@lobehub/chat 1.19.14 → 1.19.16
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/locales/ar/models.json +116 -48
- package/locales/ar/providers.json +4 -0
- package/locales/bg-BG/models.json +116 -48
- package/locales/bg-BG/providers.json +4 -0
- package/locales/de-DE/models.json +116 -48
- package/locales/de-DE/providers.json +4 -0
- package/locales/en-US/models.json +116 -48
- package/locales/en-US/providers.json +4 -0
- package/locales/es-ES/models.json +116 -48
- package/locales/es-ES/providers.json +4 -0
- package/locales/fr-FR/models.json +116 -48
- package/locales/fr-FR/providers.json +4 -0
- package/locales/it-IT/models.json +116 -48
- package/locales/it-IT/providers.json +4 -0
- package/locales/ja-JP/models.json +116 -48
- package/locales/ja-JP/providers.json +4 -0
- package/locales/ko-KR/models.json +116 -48
- package/locales/ko-KR/providers.json +4 -0
- package/locales/nl-NL/models.json +116 -48
- package/locales/nl-NL/providers.json +4 -0
- package/locales/pl-PL/models.json +0 -60
- package/locales/pl-PL/providers.json +4 -0
- package/locales/pt-BR/models.json +116 -48
- package/locales/pt-BR/providers.json +4 -0
- package/locales/ru-RU/models.json +116 -48
- package/locales/ru-RU/providers.json +4 -0
- package/locales/tr-TR/models.json +116 -48
- package/locales/tr-TR/providers.json +4 -0
- package/locales/vi-VN/models.json +0 -60
- package/locales/zh-CN/models.json +122 -54
- package/locales/zh-CN/providers.json +4 -0
- package/locales/zh-TW/models.json +116 -48
- package/locales/zh-TW/providers.json +4 -0
- package/package.json +1 -1
- package/src/libs/unstructured/__tests__/fixtures/table-parse/auto-partition-basic-output.json +17 -198
- package/src/libs/unstructured/__tests__/fixtures/table-parse/auto-partition-basic-raw.json +0 -92
- package/src/libs/unstructured/__tests__/index.test.ts +3 -3
- package/src/store/global/action.test.ts +53 -0
- package/src/store/global/action.ts +16 -2
@@ -2,9 +2,6 @@
|
|
2
2
|
"01-ai/Yi-1.5-34B-Chat-16K": {
|
3
3
|
"description": "Yi-1.5 34B, avec un ensemble d'échantillons d'entraînement riche, offre des performances supérieures dans les applications sectorielles."
|
4
4
|
},
|
5
|
-
"01-ai/Yi-1.5-6B-Chat": {
|
6
|
-
"description": "Yi-1.5 est une version évoluée de la série Yi, avec un pré-entraînement de haute qualité et un ensemble de données d'ajustement riche."
|
7
|
-
},
|
8
5
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
6
|
"description": "Yi-1.5 9B supporte 16K Tokens, offrant une capacité de génération de langage efficace et fluide."
|
10
7
|
},
|
@@ -47,41 +44,56 @@
|
|
47
44
|
"NousResearch/Nous-Hermes-2-Yi-34B": {
|
48
45
|
"description": "Nous Hermes-2 Yi (34B) offre une sortie linguistique optimisée et des possibilités d'application diversifiées."
|
49
46
|
},
|
47
|
+
"Phi-3-5-mini-instruct": {
|
48
|
+
"description": "Rafraîchissement du modèle Phi-3-mini."
|
49
|
+
},
|
50
|
+
"Phi-3-medium-128k-instruct": {
|
51
|
+
"description": "Même modèle Phi-3-medium, mais avec une taille de contexte plus grande pour RAG ou un prompt à quelques exemples."
|
52
|
+
},
|
53
|
+
"Phi-3-medium-4k-instruct": {
|
54
|
+
"description": "Un modèle de 14 milliards de paramètres, prouvant une meilleure qualité que Phi-3-mini, avec un accent sur des données denses en raisonnement de haute qualité."
|
55
|
+
},
|
56
|
+
"Phi-3-mini-128k-instruct": {
|
57
|
+
"description": "Même modèle Phi-3-mini, mais avec une taille de contexte plus grande pour RAG ou un prompt à quelques exemples."
|
58
|
+
},
|
59
|
+
"Phi-3-mini-4k-instruct": {
|
60
|
+
"description": "Le plus petit membre de la famille Phi-3. Optimisé pour la qualité et la faible latence."
|
61
|
+
},
|
62
|
+
"Phi-3-small-128k-instruct": {
|
63
|
+
"description": "Même modèle Phi-3-small, mais avec une taille de contexte plus grande pour RAG ou un prompt à quelques exemples."
|
64
|
+
},
|
65
|
+
"Phi-3-small-8k-instruct": {
|
66
|
+
"description": "Un modèle de 7 milliards de paramètres, prouvant une meilleure qualité que Phi-3-mini, avec un accent sur des données denses en raisonnement de haute qualité."
|
67
|
+
},
|
50
68
|
"Pro-128k": {
|
51
69
|
"description": "Spark Pro-128K est configuré avec une capacité de traitement de contexte exceptionnel, capable de gérer jusqu'à 128K d'informations contextuelles, particulièrement adapté pour l'analyse complète et le traitement des relations logiques à long terme dans des contenus longs, offrant une logique fluide et cohérente ainsi qu'un support varié pour les références dans des communications textuelles complexes."
|
52
70
|
},
|
53
71
|
"Qwen/Qwen1.5-110B-Chat": {
|
54
72
|
"description": "En tant que version bêta de Qwen2, Qwen1.5 utilise des données à grande échelle pour réaliser des fonctionnalités de dialogue plus précises."
|
55
73
|
},
|
56
|
-
"Qwen/Qwen1.5-14B-Chat": {
|
57
|
-
"description": "Qwen1.5, formé sur un ensemble de données massif, excelle dans des tâches linguistiques complexes."
|
58
|
-
},
|
59
|
-
"Qwen/Qwen1.5-32B-Chat": {
|
60
|
-
"description": "Qwen1.5 possède des capacités de questions-réponses multi-domaines et de génération de texte."
