@lobehub/chat 1.19.14 → 1.19.16

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (40) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/locales/ar/models.json +116 -48
  3. package/locales/ar/providers.json +4 -0
  4. package/locales/bg-BG/models.json +116 -48
  5. package/locales/bg-BG/providers.json +4 -0
  6. package/locales/de-DE/models.json +116 -48
  7. package/locales/de-DE/providers.json +4 -0
  8. package/locales/en-US/models.json +116 -48
  9. package/locales/en-US/providers.json +4 -0
  10. package/locales/es-ES/models.json +116 -48
  11. package/locales/es-ES/providers.json +4 -0
  12. package/locales/fr-FR/models.json +116 -48
  13. package/locales/fr-FR/providers.json +4 -0
  14. package/locales/it-IT/models.json +116 -48
  15. package/locales/it-IT/providers.json +4 -0
  16. package/locales/ja-JP/models.json +116 -48
  17. package/locales/ja-JP/providers.json +4 -0
  18. package/locales/ko-KR/models.json +116 -48
  19. package/locales/ko-KR/providers.json +4 -0
  20. package/locales/nl-NL/models.json +116 -48
  21. package/locales/nl-NL/providers.json +4 -0
  22. package/locales/pl-PL/models.json +0 -60
  23. package/locales/pl-PL/providers.json +4 -0
  24. package/locales/pt-BR/models.json +116 -48
  25. package/locales/pt-BR/providers.json +4 -0
  26. package/locales/ru-RU/models.json +116 -48
  27. package/locales/ru-RU/providers.json +4 -0
  28. package/locales/tr-TR/models.json +116 -48
  29. package/locales/tr-TR/providers.json +4 -0
  30. package/locales/vi-VN/models.json +0 -60
  31. package/locales/zh-CN/models.json +122 -54
  32. package/locales/zh-CN/providers.json +4 -0
  33. package/locales/zh-TW/models.json +116 -48
  34. package/locales/zh-TW/providers.json +4 -0
  35. package/package.json +1 -1
  36. package/src/libs/unstructured/__tests__/fixtures/table-parse/auto-partition-basic-output.json +17 -198
  37. package/src/libs/unstructured/__tests__/fixtures/table-parse/auto-partition-basic-raw.json +0 -92
  38. package/src/libs/unstructured/__tests__/index.test.ts +3 -3
  39. package/src/store/global/action.test.ts +53 -0
  40. package/src/store/global/action.ts +16 -2
@@ -2,9 +2,6 @@
2
2
  "01-ai/Yi-1.5-34B-Chat-16K": {
3
3
  "description": "Yi-1.5 34B delivers superior performance in industry applications with a wealth of training samples."
4
4
  },
5
- "01-ai/Yi-1.5-6B-Chat": {
6
- "description": "Yi-1.5 is an evolved version of the Yi series, featuring high-quality pre-training and rich fine-tuning data."
7
- },
8
5
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
6
  "description": "Yi-1.5 9B supports 16K tokens, providing efficient and smooth language generation capabilities."
10
7
  },
@@ -47,41 +44,56 @@
47
44
  "NousResearch/Nous-Hermes-2-Yi-34B": {
48
45
  "description": "Nous Hermes-2 Yi (34B) provides optimized language output and diverse application possibilities."
49
46
  },
47
+ "Phi-3-5-mini-instruct": {
48
+ "description": "An update of the Phi-3-mini model."
49
+ },
50
+ "Phi-3-medium-128k-instruct": {
51
+ "description": "The same Phi-3-medium model, but with a larger context size for RAG or few-shot prompting."
52
+ },
53
+ "Phi-3-medium-4k-instruct": {
54
+ "description": "A 14B parameter model that provides better quality than Phi-3-mini, focusing on high-quality, reasoning-dense data."
55
+ },
56
+ "Phi-3-mini-128k-instruct": {
57
+ "description": "The same Phi-3-mini model, but with a larger context size for RAG or few-shot prompting."
58
+ },
59
+ "Phi-3-mini-4k-instruct": {
60
+ "description": "The smallest member of the Phi-3 family, optimized for both quality and low latency."
61
+ },
62
+ "Phi-3-small-128k-instruct": {
63
+ "description": "The same Phi-3-small model, but with a larger context size for RAG or few-shot prompting."
64
+ },
65
+ "Phi-3-small-8k-instruct": {
66
+ "description": "A 7B parameter model that provides better quality than Phi-3-mini, focusing on high-quality, reasoning-dense data."
67
+ },
50
68
  "Pro-128k": {
51
69
  "description": "Spark Pro-128K is configured with ultra-large context processing capabilities, able to handle up to 128K of contextual information, particularly suitable for long texts requiring comprehensive analysis and long-term logical connections, providing smooth and consistent logic and diverse citation support in complex text communication."
52
70
  },
53
71
  "Qwen/Qwen1.5-110B-Chat": {
54
72
  "description": "As a beta version of Qwen2, Qwen1.5 utilizes large-scale data to achieve more precise conversational capabilities."
55
73
  },
56
- "Qwen/Qwen1.5-14B-Chat": {
57
- "description": "Qwen1.5 is trained on a large-scale dataset, excelling in complex language tasks."
58
- },
59
- "Qwen/Qwen1.5-32B-Chat": {
60
- "description": "Qwen1.5 possesses capabilities for multi-domain Q&A and text generation."
61
- },
62
74
  "Qwen/Qwen1.5-72B-Chat": {
63
75
  "description": "Qwen 1.5 Chat (72B) provides quick responses and natural conversational abilities, suitable for multilingual environments."
