@lobehub/chat 1.19.14 → 1.19.15
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +25 -0
- package/locales/ar/models.json +116 -48
- package/locales/ar/providers.json +4 -0
- package/locales/bg-BG/models.json +116 -48
- package/locales/bg-BG/providers.json +4 -0
- package/locales/de-DE/models.json +116 -48
- package/locales/de-DE/providers.json +4 -0
- package/locales/en-US/models.json +116 -48
- package/locales/en-US/providers.json +4 -0
- package/locales/es-ES/models.json +116 -48
- package/locales/es-ES/providers.json +4 -0
- package/locales/fr-FR/models.json +116 -48
- package/locales/fr-FR/providers.json +4 -0
- package/locales/it-IT/models.json +0 -60
- package/locales/it-IT/providers.json +4 -0
- package/locales/ja-JP/models.json +116 -48
- package/locales/ja-JP/providers.json +4 -0
- package/locales/ko-KR/models.json +116 -48
- package/locales/ko-KR/providers.json +4 -0
- package/locales/nl-NL/models.json +0 -60
- package/locales/pl-PL/models.json +0 -60
- package/locales/pt-BR/models.json +116 -48
- package/locales/pt-BR/providers.json +4 -0
- package/locales/ru-RU/models.json +116 -48
- package/locales/ru-RU/providers.json +4 -0
- package/locales/tr-TR/models.json +116 -48
- package/locales/tr-TR/providers.json +4 -0
- package/locales/vi-VN/models.json +0 -60
- package/locales/zh-CN/models.json +122 -54
- package/locales/zh-CN/providers.json +4 -0
- package/locales/zh-TW/models.json +116 -48
- package/locales/zh-TW/providers.json +4 -0
- package/package.json +1 -1
@@ -2,9 +2,6 @@
|
|
2
2
|
"01-ai/Yi-1.5-34B-Chat-16K": {
|
3
3
|
"description": "Yi-1.5 34B, con un ricco campione di addestramento, offre prestazioni superiori nelle applicazioni di settore."
|
4
4
|
},
|
5
|
-
"01-ai/Yi-1.5-6B-Chat": {
|
6
|
-
"description": "Yi-1.5 è una versione evoluta della serie Yi, con pre-addestramento di alta qualità e un ricco set di dati di fine-tuning."
|
7
|
-
},
|
8
5
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
6
|
"description": "Yi-1.5 9B supporta 16K Tokens, offrendo capacità di generazione linguistica efficienti e fluide."
|
10
7
|
},
|
@@ -53,36 +50,12 @@
|
|
53
50
|
"Qwen/Qwen1.5-110B-Chat": {
|
54
51
|
"description": "Come versione beta di Qwen2, Qwen1.5 utilizza dati su larga scala per realizzare funzionalità di dialogo più precise."
|
55
52
|
},
|
56
|
-
"Qwen/Qwen1.5-14B-Chat": {
|
57
|
-
"description": "Qwen1.5 è addestrato su un vasto dataset, eccellente in compiti linguistici complessi."
|
58
|
-
},
|
59
|
-
"Qwen/Qwen1.5-32B-Chat": {
|
60
|
-
"description": "Qwen1.5 ha capacità di domande e risposte multi-dominio e generazione di testi."
|
61
|
-
},
|
62
53
|
"Qwen/Qwen1.5-72B-Chat": {
|
63
54
|
"description": "Qwen 1.5 Chat (72B) offre risposte rapide e capacità di dialogo naturale, adatto per ambienti multilingue."
|
64
55
|
},
|
65
|
-
"Qwen/Qwen1.5-7B-Chat": {
|
66
|
-
"description": "Qwen1.5 migliora la capacità di espressione del dialogo combinando pre-addestramento avanzato e fine-tuning."
|
67
|
-
},
|
68
|
-
"Qwen/Qwen2-1.5B-Instruct": {
|
69
|
-
"description": "Qwen2 è una nuova serie di modelli linguistici di grandi dimensioni, progettata per ottimizzare l'elaborazione di compiti istruzionali."
|
70
|
-
},
|
71
|
-
"Qwen/Qwen2-57B-A14B-Instruct": {
|
72
|
-
"description": "Qwen2 è una nuova serie, il modello 57B A14B si distingue per le sue prestazioni eccellenti nei compiti istruzionali."
