@lobehub/chat 1.19.14 → 1.19.15
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +25 -0
- package/locales/ar/models.json +116 -48
- package/locales/ar/providers.json +4 -0
- package/locales/bg-BG/models.json +116 -48
- package/locales/bg-BG/providers.json +4 -0
- package/locales/de-DE/models.json +116 -48
- package/locales/de-DE/providers.json +4 -0
- package/locales/en-US/models.json +116 -48
- package/locales/en-US/providers.json +4 -0
- package/locales/es-ES/models.json +116 -48
- package/locales/es-ES/providers.json +4 -0
- package/locales/fr-FR/models.json +116 -48
- package/locales/fr-FR/providers.json +4 -0
- package/locales/it-IT/models.json +0 -60
- package/locales/it-IT/providers.json +4 -0
- package/locales/ja-JP/models.json +116 -48
- package/locales/ja-JP/providers.json +4 -0
- package/locales/ko-KR/models.json +116 -48
- package/locales/ko-KR/providers.json +4 -0
- package/locales/nl-NL/models.json +0 -60
- package/locales/pl-PL/models.json +0 -60
- package/locales/pt-BR/models.json +116 -48
- package/locales/pt-BR/providers.json +4 -0
- package/locales/ru-RU/models.json +116 -48
- package/locales/ru-RU/providers.json +4 -0
- package/locales/tr-TR/models.json +116 -48
- package/locales/tr-TR/providers.json +4 -0
- package/locales/vi-VN/models.json +0 -60
- package/locales/zh-CN/models.json +122 -54
- package/locales/zh-CN/providers.json +4 -0
- package/locales/zh-TW/models.json +116 -48
- package/locales/zh-TW/providers.json +4 -0
- package/package.json +1 -1
@@ -2,9 +2,6 @@
|
|
2
2
|
"01-ai/Yi-1.5-34B-Chat-16K": {
|
3
3
|
"description": "Yi-1.5 34B, con un rico conjunto de muestras de entrenamiento, ofrece un rendimiento superior en aplicaciones industriales."
|
4
4
|
},
|
5
|
-
"01-ai/Yi-1.5-6B-Chat": {
|
6
|
-
"description": "Yi-1.5 es la versión evolucionada de la serie Yi, con un preentrenamiento de alta calidad y un conjunto de datos de ajuste fino rico."
|
7
|
-
},
|
8
5
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
6
|
"description": "Yi-1.5 9B soporta 16K Tokens, proporcionando una capacidad de generación de lenguaje eficiente y fluida."
|
10
7
|
},
|
@@ -47,41 +44,56 @@
|
|
47
44
|
"NousResearch/Nous-Hermes-2-Yi-34B": {
|
48
45
|
"description": "Nous Hermes-2 Yi (34B) ofrece salidas de lenguaje optimizadas y diversas posibilidades de aplicación."
|
49
46
|
},
|
47
|
+
"Phi-3-5-mini-instruct": {
|
48
|
+
"description": "Actualización del modelo Phi-3-mini."
|
49
|
+
},
|
50
|
+
"Phi-3-medium-128k-instruct": {
|
51
|
+
"description": "El mismo modelo Phi-3-medium, pero con un tamaño de contexto más grande para RAG o indicaciones de pocos disparos."
|
52
|
+
},
|
53
|
+
"Phi-3-medium-4k-instruct": {
|
54
|
+
"description": "Un modelo de 14B parámetros, que demuestra mejor calidad que Phi-3-mini, con un enfoque en datos densos de razonamiento de alta calidad."
|
55
|
+
},
|
56
|
+
"Phi-3-mini-128k-instruct": {
|
57
|
+
"description": "El mismo modelo Phi-3-mini, pero con un tamaño de contexto más grande para RAG o indicaciones de pocos disparos."
|
58
|
+
},
|
59
|
+
"Phi-3-mini-4k-instruct": {
|
60
|
+
"description": "El miembro más pequeño de la familia Phi-3. Optimizado tanto para calidad como para baja latencia."
|
61
|
+
},
|
62
|
+
"Phi-3-small-128k-instruct": {
|
63
|
+
"description": "El mismo modelo Phi-3-small, pero con un tamaño de contexto más grande para RAG o indicaciones de pocos disparos."
|
64
|
+
},
|
65
|
+
"Phi-3-small-8k-instruct": {
|
66
|
+
"description": "Un modelo de 7B parámetros, que demuestra mejor calidad que Phi-3-mini, con un enfoque en datos densos de razonamiento de alta calidad."
|
67
|
+
},
|
50
68
|
"Pro-128k": {
|
51
69
|
"description": "Spark Pro-128K está configurado con una capacidad de procesamiento de contexto extremadamente grande, capaz de manejar hasta 128K de información contextual, especialmente adecuado para contenido largo que requiere análisis completo y manejo de relaciones lógicas a largo plazo, proporcionando una lógica fluida y consistente y un soporte diverso de citas en comunicaciones de texto complejas."
|
52
70
|
},
|
53
71
|
"Qwen/Qwen1.5-110B-Chat": {
|
54
72
|
"description": "Como versión beta de Qwen2, Qwen1.5 utiliza datos a gran escala para lograr funciones de conversación más precisas."
|
55
73
|
},
|
56
|
-
"Qwen/Qwen1.5-14B-Chat": {
|
57
|
-
"description": "Qwen1.5, entrenado con un conjunto de datos a gran escala, es experto en tareas de lenguaje complejas."
|
58
|
-
},
|
59
|
-
"Qwen/Qwen1.5-32B-Chat": {
|
60
|
-
"description": "Qwen1.5 tiene la capacidad de responder preguntas y generar textos en múltiples dominios."
|
61
|
-
},
|
62
74
|
"Qwen/Qwen1.5-72B-Chat": {
|
63
75
|
"description": "Qwen 1.5 Chat (72B) ofrece respuestas rápidas y capacidades de conversación natural, adecuado para entornos multilingües."
|
64
76
|
},
|
65
|
-
"Qwen/
|
66
|
-
"description": "
|
77
|
+
"Qwen/Qwen2-72B-Instruct": {
|
78
|
+
"description": "Qwen2 es un modelo de lenguaje general avanzado, que soporta múltiples tipos de instrucciones."
