@lobehub/chat 1.19.14 → 1.19.15
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +25 -0
- package/locales/ar/models.json +116 -48
- package/locales/ar/providers.json +4 -0
- package/locales/bg-BG/models.json +116 -48
- package/locales/bg-BG/providers.json +4 -0
- package/locales/de-DE/models.json +116 -48
- package/locales/de-DE/providers.json +4 -0
- package/locales/en-US/models.json +116 -48
- package/locales/en-US/providers.json +4 -0
- package/locales/es-ES/models.json +116 -48
- package/locales/es-ES/providers.json +4 -0
- package/locales/fr-FR/models.json +116 -48
- package/locales/fr-FR/providers.json +4 -0
- package/locales/it-IT/models.json +0 -60
- package/locales/it-IT/providers.json +4 -0
- package/locales/ja-JP/models.json +116 -48
- package/locales/ja-JP/providers.json +4 -0
- package/locales/ko-KR/models.json +116 -48
- package/locales/ko-KR/providers.json +4 -0
- package/locales/nl-NL/models.json +0 -60
- package/locales/pl-PL/models.json +0 -60
- package/locales/pt-BR/models.json +116 -48
- package/locales/pt-BR/providers.json +4 -0
- package/locales/ru-RU/models.json +116 -48
- package/locales/ru-RU/providers.json +4 -0
- package/locales/tr-TR/models.json +116 -48
- package/locales/tr-TR/providers.json +4 -0
- package/locales/vi-VN/models.json +0 -60
- package/locales/zh-CN/models.json +122 -54
- package/locales/zh-CN/providers.json +4 -0
- package/locales/zh-TW/models.json +116 -48
- package/locales/zh-TW/providers.json +4 -0
- package/package.json +1 -1
@@ -1,4 +1,5 @@
|
|
1
1
|
{
|
2
|
+
"ai21": {},
|
2
3
|
"ai360": {
|
3
4
|
"description": "360 AI е платформа за AI модели и услуги, предлагана от компания 360, предлагаща множество напреднали модели за обработка на естествен език, включително 360GPT2 Pro, 360GPT Pro, 360GPT Turbo и 360GPT Turbo Responsibility 8K. Тези модели комбинират голям брой параметри и мултимодални способности, широко използвани в текстово генериране, семантично разбиране, диалогови системи и генериране на код. Чрез гъвкава ценова стратегия, 360 AI отговаря на разнообразни потребителски нужди, поддържайки интеграция за разработчици и насърчавайки иновации и развитие на интелигентни приложения."
|
4
5
|
},
|
@@ -20,6 +21,9 @@
|
|
20
21
|
"fireworksai": {
|
21
22
|
"description": "Fireworks AI е водещ доставчик на напреднали езикови модели, фокусирайки се върху извикване на функции и мултимодална обработка. Най-новият им модел Firefunction V2, базиран на Llama-3, е оптимизиран за извикване на функции, диалози и следване на инструкции. Визуалният езиков модел FireLLaVA-13B поддържа смесени входове от изображения и текст. Други забележителни модели включват серията Llama и серията Mixtral, предлагащи ефективна поддръжка за многоезично следване на инструкции и генериране."
|
22
23
|
},
|
24
|
+
"github": {
|
25
|
+
"description": "С моделите на GitHub разработчиците могат да станат AI инженери и да изграждат с водещите AI модели в индустрията."
|
26
|
+
},
|
23
27
|
"google": {
|
24
28
|
"description": "Серията Gemini на Google е най-напредналият и универсален AI модел, разработен от Google DeepMind, проектиран за мултимодално разбиране и обработка на текст, код, изображения, аудио и видео. Подходящ за различни среди, от центрове за данни до мобилни устройства, значително увеличава ефективността и приложимостта на AI моделите."
|
25
29
|
},
|
@@ -2,9 +2,6 @@
|
|
2
2
|
"01-ai/Yi-1.5-34B-Chat-16K": {
|
3
3
|
"description": "Yi-1.5 34B bietet mit umfangreichen Trainingsbeispielen überlegene Leistungen in der Branchenanwendung."
|
4
4
|
},
|
5
|
-
"01-ai/Yi-1.5-6B-Chat": {
|
6
|
-
"description": "Yi-1.5 ist die evolutionäre Version der Yi-Serie mit hochwertigem Vortraining und umfangreichen Feinabstimmungsdaten."
|
7
|
-
},
|
8
5
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
6
|
"description": "Yi-1.5 9B unterstützt 16K Tokens und bietet effiziente, flüssige Sprachgenerierungsfähigkeiten."
|
10
7
|
},
|
@@ -47,41 +44,56 @@
|
|
47
44
|
"NousResearch/Nous-Hermes-2-Yi-34B": {
|
48
45
|
"description": "Nous Hermes-2 Yi (34B) bietet optimierte Sprachausgaben und vielfältige Anwendungsmöglichkeiten."
|
49
46
|
},
|
47
|
+
"Phi-3-5-mini-instruct": {
|
48
|
+
"description": "Aktualisierung des Phi-3-mini-Modells."
|
49
|
+
},
|
50
|
+
"Phi-3-medium-128k-instruct": {
|
51
|
+
"description": "Das gleiche Phi-3-medium-Modell, jedoch mit einer größeren Kontextgröße für RAG oder Few-Shot-Prompting."
|
52
|
+
},
|
53
|
+
"Phi-3-medium-4k-instruct": {
|
54
|
+
"description": "Ein Modell mit 14 Milliarden Parametern, das eine bessere Qualität als Phi-3-mini bietet und sich auf qualitativ hochwertige, reasoning-dense Daten konzentriert."
|
55
|
+
},
|
56
|
+
"Phi-3-mini-128k-instruct": {
|
57
|
+
"description": "Das gleiche Phi-3-mini-Modell, jedoch mit einer größeren Kontextgröße für RAG oder Few-Shot-Prompting."
|
58
|
+
},
|
59
|
+
"Phi-3-mini-4k-instruct": {
|
60
|
+
"description": "Das kleinste Mitglied der Phi-3-Familie. Optimiert für Qualität und geringe Latenz."
|
61
|
+
},
|
62
|
+
"Phi-3-small-128k-instruct": {
|
63
|
+
"description": "Das gleiche Phi-3-small-Modell, jedoch mit einer größeren Kontextgröße für RAG oder Few-Shot-Prompting."