|
61
|
-
},
|
62
74
|
"Qwen/Qwen1.5-72B-Chat": {
|
63
75
|
"description": "Qwen 1.5 Chat (72B) offre des réponses rapides et des capacités de dialogue naturel, adapté aux environnements multilingues."
|
64
76
|
},
|
65
|
-
"Qwen/
|
66
|
-
"description": "
|
77
|
+
"Qwen/Qwen2-72B-Instruct": {
|
78
|
+
"description": "Qwen2 est un modèle de langage général avancé, prenant en charge divers types d'instructions."
|
67
79
|
},
|
68
|
-
"Qwen/Qwen2
|
69
|
-
"description": "Qwen2 est une toute nouvelle série de modèles de langage
|
80
|
+
"Qwen/Qwen2.5-14B-Instruct": {
|
81
|
+
"description": "Qwen2.5 est une toute nouvelle série de modèles de langage à grande échelle, conçue pour optimiser le traitement des tâches d'instruction."
|
70
82
|
},
|
71
|
-
"Qwen/Qwen2-
|
72
|
-
"description": "Qwen2 est une toute nouvelle série
|
83
|
+
"Qwen/Qwen2.5-32B-Instruct": {
|
84
|
+
"description": "Qwen2.5 est une toute nouvelle série de modèles de langage à grande échelle, conçue pour optimiser le traitement des tâches d'instruction."
|
73
85
|
},
|
74
|
-
"Qwen/Qwen2-72B-Instruct": {
|
75
|
-
"description": "Qwen2 est
|
86
|
+
"Qwen/Qwen2.5-72B-Instruct": {
|
87
|
+
"description": "Qwen2.5 est une toute nouvelle série de modèles de langage à grande échelle, avec une capacité de compréhension et de génération améliorée."
|
76
88
|
},
|
77
|
-
"Qwen/Qwen2-7B-Instruct": {
|
78
|
-
"description": "Qwen2 est une toute nouvelle série de modèles de langage
|
89
|
+
"Qwen/Qwen2.5-7B-Instruct": {
|
90
|
+
"description": "Qwen2.5 est une toute nouvelle série de modèles de langage à grande échelle, conçue pour optimiser le traitement des tâches d'instruction."
|
79
91
|
},
|
80
|
-
"Qwen/Qwen2-
|
81
|
-
"description": "Qwen2-
|
92
|
+
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
93
|
+
"description": "Qwen2.5-Coder se concentre sur la rédaction de code."
|
82
94
|
},
|
83
|
-
"
|
84
|
-
"description": "
|
95
|
+
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
96
|
+
"description": "Qwen2.5-Math se concentre sur la résolution de problèmes dans le domaine des mathématiques, fournissant des réponses professionnelles pour des questions de haute difficulté."
|
85
97
|
},
|
86
98
|
"THUDM/glm-4-9b-chat": {
|
87
99
|
"description": "GLM-4 9B est une version open source, offrant une expérience de dialogue optimisée pour les applications de conversation."
|
@@ -158,6 +170,15 @@
|
|
158
170
|
"accounts/yi-01-ai/models/yi-large": {
|
159
171
|
"description": "Le modèle Yi-Large offre d'excellentes capacités de traitement multilingue, adapté à diverses tâches de génération et de compréhension de langage."
|
160
172
|
},
|
173
|
+
"ai21-jamba-1.5-large": {
|
174
|
+
"description": "Un modèle multilingue de 398 milliards de paramètres (94 milliards actifs), offrant une fenêtre de contexte longue de 256K, des appels de fonction, une sortie structurée et une génération ancrée."
|
175
|
+
},
|
176
|
+
"ai21-jamba-1.5-mini": {
|
177
|
+
"description": "Un modèle multilingue de 52 milliards de paramètres (12 milliards actifs), offrant une fenêtre de contexte longue de 256K, des appels de fonction, une sortie structurée et une génération ancrée."
|
178
|
+
},
|
179
|
+
"ai21-jamba-instruct": {
|
180
|
+
"description": "Un modèle LLM basé sur Mamba de qualité production pour atteindre des performances, une qualité et une efficacité de coût de premier ordre."
|
181
|
+
},
|
161
182
|
"anthropic.claude-3-5-sonnet-20240620-v1:0": {
|
162
183
|
"description": "Claude 3.5 Sonnet élève les normes de l'industrie, surpassant les modèles concurrents et Claude 3 Opus, avec d'excellentes performances dans une large gamme d'évaluations, tout en offrant la vitesse et le coût de nos modèles de niveau intermédiaire."
|
163
184
|
},
|
@@ -254,6 +275,12 @@
|
|
254
275
|
"cognitivecomputations/dolphin-mixtral-8x22b": {
|
255
276
|
"description": "Dolphin Mixtral 8x22B est un modèle conçu pour le suivi des instructions, le dialogue et la programmation."
|
256
277
|
},
|
278
|
+
"cohere-command-r": {
|
279
|
+
"description": "Command R est un modèle génératif évolutif ciblant RAG et l'utilisation d'outils pour permettre une IA à l'échelle de la production pour les entreprises."
|
280
|
+
},
|
281
|
+
"cohere-command-r-plus": {
|
282
|
+
"description": "Command R+ est un modèle optimisé RAG de pointe conçu pour traiter des charges de travail de niveau entreprise."
|
283
|
+
},
|
257
284
|
"command-r": {
|
258
285
|
"description": "Command R est un LLM optimisé pour les tâches de dialogue et de long contexte, particulièrement adapté à l'interaction dynamique et à la gestion des connaissances."
|
259
286
|
},
|
@@ -263,12 +290,6 @@
|
|
263
290
|
"databricks/dbrx-instruct": {
|
264
291
|
"description": "DBRX Instruct offre des capacités de traitement d'instructions hautement fiables, prenant en charge des applications dans divers secteurs."
|
265
292
|
},
|
266
|
-
"deepseek-ai/DeepSeek-Coder-V2-Instruct": {
|
267
|
-
"description": "DeepSeek Coder V2 est conçu pour les tâches de codage, se concentrant sur la génération de code efficace."