|
67
79
|
},
|
68
|
-
"Qwen/Qwen2
|
69
|
-
"description": "Qwen2 es una nueva serie de modelos de lenguaje
|
80
|
+
"Qwen/Qwen2.5-14B-Instruct": {
|
81
|
+
"description": "Qwen2.5 es una nueva serie de modelos de lenguaje a gran escala, diseñada para optimizar el procesamiento de tareas de instrucción."
|
70
82
|
},
|
71
|
-
"Qwen/Qwen2-
|
72
|
-
"description": "Qwen2 es una nueva serie,
|
83
|
+
"Qwen/Qwen2.5-32B-Instruct": {
|
84
|
+
"description": "Qwen2.5 es una nueva serie de modelos de lenguaje a gran escala, diseñada para optimizar el procesamiento de tareas de instrucción."
|
73
85
|
},
|
74
|
-
"Qwen/Qwen2-72B-Instruct": {
|
75
|
-
"description": "Qwen2 es
|
86
|
+
"Qwen/Qwen2.5-72B-Instruct": {
|
87
|
+
"description": "Qwen2.5 es una nueva serie de modelos de lenguaje a gran escala, con una mayor capacidad de comprensión y generación."
|
76
88
|
},
|
77
|
-
"Qwen/Qwen2-7B-Instruct": {
|
78
|
-
"description": "Qwen2 es una nueva serie de modelos de lenguaje
|
89
|
+
"Qwen/Qwen2.5-7B-Instruct": {
|
90
|
+
"description": "Qwen2.5 es una nueva serie de modelos de lenguaje a gran escala, diseñada para optimizar el procesamiento de tareas de instrucción."
|
79
91
|
},
|
80
|
-
"Qwen/Qwen2-
|
81
|
-
"description": "Qwen2-
|
92
|
+
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
93
|
+
"description": "Qwen2.5-Coder se centra en la escritura de código."
|
82
94
|
},
|
83
|
-
"
|
84
|
-
"description": "
|
95
|
+
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
96
|
+
"description": "Qwen2.5-Math se centra en la resolución de problemas en el ámbito de las matemáticas, proporcionando respuestas profesionales a preguntas de alta dificultad."
|
85
97
|
},
|
86
98
|
"THUDM/glm-4-9b-chat": {
|
87
99
|
"description": "GLM-4 9B es una versión de código abierto, que proporciona una experiencia de conversación optimizada para aplicaciones de diálogo."
|
@@ -158,6 +170,15 @@
|
|
158
170
|
"accounts/yi-01-ai/models/yi-large": {
|
159
171
|
"description": "El modelo Yi-Large ofrece una capacidad de procesamiento multilingüe excepcional, adecuado para diversas tareas de generación y comprensión de lenguaje."
|
160
172
|
},
|
173
|
+
"ai21-jamba-1.5-large": {
|
174
|
+
"description": "Un modelo multilingüe de 398B parámetros (94B activos), que ofrece una ventana de contexto larga de 256K, llamada a funciones, salida estructurada y generación fundamentada."
|
175
|
+
},
|
176
|
+
"ai21-jamba-1.5-mini": {
|
177
|
+
"description": "Un modelo multilingüe de 52B parámetros (12B activos), que ofrece una ventana de contexto larga de 256K, llamada a funciones, salida estructurada y generación fundamentada."
|
178
|
+
},
|
179
|
+
"ai21-jamba-instruct": {
|
180
|
+
"description": "Un modelo LLM basado en Mamba de calidad de producción para lograr un rendimiento, calidad y eficiencia de costos de primera clase."
|
181
|
+
},
|
161
182
|
"anthropic.claude-3-5-sonnet-20240620-v1:0": {
|
162
183
|
"description": "Claude 3.5 Sonnet eleva el estándar de la industria, superando a modelos competidores y a Claude 3 Opus, destacándose en evaluaciones amplias, mientras mantiene la velocidad y costo de nuestros modelos de nivel medio."
|
163
184
|
},
|
@@ -254,6 +275,12 @@
|
|
254
275
|
"cognitivecomputations/dolphin-mixtral-8x22b": {
|
255
276
|
"description": "Dolphin Mixtral 8x22B es un modelo diseñado para seguir instrucciones, diálogos y programación."
|
256
277
|
},
|
278
|
+
"cohere-command-r": {
|
279
|
+
"description": "Command R es un modelo generativo escalable dirigido a RAG y uso de herramientas para habilitar IA a escala de producción para empresas."
|
280
|
+
},
|
281
|
+
"cohere-command-r-plus": {
|
282
|
+
"description": "Command R+ es un modelo optimizado para RAG de última generación diseñado para abordar cargas de trabajo de nivel empresarial."
|
283
|
+
},
|
257
284
|
"command-r": {
|
258
285
|
"description": "Command R es un LLM optimizado para tareas de diálogo y contexto largo, especialmente adecuado para interacciones dinámicas y gestión del conocimiento."
|
259
286
|
},
|
@@ -263,12 +290,6 @@
|
|
263
290
|
"databricks/dbrx-instruct": {
|
264
291
|
"description": "DBRX Instruct ofrece capacidades de procesamiento de instrucciones de alta fiabilidad, soportando aplicaciones en múltiples industrias."
|
265
292
|
},
|
266
|
-
"deepseek-ai/DeepSeek-Coder-V2-Instruct": {
|
267
|
-
"description": "DeepSeek Coder V2 está diseñado para tareas de código, enfocándose en la generación de código eficiente."
|
268
|
-
},
|
269
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
270
|
-
"description": "DeepSeek V2 tiene 6.7 mil millones de parámetros y soporta el procesamiento de textos en inglés y chino."
|
271
|
-
},
|
272
293
|
"deepseek-ai/DeepSeek-V2.5": {
|
273
294
|
"description": "DeepSeek V2.5 combina las excelentes características de versiones anteriores, mejorando la capacidad general y de codificación."
|
274
295
|
},
|
@@ -467,6 +488,8 @@
|
|
467
488
|
"internlm/internlm2_5-7b-chat": {
|
468
489
|
"description": "InternLM2.5 ofrece soluciones de diálogo inteligente en múltiples escenarios."