|
64
|
+
},
|
65
|
+
"Phi-3-small-8k-instruct": {
|
66
|
+
"description": "Ein Modell mit 7 Milliarden Parametern, das eine bessere Qualität als Phi-3-mini bietet und sich auf qualitativ hochwertige, reasoning-dense Daten konzentriert."
|
67
|
+
},
|
50
68
|
"Pro-128k": {
|
51
69
|
"description": "Spark Pro-128K ist mit einer extrem großen Kontextverarbeitungsfähigkeit ausgestattet, die bis zu 128K Kontextinformationen verarbeiten kann, besonders geeignet für lange Texte, die eine umfassende Analyse und langfristige logische Verknüpfung erfordern, und bietet in komplexen Textkommunikationen flüssige und konsistente Logik sowie vielfältige Zitationsunterstützung."
|
52
70
|
},
|
53
71
|
"Qwen/Qwen1.5-110B-Chat": {
|
54
72
|
"description": "Als Testversion von Qwen2 bietet Qwen1.5 präzisere Dialogfunktionen durch den Einsatz großer Datenmengen."
|
55
73
|
},
|
56
|
-
"Qwen/Qwen1.5-14B-Chat": {
|
57
|
-
"description": "Qwen1.5 ist durch das Training mit umfangreichen Datensätzen in der Lage, komplexe Sprachaufgaben zu bewältigen."
|
58
|
-
},
|
59
|
-
"Qwen/Qwen1.5-32B-Chat": {
|
60
|
-
"description": "Qwen1.5 verfügt über Fähigkeiten in der Beantwortung von Fragen aus mehreren Bereichen und der Textgenerierung."
|
61
|
-
},
|
62
74
|
"Qwen/Qwen1.5-72B-Chat": {
|
63
75
|
"description": "Qwen 1.5 Chat (72B) bietet schnelle Antworten und natürliche Dialogfähigkeiten, die sich für mehrsprachige Umgebungen eignen."
|
64
76
|
},
|
65
|
-
"Qwen/
|
66
|
-
"description": "
|
77
|
+
"Qwen/Qwen2-72B-Instruct": {
|
78
|
+
"description": "Qwen2 ist ein fortschrittliches allgemeines Sprachmodell, das eine Vielzahl von Anweisungsarten unterstützt."
|
67
79
|
},
|
68
|
-
"Qwen/Qwen2
|
69
|
-
"description": "Qwen2 ist eine
|
80
|
+
"Qwen/Qwen2.5-14B-Instruct": {
|
81
|
+
"description": "Qwen2.5 ist eine brandneue Serie von großen Sprachmodellen, die darauf abzielt, die Verarbeitung von Anweisungsaufgaben zu optimieren."
|
70
82
|
},
|
71
|
-
"Qwen/Qwen2-
|
72
|
-
"description": "Qwen2 ist eine
|
83
|
+
"Qwen/Qwen2.5-32B-Instruct": {
|
84
|
+
"description": "Qwen2.5 ist eine brandneue Serie von großen Sprachmodellen, die darauf abzielt, die Verarbeitung von Anweisungsaufgaben zu optimieren."
|
73
85
|
},
|
74
|
-
"Qwen/Qwen2-72B-Instruct": {
|
75
|
-
"description": "Qwen2 ist
|
86
|
+
"Qwen/Qwen2.5-72B-Instruct": {
|
87
|
+
"description": "Qwen2.5 ist eine brandneue Serie von großen Sprachmodellen mit verbesserter Verständnis- und Generierungsfähigkeit."
|
76
88
|
},
|
77
|
-
"Qwen/Qwen2-7B-Instruct": {
|
78
|
-
"description": "Qwen2 ist eine
|
89
|
+
"Qwen/Qwen2.5-7B-Instruct": {
|
90
|
+
"description": "Qwen2.5 ist eine brandneue Serie von großen Sprachmodellen, die darauf abzielt, die Verarbeitung von Anweisungsaufgaben zu optimieren."
|
79
91
|
},
|
80
|
-
"Qwen/Qwen2-
|
81
|
-
"description": "Qwen2-
|
92
|
+
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
93
|
+
"description": "Qwen2.5-Coder konzentriert sich auf die Programmierung."
|
82
94
|
},
|
83
|
-
"
|
84
|
-
"description": "
|
95
|
+
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
96
|
+
"description": "Qwen2.5-Math konzentriert sich auf die Problemlösung im Bereich Mathematik und bietet professionelle Lösungen für schwierige Aufgaben."
|
85
97
|
},
|
86
98
|
"THUDM/glm-4-9b-chat": {
|
87
99
|
"description": "GLM-4 9B ist die Open-Source-Version, die ein optimiertes Dialogerlebnis für Konversationsanwendungen bietet."
|
@@ -158,6 +170,15 @@
|
|
158
170
|
"accounts/yi-01-ai/models/yi-large": {
|
159
171
|
"description": "Das Yi-Large-Modell bietet hervorragende mehrsprachige Verarbeitungsfähigkeiten und kann für verschiedene Sprachgenerierungs- und Verständnisaufgaben eingesetzt werden."
|
160
172
|
},
|
173
|
+
"ai21-jamba-1.5-large": {
|
174
|
+
"description": "Ein mehrsprachiges Modell mit 398 Milliarden Parametern (94 Milliarden aktiv), das ein 256K langes Kontextfenster, Funktionsaufrufe, strukturierte Ausgaben und fundierte Generierung bietet."
|
175
|
+
},
|
176
|
+
"ai21-jamba-1.5-mini": {
|
177
|
+
"description": "Ein mehrsprachiges Modell mit 52 Milliarden Parametern (12 Milliarden aktiv), das ein 256K langes Kontextfenster, Funktionsaufrufe, strukturierte Ausgaben und fundierte Generierung bietet."
|
178
|
+
},
|
179
|
+
"ai21-jamba-instruct": {
|
180
|
+
"description": "Ein produktionsreifes Mamba-basiertes LLM-Modell, das eine erstklassige Leistung, Qualität und Kosteneffizienz erreicht."