64
76
  },
65
- "Qwen/Qwen1.5-7B-Chat": {
66
- "description": "Qwen1.5 enhances dialogue expression capabilities by combining advanced pre-training and fine-tuning."
77
+ "Qwen/Qwen2-72B-Instruct": {
78
+ "description": "Qwen2 is an advanced general-purpose language model that supports various types of instructions."
67
79
  },
68
- "Qwen/Qwen2-1.5B-Instruct": {
69
- "description": "Qwen2 is a brand new large language model series aimed at optimizing the handling of instruction-based tasks."
80
+ "Qwen/Qwen2.5-14B-Instruct": {
81
+ "description": "Qwen2.5 is a brand new series of large language models designed to optimize the handling of instruction-based tasks."
70
82
  },
71
- "Qwen/Qwen2-57B-A14B-Instruct": {
72
- "description": "Qwen2 is a new series, with the 57B A14B model excelling in instruction tasks."
83
+ "Qwen/Qwen2.5-32B-Instruct": {
84
+ "description": "Qwen2.5 is a brand new series of large language models designed to optimize the handling of instruction-based tasks."
73
85
  },
74
- "Qwen/Qwen2-72B-Instruct": {
75
- "description": "Qwen2 is an advanced general-purpose language model that supports various types of instructions."
86
+ "Qwen/Qwen2.5-72B-Instruct": {
87
+ "description": "Qwen2.5 is a brand new series of large language models with enhanced understanding and generation capabilities."
76
88
  },
77
- "Qwen/Qwen2-7B-Instruct": {
78
- "description": "Qwen2 is a brand new large language model series with enhanced understanding and generation capabilities."
89
+ "Qwen/Qwen2.5-7B-Instruct": {
90
+ "description": "Qwen2.5 is a brand new series of large language models designed to optimize the handling of instruction-based tasks."
79
91
  },
80
- "Qwen/Qwen2-Math-72B-Instruct": {
81
- "description": "Qwen2-Math focuses on problem-solving in the field of mathematics, providing professional answers to high-difficulty questions."
92
+ "Qwen/Qwen2.5-Coder-7B-Instruct": {
93
+ "description": "Qwen2.5-Coder focuses on code writing."
82
94
  },
83
- "THUDM/chatglm3-6b": {
84
- "description": "As a bilingual conversational language model, ChatGLM3 can handle Chinese and English conversion tasks."
95
+ "Qwen/Qwen2.5-Math-72B-Instruct": {
96
+ "description": "Qwen2.5-Math focuses on problem-solving in the field of mathematics, providing expert solutions for challenging problems."
85
97
  },
86
98
  "THUDM/glm-4-9b-chat": {
87
99
  "description": "GLM-4 9B is an open-source version that provides an optimized conversational experience for chat applications."
@@ -158,6 +170,15 @@
158
170
  "accounts/yi-01-ai/models/yi-large": {
159
171
  "description": "Yi-Large model, featuring exceptional multilingual processing capabilities, suitable for various language generation and understanding tasks."
160
172
  },
173
+ "ai21-jamba-1.5-large": {
174
+ "description": "A 398B parameter (94B active) multilingual model, offering a 256K long context window, function calling, structured output, and grounded generation."
175
+ },
176
+ "ai21-jamba-1.5-mini": {
177
+ "description": "A 52B parameter (12B active) multilingual model, offering a 256K long context window, function calling, structured output, and grounded generation."
178
+ },
179
+ "ai21-jamba-instruct": {
180
+ "description": "A production-grade Mamba-based LLM model designed to achieve best-in-class performance, quality, and cost efficiency."
181
+ },
161
182
  "anthropic.claude-3-5-sonnet-20240620-v1:0": {
162
183
  "description": "Claude 3.5 Sonnet raises the industry standard, outperforming competitor models and Claude 3 Opus, excelling in a wide range of evaluations while maintaining the speed and cost of our mid-tier models."
163
184
  },
@@ -254,6 +275,12 @@
254
275
  "cognitivecomputations/dolphin-mixtral-8x22b": {
255
276
  "description": "Dolphin Mixtral 8x22B is a model designed for instruction following, dialogue, and programming."
256
277
  },
278
+ "cohere-command-r": {
279
+ "description": "Command R is a scalable generative model targeting RAG and Tool Use to enable production-scale AI for enterprises."
280
+ },
281
+ "cohere-command-r-plus": {
282
+ "description": "Command R+ is a state-of-the-art RAG-optimized model designed to tackle enterprise-grade workloads."
283
+ },
257
284
  "command-r": {
258
285
  "description": "Command R is an LLM optimized for dialogue and long context tasks, particularly suitable for dynamic interactions and knowledge management."
259
286
  },
@@ -263,12 +290,6 @@
263
290
  "databricks/dbrx-instruct": {
264
291
  "description": "DBRX Instruct provides highly reliable instruction processing capabilities, supporting applications across multiple industries."
265
292
  },
266
- "deepseek-ai/DeepSeek-Coder-V2-Instruct": {
267
- "description": "DeepSeek Coder V2 is designed for coding tasks, focusing on efficient code generation."
268
- },
269
- "deepseek-ai/DeepSeek-V2-Chat": {
270
- "description": "DeepSeek V2 has 6.7 billion parameters and supports English and Chinese text processing."
271
- },
272
293
  "deepseek-ai/DeepSeek-V2.5": {
273
294
  "description": "DeepSeek V2.5 combines the excellent features of previous versions, enhancing general and coding capabilities."
274
295
  },
@@ -467,6 +488,8 @@
467
488
  "internlm/internlm2_5-7b-chat": {
468
489
  "description": "InternLM2.5 offers intelligent dialogue solutions across multiple scenarios."