|
469
490
|
},
|
491
|
+
"jamba-1.5-large": {},
|
492
|
+
"jamba-1.5-mini": {},
|
470
493
|
"llama-3.1-70b-instruct": {
|
471
494
|
"description": "El modelo Llama 3.1 70B Instruct, con 70B de parámetros, puede ofrecer un rendimiento excepcional en tareas de generación de texto y de instrucciones a gran escala."
|
472
495
|
},
|
@@ -530,6 +553,21 @@
|
|
530
553
|
"mathstral": {
|
531
554
|
"description": "MathΣtral está diseñado para la investigación científica y el razonamiento matemático, proporcionando capacidades de cálculo efectivas y explicación de resultados."
|
532
555
|
},
|
556
|
+
"meta-llama-3-70b-instruct": {
|
557
|
+
"description": "Un poderoso modelo de 70 mil millones de parámetros que sobresale en razonamiento, codificación y amplias aplicaciones de lenguaje."
|
558
|
+
},
|
559
|
+
"meta-llama-3-8b-instruct": {
|
560
|
+
"description": "Un modelo versátil de 8 mil millones de parámetros optimizado para tareas de diálogo y generación de texto."
|
561
|
+
},
|
562
|
+
"meta-llama-3.1-405b-instruct": {
|
563
|
+
"description": "Los modelos de texto solo ajustados por instrucciones Llama 3.1 están optimizados para casos de uso de diálogo multilingüe y superan muchos de los modelos de chat de código abierto y cerrados disponibles en los benchmarks de la industria."
|
564
|
+
},
|
565
|
+
"meta-llama-3.1-70b-instruct": {
|
566
|
+
"description": "Los modelos de texto solo ajustados por instrucciones Llama 3.1 están optimizados para casos de uso de diálogo multilingüe y superan muchos de los modelos de chat de código abierto y cerrados disponibles en los benchmarks de la industria."
|
567
|
+
},
|
568
|
+
"meta-llama-3.1-8b-instruct": {
|
569
|
+
"description": "Los modelos de texto solo ajustados por instrucciones Llama 3.1 están optimizados para casos de uso de diálogo multilingüe y superan muchos de los modelos de chat de código abierto y cerrados disponibles en los benchmarks de la industria."
|
570
|
+
},
|
533
571
|
"meta-llama/Llama-2-13b-chat-hf": {
|
534
572
|
"description": "LLaMA-2 Chat (13B) ofrece una excelente capacidad de procesamiento de lenguaje y una experiencia de interacción sobresaliente."
|
535
573
|
},
|
@@ -539,9 +577,6 @@
|
|
539
577
|
"meta-llama/Llama-3-8b-chat-hf": {
|
540
578
|
"description": "LLaMA-3 Chat (8B) ofrece soporte multilingüe, abarcando un amplio conocimiento en diversos campos."
|
541
579
|
},
|
542
|
-
"meta-llama/Meta-Llama-3-70B-Instruct": {
|
543
|
-
"description": "LLaMA 3 soporta la generación de textos de gran capacidad y el análisis de instrucciones."
|
544
|
-
},
|
545
580
|
"meta-llama/Meta-Llama-3-70B-Instruct-Lite": {
|
546
581
|
"description": "Llama 3 70B Instruct Lite es ideal para entornos que requieren alto rendimiento y baja latencia."
|
547
582
|
},
|
@@ -620,12 +655,21 @@
|
|
620
655
|
"mistral-large": {
|
621
656
|
"description": "Mixtral Large es el modelo insignia de Mistral, combinando capacidades de generación de código, matemáticas y razonamiento, soportando una ventana de contexto de 128k."
|
622
657
|
},
|
658
|
+
"mistral-large-2407": {
|
659
|
+
"description": "Mistral Large (2407) es un modelo de lenguaje grande (LLM) avanzado con capacidades de razonamiento, conocimiento y codificación de última generación."
|
660
|
+
},
|
623
661
|
"mistral-large-latest": {
|
624
662
|
"description": "Mistral Large es el modelo insignia, especializado en tareas multilingües, razonamiento complejo y generación de código, ideal para aplicaciones de alta gama."
|
625
663
|
},
|
626
664
|
"mistral-nemo": {
|
627
665
|
"description": "Mistral Nemo, desarrollado en colaboración entre Mistral AI y NVIDIA, es un modelo de 12B de alto rendimiento."
|
628
666
|
},
|
667
|
+
"mistral-small": {
|
668
|
+
"description": "Mistral Small se puede utilizar en cualquier tarea basada en lenguaje que requiera alta eficiencia y baja latencia."
|
669
|
+
},
|
670
|
+
"mistral-small-latest": {
|
671
|
+
"description": "Mistral Small es una opción rentable, rápida y confiable, adecuada para casos de uso como traducción, resumen y análisis de sentimientos."
|
672
|
+
},
|
629
673
|
"mistralai/Mistral-7B-Instruct-v0.1": {
|
630
674
|
"description": "Mistral (7B) Instruct es conocido por su alto rendimiento, adecuado para diversas tareas de lenguaje."
|
631
675
|
},
|
@@ -713,20 +757,29 @@
|
|
713
757
|
"phi3:14b": {
|
714
758
|
"description": "Phi-3 es un modelo abierto ligero lanzado por Microsoft, adecuado para una integración eficiente y razonamiento de conocimiento a gran escala."
|
715
759
|
},
|
760
|
+
"pixtral-12b-2409": {
|
761
|
+
"description": "El modelo Pixtral muestra una fuerte capacidad en tareas como comprensión de gráficos e imágenes, preguntas y respuestas de documentos, razonamiento multimodal y seguimiento de instrucciones, capaz de ingerir imágenes en resolución y proporción natural, y manejar una cantidad arbitraria de imágenes en una ventana de contexto larga de hasta 128K tokens."
|
762
|
+
},
|
763
|
+
"qwen-coder-turbo-latest": {
|
764
|
+
"description": "El modelo de código Tongyi Qwen."