|
73
|
-
},
|
74
56
|
"Qwen/Qwen2-72B-Instruct": {
|
75
57
|
"description": "Qwen2 è un modello di linguaggio universale avanzato, supportando vari tipi di istruzioni."
|
76
58
|
},
|
77
|
-
"Qwen/Qwen2-7B-Instruct": {
|
78
|
-
"description": "Qwen2 è una nuova serie di modelli linguistici di grandi dimensioni, con capacità di comprensione e generazione più forti."
|
79
|
-
},
|
80
|
-
"Qwen/Qwen2-Math-72B-Instruct": {
|
81
|
-
"description": "Qwen2-Math si concentra sulla risoluzione di problemi nel campo della matematica, fornendo risposte professionali a domande di alta difficoltà."
|
82
|
-
},
|
83
|
-
"THUDM/chatglm3-6b": {
|
84
|
-
"description": "Come modello linguistico per conversazioni bilingue, ChatGLM3 è in grado di gestire compiti di conversione tra cinese e inglese."
|
85
|
-
},
|
86
59
|
"THUDM/glm-4-9b-chat": {
|
87
60
|
"description": "GLM-4 9B è una versione open source, progettata per fornire un'esperienza di dialogo ottimizzata per applicazioni conversazionali."
|
88
61
|
},
|
@@ -263,12 +236,6 @@
|
|
263
236
|
"databricks/dbrx-instruct": {
|
264
237
|
"description": "DBRX Instruct offre capacità di elaborazione di istruzioni altamente affidabili, supportando applicazioni in vari settori."
|
265
238
|
},
|
266
|
-
"deepseek-ai/DeepSeek-Coder-V2-Instruct": {
|
267
|
-
"description": "DeepSeek Coder V2 è progettato per compiti di codifica, focalizzandosi sulla generazione di codice efficiente."
|
268
|
-
},
|
269
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
270
|
-
"description": "DeepSeek V2 ha 6.7 miliardi di parametri e supporta l'elaborazione di testi in inglese e cinese."
|
271
|
-
},
|
272
239
|
"deepseek-ai/DeepSeek-V2.5": {
|
273
240
|
"description": "DeepSeek V2.5 combina le eccellenti caratteristiche delle versioni precedenti, migliorando le capacità generali e di codifica."
|
274
241
|
},
|
@@ -539,9 +506,6 @@
|
|
539
506
|
"meta-llama/Llama-3-8b-chat-hf": {
|
540
507
|
"description": "LLaMA-3 Chat (8B) offre supporto multilingue, coprendo una vasta gamma di conoscenze di dominio."
|
541
508
|
},
|
542
|
-
"meta-llama/Meta-Llama-3-70B-Instruct": {
|
543
|
-
"description": "LLaMA 3 supporta la generazione di testi di grande capacità e l'analisi delle istruzioni."
|
544
|
-
},
|
545
509
|
"meta-llama/Meta-Llama-3-70B-Instruct-Lite": {
|
546
510
|
"description": "Llama 3 70B Instruct Lite è adatto per ambienti che richiedono alta efficienza e bassa latenza."
|
547
511
|
},
|
@@ -716,18 +680,6 @@
|
|
716
680
|
"qwen-long": {
|
717
681
|
"description": "Qwen è un modello di linguaggio su larga scala che supporta contesti di testo lunghi e funzionalità di dialogo basate su documenti lunghi e multipli."
|
718
682
|
},
|
719
|
-
"qwen-max": {
|
720
|
-
"description": "Qwen è un modello di linguaggio su larga scala con miliardi di parametri, che supporta input in diverse lingue, tra cui cinese e inglese, attualmente utilizzato come modello API dietro il prodotto Qwen 2.5."
|
721
|
-
},
|
722
|
-
"qwen-max-longcontext": {
|
723
|
-
"description": "Qwen è un modello di linguaggio su larga scala con miliardi di parametri, che supporta input in diverse lingue, tra cui cinese e inglese, con una finestra di contesto estesa."
|
724
|
-
},
|
725
|
-
"qwen-plus": {
|
726
|
-
"description": "Qwen è una versione potenziata del modello di linguaggio su larga scala, che supporta input in diverse lingue, tra cui cinese e inglese."
|
727
|
-
},
|
728
|
-
"qwen-turbo": {
|
729
|
-
"description": "Qwen è un modello di linguaggio su larga scala che supporta input in diverse lingue, tra cui cinese e inglese."
