libs/unstructured/__tests__/fixtures/table-parse/auto-partition-basic-output.json +17 -198
  37. package/src/libs/unstructured/__tests__/fixtures/table-parse/auto-partition-basic-raw.json +0 -92
  38. package/src/libs/unstructured/__tests__/index.test.ts +3 -3
  39. package/src/store/global/action.test.ts +53 -0
  40. package/src/store/global/action.ts +16 -2
@@ -2,9 +2,6 @@
2
2
  "01-ai/Yi-1.5-34B-Chat-16K": {
3
3
  "description": "Yi-1.5 34Bは豊富な訓練サンプルを用いて業界アプリケーションで優れたパフォーマンスを提供します。"
4
4
  },
5
- "01-ai/Yi-1.5-6B-Chat": {
6
- "description": "Yi-1.5はYiシリーズの進化版で、高品質な事前学習と豊富な微調整データを持っています。"
7
- },
8
5
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
6
  "description": "Yi-1.5 9Bは16Kトークンをサポートし、高効率でスムーズな言語生成能力を提供します。"
10
7
  },
@@ -47,41 +44,56 @@
47
44
  "NousResearch/Nous-Hermes-2-Yi-34B": {
48
45
  "description": "Nous Hermes-2 Yi (34B)は、最適化された言語出力と多様なアプリケーションの可能性を提供します。"
49
46
  },
47
+ "Phi-3-5-mini-instruct": {
48
+ "description": "Phi-3-miniモデルのリフレッシュ版です。"
49
+ },
50
+ "Phi-3-medium-128k-instruct": {
51
+ "description": "同じPhi-3-mediumモデルですが、RAGまたは少数ショットプロンプティング用により大きなコンテキストサイズを持っています。"
52
+ },
53
+ "Phi-3-medium-4k-instruct": {
54
+ "description": "14Bパラメータのモデルで、Phi-3-miniよりも高品質で、質の高い推論密度のデータに焦点を当てています。"
55
+ },
56
+ "Phi-3-mini-128k-instruct": {
57
+ "description": "同じPhi-3-miniモデルですが、RAGまたは少数ショットプロンプティング用により大きなコンテキストサイズを持っています。"
58
+ },
59
+ "Phi-3-mini-4k-instruct": {
60
+ "description": "Phi-3ファミリーの最小メンバー。品質と低遅延の両方に最適化されています。"
61
+ },
62
+ "Phi-3-small-128k-instruct": {
63
+ "description": "同じPhi-3-smallモデルですが、RAGまたは少数ショットプロンプティング用により大きなコンテキストサイズを持っています。"
64
+ },
65
+ "Phi-3-small-8k-instruct": {
66
+ "description": "7Bパラメータのモデルで、Phi-3-miniよりも高品質で、質の高い推論密度のデータに焦点を当てています。"
67
+ },
50
68
  "Pro-128k": {
51
69
  "description": "Spark Pro-128Kは特大のコンテキスト処理能力を備え、最大128Kのコンテキスト情報を処理でき、特に全体分析や長期的な論理関連処理が必要な長文コンテンツに適しており、複雑なテキストコミュニケーションにおいて流暢で一貫した論理と多様な引用サポートを提供します。"
52
70
  },
53
71
  "Qwen/Qwen1.5-110B-Chat": {
54
72
  "description": "Qwen2のテスト版として、Qwen1.5は大規模データを使用してより正確な対話機能を実現しました。"
55
73
  },
56
- "Qwen/Qwen1.5-14B-Chat": {
57
- "description": "Qwen1.5は大規模データセットで訓練され、複雑な言語タスクに優れています。"
58
- },
59
- "Qwen/Qwen1.5-32B-Chat": {
60
- "description": "Qwen1.5は多分野の問答とテキスト生成の能力を備えています。"
61
- },
62
74
  "Qwen/Qwen1.5-72B-Chat": {
63
75
  "description": "Qwen 1.5 Chat (72B)は、迅速な応答と自然な対話能力を提供し、多言語環境に適しています。"
64
76
  },
65
- "Qwen/Qwen1.5-7B-Chat": {
66
- "description": "Qwen1.5は高度な事前学習と微調整を組み合わせて対話表現能力を向上させています。"
77
+ "Qwen/Qwen2-72B-Instruct": {
78
+ "description": "Qwen2は、先進的な汎用言語モデルであり、さまざまな指示タイプをサポートします。"
67
79
  },
68
- "Qwen/Qwen2-1.5B-Instruct": {
69
- "description": "Qwen2は全く新しい大型言語モデルシリーズで、指示タスクの処理を最適化することを目的としています。"
80
+ "Qwen/Qwen2.5-14B-Instruct": {
81
+ "description": "Qwen2.5は、新しい大型言語モデルシリーズで、指示型タスクの処理を最適化することを目的としています。"
70
82
  },
71
- "Qwen/Qwen2-57B-A14B-Instruct": {
72
- "description": "Qwen2は全く新しいシリーズで、57B A14Bモデルは指示タスクにおいて卓越したパフォーマンスを示します。"
83
+ "Qwen/Qwen2.5-32B-Instruct": {
84
+ "description": "Qwen2.5は、新しい大型言語モデルシリーズで、指示型タスクの処理を最適化することを目的としています。"
73
85
  },
74
- "Qwen/Qwen2-72B-Instruct": {
75
- "description": "Qwen2は、先進的な汎用言語モデルであり、さまざまな指示タイプをサポートします。"
86
+ "Qwen/Qwen2.5-72B-Instruct": {
87
+ "description": "Qwen2.5は、新しい大型言語モデルシリーズで、より強力な理解と生成能力を持っています。"
76
88
  },
77
- "Qwen/Qwen2-7B-Instruct": {
78
- "description": "Qwen2は全く新しい大型言語モデルシリーズで、より強力な理解と生成能力を持っています。"