|
268
|
-
},
|
269
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
270
|
-
"description": "DeepSeek V2 possède 6,7 milliards de paramètres, supportant le traitement de texte en anglais et en chinois."
|
271
|
-
},
|
272
293
|
"deepseek-ai/DeepSeek-V2.5": {
|
273
294
|
"description": "DeepSeek V2.5 intègre les excellentes caractéristiques des versions précédentes, renforçant les capacités générales et de codage."
|
274
295
|
},
|
@@ -467,6 +488,8 @@
|
|
467
488
|
"internlm/internlm2_5-7b-chat": {
|
468
489
|
"description": "InternLM2.5 fournit des solutions de dialogue intelligent dans divers scénarios."
|
469
490
|
},
|
491
|
+
"jamba-1.5-large": {},
|
492
|
+
"jamba-1.5-mini": {},
|
470
493
|
"llama-3.1-70b-instruct": {
|
471
494
|
"description": "Le modèle Llama 3.1 70B Instruct, avec 70B de paramètres, offre des performances exceptionnelles dans la génération de texte et les tâches d'instructions."
|
472
495
|
},
|
@@ -530,6 +553,21 @@
|
|
530
553
|
"mathstral": {
|
531
554
|
"description": "MathΣtral est conçu pour la recherche scientifique et le raisonnement mathématique, offrant des capacités de calcul efficaces et des interprétations de résultats."
|
532
555
|
},
|
556
|
+
"meta-llama-3-70b-instruct": {
|
557
|
+
"description": "Un puissant modèle de 70 milliards de paramètres excelling dans le raisonnement, le codage et les applications linguistiques larges."
|
558
|
+
},
|
559
|
+
"meta-llama-3-8b-instruct": {
|
560
|
+
"description": "Un modèle polyvalent de 8 milliards de paramètres optimisé pour les tâches de dialogue et de génération de texte."
|
561
|
+
},
|
562
|
+
"meta-llama-3.1-405b-instruct": {
|
563
|
+
"description": "Les modèles textuels uniquement ajustés par instruction Llama 3.1 sont optimisés pour les cas d'utilisation de dialogue multilingue et surpassent de nombreux modèles de chat open source et fermés disponibles sur les benchmarks industriels courants."
|
564
|
+
},
|
565
|
+
"meta-llama-3.1-70b-instruct": {
|
566
|
+
"description": "Les modèles textuels uniquement ajustés par instruction Llama 3.1 sont optimisés pour les cas d'utilisation de dialogue multilingue et surpassent de nombreux modèles de chat open source et fermés disponibles sur les benchmarks industriels courants."
|
567
|
+
},
|
568
|
+
"meta-llama-3.1-8b-instruct": {
|
569
|
+
"description": "Les modèles textuels uniquement ajustés par instruction Llama 3.1 sont optimisés pour les cas d'utilisation de dialogue multilingue et surpassent de nombreux modèles de chat open source et fermés disponibles sur les benchmarks industriels courants."
|
570
|
+
},
|
533
571
|
"meta-llama/Llama-2-13b-chat-hf": {
|
534
572
|
"description": "LLaMA-2 Chat (13B) offre d'excellentes capacités de traitement du langage et une expérience interactive exceptionnelle."
|
535
573
|
},
|
@@ -539,9 +577,6 @@
|
|
539
577
|
"meta-llama/Llama-3-8b-chat-hf": {
|
540
578
|
"description": "LLaMA-3 Chat (8B) offre un support multilingue, couvrant un large éventail de connaissances."
|
541
579
|
},
|
542
|
-
"meta-llama/Meta-Llama-3-70B-Instruct": {
|
543
|
-
"description": "LLaMA 3 supporte la génération de texte de grande capacité et l'analyse des instructions."
|
544
|
-
},
|
545
580
|
"meta-llama/Meta-Llama-3-70B-Instruct-Lite": {
|
546
581
|
"description": "Llama 3 70B Instruct Lite est adapté aux environnements nécessitant une haute performance et une faible latence."
|
547
582
|
},
|
@@ -620,12 +655,21 @@
|
|
620
655
|
"mistral-large": {
|
621
656
|
"description": "Mixtral Large est le modèle phare de Mistral, combinant des capacités de génération de code, de mathématiques et de raisonnement, prenant en charge une fenêtre de contexte de 128k."
|
622
657
|
},
|
658
|
+
"mistral-large-2407": {
|
659
|
+
"description": "Mistral Large (2407) est un modèle de langage avancé (LLM) avec des capacités de raisonnement, de connaissance et de codage à la pointe de la technologie."
|
660
|
+
},
|
623
661
|
"mistral-large-latest": {
|
624
662
|
"description": "Mistral Large est le modèle phare, excellent pour les tâches multilingues, le raisonnement complexe et la génération de code, idéal pour des applications haut de gamme."
|
625
663
|
},
|
626
664
|
"mistral-nemo": {
|
627
665
|
"description": "Mistral Nemo, développé en collaboration entre Mistral AI et NVIDIA, est un modèle de 12B à performance efficace."
|
628
666
|
},
|
667
|
+
"mistral-small": {
|
668
|
+
"description": "Mistral Small peut être utilisé pour toute tâche basée sur le langage nécessitant une haute efficacité et une faible latence."
|
669
|
+
},
|
670
|
+
"mistral-small-latest": {
|
671
|
+
"description": "Mistral Small est une option rentable, rapide et fiable, adaptée aux cas d'utilisation tels que la traduction, le résumé et l'analyse des sentiments."
|
672
|
+
},
|
629
673
|
"mistralai/Mistral-7B-Instruct-v0.1": {
|
630
674
|
"description": "Mistral (7B) Instruct est réputé pour ses performances élevées, adapté à diverses tâches linguistiques."
|
631
675
|
},
|
@@ -713,20 +757,29 @@
|
|
713
757
|
"phi3:14b": {
|
714
758
|
"description": "Phi-3 est un modèle ouvert léger lancé par Microsoft, adapté à une intégration efficace et à un raisonnement de connaissances à grande échelle."