469
490
  },
491
+ "jamba-1.5-large": {},
492
+ "jamba-1.5-mini": {},
470
493
  "llama-3.1-70b-instruct": {
471
494
  "description": "Llama 3.1 70B Instruct model, featuring 70B parameters, delivers outstanding performance in large text generation and instruction tasks."
472
495
  },
@@ -530,6 +553,21 @@
530
553
  "mathstral": {
531
554
  "description": "MathΣtral is designed for scientific research and mathematical reasoning, providing effective computational capabilities and result interpretation."
532
555
  },
556
+ "meta-llama-3-70b-instruct": {
557
+ "description": "A powerful 70-billion parameter model excelling in reasoning, coding, and broad language applications."
558
+ },
559
+ "meta-llama-3-8b-instruct": {
560
+ "description": "A versatile 8-billion parameter model optimized for dialogue and text generation tasks."
561
+ },
562
+ "meta-llama-3.1-405b-instruct": {
563
+ "description": "The Llama 3.1 instruction-tuned text-only models are optimized for multilingual dialogue use cases and outperform many of the available open-source and closed chat models on common industry benchmarks."
564
+ },
565
+ "meta-llama-3.1-70b-instruct": {
566
+ "description": "The Llama 3.1 instruction-tuned text-only models are optimized for multilingual dialogue use cases and outperform many of the available open-source and closed chat models on common industry benchmarks."
567
+ },
568
+ "meta-llama-3.1-8b-instruct": {
569
+ "description": "The Llama 3.1 instruction-tuned text-only models are optimized for multilingual dialogue use cases and outperform many of the available open-source and closed chat models on common industry benchmarks."
570
+ },
533
571
  "meta-llama/Llama-2-13b-chat-hf": {
534
572
  "description": "LLaMA-2 Chat (13B) offers excellent language processing capabilities and outstanding interactive experiences."
535
573
  },
@@ -539,9 +577,6 @@
539
577
  "meta-llama/Llama-3-8b-chat-hf": {
540
578
  "description": "LLaMA-3 Chat (8B) provides multilingual support, covering a rich array of domain knowledge."
541
579
  },
542
- "meta-llama/Meta-Llama-3-70B-Instruct": {
543
- "description": "LLaMA 3 supports large-scale text generation and instruction parsing."
544
- },
545
580
  "meta-llama/Meta-Llama-3-70B-Instruct-Lite": {
546
581
  "description": "Llama 3 70B Instruct Lite is suitable for environments requiring high performance and low latency."
547
582
  },
@@ -620,12 +655,21 @@
620
655
  "mistral-large": {
621
656
  "description": "Mixtral Large is Mistral's flagship model, combining capabilities in code generation, mathematics, and reasoning, supporting a 128k context window."
622
657
  },
658
+ "mistral-large-2407": {
659
+ "description": "Mistral Large (2407) is an advanced Large Language Model (LLM) with state-of-the-art reasoning, knowledge, and coding capabilities."
660
+ },
623
661
  "mistral-large-latest": {
624
662
  "description": "Mistral Large is the flagship model, excelling in multilingual tasks, complex reasoning, and code generation, making it an ideal choice for high-end applications."
625
663
  },
626
664
  "mistral-nemo": {
627
665
  "description": "Mistral Nemo, developed in collaboration with Mistral AI and NVIDIA, is a high-performance 12B model."
628
666
  },
667
+ "mistral-small": {
668
+ "description": "Mistral Small can be used for any language-based task that requires high efficiency and low latency."
669
+ },
670
+ "mistral-small-latest": {
671
+ "description": "Mistral Small is a cost-effective, fast, and reliable option suitable for use cases such as translation, summarization, and sentiment analysis."
672
+ },
629
673
  "mistralai/Mistral-7B-Instruct-v0.1": {
630
674
  "description": "Mistral (7B) Instruct is known for its high performance, suitable for various language tasks."
631
675
  },
@@ -713,20 +757,29 @@
713
757
  "phi3:14b": {
714
758
  "description": "Phi-3 is a lightweight open model launched by Microsoft, suitable for efficient integration and large-scale knowledge reasoning."
715
759
  },
760
+ "pixtral-12b-2409": {
761
+ "description": "The Pixtral model demonstrates strong capabilities in tasks such as chart and image understanding, document question answering, multimodal reasoning, and instruction following. It can ingest images at natural resolutions and aspect ratios and handle an arbitrary number of images within a long context window of up to 128K tokens."
762
+ },
763
+ "qwen-coder-turbo-latest": {
764
+ "description": "The Tongyi Qianwen Coder model."
765
+ },
716
766
  "qwen-long": {
717
767
  "description": "Qwen is a large-scale language model that supports long text contexts and dialogue capabilities based on long documents and multiple documents."
718
768
  },
719
- "qwen-max": {
720
- "description": "Qwen is a large-scale language model with hundreds of billions of parameters, supporting input in various languages, including Chinese and English, currently the API model behind the Qwen 2.5 product version."
769
+ "qwen-math-plus-latest": {
770
+ "description": "The Tongyi Qianwen Math model is specifically designed for solving mathematical problems."
721
771
  },
722
- "qwen-max-longcontext": {
723
- "description": "Qwen is a large-scale language model with hundreds of billions of parameters, supporting input in various languages, including Chinese and English, with an expanded context window."
772
+ "qwen-math-turbo-latest": {
773
+ "description": "The Tongyi Qianwen Math model is specifically designed for solving mathematical problems."
724
774
  },
725
- "qwen-plus": {
726
- "description": "Qwen is an enhanced version of the large-scale language model that supports input in various languages, including Chinese and English."