|
730
|
-
},
|
731
683
|
"qwen-vl-chat-v1": {
|
732
684
|
"description": "Qwen VL supporta modalità di interazione flessibili, inclusi modelli di domande e risposte multipli e creativi."
|
733
685
|
},
|
@@ -746,18 +698,6 @@
|
|
746
698
|
"qwen2": {
|
747
699
|
"description": "Qwen2 è la nuova generazione di modelli di linguaggio su larga scala di Alibaba, supporta prestazioni eccellenti per esigenze applicative diversificate."
|
748
700
|
},
|
749
|
-
"qwen2-57b-a14b-instruct": {
|
750
|
-
"description": "Qwen2 è un modello open source di dimensioni 57B con 14B di parametri attivati nel modello MOE."
|
751
|
-
},
|
752
|
-
"qwen2-72b-instruct": {
|
753
|
-
"description": "Qwen2 è un modello open source di dimensioni 72B."
|
754
|
-
},
|
755
|
-
"qwen2-7b-instruct": {
|
756
|
-
"description": "Qwen2 è un modello open source di dimensioni 7B."
|
757
|
-
},
|
758
|
-
"qwen2-math-72b-instruct": {
|
759
|
-
"description": "Il modello Qwen2-Math ha potenti capacità di risoluzione di problemi matematici."
|
760
|
-
},
|
761
701
|
"qwen2:0.5b": {
|
762
702
|
"description": "Qwen2 è la nuova generazione di modelli di linguaggio su larga scala di Alibaba, supporta prestazioni eccellenti per esigenze applicative diversificate."
|
763
703
|
},
|
@@ -1,4 +1,5 @@
|
|
1
1
|
{
|
2
|
+
"ai21": {},
|
2
3
|
"ai360": {
|
3
4
|
"description": "360 AI è una piattaforma di modelli e servizi AI lanciata da 360 Company, che offre vari modelli avanzati di elaborazione del linguaggio naturale, tra cui 360GPT2 Pro, 360GPT Pro, 360GPT Turbo e 360GPT Turbo Responsibility 8K. Questi modelli combinano parametri su larga scala e capacità multimodali, trovando ampio utilizzo in generazione di testo, comprensione semantica, sistemi di dialogo e generazione di codice. Con strategie di prezzo flessibili, 360 AI soddisfa le esigenze diversificate degli utenti, supportando l'integrazione degli sviluppatori e promuovendo l'innovazione e lo sviluppo delle applicazioni intelligenti."
|
4
5
|
},
|
@@ -20,6 +21,9 @@
|
|
20
21
|
"fireworksai": {
|
21
22
|
"description": "Fireworks AI è un fornitore leader di servizi di modelli linguistici avanzati, focalizzato su chiamate funzionali e elaborazione multimodale. Il suo ultimo modello Firefunction V2, basato su Llama-3, è ottimizzato per chiamate di funzione, dialogo e rispetto delle istruzioni. Il modello di linguaggio visivo FireLLaVA-13B supporta input misti di immagini e testo. Altri modelli notevoli includono la serie Llama e la serie Mixtral, offrendo supporto efficiente per il rispetto e la generazione di istruzioni multilingue."
|
22
23
|
},
|
24
|
+
"github": {
|
25
|
+
"description": "Con i modelli di GitHub, gli sviluppatori possono diventare ingegneri AI e costruire con i modelli AI leader del settore."
|
26
|
+
},
|
23
27
|
"google": {
|
24
28
|
"description": "La serie Gemini di Google è il suo modello AI più avanzato e versatile, sviluppato da Google DeepMind, progettato per il multimodale, supportando la comprensione e l'elaborazione senza soluzione di continuità di testo, codice, immagini, audio e video. Adatto a una varietà di ambienti, dai data center ai dispositivi mobili, ha notevolmente migliorato l'efficienza e l'ampiezza delle applicazioni dei modelli AI."