89
+ "Qwen/Qwen2.5-7B-Instruct": {
90
+ "description": "Qwen2.5は、新しい大型言語モデルシリーズで、指示型タスクの処理を最適化することを目的としています。"
79
91
  },
80
- "Qwen/Qwen2-Math-72B-Instruct": {
81
- "description": "Qwen2-Mathは数学分野の問題解決に特化しており、高難度の問題に専門的な解答を提供します。"
92
+ "Qwen/Qwen2.5-Coder-7B-Instruct": {
93
+ "description": "Qwen2.5-Coderは、コード作成に特化しています。"
82
94
  },
83
- "THUDM/chatglm3-6b": {
84
- "description": "ChatGLM3はバイリンガル会話言語モデルとして、中英の変換タスクを処理できます。"
95
+ "Qwen/Qwen2.5-Math-72B-Instruct": {
96
+ "description": "Qwen2.5-Mathは、数学分野の問題解決に特化しており、高難度の問題に対して専門的な解答を提供します。"
85
97
  },
86
98
  "THUDM/glm-4-9b-chat": {
87
99
  "description": "GLM-4 9Bはオープンソース版で、会話アプリケーションに最適化された対話体験を提供します。"
@@ -158,6 +170,15 @@
158
170
  "accounts/yi-01-ai/models/yi-large": {
159
171
  "description": "Yi-Largeモデルは、卓越した多言語処理能力を持ち、さまざまな言語生成と理解タスクに使用できます。"
160
172
  },
173
+ "ai21-jamba-1.5-large": {
174
+ "description": "398Bパラメータ(94Bアクティブ)の多言語モデルで、256Kの長いコンテキストウィンドウ、関数呼び出し、構造化出力、基盤生成を提供します。"
175
+ },
176
+ "ai21-jamba-1.5-mini": {
177
+ "description": "52Bパラメータ(12Bアクティブ)の多言語モデルで、256Kの長いコンテキストウィンドウ、関数呼び出し、構造化出力、基盤生成を提供します。"
178
+ },
179
+ "ai21-jamba-instruct": {
180
+ "description": "最高のパフォーマンス、品質、コスト効率を実現するための生産グレードのMambaベースのLLMモデルです。"
181
+ },
161
182
  "anthropic.claude-3-5-sonnet-20240620-v1:0": {
162
183
  "description": "Claude 3.5 Sonnetは業界標準を向上させ、競合モデルやClaude 3 Opusを超える性能を持ち、広範な評価で優れたパフォーマンスを示し、私たちの中程度のモデルの速度とコストを兼ね備えています。"
163
184
  },
@@ -254,6 +275,12 @@
254
275
  "cognitivecomputations/dolphin-mixtral-8x22b": {
255
276
  "description": "Dolphin Mixtral 8x22Bは指示遵守、対話、プログラミングのために設計されたモデルです。"
256
277
  },
278
+ "cohere-command-r": {
279
+ "description": "Command Rは、RAGとツール使用をターゲットにしたスケーラブルな生成モデルで、企業向けの生産規模のAIを実現します。"
280
+ },
281
+ "cohere-command-r-plus": {
282
+ "description": "Command R+は、企業グレードのワークロードに対応するために設計された最先端のRAG最適化モデルです。"
283
+ },
257
284
  "command-r": {
258
285
  "description": "Command Rは、対話と長いコンテキストタスクに最適化されたLLMであり、特に動的なインタラクションと知識管理に適しています。"
259
286
  },
@@ -263,12 +290,6 @@
263
290
  "databricks/dbrx-instruct": {
264
291
  "description": "DBRX Instructは、高い信頼性の指示処理能力を提供し、多業界アプリケーションをサポートします。"
265
292
  },
266
- "deepseek-ai/DeepSeek-Coder-V2-Instruct": {
267
- "description": "DeepSeek Coder V2はコードタスクのために設計されており、高効率なコード生成に特化しています。"
268
- },
269
- "deepseek-ai/DeepSeek-V2-Chat": {
270
- "description": "DeepSeek V2は67億パラメータを持ち、英中のテキスト処理をサポートします。"
271
- },
272
293
  "deepseek-ai/DeepSeek-V2.5": {
273
294
  "description": "DeepSeek V2.5は以前のバージョンの優れた特徴を集約し、汎用性とコーディング能力を強化しました。"
274
295
  },
@@ -467,6 +488,8 @@
467
488
  "internlm/internlm2_5-7b-chat": {
468
489
  "description": "InternLM2.5は多様なシーンでのインテリジェントな対話ソリューションを提供します。"
469
490
  },
491
+ "jamba-1.5-large": {},
492
+ "jamba-1.5-mini": {},
470
493
  "llama-3.1-70b-instruct": {
471
494
  "description": "Llama 3.1 70B Instructモデルは、70Bパラメータを持ち、大規模なテキスト生成と指示タスクで卓越した性能を提供します。"
472
495
  },
@@ -530,6 +553,21 @@
530
553
  "mathstral": {
531
554
  "description": "MathΣtralは、科学研究と数学推論のために設計されており、効果的な計算能力と結果の解釈を提供します。"
532
555
  },
556
+ "meta-llama-3-70b-instruct": {
557
+ "description": "推論、コーディング、広範な言語アプリケーションに優れた70億パラメータの強力なモデルです。"
558
+ },
559
+ "meta-llama-3-8b-instruct": {
560
+ "description": "対話とテキスト生成タスクに最適化された多用途の80億パラメータモデルです。"
561
+ },
562
+ "meta-llama-3.1-405b-instruct": {
563