|
181
|
+
},
|
161
182
|
"anthropic.claude-3-5-sonnet-20240620-v1:0": {
|
162
183
|
"description": "Claude 3.5 Sonnet hebt den Branchenstandard an, übertrifft die Konkurrenzmodelle und Claude 3 Opus und zeigt in umfassenden Bewertungen hervorragende Leistungen, während es die Geschwindigkeit und Kosten unserer mittleren Modelle beibehält."
|
163
184
|
},
|
@@ -254,6 +275,12 @@
|
|
254
275
|
"cognitivecomputations/dolphin-mixtral-8x22b": {
|
255
276
|
"description": "Dolphin Mixtral 8x22B ist ein Modell, das für die Befolgung von Anweisungen, Dialoge und Programmierung entwickelt wurde."
|
256
277
|
},
|
278
|
+
"cohere-command-r": {
|
279
|
+
"description": "Command R ist ein skalierbares generatives Modell, das auf RAG und Tool-Nutzung abzielt, um KI in Produktionsgröße für Unternehmen zu ermöglichen."
|
280
|
+
},
|
281
|
+
"cohere-command-r-plus": {
|
282
|
+
"description": "Command R+ ist ein hochmodernes, RAG-optimiertes Modell, das für unternehmensgerechte Arbeitslasten konzipiert ist."
|
283
|
+
},
|
257
284
|
"command-r": {
|
258
285
|
"description": "Command R ist ein LLM, das für Dialoge und Aufgaben mit langen Kontexten optimiert ist und sich besonders gut für dynamische Interaktionen und Wissensmanagement eignet."
|
259
286
|
},
|
@@ -263,12 +290,6 @@
|
|
263
290
|
"databricks/dbrx-instruct": {
|
264
291
|
"description": "DBRX Instruct bietet zuverlässige Anweisungsverarbeitungsfähigkeiten und unterstützt Anwendungen in verschiedenen Branchen."
|
265
292
|
},
|
266
|
-
"deepseek-ai/DeepSeek-Coder-V2-Instruct": {
|
267
|
-
"description": "DeepSeek Coder V2 ist für Programmieraufgaben konzipiert und konzentriert sich auf effiziente Codegenerierung."
|
268
|
-
},
|
269
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
270
|
-
"description": "DeepSeek V2 hat 6,7 Milliarden Parameter und unterstützt die Verarbeitung von englischen und chinesischen Texten."
|
271
|
-
},
|
272
293
|
"deepseek-ai/DeepSeek-V2.5": {
|
273
294
|
"description": "DeepSeek V2.5 vereint die hervorragenden Merkmale früherer Versionen und verbessert die allgemeinen und kodierenden Fähigkeiten."
|
274
295
|
},
|
@@ -467,6 +488,8 @@
|
|
467
488
|
"internlm/internlm2_5-7b-chat": {
|
468
489
|
"description": "InternLM2.5 bietet intelligente Dialoglösungen in mehreren Szenarien."
|
469
490
|
},
|
491
|
+
"jamba-1.5-large": {},
|
492
|
+
"jamba-1.5-mini": {},
|
470
493
|
"llama-3.1-70b-instruct": {
|
471
494
|
"description": "Das Llama 3.1 70B Instruct-Modell hat 70B Parameter und bietet herausragende Leistungen bei der Generierung großer Texte und Anweisungsaufgaben."
|
472
495
|
},
|
@@ -530,6 +553,21 @@
|
|
530
553
|
"mathstral": {
|
531
554
|
"description": "MathΣtral ist für wissenschaftliche Forschung und mathematische Schlussfolgerungen konzipiert und bietet effektive Rechenfähigkeiten und Ergebnisinterpretationen."
|
532
555
|
},
|
556
|
+
"meta-llama-3-70b-instruct": {
|
557
|
+
"description": "Ein leistungsstarkes Modell mit 70 Milliarden Parametern, das in den Bereichen Schlussfolgerungen, Programmierung und breiten Sprachanwendungen herausragt."
|
558
|
+
},
|
559
|
+
"meta-llama-3-8b-instruct": {
|
560
|
+
"description": "Ein vielseitiges Modell mit 8 Milliarden Parametern, das für Dialog- und Textgenerierungsaufgaben optimiert ist."
|
561
|
+
},
|
562
|
+
"meta-llama-3.1-405b-instruct": {
|
563
|
+
"description": "Die Llama 3.1-Modelle, die auf Anweisungen optimiert sind, sind für mehrsprachige Dialoganwendungen optimiert und übertreffen viele der verfügbaren Open-Source- und geschlossenen Chat-Modelle in gängigen Branchenbenchmarks."
|
564
|
+
},
|
565
|
+
"meta-llama-3.1-70b-instruct": {
|
566
|
+
"description": "Die Llama 3.1-Modelle, die auf Anweisungen optimiert sind, sind für mehrsprachige Dialoganwendungen optimiert und übertreffen viele der verfügbaren Open-Source- und geschlossenen Chat-Modelle in gängigen Branchenbenchmarks."
|
567
|
+
},
|
568
|
+
"meta-llama-3.1-8b-instruct": {
|
569
|
+
"description": "Die Llama 3.1-Modelle, die auf Anweisungen optimiert sind, sind für mehrsprachige Dialoganwendungen optimiert und übertreffen viele der verfügbaren Open-Source- und geschlossenen Chat-Modelle in gängigen Branchenbenchmarks."
|
570
|
+
},
|
533
571
|
"meta-llama/Llama-2-13b-chat-hf": {
|
534
572
|
"description": "LLaMA-2 Chat (13B) bietet hervorragende Sprachverarbeitungsfähigkeiten und ein ausgezeichnetes Interaktionserlebnis."
|
535
573
|
},
|
@@ -539,9 +577,6 @@
|
|
539
577
|
"meta-llama/Llama-3-8b-chat-hf": {
|
540
578
|
"description": "LLaMA-3 Chat (8B) bietet mehrsprachige Unterstützung und deckt ein breites Spektrum an Fachwissen ab."
|
541
579
|
},
|
542
|
-
"meta-llama/Meta-Llama-3-70B-Instruct": {
|
543
|
-
"description": "LLaMA 3 unterstützt die Generierung großer Textmengen und die Analyse von Anweisungen."