|
765
|
+
},
|
716
766
|
"qwen-long": {
|
717
767
|
"description": "Qwen es un modelo de lenguaje a gran escala que admite contextos de texto largos y funciones de conversación basadas en documentos largos y múltiples."
|
718
768
|
},
|
719
|
-
"qwen-
|
720
|
-
"description": "
|
769
|
+
"qwen-math-plus-latest": {
|
770
|
+
"description": "El modelo de matemáticas Tongyi Qwen está diseñado específicamente para resolver problemas matemáticos."
|
721
771
|
},
|
722
|
-
"qwen-
|
723
|
-
"description": "
|
772
|
+
"qwen-math-turbo-latest": {
|
773
|
+
"description": "El modelo de matemáticas Tongyi Qwen está diseñado específicamente para resolver problemas matemáticos."
|
724
774
|
},
|
725
|
-
"qwen-
|
726
|
-
"description": "
|
775
|
+
"qwen-max-latest": {
|
776
|
+
"description": "El modelo de lenguaje a gran escala Tongyi Qwen de nivel de cientos de miles de millones, que admite entradas en diferentes idiomas como chino e inglés, es el modelo API detrás de la versión del producto Tongyi Qwen 2.5."
|
727
777
|
},
|
728
|
-
"qwen-
|
729
|
-
"description": "
|
778
|
+
"qwen-plus-latest": {
|
779
|
+
"description": "La versión mejorada del modelo de lenguaje a gran escala Tongyi Qwen, que admite entradas en diferentes idiomas como chino e inglés."
|
780
|
+
},
|
781
|
+
"qwen-turbo-latest": {
|
782
|
+
"description": "El modelo de lenguaje a gran escala Tongyi Qwen, que admite entradas en diferentes idiomas como chino e inglés."
|
730
783
|
},
|
731
784
|
"qwen-vl-chat-v1": {
|
732
785
|
"description": "Qwen VL admite formas de interacción flexibles, incluyendo múltiples imágenes, preguntas y respuestas en múltiples rondas, y capacidades creativas."
|
@@ -746,17 +799,32 @@
|
|
746
799
|
"qwen2": {
|
747
800
|
"description": "Qwen2 es el nuevo modelo de lenguaje a gran escala de Alibaba, que ofrece un rendimiento excepcional para satisfacer diversas necesidades de aplicación."
|
748
801
|
},
|
749
|
-
"qwen2-
|
750
|
-
"description": "
|
802
|
+
"qwen2.5-14b-instruct": {
|
803
|
+
"description": "El modelo de 14B de Tongyi Qwen 2.5, de código abierto."
|
804
|
+
},
|
805
|
+
"qwen2.5-32b-instruct": {
|
806
|
+
"description": "El modelo de 32B de Tongyi Qwen 2.5, de código abierto."
|
807
|
+
},
|
808
|
+
"qwen2.5-72b-instruct": {
|
809
|
+
"description": "El modelo de 72B de Tongyi Qwen 2.5, de código abierto."
|
810
|
+
},
|
811
|
+
"qwen2.5-7b-instruct": {
|
812
|
+
"description": "El modelo de 7B de Tongyi Qwen 2.5, de código abierto."
|
813
|
+
},
|
814
|
+
"qwen2.5-coder-1.5b-instruct": {
|
815
|
+
"description": "La versión de código abierto del modelo de código Tongyi Qwen."
|
816
|
+
},
|
817
|
+
"qwen2.5-coder-7b-instruct": {
|
818
|
+
"description": "La versión de código abierto del modelo de código Tongyi Qwen."
|
751
819
|
},
|
752
|
-
"qwen2-
|
753
|
-
"description": "
|
820
|
+
"qwen2.5-math-1.5b-instruct": {
|
821
|
+
"description": "El modelo Qwen-Math tiene una poderosa capacidad para resolver problemas matemáticos."
|
754
822
|
},
|
755
|
-
"qwen2-
|
756
|
-
"description": "
|
823
|
+
"qwen2.5-math-72b-instruct": {
|
824
|
+
"description": "El modelo Qwen-Math tiene una poderosa capacidad para resolver problemas matemáticos."
|
757
825
|
},
|
758
|
-
"qwen2-math-
|
759
|
-
"description": "El modelo
|
826
|
+
"qwen2.5-math-7b-instruct": {
|
827
|
+
"description": "El modelo Qwen-Math tiene una poderosa capacidad para resolver problemas matemáticos."
|
760
828
|
},
|
761
829
|
"qwen2:0.5b": {
|
762
830
|
"description": "Qwen2 es el nuevo modelo de lenguaje a gran escala de Alibaba, que ofrece un rendimiento excepcional para satisfacer diversas necesidades de aplicación."
|
@@ -1,4 +1,5 @@
|
|
1
1
|
{
|
2
|
+
"ai21": {},
|
2
3
|
"ai360": {
|
3
4
|
"description": "360 AI es una plataforma de modelos y servicios de IA lanzada por la empresa 360, que ofrece una variedad de modelos avanzados de procesamiento del lenguaje natural, incluidos 360GPT2 Pro, 360GPT Pro, 360GPT Turbo y 360GPT Turbo Responsibility 8K. Estos modelos combinan parámetros a gran escala y capacidades multimodales, siendo ampliamente utilizados en generación de texto, comprensión semántica, sistemas de diálogo y generación de código. A través de una estrategia de precios flexible, 360 AI satisface diversas necesidades de los usuarios, apoyando la integración de desarrolladores y promoviendo la innovación y desarrollo de aplicaciones inteligentes."
|
4
5
|
},
|
@@ -20,6 +21,9 @@
|
|
20
21
|
"fireworksai": {
|
21
22
|
"description": "Fireworks AI es un proveedor líder de servicios de modelos de lenguaje avanzados, enfocado en la llamada de funciones y el procesamiento multimodal. Su modelo más reciente, Firefunction V2, basado en Llama-3, está optimizado para llamadas de funciones, diálogos y seguimiento de instrucciones. El modelo de lenguaje visual FireLLaVA-13B admite entradas mixtas de imágenes y texto. Otros modelos notables incluyen la serie Llama y la serie Mixtral, que ofrecen un soporte eficiente para el seguimiento y generación de instrucciones multilingües."