+ "description": "Llama 3.1の指示調整されたテキスト専用モデルは、多言語対話のユースケースに最適化されており、一般的な業界ベンチマークで多くのオープンソースおよびクローズドチャットモデルを上回ります。"
564
+ },
565
+ "meta-llama-3.1-70b-instruct": {
566
+ "description": "Llama 3.1の指示調整されたテキスト専用モデルは、多言語対話のユースケースに最適化されており、一般的な業界ベンチマークで多くのオープンソースおよびクローズドチャットモデルを上回ります。"
567
+ },
568
+ "meta-llama-3.1-8b-instruct": {
569
+ "description": "Llama 3.1の指示調整されたテキスト専用モデルは、多言語対話のユースケースに最適化されており、一般的な業界ベンチマークで多くのオープンソースおよびクローズドチャットモデルを上回ります。"
570
+ },
533
571
  "meta-llama/Llama-2-13b-chat-hf": {
534
572
  "description": "LLaMA-2 Chat (13B)は、優れた言語処理能力と素晴らしいインタラクション体験を提供します。"
535
573
  },
@@ -539,9 +577,6 @@
539
577
  "meta-llama/Llama-3-8b-chat-hf": {
540
578
  "description": "LLaMA-3 Chat (8B)は、多言語サポートを提供し、豊富な分野知識をカバーしています。"
541
579
  },
542
- "meta-llama/Meta-Llama-3-70B-Instruct": {
543
- "description": "LLaMA 3は大容量のテキスト生成と指示解析をサポートします。"
544
- },
545
580
  "meta-llama/Meta-Llama-3-70B-Instruct-Lite": {
546
581
  "description": "Llama 3 70B Instruct Liteは、高効率と低遅延が求められる環境に適しています。"
547
582
  },
@@ -620,12 +655,21 @@
620
655
  "mistral-large": {
621
656
  "description": "Mixtral Largeは、Mistralのフラッグシップモデルであり、コード生成、数学、推論の能力を組み合わせ、128kのコンテキストウィンドウをサポートします。"
622
657
  },
658
+ "mistral-large-2407": {
659
+ "description": "Mistral Large (2407)は、最先端の推論、知識、コーディング能力を持つ高度な大規模言語モデル(LLM)です。"
660
+ },
623
661
  "mistral-large-latest": {
624
662
  "description": "Mistral Largeは、フラッグシップの大モデルであり、多言語タスク、複雑な推論、コード生成に優れ、高端アプリケーションに理想的な選択肢です。"
625
663
  },
626
664
  "mistral-nemo": {
627
665
  "description": "Mistral Nemoは、Mistral AIとNVIDIAが共同で開発した高効率の12Bモデルです。"
628
666
  },
667
+ "mistral-small": {
668
+ "description": "Mistral Smallは、高効率と低遅延を必要とする言語ベースのタスクで使用できます。"
669
+ },
670
+ "mistral-small-latest": {
671
+ "description": "Mistral Smallは、コスト効率が高く、迅速かつ信頼性の高い選択肢で、翻訳、要約、感情分析などのユースケースに適しています。"
672
+ },
629
673
  "mistralai/Mistral-7B-Instruct-v0.1": {
630
674
  "description": "Mistral (7B) Instructは、高性能で知られ、多言語タスクに適しています。"
631
675
  },
@@ -713,20 +757,29 @@
713
757
  "phi3:14b": {
714
758
  "description": "Phi-3は、Microsoftが提供する軽量オープンモデルであり、高効率な統合と大規模な知識推論に適しています。"
715
759
  },
760
+ "pixtral-12b-2409": {
761
+ "description": "Pixtralモデルは、グラフと画像理解、文書質問応答、多モーダル推論、指示遵守などのタスクで強力な能力を発揮し、自然な解像度とアスペクト比で画像を取り込み、最大128Kトークンの長いコンテキストウィンドウで任意の数の画像を処理できます。"
762
+ },
763
+ "qwen-coder-turbo-latest": {
764
+ "description": "通義千問のコードモデルです。"
765
+ },
716
766
  "qwen-long": {
717
767
  "description": "通義千問超大規模言語モデルで、長文コンテキストや長文書、複数文書に基づく対話機能をサポートしています。"
718
768
  },
719
- "qwen-max": {
720
- "description": "通義千問千億規模の超大規模言語モデルで、中国語、英語などの異なる言語入力をサポートし、現在通義千問2.5製品バージョンの背後にあるAPIモデルです。"
769
+ "qwen-math-plus-latest": {
770
+ "description": "通義千問の数学モデルは、数学の問題解決に特化した言語モデルです。"
721
771
  },
722
- "qwen-max-longcontext": {
723
- "description": "通義千問千億規模の超大規模言語モデルで、中国語、英語などの異なる言語入力をサポートし、コンテキストウィンドウを拡張しています。"
772
+ "qwen-math-turbo-latest": {
773
+ "description": "通義千問の数学モデルは、数学の問題解決に特化した言語モデルです。"
724
774
  },
725
- "qwen-plus": {
726
- "description": "通義千問超大規模言語モデルの強化版で、中国語、英語などの異なる言語入力をサポートしています。"
775
+ "qwen-max-latest": {
776
+ "description": "通義千問の千億レベルの超大規模言語モデルで、中国語、英語などの異なる言語入力をサポートし、現在の通義千問2.5製品バージョンの背後にあるAPIモデルです。"
727
777
  },
728
- "qwen-turbo": {
729
- "description": "通義千問超大規模言語モデルで、中国語、英語などの異なる言語入力をサポートしています。"
778
+ "qwen-plus-latest": {
779
+ "description": "通義千問の超大規模言語モデルの強化版で、中国語、英語などの異なる言語入力をサポートしています。"
780
+ },
781
+ "qwen-turbo-latest": {
782