|
544
|
-
},
|
545
580
|
"meta-llama/Meta-Llama-3-70B-Instruct-Lite": {
|
546
581
|
"description": "Llama 3 70B Instruct Lite ist für Umgebungen geeignet, die hohe Leistung und niedrige Latenz erfordern."
|
547
582
|
},
|
@@ -620,12 +655,21 @@
|
|
620
655
|
"mistral-large": {
|
621
656
|
"description": "Mixtral Large ist das Flaggschiff-Modell von Mistral, das die Fähigkeiten zur Codegenerierung, Mathematik und Schlussfolgerungen kombiniert und ein Kontextfenster von 128k unterstützt."
|
622
657
|
},
|
658
|
+
"mistral-large-2407": {
|
659
|
+
"description": "Mistral Large (2407) ist ein fortschrittliches großes Sprachmodell (LLM) mit modernsten Fähigkeiten in den Bereichen Schlussfolgerungen, Wissen und Programmierung."
|
660
|
+
},
|
623
661
|
"mistral-large-latest": {
|
624
662
|
"description": "Mistral Large ist das Flaggschiff-Modell, das sich gut für mehrsprachige Aufgaben, komplexe Schlussfolgerungen und Codegenerierung eignet und die ideale Wahl für hochentwickelte Anwendungen ist."
|
625
663
|
},
|
626
664
|
"mistral-nemo": {
|
627
665
|
"description": "Mistral Nemo wurde in Zusammenarbeit mit Mistral AI und NVIDIA entwickelt und ist ein leistungsstarkes 12B-Modell."
|
628
666
|
},
|
667
|
+
"mistral-small": {
|
668
|
+
"description": "Mistral Small kann für jede sprachbasierte Aufgabe verwendet werden, die hohe Effizienz und geringe Latenz erfordert."
|
669
|
+
},
|
670
|
+
"mistral-small-latest": {
|
671
|
+
"description": "Mistral Small ist eine kosteneffiziente, schnelle und zuverlässige Option für Anwendungsfälle wie Übersetzung, Zusammenfassung und Sentimentanalyse."
|
672
|
+
},
|
629
673
|
"mistralai/Mistral-7B-Instruct-v0.1": {
|
630
674
|
"description": "Mistral (7B) Instruct ist bekannt für seine hohe Leistung und eignet sich für eine Vielzahl von Sprachaufgaben."
|
631
675
|
},
|
@@ -713,20 +757,29 @@
|
|
713
757
|
"phi3:14b": {
|
714
758
|
"description": "Phi-3 ist ein leichtgewichtiges offenes Modell von Microsoft, das für effiziente Integration und großangelegte Wissensschlüsse geeignet ist."
|
715
759
|
},
|
760
|
+
"pixtral-12b-2409": {
|
761
|
+
"description": "Das Pixtral-Modell zeigt starke Fähigkeiten in Aufgaben wie Diagramm- und Bildverständnis, Dokumentenfragen, multimodale Schlussfolgerungen und Befolgung von Anweisungen. Es kann Bilder in natürlicher Auflösung und Seitenverhältnis aufnehmen und in einem langen Kontextfenster von bis zu 128K Tokens beliebig viele Bilder verarbeiten."
|
762
|
+
},
|
763
|
+
"qwen-coder-turbo-latest": {
|
764
|
+
"description": "Das Tongyi Qianwen Code-Modell."
|
765
|
+
},
|
716
766
|
"qwen-long": {
|
717
767
|
"description": "Qwen ist ein groß angelegtes Sprachmodell, das lange Textkontexte unterstützt und Dialogfunktionen für verschiedene Szenarien wie lange Dokumente und mehrere Dokumente bietet."
|
718
768
|
},
|
719
|
-
"qwen-
|
720
|
-
"description": "
|
769
|
+
"qwen-math-plus-latest": {
|
770
|
+
"description": "Das Tongyi Qianwen Mathematikmodell ist speziell für die Lösung von mathematischen Problemen konzipiert."
|
721
771
|
},
|
722
|
-
"qwen-
|
723
|
-
"description": "
|
772
|
+
"qwen-math-turbo-latest": {
|
773
|
+
"description": "Das Tongyi Qianwen Mathematikmodell ist speziell für die Lösung von mathematischen Problemen konzipiert."
|
724
774
|
},
|
725
|
-
"qwen-
|
726
|
-
"description": "
|
775
|
+
"qwen-max-latest": {
|
776
|
+
"description": "Der Tongyi Qianwen ist ein Sprachmodell mit einem Umfang von mehreren Billionen, das Eingaben in verschiedenen Sprachen wie Chinesisch und Englisch unterstützt und die API-Modelle hinter der aktuellen Version 2.5 von Tongyi Qianwen darstellt."
|
727
777
|
},
|
728
|
-
"qwen-
|
729
|
-
"description": "
|
778
|
+
"qwen-plus-latest": {
|
779
|
+
"description": "Der Tongyi Qianwen ist die erweiterte Version eines groß angelegten Sprachmodells, das Eingaben in verschiedenen Sprachen wie Chinesisch und Englisch unterstützt."
|
780
|
+
},
|
781
|
+
"qwen-turbo-latest": {
|
782
|
+
"description": "Der Tongyi Qianwen ist ein groß angelegtes Sprachmodell, das Eingaben in verschiedenen Sprachen wie Chinesisch und Englisch unterstützt."
|
730
783
|
},
|
731
784
|
"qwen-vl-chat-v1": {
|
732
785
|
"description": "Qwen VL unterstützt flexible Interaktionsmethoden, einschließlich Mehrbild-, Mehrfachfragen und kreativen Fähigkeiten."
|
@@ -746,17 +799,32 @@
|
|
746
799
|
"qwen2": {
|
747
800
|
"description": "Qwen2 ist das neue große Sprachmodell von Alibaba, das mit hervorragender Leistung eine Vielzahl von Anwendungsanforderungen unterstützt."
|
748
801
|
},
|
749
|
-
"qwen2-
|
750
|
-
"description": "
|
802
|
+
"qwen2.5-14b-instruct": {
|
803
|
+
"description": "Das 14B-Modell von Tongyi Qianwen 2.5 ist öffentlich zugänglich."
|
804
|
+
},
|
805
|
+
"qwen2.5-32b-instruct": {
|
806
|
+
"description": "Das 32B-Modell von Tongyi Qianwen 2.5 ist öffentlich zugänglich."