775
+ "qwen-max-latest": {
776
+ "description": "Tongyi Qianwen Max is a large-scale language model with hundreds of billions of parameters, supporting input in various languages, including Chinese and English. It is the API model behind the current Tongyi Qianwen 2.5 product version."
727
777
  },
728
- "qwen-turbo": {
729
- "description": "Qwen is a large-scale language model that supports input in various languages, including Chinese and English."
778
+ "qwen-plus-latest": {
779
+ "description": "Tongyi Qianwen Plus is an enhanced version of the large-scale language model, supporting input in various languages, including Chinese and English."
780
+ },
781
+ "qwen-turbo-latest": {
782
+ "description": "Tongyi Qianwen is a large-scale language model that supports input in various languages, including Chinese and English."
730
783
  },
731
784
  "qwen-vl-chat-v1": {
732
785
  "description": "Qwen VL supports flexible interaction methods, including multi-image, multi-turn Q&A, and creative capabilities."
@@ -746,17 +799,32 @@
746
799
  "qwen2": {
747
800
  "description": "Qwen2 is Alibaba's next-generation large-scale language model, supporting diverse application needs with excellent performance."
748
801
  },
749
- "qwen2-57b-a14b-instruct": {
750
- "description": "Qwen2 is an open-source 57B scale model with 14B active parameters in the MOE model."
802
+ "qwen2.5-14b-instruct": {
803
+ "description": "The 14B model of Tongyi Qianwen 2.5 is open-sourced."
804
+ },
805
+ "qwen2.5-32b-instruct": {
806
+ "description": "The 32B model of Tongyi Qianwen 2.5 is open-sourced."
807
+ },
808
+ "qwen2.5-72b-instruct": {
809
+ "description": "The 72B model of Tongyi Qianwen 2.5 is open-sourced."
810
+ },
811
+ "qwen2.5-7b-instruct": {
812
+ "description": "The 7B model of Tongyi Qianwen 2.5 is open-sourced."
813
+ },
814
+ "qwen2.5-coder-1.5b-instruct": {
815
+ "description": "The open-source version of the Tongyi Qianwen Coder model."
816
+ },
817
+ "qwen2.5-coder-7b-instruct": {
818
+ "description": "The open-source version of the Tongyi Qianwen Coder model."
751
819
  },
752
- "qwen2-72b-instruct": {
753
- "description": "Qwen2 is an open-source 72B scale model."
820
+ "qwen2.5-math-1.5b-instruct": {
821
+ "description": "The Qwen-Math model possesses strong capabilities for solving mathematical problems."
754
822
  },
755
- "qwen2-7b-instruct": {
756
- "description": "Qwen2 is an open-source 7B scale model."
823
+ "qwen2.5-math-72b-instruct": {
824
+ "description": "The Qwen-Math model possesses strong capabilities for solving mathematical problems."
757
825
  },
758
- "qwen2-math-72b-instruct": {
759
- "description": "Qwen2-Math model has strong mathematical problem-solving capabilities."
826
+ "qwen2.5-math-7b-instruct": {
827
+ "description": "The Qwen-Math model possesses strong capabilities for solving mathematical problems."
760
828
  },
761
829
  "qwen2:0.5b": {
762
830
  "description": "Qwen2 is Alibaba's next-generation large-scale language model, supporting diverse application needs with excellent performance."
@@ -1,4 +1,5 @@
1
1
  {
2
+ "ai21": {},
2
3
  "ai360": {
3
4
  "description": "360 AI is an AI model and service platform launched by 360 Company, offering various advanced natural language processing models, including 360GPT2 Pro, 360GPT Pro, 360GPT Turbo, and 360GPT Turbo Responsibility 8K. These models combine large-scale parameters and multimodal capabilities, widely applied in text generation, semantic understanding, dialogue systems, and code generation. With flexible pricing strategies, 360 AI meets diverse user needs, supports developer integration, and promotes the innovation and development of intelligent applications."
4
5
  },
@@ -20,6 +21,9 @@
20
21
  "fireworksai": {
21
22
  "description": "Fireworks AI is a leading provider of advanced language model services, focusing on functional calling and multimodal processing. Its latest model, Firefunction V2, is based on Llama-3, optimized for function calling, conversation, and instruction following. The visual language model FireLLaVA-13B supports mixed input of images and text. Other notable models include the Llama series and Mixtral series, providing efficient multilingual instruction following and generation support."
22
23
  },
24
+ "github": {
25
+ "description": "With GitHub Models, developers can become AI engineers and leverage the industry's leading AI models."
26
+ },
23
27
  "google": {
24
28
  "description": "Google's Gemini series represents its most advanced, versatile AI models, developed by Google DeepMind, designed for multimodal capabilities, supporting seamless understanding and processing of text, code, images, audio, and video. Suitable for various environments from data centers to mobile devices, it significantly enhances the efficiency and applicability of AI models."
25
29
  },
@@ -2,9 +2,6 @@
2
2
  "01-ai/Yi-1.5-34B-Chat-16K": {
3
3
  "description": "Yi-1.5 34B, con un rico conjunto de muestras de entrenamiento, ofrece un rendimiento superior en aplicaciones industriales."
4
4
  },
5
- "01-ai/Yi-1.5-6B-Chat": {
6
- "description": "Yi-1.5 es la versión evolucionada de la serie Yi, con un preentrenamiento de alta calidad y un conjunto de datos de ajuste fino rico."
7
- },
8
5
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
6
  "description": "Yi-1.5 9B soporta 16K Tokens, proporcionando una capacidad de generación de lenguaje eficiente y fluida."