|
22
23
|
},
|
24
|
+
"github": {
|
25
|
+
"description": "Con los Modelos de GitHub, los desarrolladores pueden convertirse en ingenieros de IA y construir con los modelos de IA líderes en la industria."
|
26
|
+
},
|
23
27
|
"google": {
|
24
28
|
"description": "La serie Gemini de Google es su modelo de IA más avanzado y versátil, desarrollado por Google DeepMind, diseñado para ser multimodal, apoyando la comprensión y procesamiento sin fisuras de texto, código, imágenes, audio y video. Es adecuado para una variedad de entornos, desde centros de datos hasta dispositivos móviles, mejorando enormemente la eficiencia y la aplicabilidad de los modelos de IA."
|
25
29
|
},
|
@@ -2,9 +2,6 @@
|
|
2
2
|
"01-ai/Yi-1.5-34B-Chat-16K": {
|
3
3
|
"description": "Yi-1.5 34B, avec un ensemble d'échantillons d'entraînement riche, offre des performances supérieures dans les applications sectorielles."
|
4
4
|
},
|
5
|
-
"01-ai/Yi-1.5-6B-Chat": {
|
6
|
-
"description": "Yi-1.5 est une version évoluée de la série Yi, avec un pré-entraînement de haute qualité et un ensemble de données d'ajustement riche."
|
7
|
-
},
|
8
5
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
6
|
"description": "Yi-1.5 9B supporte 16K Tokens, offrant une capacité de génération de langage efficace et fluide."
|
10
7
|
},
|
@@ -47,41 +44,56 @@
|
|
47
44
|
"NousResearch/Nous-Hermes-2-Yi-34B": {
|
48
45
|
"description": "Nous Hermes-2 Yi (34B) offre une sortie linguistique optimisée et des possibilités d'application diversifiées."
|
49
46
|
},
|
47
|
+
"Phi-3-5-mini-instruct": {
|
48
|
+
"description": "Rafraîchissement du modèle Phi-3-mini."
|
49
|
+
},
|
50
|
+
"Phi-3-medium-128k-instruct": {
|
51
|
+
"description": "Même modèle Phi-3-medium, mais avec une taille de contexte plus grande pour RAG ou un prompt à quelques exemples."
|
52
|
+
},
|
53
|
+
"Phi-3-medium-4k-instruct": {
|
54
|
+
"description": "Un modèle de 14 milliards de paramètres, prouvant une meilleure qualité que Phi-3-mini, avec un accent sur des données denses en raisonnement de haute qualité."
|
55
|
+
},
|
56
|
+
"Phi-3-mini-128k-instruct": {
|
57
|
+
"description": "Même modèle Phi-3-mini, mais avec une taille de contexte plus grande pour RAG ou un prompt à quelques exemples."
|
58
|
+
},
|
59
|
+
"Phi-3-mini-4k-instruct": {
|
60
|
+
"description": "Le plus petit membre de la famille Phi-3. Optimisé pour la qualité et la faible latence."
|
61
|
+
},
|
62
|
+
"Phi-3-small-128k-instruct": {
|
63
|
+
"description": "Même modèle Phi-3-small, mais avec une taille de contexte plus grande pour RAG ou un prompt à quelques exemples."
|
64
|
+
},
|
65
|
+
"Phi-3-small-8k-instruct": {
|
66
|
+
"description": "Un modèle de 7 milliards de paramètres, prouvant une meilleure qualité que Phi-3-mini, avec un accent sur des données denses en raisonnement de haute qualité."
|
67
|
+
},
|
50
68
|
"Pro-128k": {
|
51
69
|
"description": "Spark Pro-128K est configuré avec une capacité de traitement de contexte exceptionnel, capable de gérer jusqu'à 128K d'informations contextuelles, particulièrement adapté pour l'analyse complète et le traitement des relations logiques à long terme dans des contenus longs, offrant une logique fluide et cohérente ainsi qu'un support varié pour les références dans des communications textuelles complexes."
|
52
70
|
},
|
53
71
|
"Qwen/Qwen1.5-110B-Chat": {
|
54
72
|
"description": "En tant que version bêta de Qwen2, Qwen1.5 utilise des données à grande échelle pour réaliser des fonctionnalités de dialogue plus précises."
|
55
73
|
},
|
56
|
-
"Qwen/Qwen1.5-14B-Chat": {
|
57
|
-
"description": "Qwen1.5, formé sur un ensemble de données massif, excelle dans des tâches linguistiques complexes."
|
58
|
-
},
|
59
|
-
"Qwen/Qwen1.5-32B-Chat": {
|
60
|
-
"description": "Qwen1.5 possède des capacités de questions-réponses multi-domaines et de génération de texte."
|
61
|
-
},
|
62
74
|
"Qwen/Qwen1.5-72B-Chat": {
|
63
75
|
"description": "Qwen 1.5 Chat (72B) offre des réponses rapides et des capacités de dialogue naturel, adapté aux environnements multilingues."
|
64
76
|
},
|
65
|
-
"Qwen/
|
66
|
-
"description": "
|
77
|
+
"Qwen/Qwen2-72B-Instruct": {
|
78
|
+
"description": "Qwen2 est un modèle de langage général avancé, prenant en charge divers types d'instructions."
|
67
79
|
},
|
68
|
-
"Qwen/Qwen2
|
69
|
-
"description": "Qwen2 est une toute nouvelle série de modèles de langage
|
80
|
+
"Qwen/Qwen2.5-14B-Instruct": {
|
81
|
+
"description": "Qwen2.5 est une toute nouvelle série de modèles de langage à grande échelle, conçue pour optimiser le traitement des tâches d'instruction."
|
70
82
|
},
|
71
|
-
"Qwen/Qwen2-
|
72
|
-
"description": "Qwen2 est une toute nouvelle série
|
83
|
+
"Qwen/Qwen2.5-32B-Instruct": {
|
84
|
+
"description": "Qwen2.5 est une toute nouvelle série de modèles de langage à grande échelle, conçue pour optimiser le traitement des tâches d'instruction."