|
807
|
+
},
|
808
|
+
"qwen2.5-72b-instruct": {
|
809
|
+
"description": "Das 72B-Modell von Tongyi Qianwen 2.5 ist öffentlich zugänglich."
|
810
|
+
},
|
811
|
+
"qwen2.5-7b-instruct": {
|
812
|
+
"description": "Das 7B-Modell von Tongyi Qianwen 2.5 ist öffentlich zugänglich."
|
813
|
+
},
|
814
|
+
"qwen2.5-coder-1.5b-instruct": {
|
815
|
+
"description": "Die Open-Source-Version des Tongyi Qianwen Code-Modells."
|
816
|
+
},
|
817
|
+
"qwen2.5-coder-7b-instruct": {
|
818
|
+
"description": "Die Open-Source-Version des Tongyi Qianwen Code-Modells."
|
751
819
|
},
|
752
|
-
"qwen2-
|
753
|
-
"description": "
|
820
|
+
"qwen2.5-math-1.5b-instruct": {
|
821
|
+
"description": "Das Qwen-Math-Modell verfügt über starke Fähigkeiten zur Lösung mathematischer Probleme."
|
754
822
|
},
|
755
|
-
"qwen2-
|
756
|
-
"description": "
|
823
|
+
"qwen2.5-math-72b-instruct": {
|
824
|
+
"description": "Das Qwen-Math-Modell verfügt über starke Fähigkeiten zur Lösung mathematischer Probleme."
|
757
825
|
},
|
758
|
-
"qwen2-math-
|
759
|
-
"description": "Das
|
826
|
+
"qwen2.5-math-7b-instruct": {
|
827
|
+
"description": "Das Qwen-Math-Modell verfügt über starke Fähigkeiten zur Lösung mathematischer Probleme."
|
760
828
|
},
|
761
829
|
"qwen2:0.5b": {
|
762
830
|
"description": "Qwen2 ist das neue große Sprachmodell von Alibaba, das mit hervorragender Leistung eine Vielzahl von Anwendungsanforderungen unterstützt."
|
@@ -1,4 +1,5 @@
|
|
1
1
|
{
|
2
|
+
"ai21": {},
|
2
3
|
"ai360": {
|
3
4
|
"description": "360 AI ist die von der 360 Company eingeführte Plattform für KI-Modelle und -Dienste, die eine Vielzahl fortschrittlicher Modelle zur Verarbeitung natürlicher Sprache anbietet, darunter 360GPT2 Pro, 360GPT Pro, 360GPT Turbo und 360GPT Turbo Responsibility 8K. Diese Modelle kombinieren große Parameter mit multimodalen Fähigkeiten und finden breite Anwendung in den Bereichen Textgenerierung, semantisches Verständnis, Dialogsysteme und Codegenerierung. Durch flexible Preisstrategien erfüllt 360 AI die vielfältigen Bedürfnisse der Nutzer, unterstützt Entwickler bei der Integration und fördert die Innovation und Entwicklung intelligenter Anwendungen."
|
4
5
|
},
|
@@ -20,6 +21,9 @@
|
|
20
21
|
"fireworksai": {
|
21
22
|
"description": "Fireworks AI ist ein führender Anbieter von fortschrittlichen Sprachmodellen, der sich auf Funktionsaufrufe und multimodale Verarbeitung spezialisiert hat. Ihr neuestes Modell, Firefunction V2, basiert auf Llama-3 und ist für Funktionsaufrufe, Dialoge und Befehlsbefolgung optimiert. Das visuelle Sprachmodell FireLLaVA-13B unterstützt gemischte Eingaben von Bildern und Text. Weitere bemerkenswerte Modelle sind die Llama-Serie und die Mixtral-Serie, die effiziente mehrsprachige Befehlsbefolgung und Generierungsunterstützung bieten."
|
22
23
|
},
|
24
|
+
"github": {
|
25
|
+
"description": "Mit GitHub-Modellen können Entwickler zu KI-Ingenieuren werden und mit den führenden KI-Modellen der Branche arbeiten."
|
26
|
+
},
|
23
27
|
"google": {
|
24
28
|
"description": "Die Gemini-Serie von Google ist ihr fortschrittlichstes, universelles KI-Modell, das von Google DeepMind entwickelt wurde und speziell für multimodale Anwendungen konzipiert ist. Es unterstützt nahtlose Verständnis- und Verarbeitungsprozesse für Text, Code, Bilder, Audio und Video. Es ist für eine Vielzahl von Umgebungen geeignet, von Rechenzentren bis hin zu mobilen Geräten, und verbessert erheblich die Effizienz und Anwendbarkeit von KI-Modellen."
|
25
29
|
},
|
@@ -2,9 +2,6 @@
|
|
2
2
|
"01-ai/Yi-1.5-34B-Chat-16K": {
|
3
3
|
"description": "Yi-1.5 34B delivers superior performance in industry applications with a wealth of training samples."
|
4
4
|
},
|
5
|
-
"01-ai/Yi-1.5-6B-Chat": {
|
6
|
-
"description": "Yi-1.5 is an evolved version of the Yi series, featuring high-quality pre-training and rich fine-tuning data."
|
7
|
-
},
|
8
5
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
6
|
"description": "Yi-1.5 9B supports 16K tokens, providing efficient and smooth language generation capabilities."
|
10
7
|
},
|
@@ -47,41 +44,56 @@
|
|
47
44
|
"NousResearch/Nous-Hermes-2-Yi-34B": {
|
48
45
|
"description": "Nous Hermes-2 Yi (34B) provides optimized language output and diverse application possibilities."
|
49
46
|
},
|
47
|
+
"Phi-3-5-mini-instruct": {
|
48
|
+
"description": "An update of the Phi-3-mini model."
|
49
|
+
},
|
50
|
+
"Phi-3-medium-128k-instruct": {
|
51
|
+
"description": "The same Phi-3-medium model, but with a larger context size for RAG or few-shot prompting."
|
52
|
+
},
|
53
|
+
"Phi-3-medium-4k-instruct": {
|
54
|
+
"description": "A 14B parameter model that provides better quality than Phi-3-mini, focusing on high-quality, reasoning-dense data."