10
7
  },
@@ -47,41 +44,56 @@
47
44
  "NousResearch/Nous-Hermes-2-Yi-34B": {
48
45
  "description": "Nous Hermes-2 Yi (34B) ofrece salidas de lenguaje optimizadas y diversas posibilidades de aplicación."
49
46
  },
47
+ "Phi-3-5-mini-instruct": {
48
+ "description": "Actualización del modelo Phi-3-mini."
49
+ },
50
+ "Phi-3-medium-128k-instruct": {
51
+ "description": "El mismo modelo Phi-3-medium, pero con un tamaño de contexto más grande para RAG o indicaciones de pocos disparos."
52
+ },
53
+ "Phi-3-medium-4k-instruct": {
54
+ "description": "Un modelo de 14B parámetros, que demuestra mejor calidad que Phi-3-mini, con un enfoque en datos densos de razonamiento de alta calidad."
55
+ },
56
+ "Phi-3-mini-128k-instruct": {
57
+ "description": "El mismo modelo Phi-3-mini, pero con un tamaño de contexto más grande para RAG o indicaciones de pocos disparos."
58
+ },
59
+ "Phi-3-mini-4k-instruct": {
60
+ "description": "El miembro más pequeño de la familia Phi-3. Optimizado tanto para calidad como para baja latencia."
61
+ },
62
+ "Phi-3-small-128k-instruct": {
63
+ "description": "El mismo modelo Phi-3-small, pero con un tamaño de contexto más grande para RAG o indicaciones de pocos disparos."
64
+ },
65
+ "Phi-3-small-8k-instruct": {
66
+ "description": "Un modelo de 7B parámetros, que demuestra mejor calidad que Phi-3-mini, con un enfoque en datos densos de razonamiento de alta calidad."
67
+ },
50
68
  "Pro-128k": {
51
69
  "description": "Spark Pro-128K está configurado con una capacidad de procesamiento de contexto extremadamente grande, capaz de manejar hasta 128K de información contextual, especialmente adecuado para contenido largo que requiere análisis completo y manejo de relaciones lógicas a largo plazo, proporcionando una lógica fluida y consistente y un soporte diverso de citas en comunicaciones de texto complejas."
52
70
  },
53
71
  "Qwen/Qwen1.5-110B-Chat": {
54
72
  "description": "Como versión beta de Qwen2, Qwen1.5 utiliza datos a gran escala para lograr funciones de conversación más precisas."
55
73
  },
56
- "Qwen/Qwen1.5-14B-Chat": {
57
- "description": "Qwen1.5, entrenado con un conjunto de datos a gran escala, es experto en tareas de lenguaje complejas."
58
- },
59
- "Qwen/Qwen1.5-32B-Chat": {
60
- "description": "Qwen1.5 tiene la capacidad de responder preguntas y generar textos en múltiples dominios."
61
- },
62
74
  "Qwen/Qwen1.5-72B-Chat": {
63
75
  "description": "Qwen 1.5 Chat (72B) ofrece respuestas rápidas y capacidades de conversación natural, adecuado para entornos multilingües."
64
76
  },
65
- "Qwen/Qwen1.5-7B-Chat": {
66
- "description": "Qwen1.5 mejora la capacidad de expresión en diálogos mediante la combinación de preentrenamiento avanzado y ajuste fino."
77
+ "Qwen/Qwen2-72B-Instruct": {
78
+ "description": "Qwen2 es un modelo de lenguaje general avanzado, que soporta múltiples tipos de instrucciones."
67
79
  },
68
- "Qwen/Qwen2-1.5B-Instruct": {
69
- "description": "Qwen2 es una nueva serie de modelos de lenguaje de gran tamaño, diseñada para optimizar el manejo de tareas de instrucción."
80
+ "Qwen/Qwen2.5-14B-Instruct": {
81
+ "description": "Qwen2.5 es una nueva serie de modelos de lenguaje a gran escala, diseñada para optimizar el procesamiento de tareas de instrucción."
70
82
  },
71
- "Qwen/Qwen2-57B-A14B-Instruct": {
72
- "description": "Qwen2 es una nueva serie, el modelo 57B A14B se destaca en tareas de instrucción."
83
+ "Qwen/Qwen2.5-32B-Instruct": {
84
+ "description": "Qwen2.5 es una nueva serie de modelos de lenguaje a gran escala, diseñada para optimizar el procesamiento de tareas de instrucción."
73
85
  },
74
- "Qwen/Qwen2-72B-Instruct": {
75
- "description": "Qwen2 es un modelo de lenguaje general avanzado, que soporta múltiples tipos de instrucciones."
86
+ "Qwen/Qwen2.5-72B-Instruct": {
87
+ "description": "Qwen2.5 es una nueva serie de modelos de lenguaje a gran escala, con una mayor capacidad de comprensión y generación."
76
88
  },
77
- "Qwen/Qwen2-7B-Instruct": {
78
- "description": "Qwen2 es una nueva serie de modelos de lenguaje de gran tamaño, con una mayor capacidad de comprensión y generación."
89
+ "Qwen/Qwen2.5-7B-Instruct": {
90
+ "description": "Qwen2.5 es una nueva serie de modelos de lenguaje a gran escala, diseñada para optimizar el procesamiento de tareas de instrucción."
79
91
  },
80
- "Qwen/Qwen2-Math-72B-Instruct": {
81
- "description": "Qwen2-Math se centra en la resolución de problemas en el ámbito matemático, proporcionando respuestas profesionales a preguntas de alta dificultad."