|
25
29
|
},
|
@@ -2,9 +2,6 @@
|
|
2
2
|
"01-ai/Yi-1.5-34B-Chat-16K": {
|
3
3
|
"description": "Yi-1.5 34Bは豊富な訓練サンプルを用いて業界アプリケーションで優れたパフォーマンスを提供します。"
|
4
4
|
},
|
5
|
-
"01-ai/Yi-1.5-6B-Chat": {
|
6
|
-
"description": "Yi-1.5はYiシリーズの進化版で、高品質な事前学習と豊富な微調整データを持っています。"
|
7
|
-
},
|
8
5
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
6
|
"description": "Yi-1.5 9Bは16Kトークンをサポートし、高効率でスムーズな言語生成能力を提供します。"
|
10
7
|
},
|
@@ -47,41 +44,56 @@
|
|
47
44
|
"NousResearch/Nous-Hermes-2-Yi-34B": {
|
48
45
|
"description": "Nous Hermes-2 Yi (34B)は、最適化された言語出力と多様なアプリケーションの可能性を提供します。"
|
49
46
|
},
|
47
|
+
"Phi-3-5-mini-instruct": {
|
48
|
+
"description": "Phi-3-miniモデルのリフレッシュ版です。"
|
49
|
+
},
|
50
|
+
"Phi-3-medium-128k-instruct": {
|
51
|
+
"description": "同じPhi-3-mediumモデルですが、RAGまたは少数ショットプロンプティング用により大きなコンテキストサイズを持っています。"
|
52
|
+
},
|
53
|
+
"Phi-3-medium-4k-instruct": {
|
54
|
+
"description": "14Bパラメータのモデルで、Phi-3-miniよりも高品質で、質の高い推論密度のデータに焦点を当てています。"
|
55
|
+
},
|
56
|
+
"Phi-3-mini-128k-instruct": {
|
57
|
+
"description": "同じPhi-3-miniモデルですが、RAGまたは少数ショットプロンプティング用により大きなコンテキストサイズを持っています。"
|
58
|
+
},
|
59
|
+
"Phi-3-mini-4k-instruct": {
|
60
|
+
"description": "Phi-3ファミリーの最小メンバー。品質と低遅延の両方に最適化されています。"
|
61
|
+
},
|
62
|
+
"Phi-3-small-128k-instruct": {
|
63
|
+
"description": "同じPhi-3-smallモデルですが、RAGまたは少数ショットプロンプティング用により大きなコンテキストサイズを持っています。"
|
64
|
+
},
|
65
|
+
"Phi-3-small-8k-instruct": {
|
66
|
+
"description": "7Bパラメータのモデルで、Phi-3-miniよりも高品質で、質の高い推論密度のデータに焦点を当てています。"
|
67
|
+
},
|
50
68
|
"Pro-128k": {
|
51
69
|
"description": "Spark Pro-128Kは特大のコンテキスト処理能力を備え、最大128Kのコンテキスト情報を処理でき、特に全体分析や長期的な論理関連処理が必要な長文コンテンツに適しており、複雑なテキストコミュニケーションにおいて流暢で一貫した論理と多様な引用サポートを提供します。"
|
52
70
|
},
|
53
71
|
"Qwen/Qwen1.5-110B-Chat": {
|
54
72
|
"description": "Qwen2のテスト版として、Qwen1.5は大規模データを使用してより正確な対話機能を実現しました。"
|
55
73
|
},
|
56
|
-
"Qwen/Qwen1.5-14B-Chat": {
|
57
|
-
"description": "Qwen1.5は大規模データセットで訓練され、複雑な言語タスクに優れています。"
|
58
|
-
},
|
59
|
-
"Qwen/Qwen1.5-32B-Chat": {
|
60
|
-
"description": "Qwen1.5は多分野の問答とテキスト生成の能力を備えています。"
|
61
|
-
},
|
62
74
|
"Qwen/Qwen1.5-72B-Chat": {
|
63
75
|
"description": "Qwen 1.5 Chat (72B)は、迅速な応答と自然な対話能力を提供し、多言語環境に適しています。"
|
64
76
|
},
|
65
|
-
"Qwen/
|
66
|
-
"description": "
|
77
|
+
"Qwen/Qwen2-72B-Instruct": {
|
78
|
+
"description": "Qwen2は、先進的な汎用言語モデルであり、さまざまな指示タイプをサポートします。"
|
67
79
|
},
|
68
|
-
"Qwen/Qwen2
|
69
|
-
"description": "Qwen2
|
80
|
+
"Qwen/Qwen2.5-14B-Instruct": {
|
81
|
+
"description": "Qwen2.5は、新しい大型言語モデルシリーズで、指示型タスクの処理を最適化することを目的としています。"