|
715
759
|
},
|
760
|
+
"pixtral-12b-2409": {
|
761
|
+
"description": "Le modèle Pixtral montre de puissantes capacités dans des tâches telles que la compréhension des graphiques et des images, le questionnement de documents, le raisonnement multimodal et le respect des instructions, capable d'ingérer des images à résolution naturelle et à rapport d'aspect, tout en traitant un nombre quelconque d'images dans une fenêtre de contexte longue allant jusqu'à 128K tokens."
|
762
|
+
},
|
763
|
+
"qwen-coder-turbo-latest": {
|
764
|
+
"description": "Le modèle de code Tongyi Qwen."
|
765
|
+
},
|
716
766
|
"qwen-long": {
|
717
767
|
"description": "Qwen est un modèle de langage à grande échelle, prenant en charge un contexte de texte long, ainsi que des fonctionnalités de dialogue basées sur des documents longs et multiples."
|
718
768
|
},
|
719
|
-
"qwen-
|
720
|
-
"description": "
|
769
|
+
"qwen-math-plus-latest": {
|
770
|
+
"description": "Le modèle de langage Tongyi Qwen pour les mathématiques, spécialement conçu pour résoudre des problèmes mathématiques."
|
721
771
|
},
|
722
|
-
"qwen-
|
723
|
-
"description": "
|
772
|
+
"qwen-math-turbo-latest": {
|
773
|
+
"description": "Le modèle de langage Tongyi Qwen pour les mathématiques, spécialement conçu pour résoudre des problèmes mathématiques."
|
724
774
|
},
|
725
|
-
"qwen-
|
726
|
-
"description": "
|
775
|
+
"qwen-max-latest": {
|
776
|
+
"description": "Le modèle de langage à grande échelle Tongyi Qwen de niveau milliard, prenant en charge des entrées en chinois, en anglais et dans d'autres langues, actuellement le modèle API derrière la version produit Tongyi Qwen 2.5."
|
727
777
|
},
|
728
|
-
"qwen-
|
729
|
-
"description": "
|
778
|
+
"qwen-plus-latest": {
|
779
|
+
"description": "La version améliorée du modèle de langage à grande échelle Tongyi Qwen, prenant en charge des entrées en chinois, en anglais et dans d'autres langues."
|
780
|
+
},
|
781
|
+
"qwen-turbo-latest": {
|
782
|
+
"description": "Le modèle de langage à grande échelle Tongyi Qwen, prenant en charge des entrées en chinois, en anglais et dans d'autres langues."
|
730
783
|
},
|
731
784
|
"qwen-vl-chat-v1": {
|
732
785
|
"description": "Qwen VL prend en charge des modes d'interaction flexibles, y compris la capacité de poser des questions à plusieurs images, des dialogues multi-tours, et plus encore."
|
@@ -746,17 +799,32 @@
|
|
746
799
|
"qwen2": {
|
747
800
|
"description": "Qwen2 est le nouveau modèle de langage à grande échelle d'Alibaba, offrant d'excellentes performances pour des besoins d'application diversifiés."
|
748
801
|
},
|
749
|
-
"qwen2-
|
750
|
-
"description": "
|
802
|
+
"qwen2.5-14b-instruct": {
|
803
|
+
"description": "Le modèle de 14B de Tongyi Qwen 2.5, open source."
|
804
|
+
},
|
805
|
+
"qwen2.5-32b-instruct": {
|
806
|
+
"description": "Le modèle de 32B de Tongyi Qwen 2.5, open source."
|
807
|
+
},
|
808
|
+
"qwen2.5-72b-instruct": {
|
809
|
+
"description": "Le modèle de 72B de Tongyi Qwen 2.5, open source."
|
810
|
+
},
|
811
|
+
"qwen2.5-7b-instruct": {
|
812
|
+
"description": "Le modèle de 7B de Tongyi Qwen 2.5, open source."
|
813
|
+
},
|
814
|
+
"qwen2.5-coder-1.5b-instruct": {
|
815
|
+
"description": "Version open source du modèle de code Tongyi Qwen."
|
816
|
+
},
|
817
|
+
"qwen2.5-coder-7b-instruct": {
|
818
|
+
"description": "Version open source du modèle de code Tongyi Qwen."
|
751
819
|
},
|
752
|
-
"qwen2-
|
753
|
-
"description": "
|
820
|
+
"qwen2.5-math-1.5b-instruct": {
|
821
|
+
"description": "Le modèle Qwen-Math possède de puissantes capacités de résolution de problèmes mathématiques."
|
754
822
|
},
|
755
|
-
"qwen2-
|
756
|
-
"description": "
|
823
|
+
"qwen2.5-math-72b-instruct": {
|
824
|
+
"description": "Le modèle Qwen-Math possède de puissantes capacités de résolution de problèmes mathématiques."
|
757
825
|
},
|
758
|
-
"qwen2-math-
|
759
|
-
"description": "Le modèle
|
826
|
+
"qwen2.5-math-7b-instruct": {
|
827
|
+
"description": "Le modèle Qwen-Math possède de puissantes capacités de résolution de problèmes mathématiques."
|
760
828
|
},
|
761
829
|
"qwen2:0.5b": {
|
762
830
|
"description": "Qwen2 est le nouveau modèle de langage à grande échelle d'Alibaba, offrant d'excellentes performances pour des besoins d'application diversifiés."
|
@@ -1,4 +1,5 @@
|
|
1
1
|
{
|
2
|
+
"ai21": {},
|
2
3
|
"ai360": {
|
3
4
|
"description": "360 AI est une plateforme de modèles et de services IA lancée par la société 360, offrant divers modèles avancés de traitement du langage naturel, y compris 360GPT2 Pro, 360GPT Pro, 360GPT Turbo et 360GPT Turbo Responsibility 8K. Ces modèles combinent de grands paramètres et des capacités multimodales, largement utilisés dans la génération de texte, la compréhension sémantique, les systèmes de dialogue et la génération de code. Grâce à une stratégie de tarification flexible, 360 AI répond à des besoins variés des utilisateurs, soutenant l'intégration des développeurs et favorisant l'innovation et le développement des applications intelligentes."