|
55
|
+
},
|
56
|
+
"Phi-3-mini-128k-instruct": {
|
57
|
+
"description": "The same Phi-3-mini model, but with a larger context size for RAG or few-shot prompting."
|
58
|
+
},
|
59
|
+
"Phi-3-mini-4k-instruct": {
|
60
|
+
"description": "The smallest member of the Phi-3 family, optimized for both quality and low latency."
|
61
|
+
},
|
62
|
+
"Phi-3-small-128k-instruct": {
|
63
|
+
"description": "The same Phi-3-small model, but with a larger context size for RAG or few-shot prompting."
|
64
|
+
},
|
65
|
+
"Phi-3-small-8k-instruct": {
|
66
|
+
"description": "A 7B parameter model that provides better quality than Phi-3-mini, focusing on high-quality, reasoning-dense data."
|
67
|
+
},
|
50
68
|
"Pro-128k": {
|
51
69
|
"description": "Spark Pro-128K is configured with ultra-large context processing capabilities, able to handle up to 128K of contextual information, particularly suitable for long texts requiring comprehensive analysis and long-term logical connections, providing smooth and consistent logic and diverse citation support in complex text communication."
|
52
70
|
},
|
53
71
|
"Qwen/Qwen1.5-110B-Chat": {
|
54
72
|
"description": "As a beta version of Qwen2, Qwen1.5 utilizes large-scale data to achieve more precise conversational capabilities."
|
55
73
|
},
|
56
|
-
"Qwen/Qwen1.5-14B-Chat": {
|
57
|
-
"description": "Qwen1.5 is trained on a large-scale dataset, excelling in complex language tasks."
|
58
|
-
},
|
59
|
-
"Qwen/Qwen1.5-32B-Chat": {
|
60
|
-
"description": "Qwen1.5 possesses capabilities for multi-domain Q&A and text generation."
|
61
|
-
},
|
62
74
|
"Qwen/Qwen1.5-72B-Chat": {
|
63
75
|
"description": "Qwen 1.5 Chat (72B) provides quick responses and natural conversational abilities, suitable for multilingual environments."
|
64
76
|
},
|
65
|
-
"Qwen/
|
66
|
-
"description": "
|
77
|
+
"Qwen/Qwen2-72B-Instruct": {
|
78
|
+
"description": "Qwen2 is an advanced general-purpose language model that supports various types of instructions."
|
67
79
|
},
|
68
|
-
"Qwen/Qwen2
|
69
|
-
"description": "Qwen2 is a brand new large language
|
80
|
+
"Qwen/Qwen2.5-14B-Instruct": {
|
81
|
+
"description": "Qwen2.5 is a brand new series of large language models designed to optimize the handling of instruction-based tasks."
|
70
82
|
},
|
71
|
-
"Qwen/Qwen2-
|
72
|
-
"description": "Qwen2 is a new series
|
83
|
+
"Qwen/Qwen2.5-32B-Instruct": {
|
84
|
+
"description": "Qwen2.5 is a brand new series of large language models designed to optimize the handling of instruction-based tasks."
|
73
85
|
},
|
74
|
-
"Qwen/Qwen2-72B-Instruct": {
|
75
|
-
"description": "Qwen2 is
|
86
|
+
"Qwen/Qwen2.5-72B-Instruct": {
|
87
|
+
"description": "Qwen2.5 is a brand new series of large language models with enhanced understanding and generation capabilities."
|
76
88
|
},
|
77
|
-
"Qwen/Qwen2-7B-Instruct": {
|
78
|
-
"description": "Qwen2 is a brand new large language
|
89
|
+
"Qwen/Qwen2.5-7B-Instruct": {
|
90
|
+
"description": "Qwen2.5 is a brand new series of large language models designed to optimize the handling of instruction-based tasks."
|
79
91
|
},
|
80
|
-
"Qwen/Qwen2-
|
81
|
-
"description": "Qwen2-
|
92
|
+
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
93
|
+
"description": "Qwen2.5-Coder focuses on code writing."
|
82
94
|
},
|
83
|
-
"
|
84
|
-
"description": "
|
95
|
+
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
96
|
+
"description": "Qwen2.5-Math focuses on problem-solving in the field of mathematics, providing expert solutions for challenging problems."
|
85
97
|
},
|
86
98
|
"THUDM/glm-4-9b-chat": {
|
87
99
|
"description": "GLM-4 9B is an open-source version that provides an optimized conversational experience for chat applications."
|
@@ -158,6 +170,15 @@
|
|
158
170
|
"accounts/yi-01-ai/models/yi-large": {
|
159
171
|
"description": "Yi-Large model, featuring exceptional multilingual processing capabilities, suitable for various language generation and understanding tasks."
|
160
172
|
},
|
173
|
+
"ai21-jamba-1.5-large": {
|
174
|
+
"description": "A 398B parameter (94B active) multilingual model, offering a 256K long context window, function calling, structured output, and grounded generation."
|
175
|
+
},
|
176
|
+
"ai21-jamba-1.5-mini": {
|
177
|
+
"description": "A 52B parameter (12B active) multilingual model, offering a 256K long context window, function calling, structured output, and grounded generation."
|
178
|
+
},
|
179
|
+
"ai21-jamba-instruct": {
|
180
|
+
"description": "A production-grade Mamba-based LLM model designed to achieve best-in-class performance, quality, and cost efficiency."
|
181
|
+
},
|
161
182
|
"anthropic.claude-3-5-sonnet-20240620-v1:0": {
|
162
183
|
"description": "Claude 3.5 Sonnet raises the industry standard, outperforming competitor models and Claude 3 Opus, excelling in a wide range of evaluations while maintaining the speed and cost of our mid-tier models."
|
163
184
|
},
|
@@ -254,6 +275,12 @@
|
|
254
275
|
"cognitivecomputations/dolphin-mixtral-8x22b": {
|
255
276
|
"description": "Dolphin Mixtral 8x22B is a model designed for instruction following, dialogue, and programming."
|
256
277
|
},
|
278
|
+
"cohere-command-r": {
|
279
|
+
"description": "Command R is a scalable generative model targeting RAG and Tool Use to enable production-scale AI for enterprises."
|
280
|
+
},
|
281
|
+
"cohere-command-r-plus": {
|
282
|
+
"description": "Command R+ is a state-of-the-art RAG-optimized model designed to tackle enterprise-grade workloads."