+ "description": "通義千問の超大規模言語モデルで、中国語、英語などの異なる言語入力をサポートしています。"
730
783
  },
731
784
  "qwen-vl-chat-v1": {
732
785
  "description": "通義千問VLは、複数の画像、多段階の質問応答、創作などの柔軟なインタラクション方式をサポートするモデルです。"
@@ -746,17 +799,32 @@
746
799
  "qwen2": {
747
800
  "description": "Qwen2は、Alibabaの新世代大規模言語モデルであり、優れた性能で多様なアプリケーションニーズをサポートします。"
748
801
  },
749
- "qwen2-57b-a14b-instruct": {
750
- "description": "通義千問2が公開した57B規模14B活性化パラメータのMOEモデルです。"
802
+ "qwen2.5-14b-instruct": {
803
+ "description": "通義千問2.5の対外オープンソースの14B規模のモデルです。"
804
+ },
805
+ "qwen2.5-32b-instruct": {
806
+ "description": "通義千問2.5の対外オープンソースの32B規模のモデルです。"
807
+ },
808
+ "qwen2.5-72b-instruct": {
809
+ "description": "通義千問2.5の対外オープンソースの72B規模のモデルです。"
810
+ },
811
+ "qwen2.5-7b-instruct": {
812
+ "description": "通義千問2.5の対外オープンソースの7B規模のモデルです。"
813
+ },
814
+ "qwen2.5-coder-1.5b-instruct": {
815
+ "description": "通義千問のコードモデルのオープンソース版です。"
816
+ },
817
+ "qwen2.5-coder-7b-instruct": {
818
+ "description": "通義千問のコードモデルのオープンソース版です。"
751
819
  },
752
- "qwen2-72b-instruct": {
753
- "description": "通義千問2が公開した72B規模のモデルです。"
820
+ "qwen2.5-math-1.5b-instruct": {
821
+ "description": "Qwen-Mathモデルは、強力な数学の問題解決能力を持っています。"
754
822
  },
755
- "qwen2-7b-instruct": {
756
- "description": "通義千問2が公開した7B規模のモデルです。"
823
+ "qwen2.5-math-72b-instruct": {
824
+ "description": "Qwen-Mathモデルは、強力な数学の問題解決能力を持っています。"
757
825
  },
758
- "qwen2-math-72b-instruct": {
759
- "description": "Qwen2-Mathモデルは強力な数学解決能力を持っています。"
826
+ "qwen2.5-math-7b-instruct": {
827
+ "description": "Qwen-Mathモデルは、強力な数学の問題解決能力を持っています。"
760
828
  },
761
829
  "qwen2:0.5b": {
762
830
  "description": "Qwen2は、Alibabaの新世代大規模言語モデルであり、優れた性能で多様なアプリケーションニーズをサポートします。"
@@ -1,4 +1,5 @@
1
1
  {
2
+ "ai21": {},
2
3
  "ai360": {
3
4
  "description": "360 AIは、360社が提供するAIモデルとサービスプラットフォームであり、360GPT2 Pro、360GPT Pro、360GPT Turbo、360GPT Turbo Responsibility 8Kなど、さまざまな先進的な自然言語処理モデルを提供しています。これらのモデルは、大規模なパラメータと多モーダル能力を組み合わせており、テキスト生成、意味理解、対話システム、コード生成などの分野で広く使用されています。柔軟な価格戦略を通じて、360 AIは多様なユーザーのニーズに応え、開発者の統合をサポートし、スマートアプリケーションの革新と発展を促進します。"
4
5
  },
@@ -20,6 +21,9 @@
20
21
  "fireworksai": {
21
22
  "description": "Fireworks AIは、先進的な言語モデルサービスのリーダーであり、機能呼び出しと多モーダル処理に特化しています。最新のモデルFirefunction V2はLlama-3に基づいており、関数呼び出し、対話、指示の遵守に最適化されています。視覚言語モデルFireLLaVA-13Bは、画像とテキストの混合入力をサポートしています。他の注目すべきモデルには、LlamaシリーズやMixtralシリーズがあり、高効率の多言語指示遵守と生成サポートを提供しています。"
22
23
  },
24
+ "github": {
25
+ "description": "GitHubモデルを使用することで、開発者はAIエンジニアになり、業界をリードするAIモデルを使って構築できます。"
26
+ },
23
27
  "google": {
24
28
  "description": "GoogleのGeminiシリーズは、Google DeepMindによって開発された最先端で汎用的なAIモデルであり、多モーダル設計に特化しており、テキスト、コード、画像、音声、動画のシームレスな理解と処理をサポートします。データセンターからモバイルデバイスまでのさまざまな環境に適しており、AIモデルの効率と適用範囲を大幅に向上させています。"
25
29
  },
@@ -2,9 +2,6 @@
2
2
  "01-ai/Yi-1.5-34B-Chat-16K": {
3
3
  "description": "Yi-1.5 34B는 풍부한 훈련 샘플을 통해 산업 응용에서 우수한 성능을 제공합니다."
4
4
  },
5
- "01-ai/Yi-1.5-6B-Chat": {
6
- "description": "Yi-1.5는 Yi 시리즈의 진화 버전으로, 고품질의 사전 훈련과 풍부한 미세 조정 데이터를 갖추고 있습니다."
7
- },
8
5
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
6
  "description": "Yi-1.5 9B는 16K 토큰을 지원하며, 효율적이고 매끄러운 언어 생성 능력을 제공합니다."
10
7
  },
@@ -47,41 +44,56 @@
47
44
  "NousResearch/Nous-Hermes-2-Yi-34B": {
48
45
  "description": "Nous Hermes-2 Yi (34B)는 최적화된 언어 출력과 다양한 응용 가능성을 제공합니다."
49
46
  },
47
+ "Phi-3-5-mini-instruct": {
48
+ "description": "Phi-3-mini 모델의 새로 고침 버전입니다."