|
4
5
|
},
|
@@ -20,6 +21,9 @@
|
|
20
21
|
"fireworksai": {
|
21
22
|
"description": "Fireworks AI est un fournisseur de services de modèles linguistiques avancés, axé sur les appels de fonction et le traitement multimodal. Son dernier modèle, Firefunction V2, basé sur Llama-3, est optimisé pour les appels de fonction, les dialogues et le suivi des instructions. Le modèle de langage visuel FireLLaVA-13B prend en charge les entrées mixtes d'images et de texte. D'autres modèles notables incluent la série Llama et la série Mixtral, offrant un support efficace pour le suivi et la génération d'instructions multilingues."
|
22
23
|
},
|
24
|
+
"github": {
|
25
|
+
"description": "Avec les modèles GitHub, les développeurs peuvent devenir des ingénieurs en IA et créer avec les modèles d'IA les plus avancés de l'industrie."
|
26
|
+
},
|
23
27
|
"google": {
|
24
28
|
"description": "La série Gemini de Google est son modèle IA le plus avancé et polyvalent, développé par Google DeepMind, conçu pour le multimédia, prenant en charge la compréhension et le traitement sans couture de texte, code, images, audio et vidéo. Adapté à divers environnements, des centres de données aux appareils mobiles, il améliore considérablement l'efficacité et l'applicabilité des modèles IA."
|
25
29
|
},
|
@@ -2,9 +2,6 @@
|
|
2
2
|
"01-ai/Yi-1.5-34B-Chat-16K": {
|
3
3
|
"description": "Yi-1.5 34B, con un ricco campione di addestramento, offre prestazioni superiori nelle applicazioni di settore."
|
4
4
|
},
|
5
|
-
"01-ai/Yi-1.5-6B-Chat": {
|
6
|
-
"description": "Yi-1.5 è una versione evoluta della serie Yi, con pre-addestramento di alta qualità e un ricco set di dati di fine-tuning."
|
7
|
-
},
|
8
5
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
6
|
"description": "Yi-1.5 9B supporta 16K Tokens, offrendo capacità di generazione linguistica efficienti e fluide."
|
10
7
|
},
|
@@ -47,41 +44,56 @@
|
|
47
44
|
"NousResearch/Nous-Hermes-2-Yi-34B": {
|
48
45
|
"description": "Nous Hermes-2 Yi (34B) offre output linguistici ottimizzati e possibilità di applicazione diversificate."
|
49
46
|
},
|
47
|
+
"Phi-3-5-mini-instruct": {
|
48
|
+
"description": "Aggiornamento del modello Phi-3-mini."
|
49
|
+
},
|
50
|
+
"Phi-3-medium-128k-instruct": {
|
51
|
+
"description": "Stesso modello Phi-3-medium, ma con una dimensione di contesto più grande per RAG o prompting a pochi colpi."
|
52
|
+
},
|
53
|
+
"Phi-3-medium-4k-instruct": {
|
54
|
+
"description": "Un modello con 14 miliardi di parametri, dimostra una qualità migliore rispetto a Phi-3-mini, con un focus su dati densi di ragionamento di alta qualità."
|
55
|
+
},
|
56
|
+
"Phi-3-mini-128k-instruct": {
|
57
|
+
"description": "Stesso modello Phi-3-mini, ma con una dimensione di contesto più grande per RAG o prompting a pochi colpi."
|
58
|
+
},
|
59
|
+
"Phi-3-mini-4k-instruct": {
|
60
|
+
"description": "Il membro più piccolo della famiglia Phi-3. Ottimizzato sia per qualità che per bassa latenza."
|
61
|
+
},
|
62
|
+
"Phi-3-small-128k-instruct": {
|
63
|
+
"description": "Stesso modello Phi-3-small, ma con una dimensione di contesto più grande per RAG o prompting a pochi colpi."
|
64
|
+
},
|
65
|
+
"Phi-3-small-8k-instruct": {
|
66
|
+
"description": "Un modello con 7 miliardi di parametri, dimostra una qualità migliore rispetto a Phi-3-mini, con un focus su dati densi di ragionamento di alta qualità."
|
67
|
+
},
|
50
68
|
"Pro-128k": {
|
51
69
|
"description": "Spark Pro-128K è dotato di capacità di elaborazione del contesto eccezionalmente grandi, in grado di gestire fino a 128K di informazioni contestuali, particolarmente adatto per contenuti lunghi che richiedono analisi complete e gestione di associazioni logiche a lungo termine, fornendo logica fluida e coerenza in comunicazioni testuali complesse e supporto per citazioni varie."
|
52
70
|
},
|
53
71
|
"Qwen/Qwen1.5-110B-Chat": {
|
54
72
|
"description": "Come versione beta di Qwen2, Qwen1.5 utilizza dati su larga scala per realizzare funzionalità di dialogo più precise."
|
55
73
|
},
|
56
|
-
"Qwen/Qwen1.5-14B-Chat": {
|
57
|
-
"description": "Qwen1.5 è addestrato su un vasto dataset, eccellente in compiti linguistici complessi."
|
58
|
-
},
|
59
|
-
"Qwen/Qwen1.5-32B-Chat": {
|
60
|
-
"description": "Qwen1.5 ha capacità di domande e risposte multi-dominio e generazione di testi."
|
61
|
-
},
|
62
74
|
"Qwen/Qwen1.5-72B-Chat": {
|
63
75
|
"description": "Qwen 1.5 Chat (72B) offre risposte rapide e capacità di dialogo naturale, adatto per ambienti multilingue."
|
64
76
|
},
|
65
|
-
"Qwen/
|
66
|
-
"description": "
|
77
|
+
"Qwen/Qwen2-72B-Instruct": {
|
78
|
+
"description": "Qwen2 è un modello di linguaggio universale avanzato, supportando vari tipi di istruzioni."
|
67
79
|
},
|
68
|
-
"Qwen/Qwen2
|
69
|
-
"description": "Qwen2 è una nuova serie di modelli
|
80
|
+
"Qwen/Qwen2.5-14B-Instruct": {
|
81
|
+
"description": "Qwen2.5 è una nuova serie di modelli di linguaggio di grandi dimensioni, progettata per ottimizzare l'elaborazione di compiti istruzionali."