|
70
82
|
},
|
71
|
-
"Qwen/Qwen2-
|
72
|
-
"description": "Qwen2
|
83
|
+
"Qwen/Qwen2.5-32B-Instruct": {
|
84
|
+
"description": "Qwen2.5は、新しい大型言語モデルシリーズで、指示型タスクの処理を最適化することを目的としています。"
|
73
85
|
},
|
74
|
-
"Qwen/Qwen2-72B-Instruct": {
|
75
|
-
"description": "Qwen2
|
86
|
+
"Qwen/Qwen2.5-72B-Instruct": {
|
87
|
+
"description": "Qwen2.5は、新しい大型言語モデルシリーズで、より強力な理解と生成能力を持っています。"
|
76
88
|
},
|
77
|
-
"Qwen/Qwen2-7B-Instruct": {
|
78
|
-
"description": "Qwen2
|
89
|
+
"Qwen/Qwen2.5-7B-Instruct": {
|
90
|
+
"description": "Qwen2.5は、新しい大型言語モデルシリーズで、指示型タスクの処理を最適化することを目的としています。"
|
79
91
|
},
|
80
|
-
"Qwen/Qwen2-
|
81
|
-
"description": "Qwen2-
|
92
|
+
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
93
|
+
"description": "Qwen2.5-Coderは、コード作成に特化しています。"
|
82
94
|
},
|
83
|
-
"
|
84
|
-
"description": "
|
95
|
+
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
96
|
+
"description": "Qwen2.5-Mathは、数学分野の問題解決に特化しており、高難度の問題に対して専門的な解答を提供します。"
|
85
97
|
},
|
86
98
|
"THUDM/glm-4-9b-chat": {
|
87
99
|
"description": "GLM-4 9Bはオープンソース版で、会話アプリケーションに最適化された対話体験を提供します。"
|
@@ -158,6 +170,15 @@
|
|
158
170
|
"accounts/yi-01-ai/models/yi-large": {
|
159
171
|
"description": "Yi-Largeモデルは、卓越した多言語処理能力を持ち、さまざまな言語生成と理解タスクに使用できます。"
|
160
172
|
},
|
173
|
+
"ai21-jamba-1.5-large": {
|
174
|
+
"description": "398Bパラメータ(94Bアクティブ)の多言語モデルで、256Kの長いコンテキストウィンドウ、関数呼び出し、構造化出力、基盤生成を提供します。"
|
175
|
+
},
|
176
|
+
"ai21-jamba-1.5-mini": {
|
177
|
+
"description": "52Bパラメータ(12Bアクティブ)の多言語モデルで、256Kの長いコンテキストウィンドウ、関数呼び出し、構造化出力、基盤生成を提供します。"
|
178
|
+
},
|
179
|
+
"ai21-jamba-instruct": {
|
180
|
+
"description": "最高のパフォーマンス、品質、コスト効率を実現するための生産グレードのMambaベースのLLMモデルです。"
|
181
|
+
},
|
161
182
|
"anthropic.claude-3-5-sonnet-20240620-v1:0": {
|
162
183
|
"description": "Claude 3.5 Sonnetは業界標準を向上させ、競合モデルやClaude 3 Opusを超える性能を持ち、広範な評価で優れたパフォーマンスを示し、私たちの中程度のモデルの速度とコストを兼ね備えています。"
|
163
184
|
},
|
@@ -254,6 +275,12 @@
|
|
254
275
|
"cognitivecomputations/dolphin-mixtral-8x22b": {
|
255
276
|
"description": "Dolphin Mixtral 8x22Bは指示遵守、対話、プログラミングのために設計されたモデルです。"
|
256
277
|
},
|
278
|
+
"cohere-command-r": {
|
279
|
+
"description": "Command Rは、RAGとツール使用をターゲットにしたスケーラブルな生成モデルで、企業向けの生産規模のAIを実現します。"
|
280
|
+
},
|
281
|
+
"cohere-command-r-plus": {
|
282
|
+
"description": "Command R+は、企業グレードのワークロードに対応するために設計された最先端のRAG最適化モデルです。"
|
283
|
+
},
|
257
284
|
"command-r": {
|
258
285
|
"description": "Command Rは、対話と長いコンテキストタスクに最適化されたLLMであり、特に動的なインタラクションと知識管理に適しています。"
|
259
286
|
},
|
@@ -263,12 +290,6 @@