49
+ },
50
+ "Phi-3-medium-128k-instruct": {
51
+ "description": "같은 Phi-3-medium 모델이지만 RAG 또는 몇 가지 샷 프롬프트를 위한 더 큰 컨텍스트 크기를 가지고 있습니다."
52
+ },
53
+ "Phi-3-medium-4k-instruct": {
54
+ "description": "14B 매개변수 모델로, Phi-3-mini보다 더 나은 품질을 제공하며, 고품질의 추론 밀집 데이터에 중점을 두고 있습니다."
55
+ },
56
+ "Phi-3-mini-128k-instruct": {
57
+ "description": "같은 Phi-3-mini 모델이지만 RAG 또는 몇 가지 샷 프롬프트를 위한 더 큰 컨텍스트 크기를 가지고 있습니다."
58
+ },
59
+ "Phi-3-mini-4k-instruct": {
60
+ "description": "Phi-3 가족의 가장 작은 구성원으로, 품질과 낮은 대기 시간 모두에 최적화되어 있습니다."
61
+ },
62
+ "Phi-3-small-128k-instruct": {
63
+ "description": "같은 Phi-3-small 모델이지만 RAG 또는 몇 가지 샷 프롬프트를 위한 더 큰 컨텍스트 크기를 가지고 있습니다."
64
+ },
65
+ "Phi-3-small-8k-instruct": {
66
+ "description": "7B 매개변수 모델로, Phi-3-mini보다 더 나은 품질을 제공하며, 고품질의 추론 밀집 데이터에 중점을 두고 있습니다."
67
+ },
50
68
  "Pro-128k": {
51
69
  "description": "Spark Pro-128K는 초대형 컨텍스트 처리 능력을 갖추고 있으며, 최대 128K의 컨텍스트 정보를 처리할 수 있어, 특히 전체 분석 및 장기 논리 연관 처리가 필요한 긴 문서 콘텐츠에 적합합니다. 복잡한 텍스트 커뮤니케이션에서 매끄럽고 일관된 논리와 다양한 인용 지원을 제공합니다."
52
70
  },
53
71
  "Qwen/Qwen1.5-110B-Chat": {
54
72
  "description": "Qwen2의 테스트 버전인 Qwen1.5는 대규모 데이터를 사용하여 더 정밀한 대화 기능을 구현하였습니다."
55
73
  },
56
- "Qwen/Qwen1.5-14B-Chat": {
57
- "description": "Qwen1.5는 대규모 데이터 세트로 훈련되어 복잡한 언어 작업에 능숙합니다."
58
- },
59
- "Qwen/Qwen1.5-32B-Chat": {
60
- "description": "Qwen1.5는 다분야 질문 응답 및 텍스트 생성 능력을 갖추고 있습니다."
61
- },
62
74
  "Qwen/Qwen1.5-72B-Chat": {
63
75
  "description": "Qwen 1.5 Chat (72B)는 빠른 응답과 자연스러운 대화 능력을 제공하며, 다국어 환경에 적합합니다."
64
76
  },
65
- "Qwen/Qwen1.5-7B-Chat": {
66
- "description": "Qwen1.5고급 사전 훈련과 미세 조정을 결합하여 대화 표현 능력을 향상시킵니다."
77
+ "Qwen/Qwen2-72B-Instruct": {
78
+ "description": "Qwen2다양한 지시 유형을 지원하는 고급 범용 언어 모델입니다."
67
79
  },
68
- "Qwen/Qwen2-1.5B-Instruct": {
69
- "description": "Qwen2는 지시형 작업 처리를 최적화하기 위해 설계된 새로운 대형 언어 모델 시리즈입니다."
80
+ "Qwen/Qwen2.5-14B-Instruct": {
81
+ "description": "Qwen2.5는 지시형 작업 처리를 최적화하기 위해 설계된 새로운 대형 언어 모델 시리즈입니다."
70
82
  },
71
- "Qwen/Qwen2-57B-A14B-Instruct": {
72
- "description": "Qwen2는 새로운 시리즈로, 57B A14B 모델은 지시 작업에서 뛰어난 성능을 보입니다."
83
+ "Qwen/Qwen2.5-32B-Instruct": {
84
+ "description": "Qwen2.5지시형 작업 처리를 최적화하기 위해 설계된 새로운 대형 언어 모델 시리즈입니다."
73
85
  },
74
- "Qwen/Qwen2-72B-Instruct": {
75
- "description": "Qwen2는 다양한 지시 유형을 지원하는 고급 범용 언어 모델입니다."
86
+ "Qwen/Qwen2.5-72B-Instruct": {
87
+ "description": "Qwen2.5 강력한 이해 생성 능력을 가진 새로운 대형 언어 모델 시리즈입니다."
76
88
  },
77
- "Qwen/Qwen2-7B-Instruct": {
78
- "description": "Qwen2는 새로운 대형 언어 모델 시리즈로, 강력한 이해 생성 능력을 갖추고 있습니다."
89
+ "Qwen/Qwen2.5-7B-Instruct": {
90
+ "description": "Qwen2.5지시형 작업 처리를 최적화하기 위해 설계된 새로운 대형 언어 모델 시리즈입니다."
79
91
  },
80
- "Qwen/Qwen2-Math-72B-Instruct": {
81
- "description": "Qwen2-Math수학 분야의 문제 해결에 중점을 두고 있으며, 고난이도 문제에 대한 전문적인 해답을 제공합니다."
92
+ "Qwen/Qwen2.5-Coder-7B-Instruct": {
93
+ "description": "Qwen2.5-Coder코드 작성을 전문으로 합니다."
82
94
  },
83
- "THUDM/chatglm3-6b": {
84
- "description": "ChatGLM3이중 언어 대화 언어 모델로, 중문과 영문 변환 작업을 처리할 있습니다."