92
+ "Qwen/Qwen2.5-Coder-7B-Instruct": {
93
+ "description": "Qwen2.5-Coder se centra en la escritura de código."
82
94
  },
83
- "THUDM/chatglm3-6b": {
84
- "description": "Como modelo de lenguaje para conversaciones bilingües, ChatGLM3 puede manejar tareas de conversión entre chino e inglés."
95
+ "Qwen/Qwen2.5-Math-72B-Instruct": {
96
+ "description": "Qwen2.5-Math se centra en la resolución de problemas en el ámbito de las matemáticas, proporcionando respuestas profesionales a preguntas de alta dificultad."
85
97
  },
86
98
  "THUDM/glm-4-9b-chat": {
87
99
  "description": "GLM-4 9B es una versión de código abierto, que proporciona una experiencia de conversación optimizada para aplicaciones de diálogo."
@@ -158,6 +170,15 @@
158
170
  "accounts/yi-01-ai/models/yi-large": {
159
171
  "description": "El modelo Yi-Large ofrece una capacidad de procesamiento multilingüe excepcional, adecuado para diversas tareas de generación y comprensión de lenguaje."
160
172
  },
173
+ "ai21-jamba-1.5-large": {
174
+ "description": "Un modelo multilingüe de 398B parámetros (94B activos), que ofrece una ventana de contexto larga de 256K, llamada a funciones, salida estructurada y generación fundamentada."
175
+ },
176
+ "ai21-jamba-1.5-mini": {
177
+ "description": "Un modelo multilingüe de 52B parámetros (12B activos), que ofrece una ventana de contexto larga de 256K, llamada a funciones, salida estructurada y generación fundamentada."
178
+ },
179
+ "ai21-jamba-instruct": {
180
+ "description": "Un modelo LLM basado en Mamba de calidad de producción para lograr un rendimiento, calidad y eficiencia de costos de primera clase."
181
+ },
161
182
  "anthropic.claude-3-5-sonnet-20240620-v1:0": {
162
183
  "description": "Claude 3.5 Sonnet eleva el estándar de la industria, superando a modelos competidores y a Claude 3 Opus, destacándose en evaluaciones amplias, mientras mantiene la velocidad y costo de nuestros modelos de nivel medio."
163
184
  },
@@ -254,6 +275,12 @@
254
275
  "cognitivecomputations/dolphin-mixtral-8x22b": {
255
276
  "description": "Dolphin Mixtral 8x22B es un modelo diseñado para seguir instrucciones, diálogos y programación."
256
277
  },
278
+ "cohere-command-r": {
279
+ "description": "Command R es un modelo generativo escalable dirigido a RAG y uso de herramientas para habilitar IA a escala de producción para empresas."
280
+ },
281
+ "cohere-command-r-plus": {
282
+ "description": "Command R+ es un modelo optimizado para RAG de última generación diseñado para abordar cargas de trabajo de nivel empresarial."
283
+ },
257
284
  "command-r": {
258
285
  "description": "Command R es un LLM optimizado para tareas de diálogo y contexto largo, especialmente adecuado para interacciones dinámicas y gestión del conocimiento."
259
286
  },
@@ -263,12 +290,6 @@
263
290
  "databricks/dbrx-instruct": {
264
291
  "description": "DBRX Instruct ofrece capacidades de procesamiento de instrucciones de alta fiabilidad, soportando aplicaciones en múltiples industrias."
265
292
  },
266
- "deepseek-ai/DeepSeek-Coder-V2-Instruct": {
267
- "description": "DeepSeek Coder V2 está diseñado para tareas de código, enfocándose en la generación de código eficiente."
268
- },
269
- "deepseek-ai/DeepSeek-V2-Chat": {
270
- "description": "DeepSeek V2 tiene 6.7 mil millones de parámetros y soporta el procesamiento de textos en inglés y chino."
271
- },
272
293
  "deepseek-ai/DeepSeek-V2.5": {
273
294
  "description": "DeepSeek V2.5 combina las excelentes características de versiones anteriores, mejorando la capacidad general y de codificación."
274
295
  },
@@ -467,6 +488,8 @@
467
488
  "internlm/internlm2_5-7b-chat": {
468
489
  "description": "InternLM2.5 ofrece soluciones de diálogo inteligente en múltiples escenarios."
469
490
  },
491
+ "jamba-1.5-large": {},
492
+ "jamba-1.5-mini": {},
470
493
  "llama-3.1-70b-instruct": {
471
494
  "description": "El modelo Llama 3.1 70B Instruct, con 70B de parámetros, puede ofrecer un rendimiento excepcional en tareas de generación de texto y de instrucciones a gran escala."
472
495
  },
@@ -530,6 +553,21 @@
530
553
  "mathstral": {
531
554
  "description": "MathΣtral está diseñado para la investigación científica y el razonamiento matemático, proporcionando capacidades de cálculo efectivas y explicación de resultados."
532
555
  },
556
+ "meta-llama-3-70b-instruct": {
557
+ "description": "Un poderoso modelo de 70 mil millones de parámetros que sobresale en razonamiento, codificación y amplias aplicaciones de lenguaje."
558
+ },
559
+ "meta-llama-3-8b-instruct": {
560
+ "description": "Un modelo versátil de 8 mil millones de parámetros optimizado para tareas de diálogo y generación de texto."
561
+ },
562
+ "meta-llama-3.1-405b-instruct": {
563
+ "description": "Los modelos de texto solo ajustados por instrucciones Llama 3.1 están optimizados para casos de uso de diálogo multilingüe y superan muchos de los modelos de chat de código abierto y cerrados disponibles en los benchmarks de la industria."