|
283
|
+
},
|
257
284
|
"command-r": {
|
258
285
|
"description": "Command R is an LLM optimized for dialogue and long context tasks, particularly suitable for dynamic interactions and knowledge management."
|
259
286
|
},
|
@@ -263,12 +290,6 @@
|
|
263
290
|
"databricks/dbrx-instruct": {
|
264
291
|
"description": "DBRX Instruct provides highly reliable instruction processing capabilities, supporting applications across multiple industries."
|
265
292
|
},
|
266
|
-
"deepseek-ai/DeepSeek-Coder-V2-Instruct": {
|
267
|
-
"description": "DeepSeek Coder V2 is designed for coding tasks, focusing on efficient code generation."
|
268
|
-
},
|
269
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
270
|
-
"description": "DeepSeek V2 has 6.7 billion parameters and supports English and Chinese text processing."
|
271
|
-
},
|
272
293
|
"deepseek-ai/DeepSeek-V2.5": {
|
273
294
|
"description": "DeepSeek V2.5 combines the excellent features of previous versions, enhancing general and coding capabilities."
|
274
295
|
},
|
@@ -467,6 +488,8 @@
|
|
467
488
|
"internlm/internlm2_5-7b-chat": {
|
468
489
|
"description": "InternLM2.5 offers intelligent dialogue solutions across multiple scenarios."
|
469
490
|
},
|
491
|
+
"jamba-1.5-large": {},
|
492
|
+
"jamba-1.5-mini": {},
|
470
493
|
"llama-3.1-70b-instruct": {
|
471
494
|
"description": "Llama 3.1 70B Instruct model, featuring 70B parameters, delivers outstanding performance in large text generation and instruction tasks."
|
472
495
|
},
|
@@ -530,6 +553,21 @@
|
|
530
553
|
"mathstral": {
|
531
554
|
"description": "MathΣtral is designed for scientific research and mathematical reasoning, providing effective computational capabilities and result interpretation."
|
532
555
|
},
|
556
|
+
"meta-llama-3-70b-instruct": {
|
557
|
+
"description": "A powerful 70-billion parameter model excelling in reasoning, coding, and broad language applications."
|
558
|
+
},
|
559
|
+
"meta-llama-3-8b-instruct": {
|
560
|
+
"description": "A versatile 8-billion parameter model optimized for dialogue and text generation tasks."
|
561
|
+
},
|
562
|
+
"meta-llama-3.1-405b-instruct": {
|
563
|
+
"description": "The Llama 3.1 instruction-tuned text-only models are optimized for multilingual dialogue use cases and outperform many of the available open-source and closed chat models on common industry benchmarks."
|
564
|
+
},
|
565
|
+
"meta-llama-3.1-70b-instruct": {
|
566
|
+
"description": "The Llama 3.1 instruction-tuned text-only models are optimized for multilingual dialogue use cases and outperform many of the available open-source and closed chat models on common industry benchmarks."
|
567
|
+
},
|
568
|
+
"meta-llama-3.1-8b-instruct": {
|
569
|
+
"description": "The Llama 3.1 instruction-tuned text-only models are optimized for multilingual dialogue use cases and outperform many of the available open-source and closed chat models on common industry benchmarks."
|
570
|
+
},
|
533
571
|
"meta-llama/Llama-2-13b-chat-hf": {
|
534
572
|
"description": "LLaMA-2 Chat (13B) offers excellent language processing capabilities and outstanding interactive experiences."
|
535
573
|
},
|
@@ -539,9 +577,6 @@
|
|
539
577
|
"meta-llama/Llama-3-8b-chat-hf": {
|
540
578
|
"description": "LLaMA-3 Chat (8B) provides multilingual support, covering a rich array of domain knowledge."
|
541
579
|
},
|
542
|
-
"meta-llama/Meta-Llama-3-70B-Instruct": {
|
543
|
-
"description": "LLaMA 3 supports large-scale text generation and instruction parsing."
|
544
|
-
},
|
545
580
|
"meta-llama/Meta-Llama-3-70B-Instruct-Lite": {
|
546
581
|
"description": "Llama 3 70B Instruct Lite is suitable for environments requiring high performance and low latency."
|
547
582
|
},
|
@@ -620,12 +655,21 @@
|
|
620
655
|
"mistral-large": {
|
621
656
|
"description": "Mixtral Large is Mistral's flagship model, combining capabilities in code generation, mathematics, and reasoning, supporting a 128k context window."
|
622
657
|
},
|
658
|
+
"mistral-large-2407": {
|
659
|
+
"description": "Mistral Large (2407) is an advanced Large Language Model (LLM) with state-of-the-art reasoning, knowledge, and coding capabilities."
|
660
|
+
},
|
623
661
|
"mistral-large-latest": {
|
624
662
|
"description": "Mistral Large is the flagship model, excelling in multilingual tasks, complex reasoning, and code generation, making it an ideal choice for high-end applications."
|
625
663
|
},
|
626
664
|
"mistral-nemo": {
|
627
665
|
"description": "Mistral Nemo, developed in collaboration with Mistral AI and NVIDIA, is a high-performance 12B model."
|
628
666
|
},
|
667
|
+
"mistral-small": {
|
668
|
+
"description": "Mistral Small can be used for any language-based task that requires high efficiency and low latency."
|
669
|
+
},
|
670
|
+
"mistral-small-latest": {
|
671
|
+
"description": "Mistral Small is a cost-effective, fast, and reliable option suitable for use cases such as translation, summarization, and sentiment analysis."
|
672
|
+
},
|
629
673
|
"mistralai/Mistral-7B-Instruct-v0.1": {
|
630
674
|
"description": "Mistral (7B) Instruct is known for its high performance, suitable for various language tasks."
|
631
675
|
},
|
@@ -713,20 +757,29 @@
|
|
713
757
|
"phi3:14b": {
|
714
758
|
"description": "Phi-3 is a lightweight open model launched by Microsoft, suitable for efficient integration and large-scale knowledge reasoning."
|
715
759
|
},
|
760
|
+
"pixtral-12b-2409": {
|
761
|
+
"description": "The Pixtral model demonstrates strong capabilities in tasks such as chart and image understanding, document question answering, multimodal reasoning, and instruction following. It can ingest images at natural resolutions and aspect ratios and handle an arbitrary number of images within a long context window of up to 128K tokens."