95
+ "Qwen/Qwen2.5-Math-72B-Instruct": {
96
+ "description": "Qwen2.5-Math수학 분야의 문제 해결에 중점을 두고 있으며, 고난이도 문제에 대한 전문적인 해답을 제공합니다."
85
97
  },
86
98
  "THUDM/glm-4-9b-chat": {
87
99
  "description": "GLM-4 9B 오픈 소스 버전으로, 대화 응용을 위한 최적화된 대화 경험을 제공합니다."
@@ -158,6 +170,15 @@
158
170
  "accounts/yi-01-ai/models/yi-large": {
159
171
  "description": "Yi-Large 모델은 뛰어난 다국어 처리 능력을 갖추고 있으며, 다양한 언어 생성 및 이해 작업에 사용될 수 있습니다."
160
172
  },
173
+ "ai21-jamba-1.5-large": {
174
+ "description": "398B 매개변수(94B 활성)의 다국어 모델로, 256K 긴 컨텍스트 창, 함수 호출, 구조화된 출력 및 기반 생성 기능을 제공합니다."
175
+ },
176
+ "ai21-jamba-1.5-mini": {
177
+ "description": "52B 매개변수(12B 활성)의 다국어 모델로, 256K 긴 컨텍스트 창, 함수 호출, 구조화된 출력 및 기반 생성 기능을 제공합니다."
178
+ },
179
+ "ai21-jamba-instruct": {
180
+ "description": "최고 수준의 성능, 품질 및 비용 효율성을 달성하기 위해 제작된 Mamba 기반 LLM 모델입니다."
181
+ },
161
182
  "anthropic.claude-3-5-sonnet-20240620-v1:0": {
162
183
  "description": "Claude 3.5 Sonnet는 업계 표준을 향상시켜 경쟁 모델 및 Claude 3 Opus를 초월하며, 광범위한 평가에서 뛰어난 성능을 보이고, 중간 수준 모델의 속도와 비용을 갖추고 있습니다."
163
184
  },
@@ -254,6 +275,12 @@
254
275
  "cognitivecomputations/dolphin-mixtral-8x22b": {
255
276
  "description": "Dolphin Mixtral 8x22B는 지시 준수, 대화 및 프로그래밍을 위해 설계된 모델입니다."
256
277
  },
278
+ "cohere-command-r": {
279
+ "description": "Command R은 RAG 및 도구 사용을 목표로 하는 확장 가능한 생성 모델로, 기업을 위한 생산 규모 AI를 가능하게 합니다."
280
+ },
281
+ "cohere-command-r-plus": {
282
+ "description": "Command R+는 기업급 작업을 처리하기 위해 설계된 최첨단 RAG 최적화 모델입니다."
283
+ },
257
284
  "command-r": {
258
285
  "description": "Command R은 대화 및 긴 컨텍스트 작업에 최적화된 LLM으로, 동적 상호작용 및 지식 관리에 특히 적합합니다."
259
286
  },
@@ -263,12 +290,6 @@
263
290
  "databricks/dbrx-instruct": {
264
291
  "description": "DBRX Instruct는 높은 신뢰성을 가진 지시 처리 능력을 제공하며, 다양한 산업 응용을 지원합니다."
265
292
  },
266
- "deepseek-ai/DeepSeek-Coder-V2-Instruct": {
267
- "description": "DeepSeek Coder V2는 코드 작업을 위해 설계되었으며, 효율적인 코드 생성을 중점적으로 다룹니다."
268
- },
269
- "deepseek-ai/DeepSeek-V2-Chat": {
270
- "description": "DeepSeek V2는 67억 파라미터를 갖추고 있으며, 영문 및 중문 텍스트 처리를 지원합니다."
271
- },
272
293
  "deepseek-ai/DeepSeek-V2.5": {
273
294
  "description": "DeepSeek V2.5는 이전 버전의 우수한 기능을 집약하여 일반 및 인코딩 능력을 강화했습니다."
274
295
  },
@@ -467,6 +488,8 @@
467
488
  "internlm/internlm2_5-7b-chat": {
468
489
  "description": "InternLM2.5는 다양한 시나리오에서 스마트 대화 솔루션을 제공합니다."
469
490
  },
491
+ "jamba-1.5-large": {},
492
+ "jamba-1.5-mini": {},
470
493
  "llama-3.1-70b-instruct": {
471
494
  "description": "Llama 3.1 70B Instruct 모델은 70B 매개변수를 갖추고 있으며, 대규모 텍스트 생성 및 지시 작업에서 뛰어난 성능을 제공합니다."
472
495
  },
@@ -530,6 +553,21 @@
530
553
  "mathstral": {
531
554
  "description": "MathΣtral은 과학 연구 및 수학 추론을 위해 설계되었으며, 효과적인 계산 능력과 결과 해석을 제공합니다."
532
555
  },
556
+ "meta-llama-3-70b-instruct": {
557
+ "description": "추론, 코딩 및 광범위한 언어 응용 프로그램에서 뛰어난 성능을 발휘하는 강력한 70억 매개변수 모델입니다."
558
+ },
559
+ "meta-llama-3-8b-instruct": {
560
+ "description": "대화 및 텍스트 생성 작업에 최적화된 다재다능한 8억 매개변수 모델입니다."
561
+ },
562
+ "meta-llama-3.1-405b-instruct": {
563
+ "description": "Llama 3.1 지침 조정된 텍스트 전용 모델은 다국어 대화 사용 사례에 최적화되어 있으며, 일반 산업 벤치마크에서 많은 오픈 소스 및 폐쇄형 채팅 모델보다 우수한 성능을 보입니다."