564
+ },
565
+ "meta-llama-3.1-70b-instruct": {
566
+ "description": "Los modelos de texto solo ajustados por instrucciones Llama 3.1 están optimizados para casos de uso de diálogo multilingüe y superan muchos de los modelos de chat de código abierto y cerrados disponibles en los benchmarks de la industria."
567
+ },
568
+ "meta-llama-3.1-8b-instruct": {
569
+ "description": "Los modelos de texto solo ajustados por instrucciones Llama 3.1 están optimizados para casos de uso de diálogo multilingüe y superan muchos de los modelos de chat de código abierto y cerrados disponibles en los benchmarks de la industria."
570
+ },
533
571
  "meta-llama/Llama-2-13b-chat-hf": {
534
572
  "description": "LLaMA-2 Chat (13B) ofrece una excelente capacidad de procesamiento de lenguaje y una experiencia de interacción sobresaliente."
535
573
  },
@@ -539,9 +577,6 @@
539
577
  "meta-llama/Llama-3-8b-chat-hf": {
540
578
  "description": "LLaMA-3 Chat (8B) ofrece soporte multilingüe, abarcando un amplio conocimiento en diversos campos."
541
579
  },
542
- "meta-llama/Meta-Llama-3-70B-Instruct": {
543
- "description": "LLaMA 3 soporta la generación de textos de gran capacidad y el análisis de instrucciones."
544
- },
545
580
  "meta-llama/Meta-Llama-3-70B-Instruct-Lite": {
546
581
  "description": "Llama 3 70B Instruct Lite es ideal para entornos que requieren alto rendimiento y baja latencia."
547
582
  },
@@ -620,12 +655,21 @@
620
655
  "mistral-large": {
621
656
  "description": "Mixtral Large es el modelo insignia de Mistral, combinando capacidades de generación de código, matemáticas y razonamiento, soportando una ventana de contexto de 128k."
622
657
  },
658
+ "mistral-large-2407": {
659
+ "description": "Mistral Large (2407) es un modelo de lenguaje grande (LLM) avanzado con capacidades de razonamiento, conocimiento y codificación de última generación."
660
+ },
623
661
  "mistral-large-latest": {
624
662
  "description": "Mistral Large es el modelo insignia, especializado en tareas multilingües, razonamiento complejo y generación de código, ideal para aplicaciones de alta gama."
625
663
  },
626
664
  "mistral-nemo": {
627
665
  "description": "Mistral Nemo, desarrollado en colaboración entre Mistral AI y NVIDIA, es un modelo de 12B de alto rendimiento."
628
666
  },
667
+ "mistral-small": {
668
+ "description": "Mistral Small se puede utilizar en cualquier tarea basada en lenguaje que requiera alta eficiencia y baja latencia."
669
+ },
670
+ "mistral-small-latest": {
671
+ "description": "Mistral Small es una opción rentable, rápida y confiable, adecuada para casos de uso como traducción, resumen y análisis de sentimientos."
672
+ },
629
673
  "mistralai/Mistral-7B-Instruct-v0.1": {
630
674
  "description": "Mistral (7B) Instruct es conocido por su alto rendimiento, adecuado para diversas tareas de lenguaje."
631
675
  },
@@ -713,20 +757,29 @@
713
757
  "phi3:14b": {
714
758
  "description": "Phi-3 es un modelo abierto ligero lanzado por Microsoft, adecuado para una integración eficiente y razonamiento de conocimiento a gran escala."
715
759
  },
760
+ "pixtral-12b-2409": {
761
+ "description": "El modelo Pixtral muestra una fuerte capacidad en tareas como comprensión de gráficos e imágenes, preguntas y respuestas de documentos, razonamiento multimodal y seguimiento de instrucciones, capaz de ingerir imágenes en resolución y proporción natural, y manejar una cantidad arbitraria de imágenes en una ventana de contexto larga de hasta 128K tokens."
762
+ },
763
+ "qwen-coder-turbo-latest": {
764
+ "description": "El modelo de código Tongyi Qwen."
765
+ },
716
766
  "qwen-long": {
717
767
  "description": "Qwen es un modelo de lenguaje a gran escala que admite contextos de texto largos y funciones de conversación basadas en documentos largos y múltiples."
718
768
  },
719
- "qwen-max": {
720
- "description": "Qwen es un modelo de lenguaje a gran escala de nivel de mil millones que admite entradas en diferentes idiomas, incluyendo chino e inglés, actualmente es el modelo API detrás de la versión del producto Qwen 2.5."
769
+ "qwen-math-plus-latest": {
770
+ "description": "El modelo de matemáticas Tongyi Qwen está diseñado específicamente para resolver problemas matemáticos."
721
771
  },
722
- "qwen-max-longcontext": {
723
- "description": "Qwen es un modelo de lenguaje a gran escala de nivel de mil millones que admite entradas en diferentes idiomas, incluyendo chino e inglés, y ha ampliado su ventana de contexto."
772
+ "qwen-math-turbo-latest": {
773
+ "description": "El modelo de matemáticas Tongyi Qwen está diseñado específicamente para resolver problemas matemáticos."
724
774
  },
725
- "qwen-plus": {
726
- "description": "Qwen es una versión mejorada del modelo de lenguaje a gran escala que admite entradas en diferentes idiomas, incluyendo chino e inglés."
775
+ "qwen-max-latest": {
776
+ "description": "El modelo de lenguaje a gran escala Tongyi Qwen de nivel de cientos de miles de millones, que admite entradas en diferentes idiomas como chino e inglés, es el modelo API detrás de la versión del producto Tongyi Qwen 2.5."