|
|
263
290
|
"databricks/dbrx-instruct": {
|
264
291
|
"description": "DBRX Instructは、高い信頼性の指示処理能力を提供し、多業界アプリケーションをサポートします。"
|
265
292
|
},
|
266
|
-
"deepseek-ai/DeepSeek-Coder-V2-Instruct": {
|
267
|
-
"description": "DeepSeek Coder V2はコードタスクのために設計されており、高効率なコード生成に特化しています。"
|
268
|
-
},
|
269
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
270
|
-
"description": "DeepSeek V2は67億パラメータを持ち、英中のテキスト処理をサポートします。"
|
271
|
-
},
|
272
293
|
"deepseek-ai/DeepSeek-V2.5": {
|
273
294
|
"description": "DeepSeek V2.5は以前のバージョンの優れた特徴を集約し、汎用性とコーディング能力を強化しました。"
|
274
295
|
},
|
@@ -467,6 +488,8 @@
|
|
467
488
|
"internlm/internlm2_5-7b-chat": {
|
468
489
|
"description": "InternLM2.5は多様なシーンでのインテリジェントな対話ソリューションを提供します。"
|
469
490
|
},
|
491
|
+
"jamba-1.5-large": {},
|
492
|
+
"jamba-1.5-mini": {},
|
470
493
|
"llama-3.1-70b-instruct": {
|
471
494
|
"description": "Llama 3.1 70B Instructモデルは、70Bパラメータを持ち、大規模なテキスト生成と指示タスクで卓越した性能を提供します。"
|
472
495
|
},
|
@@ -530,6 +553,21 @@
|
|
530
553
|
"mathstral": {
|
531
554
|
"description": "MathΣtralは、科学研究と数学推論のために設計されており、効果的な計算能力と結果の解釈を提供します。"
|
532
555
|
},
|
556
|
+
"meta-llama-3-70b-instruct": {
|
557
|
+
"description": "推論、コーディング、広範な言語アプリケーションに優れた70億パラメータの強力なモデルです。"
|
558
|
+
},
|
559
|
+
"meta-llama-3-8b-instruct": {
|
560
|
+
"description": "対話とテキスト生成タスクに最適化された多用途の80億パラメータモデルです。"
|
561
|
+
},
|
562
|
+
"meta-llama-3.1-405b-instruct": {
|
563
|
+
"description": "Llama 3.1の指示調整されたテキスト専用モデルは、多言語対話のユースケースに最適化されており、一般的な業界ベンチマークで多くのオープンソースおよびクローズドチャットモデルを上回ります。"
|
564
|
+
},
|
565
|
+
"meta-llama-3.1-70b-instruct": {
|
566
|
+
"description": "Llama 3.1の指示調整されたテキスト専用モデルは、多言語対話のユースケースに最適化されており、一般的な業界ベンチマークで多くのオープンソースおよびクローズドチャットモデルを上回ります。"
|
567
|
+
},
|
568
|
+
"meta-llama-3.1-8b-instruct": {
|
569
|
+
"description": "Llama 3.1の指示調整されたテキスト専用モデルは、多言語対話のユースケースに最適化されており、一般的な業界ベンチマークで多くのオープンソースおよびクローズドチャットモデルを上回ります。"
|
570
|
+
},
|
533
571
|
"meta-llama/Llama-2-13b-chat-hf": {
|
534
572
|
"description": "LLaMA-2 Chat (13B)は、優れた言語処理能力と素晴らしいインタラクション体験を提供します。"
|
535
573
|
},
|
@@ -539,9 +577,6 @@
|
|
539
577
|
"meta-llama/Llama-3-8b-chat-hf": {
|
540
578
|
"description": "LLaMA-3 Chat (8B)は、多言語サポートを提供し、豊富な分野知識をカバーしています。"
|
541
579
|
},
|
542
|
-
"meta-llama/Meta-Llama-3-70B-Instruct": {
|
543
|
-
"description": "LLaMA 3は大容量のテキスト生成と指示解析をサポートします。"
|
544
|
-
},
|
545
580
|
"meta-llama/Meta-Llama-3-70B-Instruct-Lite": {
|
546
581
|
"description": "Llama 3 70B Instruct Liteは、高効率と低遅延が求められる環境に適しています。"
|
547
582
|
},
|