564
+ },
565
+ "meta-llama-3.1-70b-instruct": {
566
+ "description": "Llama 3.1 지침 조정된 텍스트 전용 모델은 다국어 대화 사용 사례에 최적화되어 있으며, 일반 산업 벤치마크에서 많은 오픈 소스 및 폐쇄형 채팅 모델보다 우수한 성능을 보입니다."
567
+ },
568
+ "meta-llama-3.1-8b-instruct": {
569
+ "description": "Llama 3.1 지침 조정된 텍스트 전용 모델은 다국어 대화 사용 사례에 최적화되어 있으며, 일반 산업 벤치마크에서 많은 오픈 소스 및 폐쇄형 채팅 모델보다 우수한 성능을 보입니다."
570
+ },
533
571
  "meta-llama/Llama-2-13b-chat-hf": {
534
572
  "description": "LLaMA-2 Chat (13B)는 뛰어난 언어 처리 능력과 우수한 상호작용 경험을 제공합니다."
535
573
  },
@@ -539,9 +577,6 @@
539
577
  "meta-llama/Llama-3-8b-chat-hf": {
540
578
  "description": "LLaMA-3 Chat (8B)는 다국어 지원을 제공하며, 풍부한 분야 지식을 포함합니다."
541
579
  },
542
- "meta-llama/Meta-Llama-3-70B-Instruct": {
543
- "description": "LLaMA 3는 대용량 텍스트 생성 및 지시 해석을 지원합니다."
544
- },
545
580
  "meta-llama/Meta-Llama-3-70B-Instruct-Lite": {
546
581
  "description": "Llama 3 70B Instruct Lite는 효율성과 낮은 지연 시간이 필요한 환경에 적합합니다."
547
582
  },
@@ -620,12 +655,21 @@
620
655
  "mistral-large": {
621
656
  "description": "Mixtral Large는 Mistral의 플래그십 모델로, 코드 생성, 수학 및 추론 능력을 결합하여 128k 컨텍스트 창을 지원합니다."
622
657
  },
658
+ "mistral-large-2407": {
659
+ "description": "Mistral Large (2407)는 최첨단 추론, 지식 및 코딩 능력을 갖춘 고급 대형 언어 모델(LLM)입니다."
660
+ },
623
661
  "mistral-large-latest": {
624
662
  "description": "Mistral Large는 플래그십 대형 모델로, 다국어 작업, 복잡한 추론 및 코드 생성에 능숙하여 고급 응용 프로그램에 이상적인 선택입니다."
625
663
  },
626
664
  "mistral-nemo": {
627
665
  "description": "Mistral Nemo는 Mistral AI와 NVIDIA가 협력하여 출시한 고효율 12B 모델입니다."
628
666
  },
667
+ "mistral-small": {
668
+ "description": "Mistral Small은 높은 효율성과 낮은 대기 시간이 필요한 모든 언어 기반 작업에 사용할 수 있습니다."
669
+ },
670
+ "mistral-small-latest": {
671
+ "description": "Mistral Small은 번역, 요약 및 감정 분석과 같은 사용 사례에 적합한 비용 효율적이고 빠르며 신뢰할 수 있는 옵션입니다."
672
+ },
629
673
  "mistralai/Mistral-7B-Instruct-v0.1": {
630
674
  "description": "Mistral (7B) Instruct는 높은 성능으로 유명하며, 다양한 언어 작업에 적합합니다."
631
675
  },
@@ -713,20 +757,29 @@
713
757
  "phi3:14b": {
714
758
  "description": "Phi-3는 Microsoft에서 출시한 경량 오픈 모델로, 효율적인 통합 및 대규모 지식 추론에 적합합니다."
715
759
  },
760
+ "pixtral-12b-2409": {
761
+ "description": "Pixtral 모델은 차트 및 이미지 이해, 문서 질문 응답, 다중 모드 추론 및 지시 준수와 같은 작업에서 강력한 능력을 발휘하며, 자연 해상도와 가로 세로 비율로 이미지를 입력할 수 있고, 최대 128K 토큰의 긴 컨텍스트 창에서 임의의 수의 이미지를 처리할 수 있습니다."
762
+ },
763
+ "qwen-coder-turbo-latest": {
764
+ "description": "통의 천문 코드 모델입니다."
765
+ },
716
766
  "qwen-long": {
717
767
  "description": "통의천문 초대규모 언어 모델로, 긴 텍스트 컨텍스트를 지원하며, 긴 문서 및 다수의 문서에 기반한 대화 기능을 제공합니다."
718
768
  },
719
- "qwen-max": {
720
- "description": "통의천문 천억급 초대규모 언어 모델로, 중국어, 영어 다양한 언어 입력을 지원하며, 현재 통의천문 2.5 제품 버전의 API 모델입니다."
769
+ "qwen-math-plus-latest": {
770
+ "description": "통의 천문 수학 모델은 수학 문제 해결을 위해 특별히 설계된 언어 모델입니다."
721
771
  },
722
- "qwen-max-longcontext": {
723
- "description": "통의천문 천억급 초대규모 언어 모델로, 중국어, 영어 다양한 언어 입력을 지원하며, 컨텍스트 창을 확장했습니다."
772
+ "qwen-math-turbo-latest": {
773
+ "description": "통의 천문 수학 모델은 수학 문제 해결을 위해 특별히 설계된 언어 모델입니다."
724
774
  },
725
- "qwen-plus": {
726
- "description": "통의천문 초대규모 언어 모델의 강화 버전으로, 중국어, 영어 등 다양한 언어 입력을 지원합니다."
775
+ "qwen-max-latest": {
776
+ "description": "통의 천문 1000억급 초대규모 언어 모델로, 중국어, 영어 등 다양한 언어 입력을 지원하며, 현재 통의 천문 2.5 제품 버전의 API 모델입니다."