|
70
82
|
},
|
71
|
-
"Qwen/Qwen2-
|
72
|
-
"description": "Qwen2 è una nuova serie
|
83
|
+
"Qwen/Qwen2.5-32B-Instruct": {
|
84
|
+
"description": "Qwen2.5 è una nuova serie di modelli di linguaggio di grandi dimensioni, progettata per ottimizzare l'elaborazione di compiti istruzionali."
|
73
85
|
},
|
74
|
-
"Qwen/Qwen2-72B-Instruct": {
|
75
|
-
"description": "Qwen2 è
|
86
|
+
"Qwen/Qwen2.5-72B-Instruct": {
|
87
|
+
"description": "Qwen2.5 è una nuova serie di modelli di linguaggio di grandi dimensioni, con capacità di comprensione e generazione superiori."
|
76
88
|
},
|
77
|
-
"Qwen/Qwen2-7B-Instruct": {
|
78
|
-
"description": "Qwen2 è una nuova serie di modelli
|
89
|
+
"Qwen/Qwen2.5-7B-Instruct": {
|
90
|
+
"description": "Qwen2.5 è una nuova serie di modelli di linguaggio di grandi dimensioni, progettata per ottimizzare l'elaborazione di compiti istruzionali."
|
79
91
|
},
|
80
|
-
"Qwen/Qwen2-
|
81
|
-
"description": "Qwen2-
|
92
|
+
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
93
|
+
"description": "Qwen2.5-Coder si concentra sulla scrittura di codice."
|
82
94
|
},
|
83
|
-
"
|
84
|
-
"description": "
|
95
|
+
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
96
|
+
"description": "Qwen2.5-Math si concentra sulla risoluzione di problemi nel campo della matematica, fornendo risposte professionali a domande di alta difficoltà."
|
85
97
|
},
|
86
98
|
"THUDM/glm-4-9b-chat": {
|
87
99
|
"description": "GLM-4 9B è una versione open source, progettata per fornire un'esperienza di dialogo ottimizzata per applicazioni conversazionali."
|
@@ -158,6 +170,15 @@
|
|
158
170
|
"accounts/yi-01-ai/models/yi-large": {
|
159
171
|
"description": "Il modello Yi-Large offre capacità eccezionali di elaborazione multilingue, utilizzabile per vari compiti di generazione e comprensione del linguaggio."
|
160
172
|
},
|
173
|
+
"ai21-jamba-1.5-large": {
|
174
|
+
"description": "Un modello multilingue con 398 miliardi di parametri (94 miliardi attivi), offre una finestra di contesto lunga 256K, chiamata di funzione, output strutturato e generazione ancorata."
|
175
|
+
},
|
176
|
+
"ai21-jamba-1.5-mini": {
|
177
|
+
"description": "Un modello multilingue con 52 miliardi di parametri (12 miliardi attivi), offre una finestra di contesto lunga 256K, chiamata di funzione, output strutturato e generazione ancorata."
|
178
|
+
},
|
179
|
+
"ai21-jamba-instruct": {
|
180
|
+
"description": "Un modello LLM basato su Mamba di grado di produzione per ottenere prestazioni, qualità e efficienza dei costi di prim'ordine."
|
181
|
+
},
|
161
182
|
"anthropic.claude-3-5-sonnet-20240620-v1:0": {
|
162
183
|
"description": "Claude 3.5 Sonnet ha elevato gli standard del settore, superando i modelli concorrenti e Claude 3 Opus, dimostrando prestazioni eccezionali in una vasta gamma di valutazioni, mantenendo la velocità e i costi dei nostri modelli di livello medio."
|
163
184
|
},
|
@@ -254,6 +275,12 @@
|
|
254
275
|
"cognitivecomputations/dolphin-mixtral-8x22b": {
|
255
276
|
"description": "Dolphin Mixtral 8x22B è un modello progettato per seguire istruzioni, dialogo e programmazione."
|
256
277
|
},
|
278
|
+
"cohere-command-r": {
|
279
|
+
"description": "Command R è un modello generativo scalabile mirato a RAG e all'uso di strumenti per abilitare l'IA su scala aziendale."
|
280
|
+
},
|
281
|
+
"cohere-command-r-plus": {
|
282
|
+
"description": "Command R+ è un modello ottimizzato per RAG all'avanguardia progettato per affrontare carichi di lavoro di livello aziendale."
|
283
|
+
},
|
257
284
|
"command-r": {
|
258
285
|
"description": "Command R è un LLM ottimizzato per compiti di dialogo e contesti lunghi, particolarmente adatto per interazioni dinamiche e gestione della conoscenza."
|
259
286
|
},
|
@@ -263,12 +290,6 @@
|
|
263
290
|
"databricks/dbrx-instruct": {
|
264
291
|
"description": "DBRX Instruct offre capacità di elaborazione di istruzioni altamente affidabili, supportando applicazioni in vari settori."
|
265
292
|
},
|
266
|
-
"deepseek-ai/DeepSeek-Coder-V2-Instruct": {
|
267
|
-
"description": "DeepSeek Coder V2 è progettato per compiti di codifica, focalizzandosi sulla generazione di codice efficiente."
|
268
|
-
},
|
269
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
270
|
-
"description": "DeepSeek V2 ha 6.7 miliardi di parametri e supporta l'elaborazione di testi in inglese e cinese."
|
271
|
-
},
|
272
293
|
"deepseek-ai/DeepSeek-V2.5": {
|
273
294
|
"description": "DeepSeek V2.5 combina le eccellenti caratteristiche delle versioni precedenti, migliorando le capacità generali e di codifica."
|
274
295
|
},
|
@@ -467,6 +488,8 @@
|
|
467
488
|
"internlm/internlm2_5-7b-chat": {
|
468
489
|
"description": "InternLM2.5 offre soluzioni di dialogo intelligente in vari scenari."
|
469
490
|
},
|
491
|
+
"jamba-1.5-large": {},
|
492
|
+
"jamba-1.5-mini": {},
|
470
493
|
"llama-3.1-70b-instruct": {
|
471
494
|
"description": "Il modello Llama 3.1 70B Instruct, con 70B parametri, offre prestazioni eccezionali in generazione di testi di grandi dimensioni e compiti di istruzione."