|
73
85
|
},
|
74
|
-
"Qwen/Qwen2-72B-Instruct": {
|
75
|
-
"description": "Qwen2 est
|
86
|
+
"Qwen/Qwen2.5-72B-Instruct": {
|
87
|
+
"description": "Qwen2.5 est une toute nouvelle série de modèles de langage à grande échelle, avec une capacité de compréhension et de génération améliorée."
|
76
88
|
},
|
77
|
-
"Qwen/Qwen2-7B-Instruct": {
|
78
|
-
"description": "Qwen2 est une toute nouvelle série de modèles de langage
|
89
|
+
"Qwen/Qwen2.5-7B-Instruct": {
|
90
|
+
"description": "Qwen2.5 est une toute nouvelle série de modèles de langage à grande échelle, conçue pour optimiser le traitement des tâches d'instruction."
|
79
91
|
},
|
80
|
-
"Qwen/Qwen2-
|
81
|
-
"description": "Qwen2-
|
92
|
+
"Qwen/Qwen2.5-Coder-7B-Instruct": {
|
93
|
+
"description": "Qwen2.5-Coder se concentre sur la rédaction de code."
|
82
94
|
},
|
83
|
-
"
|
84
|
-
"description": "
|
95
|
+
"Qwen/Qwen2.5-Math-72B-Instruct": {
|
96
|
+
"description": "Qwen2.5-Math se concentre sur la résolution de problèmes dans le domaine des mathématiques, fournissant des réponses professionnelles pour des questions de haute difficulté."
|
85
97
|
},
|
86
98
|
"THUDM/glm-4-9b-chat": {
|
87
99
|
"description": "GLM-4 9B est une version open source, offrant une expérience de dialogue optimisée pour les applications de conversation."
|
@@ -158,6 +170,15 @@
|
|
158
170
|
"accounts/yi-01-ai/models/yi-large": {
|
159
171
|
"description": "Le modèle Yi-Large offre d'excellentes capacités de traitement multilingue, adapté à diverses tâches de génération et de compréhension de langage."
|
160
172
|
},
|
173
|
+
"ai21-jamba-1.5-large": {
|
174
|
+
"description": "Un modèle multilingue de 398 milliards de paramètres (94 milliards actifs), offrant une fenêtre de contexte longue de 256K, des appels de fonction, une sortie structurée et une génération ancrée."
|
175
|
+
},
|
176
|
+
"ai21-jamba-1.5-mini": {
|
177
|
+
"description": "Un modèle multilingue de 52 milliards de paramètres (12 milliards actifs), offrant une fenêtre de contexte longue de 256K, des appels de fonction, une sortie structurée et une génération ancrée."
|
178
|
+
},
|
179
|
+
"ai21-jamba-instruct": {
|
180
|
+
"description": "Un modèle LLM basé sur Mamba de qualité production pour atteindre des performances, une qualité et une efficacité de coût de premier ordre."
|
181
|
+
},
|
161
182
|
"anthropic.claude-3-5-sonnet-20240620-v1:0": {
|
162
183
|
"description": "Claude 3.5 Sonnet élève les normes de l'industrie, surpassant les modèles concurrents et Claude 3 Opus, avec d'excellentes performances dans une large gamme d'évaluations, tout en offrant la vitesse et le coût de nos modèles de niveau intermédiaire."
|
163
184
|
},
|
@@ -254,6 +275,12 @@
|
|
254
275
|
"cognitivecomputations/dolphin-mixtral-8x22b": {
|
255
276
|
"description": "Dolphin Mixtral 8x22B est un modèle conçu pour le suivi des instructions, le dialogue et la programmation."
|
256
277
|
},
|
278
|
+
"cohere-command-r": {
|
279
|
+
"description": "Command R est un modèle génératif évolutif ciblant RAG et l'utilisation d'outils pour permettre une IA à l'échelle de la production pour les entreprises."
|
280
|
+
},
|
281
|
+
"cohere-command-r-plus": {
|
282
|
+
"description": "Command R+ est un modèle optimisé RAG de pointe conçu pour traiter des charges de travail de niveau entreprise."
|
283
|
+
},
|
257
284
|
"command-r": {
|
258
285
|
"description": "Command R est un LLM optimisé pour les tâches de dialogue et de long contexte, particulièrement adapté à l'interaction dynamique et à la gestion des connaissances."
|
259
286
|
},
|
@@ -263,12 +290,6 @@
|
|
263
290
|
"databricks/dbrx-instruct": {
|
264
291
|
"description": "DBRX Instruct offre des capacités de traitement d'instructions hautement fiables, prenant en charge des applications dans divers secteurs."
|
265
292
|
},
|
266
|
-
"deepseek-ai/DeepSeek-Coder-V2-Instruct": {
|
267
|
-
"description": "DeepSeek Coder V2 est conçu pour les tâches de codage, se concentrant sur la génération de code efficace."
|
268
|
-
},
|
269
|
-
"deepseek-ai/DeepSeek-V2-Chat": {
|
270
|
-
"description": "DeepSeek V2 possède 6,7 milliards de paramètres, supportant le traitement de texte en anglais et en chinois."
|
271
|
-
},
|
272
293
|
"deepseek-ai/DeepSeek-V2.5": {
|
273
294
|
"description": "DeepSeek V2.5 intègre les excellentes caractéristiques des versions précédentes, renforçant les capacités générales et de codage."
|
274
295
|
},
|
@@ -467,6 +488,8 @@
|
|
467
488
|
"internlm/internlm2_5-7b-chat": {
|
468
489
|
"description": "InternLM2.5 fournit des solutions de dialogue intelligent dans divers scénarios."
|
469
490
|
},
|
491
|
+
"jamba-1.5-large": {},
|
492
|
+
"jamba-1.5-mini": {},
|
470
493
|
"llama-3.1-70b-instruct": {
|
471
494
|
"description": "Le modèle Llama 3.1 70B Instruct, avec 70B de paramètres, offre des performances exceptionnelles dans la génération de texte et les tâches d'instructions."
|
472
495
|
},
|
@@ -530,6 +553,21 @@
|
|
530
553
|
"mathstral": {
|
531
554
|
"description": "MathΣtral est conçu pour la recherche scientifique et le raisonnement mathématique, offrant des capacités de calcul efficaces et des interprétations de résultats."