727
777
  },
728
- "qwen-turbo": {
729
- "description": "통의천문 초대규모 언어 모델로, 중국어, 영어 등 다양한 언어 입력을 지원합니다."
778
+ "qwen-plus-latest": {
779
+ "description": "통의 천문 초대규모 언어 모델의 강화판으로, 중국어, 영어 등 다양한 언어 입력을 지원합니다."
780
+ },
781
+ "qwen-turbo-latest": {
782
+ "description": "통의 천문 초대규모 언어 모델로, 중국어, 영어 등 다양한 언어 입력을 지원합니다."
730
783
  },
731
784
  "qwen-vl-chat-v1": {
732
785
  "description": "통의천문 VL은 다중 이미지, 다중 회차 질문 응답, 창작 등 유연한 상호작용 방식을 지원하는 모델입니다."
@@ -746,17 +799,32 @@
746
799
  "qwen2": {
747
800
  "description": "Qwen2는 Alibaba의 차세대 대규모 언어 모델로, 뛰어난 성능으로 다양한 응용 요구를 지원합니다."
748
801
  },
749
- "qwen2-57b-a14b-instruct": {
750
- "description": "통의천문 2 외부에 공개한 57B 규모 14B 활성화 매개변수의 MOE 모델입니다."
802
+ "qwen2.5-14b-instruct": {
803
+ "description": "통의 천문 2.5 외부 오픈 소스 14B 규모 모델입니다."
804
+ },
805
+ "qwen2.5-32b-instruct": {
806
+ "description": "통의 천문 2.5 외부 오픈 소스 32B 규모 모델입니다."
807
+ },
808
+ "qwen2.5-72b-instruct": {
809
+ "description": "통의 천문 2.5 외부 오픈 소스 72B 규모 모델입니다."
810
+ },
811
+ "qwen2.5-7b-instruct": {
812
+ "description": "통의 천문 2.5 외부 오픈 소스 7B 규모 모델입니다."
813
+ },
814
+ "qwen2.5-coder-1.5b-instruct": {
815
+ "description": "통의 천문 코드 모델 오픈 소스 버전입니다."
816
+ },
817
+ "qwen2.5-coder-7b-instruct": {
818
+ "description": "통의 천문 코드 모델 오픈 소스 버전입니다."
751
819
  },
752
- "qwen2-72b-instruct": {
753
- "description": "통의천문 2가 외부에 공개한 72B 규모의 모델입니다."
820
+ "qwen2.5-math-1.5b-instruct": {
821
+ "description": "Qwen-Math 모델은 강력한 수학 문제 해결 능력을 가지고 있습니다."
754
822
  },
755
- "qwen2-7b-instruct": {
756
- "description": "통의천문 2가 외부에 공개한 7B 규모의 모델입니다."
823
+ "qwen2.5-math-72b-instruct": {
824
+ "description": "Qwen-Math 모델은 강력한 수학 문제 해결 능력을 가지고 있습니다."
757
825
  },
758
- "qwen2-math-72b-instruct": {
759
- "description": "Qwen2-Math 모델은 강력한 수학 문제 해결 능력을 갖추고 있습니다."
826
+ "qwen2.5-math-7b-instruct": {
827
+ "description": "Qwen-Math 모델은 강력한 수학 문제 해결 능력을 가지고 있습니다."
760
828
  },
761
829
  "qwen2:0.5b": {
762
830
  "description": "Qwen2는 Alibaba의 차세대 대규모 언어 모델로, 뛰어난 성능으로 다양한 응용 요구를 지원합니다."
@@ -1,4 +1,5 @@
1
1
  {
2
+ "ai21": {},
2
3
  "ai360": {
3
4
  "description": "360 AI는 360 회사가 출시한 AI 모델 및 서비스 플랫폼으로, 360GPT2 Pro, 360GPT Pro, 360GPT Turbo 및 360GPT Turbo Responsibility 8K를 포함한 다양한 고급 자연어 처리 모델을 제공합니다. 이러한 모델은 대규모 매개변수와 다중 모드 능력을 결합하여 텍스트 생성, 의미 이해, 대화 시스템 및 코드 생성 등 다양한 분야에 널리 사용됩니다. 유연한 가격 전략을 통해 360 AI는 다양한 사용자 요구를 충족하고 개발자가 통합할 수 있도록 지원하여 스마트화 응용 프로그램의 혁신과 발전을 촉진합니다."
4
5
  },
@@ -20,6 +21,9 @@
20
21
  "fireworksai": {
21
22
  "description": "Fireworks AI는 기능 호출 및 다중 모드 처리를 전문으로 하는 선도적인 고급 언어 모델 서비스 제공업체입니다. 최신 모델인 Firefunction V2는 Llama-3를 기반으로 하며, 함수 호출, 대화 및 지시 따르기에 최적화되어 있습니다. 비주얼 언어 모델인 FireLLaVA-13B는 이미지와 텍스트 혼합 입력을 지원합니다. 기타 주목할 만한 모델로는 Llama 시리즈와 Mixtral 시리즈가 있으며, 효율적인 다국어 지시 따르기 및 생성 지원을 제공합니다."
22
23
  },
24
+ "github": {
25
+ "description": "GitHub 모델을 통해 개발자는 AI 엔지니어가 되어 업계 최고의 AI 모델로 구축할 수 있습니다."
26
+ },
23
27
  "google": {
24
28
  "description": "Google의 Gemini 시리즈는 Google DeepMind가 개발한 가장 진보된 범용 AI 모델로, 다중 모드 설계를 통해 텍스트, 코드, 이미지, 오디오 및 비디오의 원활한 이해 및 처리를 지원합니다. 데이터 센터에서 모바일 장치에 이르기까지 다양한 환경에 적합하며 AI 모델의 효율성과 응용 범위를 크게 향상시킵니다."
25
29
  },