|
472
495
|
},
|
@@ -530,6 +553,21 @@
|
|
530
553
|
"mathstral": {
|
531
554
|
"description": "MathΣtral è progettato per la ricerca scientifica e il ragionamento matematico, offre capacità di calcolo efficaci e interpretazione dei risultati."
|
532
555
|
},
|
556
|
+
"meta-llama-3-70b-instruct": {
|
557
|
+
"description": "Un potente modello con 70 miliardi di parametri che eccelle nel ragionamento, nella codifica e nelle ampie applicazioni linguistiche."
|
558
|
+
},
|
559
|
+
"meta-llama-3-8b-instruct": {
|
560
|
+
"description": "Un modello versatile con 8 miliardi di parametri ottimizzato per compiti di dialogo e generazione di testo."
|
561
|
+
},
|
562
|
+
"meta-llama-3.1-405b-instruct": {
|
563
|
+
"description": "I modelli di testo solo ottimizzati per istruzioni Llama 3.1 sono progettati per casi d'uso di dialogo multilingue e superano molti dei modelli di chat open source e chiusi disponibili su benchmark industriali comuni."
|
564
|
+
},
|
565
|
+
"meta-llama-3.1-70b-instruct": {
|
566
|
+
"description": "I modelli di testo solo ottimizzati per istruzioni Llama 3.1 sono progettati per casi d'uso di dialogo multilingue e superano molti dei modelli di chat open source e chiusi disponibili su benchmark industriali comuni."
|
567
|
+
},
|
568
|
+
"meta-llama-3.1-8b-instruct": {
|
569
|
+
"description": "I modelli di testo solo ottimizzati per istruzioni Llama 3.1 sono progettati per casi d'uso di dialogo multilingue e superano molti dei modelli di chat open source e chiusi disponibili su benchmark industriali comuni."
|
570
|
+
},
|
533
571
|
"meta-llama/Llama-2-13b-chat-hf": {
|
534
572
|
"description": "LLaMA-2 Chat (13B) offre eccellenti capacità di elaborazione linguistica e un'interazione di alta qualità."
|
535
573
|
},
|
@@ -539,9 +577,6 @@
|
|
539
577
|
"meta-llama/Llama-3-8b-chat-hf": {
|
540
578
|
"description": "LLaMA-3 Chat (8B) offre supporto multilingue, coprendo una vasta gamma di conoscenze di dominio."
|
541
579
|
},
|
542
|
-
"meta-llama/Meta-Llama-3-70B-Instruct": {
|
543
|
-
"description": "LLaMA 3 supporta la generazione di testi di grande capacità e l'analisi delle istruzioni."
|
544
|
-
},
|
545
580
|
"meta-llama/Meta-Llama-3-70B-Instruct-Lite": {
|
546
581
|
"description": "Llama 3 70B Instruct Lite è adatto per ambienti che richiedono alta efficienza e bassa latenza."
|
547
582
|
},
|
@@ -620,12 +655,21 @@
|
|
620
655
|
"mistral-large": {
|
621
656
|
"description": "Mixtral Large è il modello di punta di Mistral, combinando capacità di generazione di codice, matematica e ragionamento, supporta una finestra di contesto di 128k."
|
622
657
|
},
|
658
|
+
"mistral-large-2407": {
|
659
|
+
"description": "Mistral Large (2407) è un modello di linguaggio avanzato (LLM) con capacità di ragionamento, conoscenza e codifica all'avanguardia."
|
660
|
+
},
|
623
661
|
"mistral-large-latest": {
|
624
662
|
"description": "Mistral Large è il modello di punta, specializzato in compiti multilingue, ragionamento complesso e generazione di codice, è la scelta ideale per applicazioni di alta gamma."
|
625
663
|
},
|
626
664
|
"mistral-nemo": {
|
627
665
|
"description": "Mistral Nemo è un modello da 12B lanciato in collaborazione tra Mistral AI e NVIDIA, offre prestazioni eccellenti."
|
628
666
|
},
|
667
|
+
"mistral-small": {
|
668
|
+
"description": "Mistral Small può essere utilizzato in qualsiasi compito basato su linguaggio che richiede alta efficienza e bassa latenza."
|
669
|
+
},
|
670
|
+
"mistral-small-latest": {
|
671
|
+
"description": "Mistral Small è un'opzione economica, veloce e affidabile, adatta per casi d'uso come traduzione, sintesi e analisi del sentiment."
|
672
|
+
},
|
629
673
|
"mistralai/Mistral-7B-Instruct-v0.1": {
|
630
674
|
"description": "Mistral (7B) Instruct è noto per le sue alte prestazioni, adatto per vari compiti linguistici."
|
631
675
|
},
|
@@ -713,20 +757,29 @@
|
|
713
757
|
"phi3:14b": {
|
714
758
|
"description": "Phi-3 è un modello open source leggero lanciato da Microsoft, adatto per integrazioni efficienti e ragionamento su larga scala."
|
715
759
|
},
|
760
|
+
"pixtral-12b-2409": {
|
761
|
+
"description": "Il modello Pixtral dimostra potenti capacità in compiti di comprensione di grafici e immagini, domande e risposte su documenti, ragionamento multimodale e rispetto delle istruzioni, in grado di elaborare immagini a risoluzione naturale e proporzioni, e di gestire un numero arbitrario di immagini in una finestra di contesto lunga fino a 128K token."
|
762
|
+
},
|
763
|
+
"qwen-coder-turbo-latest": {
|
764
|
+
"description": "Modello di codice Tongyi Qwen."
|
765
|
+
},
|
716
766
|
"qwen-long": {
|
717
767
|
"description": "Qwen è un modello di linguaggio su larga scala che supporta contesti di testo lunghi e funzionalità di dialogo basate su documenti lunghi e multipli."
|
718
768
|
},
|
719
|
-
"qwen-
|
720
|
-
"description": "
|
769
|
+
"qwen-math-plus-latest": {
|
770
|
+
"description": "Il modello matematico Tongyi Qwen è progettato specificamente per la risoluzione di problemi matematici."