|
532
555
|
},
|
556
|
+
"meta-llama-3-70b-instruct": {
|
557
|
+
"description": "Un puissant modèle de 70 milliards de paramètres excelling dans le raisonnement, le codage et les applications linguistiques larges."
|
558
|
+
},
|
559
|
+
"meta-llama-3-8b-instruct": {
|
560
|
+
"description": "Un modèle polyvalent de 8 milliards de paramètres optimisé pour les tâches de dialogue et de génération de texte."
|
561
|
+
},
|
562
|
+
"meta-llama-3.1-405b-instruct": {
|
563
|
+
"description": "Les modèles textuels uniquement ajustés par instruction Llama 3.1 sont optimisés pour les cas d'utilisation de dialogue multilingue et surpassent de nombreux modèles de chat open source et fermés disponibles sur les benchmarks industriels courants."
|
564
|
+
},
|
565
|
+
"meta-llama-3.1-70b-instruct": {
|
566
|
+
"description": "Les modèles textuels uniquement ajustés par instruction Llama 3.1 sont optimisés pour les cas d'utilisation de dialogue multilingue et surpassent de nombreux modèles de chat open source et fermés disponibles sur les benchmarks industriels courants."
|
567
|
+
},
|
568
|
+
"meta-llama-3.1-8b-instruct": {
|
569
|
+
"description": "Les modèles textuels uniquement ajustés par instruction Llama 3.1 sont optimisés pour les cas d'utilisation de dialogue multilingue et surpassent de nombreux modèles de chat open source et fermés disponibles sur les benchmarks industriels courants."
|
570
|
+
},
|
533
571
|
"meta-llama/Llama-2-13b-chat-hf": {
|
534
572
|
"description": "LLaMA-2 Chat (13B) offre d'excellentes capacités de traitement du langage et une expérience interactive exceptionnelle."
|
535
573
|
},
|
@@ -539,9 +577,6 @@
|
|
539
577
|
"meta-llama/Llama-3-8b-chat-hf": {
|
540
578
|
"description": "LLaMA-3 Chat (8B) offre un support multilingue, couvrant un large éventail de connaissances."
|
541
579
|
},
|
542
|
-
"meta-llama/Meta-Llama-3-70B-Instruct": {
|
543
|
-
"description": "LLaMA 3 supporte la génération de texte de grande capacité et l'analyse des instructions."
|
544
|
-
},
|
545
580
|
"meta-llama/Meta-Llama-3-70B-Instruct-Lite": {
|
546
581
|
"description": "Llama 3 70B Instruct Lite est adapté aux environnements nécessitant une haute performance et une faible latence."
|
547
582
|
},
|
@@ -620,12 +655,21 @@
|
|
620
655
|
"mistral-large": {
|
621
656
|
"description": "Mixtral Large est le modèle phare de Mistral, combinant des capacités de génération de code, de mathématiques et de raisonnement, prenant en charge une fenêtre de contexte de 128k."
|
622
657
|
},
|
658
|
+
"mistral-large-2407": {
|
659
|
+
"description": "Mistral Large (2407) est un modèle de langage avancé (LLM) avec des capacités de raisonnement, de connaissance et de codage à la pointe de la technologie."
|
660
|
+
},
|
623
661
|
"mistral-large-latest": {
|
624
662
|
"description": "Mistral Large est le modèle phare, excellent pour les tâches multilingues, le raisonnement complexe et la génération de code, idéal pour des applications haut de gamme."
|
625
663
|
},
|
626
664
|
"mistral-nemo": {
|
627
665
|
"description": "Mistral Nemo, développé en collaboration entre Mistral AI et NVIDIA, est un modèle de 12B à performance efficace."
|
628
666
|
},
|
667
|
+
"mistral-small": {
|
668
|
+
"description": "Mistral Small peut être utilisé pour toute tâche basée sur le langage nécessitant une haute efficacité et une faible latence."
|
669
|
+
},
|
670
|
+
"mistral-small-latest": {
|
671
|
+
"description": "Mistral Small est une option rentable, rapide et fiable, adaptée aux cas d'utilisation tels que la traduction, le résumé et l'analyse des sentiments."
|
672
|
+
},
|
629
673
|
"mistralai/Mistral-7B-Instruct-v0.1": {
|
630
674
|
"description": "Mistral (7B) Instruct est réputé pour ses performances élevées, adapté à diverses tâches linguistiques."
|
631
675
|
},
|
@@ -713,20 +757,29 @@
|
|
713
757
|
"phi3:14b": {
|
714
758
|
"description": "Phi-3 est un modèle ouvert léger lancé par Microsoft, adapté à une intégration efficace et à un raisonnement de connaissances à grande échelle."
|
715
759
|
},
|
760
|
+
"pixtral-12b-2409": {
|
761
|
+
"description": "Le modèle Pixtral montre de puissantes capacités dans des tâches telles que la compréhension des graphiques et des images, le questionnement de documents, le raisonnement multimodal et le respect des instructions, capable d'ingérer des images à résolution naturelle et à rapport d'aspect, tout en traitant un nombre quelconque d'images dans une fenêtre de contexte longue allant jusqu'à 128K tokens."
|
762
|
+
},
|
763
|
+
"qwen-coder-turbo-latest": {
|
764
|
+
"description": "Le modèle de code Tongyi Qwen."
|
765
|
+
},
|
716
766
|
"qwen-long": {
|
717
767
|
"description": "Qwen est un modèle de langage à grande échelle, prenant en charge un contexte de texte long, ainsi que des fonctionnalités de dialogue basées sur des documents longs et multiples."
|
718
768
|
},
|
719
|
-
"qwen-
|
720
|
-
"description": "
|
769
|
+
"qwen-math-plus-latest": {
|
770
|
+
"description": "Le modèle de langage Tongyi Qwen pour les mathématiques, spécialement conçu pour résoudre des problèmes mathématiques."
|
721
771
|
},
|
722
|
-
"qwen-
|
723
|
-
"description": "
|
772
|
+
"qwen-math-turbo-latest": {
|
773
|
+
"description": "Le modèle de langage Tongyi Qwen pour les mathématiques, spécialement conçu pour résoudre des problèmes mathématiques."