727
777
  },
728
- "qwen-turbo": {
729
- "description": "Qwen es un modelo de lenguaje a gran escala que admite entradas en diferentes idiomas, incluyendo chino e inglés."
778
+ "qwen-plus-latest": {
779
+ "description": "La versión mejorada del modelo de lenguaje a gran escala Tongyi Qwen, que admite entradas en diferentes idiomas como chino e inglés."
780
+ },
781
+ "qwen-turbo-latest": {
782
+ "description": "El modelo de lenguaje a gran escala Tongyi Qwen, que admite entradas en diferentes idiomas como chino e inglés."
730
783
  },
731
784
  "qwen-vl-chat-v1": {
732
785
  "description": "Qwen VL admite formas de interacción flexibles, incluyendo múltiples imágenes, preguntas y respuestas en múltiples rondas, y capacidades creativas."
@@ -746,17 +799,32 @@
746
799
  "qwen2": {
747
800
  "description": "Qwen2 es el nuevo modelo de lenguaje a gran escala de Alibaba, que ofrece un rendimiento excepcional para satisfacer diversas necesidades de aplicación."
748
801
  },
749
- "qwen2-57b-a14b-instruct": {
750
- "description": "Qwen2 es un modelo de 57B de código abierto con 14B de parámetros activados en MOE."
802
+ "qwen2.5-14b-instruct": {
803
+ "description": "El modelo de 14B de Tongyi Qwen 2.5, de código abierto."
804
+ },
805
+ "qwen2.5-32b-instruct": {
806
+ "description": "El modelo de 32B de Tongyi Qwen 2.5, de código abierto."
807
+ },
808
+ "qwen2.5-72b-instruct": {
809
+ "description": "El modelo de 72B de Tongyi Qwen 2.5, de código abierto."
810
+ },
811
+ "qwen2.5-7b-instruct": {
812
+ "description": "El modelo de 7B de Tongyi Qwen 2.5, de código abierto."
813
+ },
814
+ "qwen2.5-coder-1.5b-instruct": {
815
+ "description": "La versión de código abierto del modelo de código Tongyi Qwen."
816
+ },
817
+ "qwen2.5-coder-7b-instruct": {
818
+ "description": "La versión de código abierto del modelo de código Tongyi Qwen."
751
819
  },
752
- "qwen2-72b-instruct": {
753
- "description": "Qwen2 es un modelo de 72B de código abierto."
820
+ "qwen2.5-math-1.5b-instruct": {
821
+ "description": "El modelo Qwen-Math tiene una poderosa capacidad para resolver problemas matemáticos."
754
822
  },
755
- "qwen2-7b-instruct": {
756
- "description": "Qwen2 es un modelo de 7B de código abierto."
823
+ "qwen2.5-math-72b-instruct": {
824
+ "description": "El modelo Qwen-Math tiene una poderosa capacidad para resolver problemas matemáticos."
757
825
  },
758
- "qwen2-math-72b-instruct": {
759
- "description": "El modelo Qwen2-Math tiene una poderosa capacidad para resolver problemas matemáticos."
826
+ "qwen2.5-math-7b-instruct": {
827
+ "description": "El modelo Qwen-Math tiene una poderosa capacidad para resolver problemas matemáticos."
760
828
  },
761
829
  "qwen2:0.5b": {
762
830
  "description": "Qwen2 es el nuevo modelo de lenguaje a gran escala de Alibaba, que ofrece un rendimiento excepcional para satisfacer diversas necesidades de aplicación."
@@ -1,4 +1,5 @@
1
1
  {
2
+ "ai21": {},
2
3
  "ai360": {
3
4
  "description": "360 AI es una plataforma de modelos y servicios de IA lanzada por la empresa 360, que ofrece una variedad de modelos avanzados de procesamiento del lenguaje natural, incluidos 360GPT2 Pro, 360GPT Pro, 360GPT Turbo y 360GPT Turbo Responsibility 8K. Estos modelos combinan parámetros a gran escala y capacidades multimodales, siendo ampliamente utilizados en generación de texto, comprensión semántica, sistemas de diálogo y generación de código. A través de una estrategia de precios flexible, 360 AI satisface diversas necesidades de los usuarios, apoyando la integración de desarrolladores y promoviendo la innovación y desarrollo de aplicaciones inteligentes."
4
5
  },
@@ -20,6 +21,9 @@
20
21
  "fireworksai": {
21
22
  "description": "Fireworks AI es un proveedor líder de servicios de modelos de lenguaje avanzados, enfocado en la llamada de funciones y el procesamiento multimodal. Su modelo más reciente, Firefunction V2, basado en Llama-3, está optimizado para llamadas de funciones, diálogos y seguimiento de instrucciones. El modelo de lenguaje visual FireLLaVA-13B admite entradas mixtas de imágenes y texto. Otros modelos notables incluyen la serie Llama y la serie Mixtral, que ofrecen un soporte eficiente para el seguimiento y generación de instrucciones multilingües."
22
23
  },
24
+ "github": {
25
+ "description": "Con los Modelos de GitHub, los desarrolladores pueden convertirse en ingenieros de IA y construir con los modelos de IA líderes en la industria."
26
+ },
23
27
  "google": {
24
28
  "description": "La serie Gemini de Google es su modelo de IA más avanzado y versátil, desarrollado por Google DeepMind, diseñado para ser multimodal, apoyando la comprensión y procesamiento sin fisuras de texto, código, imágenes, audio y video. Es adecuado para una variedad de entornos, desde centros de datos hasta dispositivos móviles, mejorando enormemente la eficiencia y la aplicabilidad de los modelos de IA."
25
29
  },