@@ -620,12 +655,21 @@
|
|
620
655
|
"mistral-large": {
|
621
656
|
"description": "Mixtral Largeは、Mistralのフラッグシップモデルであり、コード生成、数学、推論の能力を組み合わせ、128kのコンテキストウィンドウをサポートします。"
|
622
657
|
},
|
658
|
+
"mistral-large-2407": {
|
659
|
+
"description": "Mistral Large (2407)は、最先端の推論、知識、コーディング能力を持つ高度な大規模言語モデル(LLM)です。"
|
660
|
+
},
|
623
661
|
"mistral-large-latest": {
|
624
662
|
"description": "Mistral Largeは、フラッグシップの大モデルであり、多言語タスク、複雑な推論、コード生成に優れ、高端アプリケーションに理想的な選択肢です。"
|
625
663
|
},
|
626
664
|
"mistral-nemo": {
|
627
665
|
"description": "Mistral Nemoは、Mistral AIとNVIDIAが共同で開発した高効率の12Bモデルです。"
|
628
666
|
},
|
667
|
+
"mistral-small": {
|
668
|
+
"description": "Mistral Smallは、高効率と低遅延を必要とする言語ベースのタスクで使用できます。"
|
669
|
+
},
|
670
|
+
"mistral-small-latest": {
|
671
|
+
"description": "Mistral Smallは、コスト効率が高く、迅速かつ信頼性の高い選択肢で、翻訳、要約、感情分析などのユースケースに適しています。"
|
672
|
+
},
|
629
673
|
"mistralai/Mistral-7B-Instruct-v0.1": {
|
630
674
|
"description": "Mistral (7B) Instructは、高性能で知られ、多言語タスクに適しています。"
|
631
675
|
},
|
@@ -713,20 +757,29 @@
|
|
713
757
|
"phi3:14b": {
|
714
758
|
"description": "Phi-3は、Microsoftが提供する軽量オープンモデルであり、高効率な統合と大規模な知識推論に適しています。"
|
715
759
|
},
|
760
|
+
"pixtral-12b-2409": {
|
761
|
+
"description": "Pixtralモデルは、グラフと画像理解、文書質問応答、多モーダル推論、指示遵守などのタスクで強力な能力を発揮し、自然な解像度とアスペクト比で画像を取り込み、最大128Kトークンの長いコンテキストウィンドウで任意の数の画像を処理できます。"
|
762
|
+
},
|
763
|
+
"qwen-coder-turbo-latest": {
|
764
|
+
"description": "通義千問のコードモデルです。"
|
765
|
+
},
|
716
766
|
"qwen-long": {
|
717
767
|
"description": "通義千問超大規模言語モデルで、長文コンテキストや長文書、複数文書に基づく対話機能をサポートしています。"
|
718
768
|
},
|
719
|
-
"qwen-
|
720
|
-
"description": "
|
769
|
+
"qwen-math-plus-latest": {
|
770
|
+
"description": "通義千問の数学モデルは、数学の問題解決に特化した言語モデルです。"
|
721
771
|
},
|
722
|
-
"qwen-
|
723
|
-
"description": "
|
772
|
+
"qwen-math-turbo-latest": {
|
773
|
+
"description": "通義千問の数学モデルは、数学の問題解決に特化した言語モデルです。"
|
724
774
|
},
|
725
|
-
"qwen-
|
726
|
-
"description": "
|
775
|
+
"qwen-max-latest": {
|
776
|
+
"description": "通義千問の千億レベルの超大規模言語モデルで、中国語、英語などの異なる言語入力をサポートし、現在の通義千問2.5製品バージョンの背後にあるAPIモデルです。"
|
727
777
|
},
|
728
|
-
"qwen-
|
729
|
-
"description": "
|
778
|
+
"qwen-plus-latest": {
|
779
|
+
"description": "通義千問の超大規模言語モデルの強化版で、中国語、英語などの異なる言語入力をサポートしています。"
|
780
|
+
},
|
781
|
+
"qwen-turbo-latest": {
|
782
|
+
"description": "通義千問の超大規模言語モデルで、中国語、英語などの異なる言語入力をサポートしています。"
|
730
783
|
},
|
731
784
|
"qwen-vl-chat-v1": {
|
732
785
|
"description": "通義千問VLは、複数の画像、多段階の質問応答、創作などの柔軟なインタラクション方式をサポートするモデルです。"
|
@@ -746,17 +799,32 @@
|
|