|
724
774
|
},
|
725
|
-
"qwen-
|
726
|
-
"description": "
|
775
|
+
"qwen-max-latest": {
|
776
|
+
"description": "Le modèle de langage à grande échelle Tongyi Qwen de niveau milliard, prenant en charge des entrées en chinois, en anglais et dans d'autres langues, actuellement le modèle API derrière la version produit Tongyi Qwen 2.5."
|
727
777
|
},
|
728
|
-
"qwen-
|
729
|
-
"description": "
|
778
|
+
"qwen-plus-latest": {
|
779
|
+
"description": "La version améliorée du modèle de langage à grande échelle Tongyi Qwen, prenant en charge des entrées en chinois, en anglais et dans d'autres langues."
|
780
|
+
},
|
781
|
+
"qwen-turbo-latest": {
|
782
|
+
"description": "Le modèle de langage à grande échelle Tongyi Qwen, prenant en charge des entrées en chinois, en anglais et dans d'autres langues."
|
730
783
|
},
|
731
784
|
"qwen-vl-chat-v1": {
|
732
785
|
"description": "Qwen VL prend en charge des modes d'interaction flexibles, y compris la capacité de poser des questions à plusieurs images, des dialogues multi-tours, et plus encore."
|
@@ -746,17 +799,32 @@
|
|
746
799
|
"qwen2": {
|
747
800
|
"description": "Qwen2 est le nouveau modèle de langage à grande échelle d'Alibaba, offrant d'excellentes performances pour des besoins d'application diversifiés."
|
748
801
|
},
|
749
|
-
"qwen2-
|
750
|
-
"description": "
|
802
|
+
"qwen2.5-14b-instruct": {
|
803
|
+
"description": "Le modèle de 14B de Tongyi Qwen 2.5, open source."
|
804
|
+
},
|
805
|
+
"qwen2.5-32b-instruct": {
|
806
|
+
"description": "Le modèle de 32B de Tongyi Qwen 2.5, open source."
|
807
|
+
},
|
808
|
+
"qwen2.5-72b-instruct": {
|
809
|
+
"description": "Le modèle de 72B de Tongyi Qwen 2.5, open source."
|
810
|
+
},
|
811
|
+
"qwen2.5-7b-instruct": {
|
812
|
+
"description": "Le modèle de 7B de Tongyi Qwen 2.5, open source."
|
813
|
+
},
|
814
|
+
"qwen2.5-coder-1.5b-instruct": {
|
815
|
+
"description": "Version open source du modèle de code Tongyi Qwen."
|
816
|
+
},
|
817
|
+
"qwen2.5-coder-7b-instruct": {
|
818
|
+
"description": "Version open source du modèle de code Tongyi Qwen."
|
751
819
|
},
|
752
|
-
"qwen2-
|
753
|
-
"description": "
|
820
|
+
"qwen2.5-math-1.5b-instruct": {
|
821
|
+
"description": "Le modèle Qwen-Math possède de puissantes capacités de résolution de problèmes mathématiques."
|
754
822
|
},
|
755
|
-
"qwen2-
|
756
|
-
"description": "
|
823
|
+
"qwen2.5-math-72b-instruct": {
|
824
|
+
"description": "Le modèle Qwen-Math possède de puissantes capacités de résolution de problèmes mathématiques."
|
757
825
|
},
|
758
|
-
"qwen2-math-
|
759
|
-
"description": "Le modèle
|
826
|
+
"qwen2.5-math-7b-instruct": {
|
827
|
+
"description": "Le modèle Qwen-Math possède de puissantes capacités de résolution de problèmes mathématiques."
|
760
828
|
},
|
761
829
|
"qwen2:0.5b": {
|
762
830
|
"description": "Qwen2 est le nouveau modèle de langage à grande échelle d'Alibaba, offrant d'excellentes performances pour des besoins d'application diversifiés."
|
@@ -1,4 +1,5 @@
|
|
1
1
|
{
|
2
|
+
"ai21": {},
|
2
3
|
"ai360": {
|
3
4
|
"description": "360 AI est une plateforme de modèles et de services IA lancée par la société 360, offrant divers modèles avancés de traitement du langage naturel, y compris 360GPT2 Pro, 360GPT Pro, 360GPT Turbo et 360GPT Turbo Responsibility 8K. Ces modèles combinent de grands paramètres et des capacités multimodales, largement utilisés dans la génération de texte, la compréhension sémantique, les systèmes de dialogue et la génération de code. Grâce à une stratégie de tarification flexible, 360 AI répond à des besoins variés des utilisateurs, soutenant l'intégration des développeurs et favorisant l'innovation et le développement des applications intelligentes."
|
4
5
|
},
|
@@ -20,6 +21,9 @@
|
|
20
21
|
"fireworksai": {
|
21
22
|
"description": "Fireworks AI est un fournisseur de services de modèles linguistiques avancés, axé sur les appels de fonction et le traitement multimodal. Son dernier modèle, Firefunction V2, basé sur Llama-3, est optimisé pour les appels de fonction, les dialogues et le suivi des instructions. Le modèle de langage visuel FireLLaVA-13B prend en charge les entrées mixtes d'images et de texte. D'autres modèles notables incluent la série Llama et la série Mixtral, offrant un support efficace pour le suivi et la génération d'instructions multilingues."
|
22
23
|
},
|
24
|
+
"github": {
|
25
|
+
"description": "Avec les modèles GitHub, les développeurs peuvent devenir des ingénieurs en IA et créer avec les modèles d'IA les plus avancés de l'industrie."
|
26
|
+
},
|
23
27
|
"google": {
|
24
28
|
"description": "La série Gemini de Google est son modèle IA le plus avancé et polyvalent, développé par Google DeepMind, conçu pour le multimédia, prenant en charge la compréhension et le traitement sans couture de texte, code, images, audio et vidéo. Adapté à divers environnements, des centres de données aux appareils mobiles, il améliore considérablement l'efficacité et l'applicabilité des modèles IA."
|
25
29
|
},
|