|
762
|
+
},
|
763
|
+
"qwen-coder-turbo-latest": {
|
764
|
+
"description": "The Tongyi Qianwen Coder model."
|
765
|
+
},
|
716
766
|
"qwen-long": {
|
717
767
|
"description": "Qwen is a large-scale language model that supports long text contexts and dialogue capabilities based on long documents and multiple documents."
|
718
768
|
},
|
719
|
-
"qwen-
|
720
|
-
"description": "
|
769
|
+
"qwen-math-plus-latest": {
|
770
|
+
"description": "The Tongyi Qianwen Math model is specifically designed for solving mathematical problems."
|
721
771
|
},
|
722
|
-
"qwen-
|
723
|
-
"description": "
|
772
|
+
"qwen-math-turbo-latest": {
|
773
|
+
"description": "The Tongyi Qianwen Math model is specifically designed for solving mathematical problems."
|
724
774
|
},
|
725
|
-
"qwen-
|
726
|
-
"description": "
|
775
|
+
"qwen-max-latest": {
|
776
|
+
"description": "Tongyi Qianwen Max is a large-scale language model with hundreds of billions of parameters, supporting input in various languages, including Chinese and English. It is the API model behind the current Tongyi Qianwen 2.5 product version."
|
727
777
|
},
|
728
|
-
"qwen-
|
729
|
-
"description": "
|
778
|
+
"qwen-plus-latest": {
|
779
|
+
"description": "Tongyi Qianwen Plus is an enhanced version of the large-scale language model, supporting input in various languages, including Chinese and English."
|
780
|
+
},
|
781
|
+
"qwen-turbo-latest": {
|
782
|
+
"description": "Tongyi Qianwen is a large-scale language model that supports input in various languages, including Chinese and English."
|
730
783
|
},
|
731
784
|
"qwen-vl-chat-v1": {
|
732
785
|
"description": "Qwen VL supports flexible interaction methods, including multi-image, multi-turn Q&A, and creative capabilities."
|
@@ -746,17 +799,32 @@
|
|
746
799
|
"qwen2": {
|
747
800
|
"description": "Qwen2 is Alibaba's next-generation large-scale language model, supporting diverse application needs with excellent performance."
|
748
801
|
},
|
749
|
-
"qwen2-
|
750
|
-
"description": "
|
802
|
+
"qwen2.5-14b-instruct": {
|
803
|
+
"description": "The 14B model of Tongyi Qianwen 2.5 is open-sourced."
|
804
|
+
},
|
805
|
+
"qwen2.5-32b-instruct": {
|
806
|
+
"description": "The 32B model of Tongyi Qianwen 2.5 is open-sourced."
|
807
|
+
},
|
808
|
+
"qwen2.5-72b-instruct": {
|
809
|
+
"description": "The 72B model of Tongyi Qianwen 2.5 is open-sourced."
|
810
|
+
},
|
811
|
+
"qwen2.5-7b-instruct": {
|
812
|
+
"description": "The 7B model of Tongyi Qianwen 2.5 is open-sourced."
|
813
|
+
},
|
814
|
+
"qwen2.5-coder-1.5b-instruct": {
|
815
|
+
"description": "The open-source version of the Tongyi Qianwen Coder model."
|
816
|
+
},
|
817
|
+
"qwen2.5-coder-7b-instruct": {
|
818
|
+
"description": "The open-source version of the Tongyi Qianwen Coder model."
|
751
819
|
},
|
752
|
-
"qwen2-
|
753
|
-
"description": "
|
820
|
+
"qwen2.5-math-1.5b-instruct": {
|
821
|
+
"description": "The Qwen-Math model possesses strong capabilities for solving mathematical problems."
|
754
822
|
},
|
755
|
-
"qwen2-
|
756
|
-
"description": "
|
823
|
+
"qwen2.5-math-72b-instruct": {
|
824
|
+
"description": "The Qwen-Math model possesses strong capabilities for solving mathematical problems."
|
757
825
|
},
|
758
|
-
"qwen2-math-
|
759
|
-
"description": "
|
826
|
+
"qwen2.5-math-7b-instruct": {
|
827
|
+
"description": "The Qwen-Math model possesses strong capabilities for solving mathematical problems."
|
760
828
|
},
|
761
829
|
"qwen2:0.5b": {
|
762
830
|
"description": "Qwen2 is Alibaba's next-generation large-scale language model, supporting diverse application needs with excellent performance."
|
@@ -1,4 +1,5 @@
|
|
1
1
|
{
|
2
|
+
"ai21": {},
|
2
3
|
"ai360": {
|
3
4
|
"description": "360 AI is an AI model and service platform launched by 360 Company, offering various advanced natural language processing models, including 360GPT2 Pro, 360GPT Pro, 360GPT Turbo, and 360GPT Turbo Responsibility 8K. These models combine large-scale parameters and multimodal capabilities, widely applied in text generation, semantic understanding, dialogue systems, and code generation. With flexible pricing strategies, 360 AI meets diverse user needs, supports developer integration, and promotes the innovation and development of intelligent applications."
|
4
5
|
},
|
@@ -20,6 +21,9 @@
|
|
20
21
|
"fireworksai": {
|
21
22
|
"description": "Fireworks AI is a leading provider of advanced language model services, focusing on functional calling and multimodal processing. Its latest model, Firefunction V2, is based on Llama-3, optimized for function calling, conversation, and instruction following. The visual language model FireLLaVA-13B supports mixed input of images and text. Other notable models include the Llama series and Mixtral series, providing efficient multilingual instruction following and generation support."
|
22
23
|
},
|
24
|
+
"github": {
|
25
|
+
"description": "With GitHub Models, developers can become AI engineers and leverage the industry's leading AI models."
|
26
|
+
},
|
23
27
|
"google": {
|
24
28
|
"description": "Google's Gemini series represents its most advanced, versatile AI models, developed by Google DeepMind, designed for multimodal capabilities, supporting seamless understanding and processing of text, code, images, audio, and video. Suitable for various environments from data centers to mobile devices, it significantly enhances the efficiency and applicability of AI models."
|
25
29
|
},
|