|
721
771
|
},
|
722
|
-
"qwen-
|
723
|
-
"description": "
|
772
|
+
"qwen-math-turbo-latest": {
|
773
|
+
"description": "Il modello matematico Tongyi Qwen è progettato specificamente per la risoluzione di problemi matematici."
|
724
774
|
},
|
725
|
-
"qwen-
|
726
|
-
"description": "
|
775
|
+
"qwen-max-latest": {
|
776
|
+
"description": "Modello linguistico su larga scala Tongyi Qwen con miliardi di parametri, supporta input in diverse lingue tra cui cinese e inglese, attualmente il modello API dietro la versione del prodotto Tongyi Qwen 2.5."
|
727
777
|
},
|
728
|
-
"qwen-
|
729
|
-
"description": "
|
778
|
+
"qwen-plus-latest": {
|
779
|
+
"description": "Versione potenziata del modello linguistico su larga scala Tongyi Qwen, supporta input in diverse lingue tra cui cinese e inglese."
|
780
|
+
},
|
781
|
+
"qwen-turbo-latest": {
|
782
|
+
"description": "Il modello linguistico su larga scala Tongyi Qwen, supporta input in diverse lingue tra cui cinese e inglese."
|
730
783
|
},
|
731
784
|
"qwen-vl-chat-v1": {
|
732
785
|
"description": "Qwen VL supporta modalità di interazione flessibili, inclusi modelli di domande e risposte multipli e creativi."
|
@@ -746,17 +799,32 @@
|
|
746
799
|
"qwen2": {
|
747
800
|
"description": "Qwen2 è la nuova generazione di modelli di linguaggio su larga scala di Alibaba, supporta prestazioni eccellenti per esigenze applicative diversificate."
|
748
801
|
},
|
749
|
-
"qwen2-
|
750
|
-
"description": "
|
802
|
+
"qwen2.5-14b-instruct": {
|
803
|
+
"description": "Modello da 14B di Tongyi Qwen 2.5, open source."
|
804
|
+
},
|
805
|
+
"qwen2.5-32b-instruct": {
|
806
|
+
"description": "Modello da 32B di Tongyi Qwen 2.5, open source."
|
807
|
+
},
|
808
|
+
"qwen2.5-72b-instruct": {
|
809
|
+
"description": "Modello da 72B di Tongyi Qwen 2.5, open source."
|
810
|
+
},
|
811
|
+
"qwen2.5-7b-instruct": {
|
812
|
+
"description": "Modello da 7B di Tongyi Qwen 2.5, open source."
|
813
|
+
},
|
814
|
+
"qwen2.5-coder-1.5b-instruct": {
|
815
|
+
"description": "Versione open source del modello di codice Tongyi Qwen."
|
816
|
+
},
|
817
|
+
"qwen2.5-coder-7b-instruct": {
|
818
|
+
"description": "Versione open source del modello di codice Tongyi Qwen."
|
751
819
|
},
|
752
|
-
"qwen2-
|
753
|
-
"description": "
|
820
|
+
"qwen2.5-math-1.5b-instruct": {
|
821
|
+
"description": "Il modello Qwen-Math ha potenti capacità di risoluzione di problemi matematici."
|
754
822
|
},
|
755
|
-
"qwen2-
|
756
|
-
"description": "
|
823
|
+
"qwen2.5-math-72b-instruct": {
|
824
|
+
"description": "Il modello Qwen-Math ha potenti capacità di risoluzione di problemi matematici."
|
757
825
|
},
|
758
|
-
"qwen2-math-
|
759
|
-
"description": "Il modello
|
826
|
+
"qwen2.5-math-7b-instruct": {
|
827
|
+
"description": "Il modello Qwen-Math ha potenti capacità di risoluzione di problemi matematici."
|
760
828
|
},
|
761
829
|
"qwen2:0.5b": {
|
762
830
|
"description": "Qwen2 è la nuova generazione di modelli di linguaggio su larga scala di Alibaba, supporta prestazioni eccellenti per esigenze applicative diversificate."
|
@@ -1,4 +1,5 @@
|
|
1
1
|
{
|
2
|
+
"ai21": {},
|
2
3
|
"ai360": {
|
3
4
|
"description": "360 AI è una piattaforma di modelli e servizi AI lanciata da 360 Company, che offre vari modelli avanzati di elaborazione del linguaggio naturale, tra cui 360GPT2 Pro, 360GPT Pro, 360GPT Turbo e 360GPT Turbo Responsibility 8K. Questi modelli combinano parametri su larga scala e capacità multimodali, trovando ampio utilizzo in generazione di testo, comprensione semantica, sistemi di dialogo e generazione di codice. Con strategie di prezzo flessibili, 360 AI soddisfa le esigenze diversificate degli utenti, supportando l'integrazione degli sviluppatori e promuovendo l'innovazione e lo sviluppo delle applicazioni intelligenti."
|
4
5
|
},
|
@@ -20,6 +21,9 @@
|
|
20
21
|
"fireworksai": {
|
21
22
|
"description": "Fireworks AI è un fornitore leader di servizi di modelli linguistici avanzati, focalizzato su chiamate funzionali e elaborazione multimodale. Il suo ultimo modello Firefunction V2, basato su Llama-3, è ottimizzato per chiamate di funzione, dialogo e rispetto delle istruzioni. Il modello di linguaggio visivo FireLLaVA-13B supporta input misti di immagini e testo. Altri modelli notevoli includono la serie Llama e la serie Mixtral, offrendo supporto efficiente per il rispetto e la generazione di istruzioni multilingue."
|
22
23
|
},
|
24
|
+
"github": {
|
25
|
+
"description": "Con i modelli di GitHub, gli sviluppatori possono diventare ingegneri AI e costruire con i modelli AI leader del settore."
|
26
|
+
},
|
23
27
|
"google": {
|
24
28
|
"description": "La serie Gemini di Google è il suo modello AI più avanzato e versatile, sviluppato da Google DeepMind, progettato per il multimodale, supportando la comprensione e l'elaborazione senza soluzione di continuità di testo, codice, immagini, audio e video. Adatto a una varietà di ambienti, dai data center ai dispositivi mobili, ha notevolmente migliorato l'efficienza e l'ampiezza delle applicazioni dei modelli AI."
|
25
29
|
},
|