746
799
|
"qwen2": {
|
747
800
|
"description": "Qwen2は、Alibabaの新世代大規模言語モデルであり、優れた性能で多様なアプリケーションニーズをサポートします。"
|
748
801
|
},
|
749
|
-
"qwen2-
|
750
|
-
"description": "通義千問2
|
802
|
+
"qwen2.5-14b-instruct": {
|
803
|
+
"description": "通義千問2.5の対外オープンソースの14B規模のモデルです。"
|
804
|
+
},
|
805
|
+
"qwen2.5-32b-instruct": {
|
806
|
+
"description": "通義千問2.5の対外オープンソースの32B規模のモデルです。"
|
807
|
+
},
|
808
|
+
"qwen2.5-72b-instruct": {
|
809
|
+
"description": "通義千問2.5の対外オープンソースの72B規模のモデルです。"
|
810
|
+
},
|
811
|
+
"qwen2.5-7b-instruct": {
|
812
|
+
"description": "通義千問2.5の対外オープンソースの7B規模のモデルです。"
|
813
|
+
},
|
814
|
+
"qwen2.5-coder-1.5b-instruct": {
|
815
|
+
"description": "通義千問のコードモデルのオープンソース版です。"
|
816
|
+
},
|
817
|
+
"qwen2.5-coder-7b-instruct": {
|
818
|
+
"description": "通義千問のコードモデルのオープンソース版です。"
|
751
819
|
},
|
752
|
-
"qwen2-
|
753
|
-
"description": "
|
820
|
+
"qwen2.5-math-1.5b-instruct": {
|
821
|
+
"description": "Qwen-Mathモデルは、強力な数学の問題解決能力を持っています。"
|
754
822
|
},
|
755
|
-
"qwen2-
|
756
|
-
"description": "
|
823
|
+
"qwen2.5-math-72b-instruct": {
|
824
|
+
"description": "Qwen-Mathモデルは、強力な数学の問題解決能力を持っています。"
|
757
825
|
},
|
758
|
-
"qwen2-math-
|
759
|
-
"description": "
|
826
|
+
"qwen2.5-math-7b-instruct": {
|
827
|
+
"description": "Qwen-Mathモデルは、強力な数学の問題解決能力を持っています。"
|
760
828
|
},
|
761
829
|
"qwen2:0.5b": {
|
762
830
|
"description": "Qwen2は、Alibabaの新世代大規模言語モデルであり、優れた性能で多様なアプリケーションニーズをサポートします。"
|
@@ -1,4 +1,5 @@
|
|
1
1
|
{
|
2
|
+
"ai21": {},
|
2
3
|
"ai360": {
|
3
4
|
"description": "360 AIは、360社が提供するAIモデルとサービスプラットフォームであり、360GPT2 Pro、360GPT Pro、360GPT Turbo、360GPT Turbo Responsibility 8Kなど、さまざまな先進的な自然言語処理モデルを提供しています。これらのモデルは、大規模なパラメータと多モーダル能力を組み合わせており、テキスト生成、意味理解、対話システム、コード生成などの分野で広く使用されています。柔軟な価格戦略を通じて、360 AIは多様なユーザーのニーズに応え、開発者の統合をサポートし、スマートアプリケーションの革新と発展を促進します。"
|
4
5
|
},
|
@@ -20,6 +21,9 @@
|
|
20
21
|
"fireworksai": {
|
21
22
|
"description": "Fireworks AIは、先進的な言語モデルサービスのリーダーであり、機能呼び出しと多モーダル処理に特化しています。最新のモデルFirefunction V2はLlama-3に基づいており、関数呼び出し、対話、指示の遵守に最適化されています。視覚言語モデルFireLLaVA-13Bは、画像とテキストの混合入力をサポートしています。他の注目すべきモデルには、LlamaシリーズやMixtralシリーズがあり、高効率の多言語指示遵守と生成サポートを提供しています。"
|
22
23
|
},
|
24
|
+
"github": {
|
25
|
+
"description": "GitHubモデルを使用することで、開発者はAIエンジニアになり、業界をリードするAIモデルを使って構築できます。"
|
26
|
+
},
|
23
27
|
"google": {
|
24
28
|
"description": "GoogleのGeminiシリーズは、Google DeepMindによって開発された最先端で汎用的なAIモデルであり、多モーダル設計に特化しており、テキスト、コード、画像、音声、動画のシームレスな理解と処理をサポートします。データセンターからモバイルデバイスまでのさまざまな環境に適しており、AIモデルの効率と適用範囲を大幅に向上させています。"
|
25
29
|
},
|