@lobehub/chat 1.115.0 → 1.116.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.cursor/rules/add-provider-doc.mdc +183 -0
- package/.env.example +8 -0
- package/.github/workflows/release.yml +3 -3
- package/.github/workflows/test.yml +3 -7
- package/CHANGELOG.md +25 -0
- package/CLAUDE.md +6 -6
- package/Dockerfile +5 -1
- package/Dockerfile.database +5 -1
- package/Dockerfile.pglite +5 -1
- package/changelog/v1.json +9 -0
- package/docs/development/basic/setup-development.mdx +10 -13
- package/docs/development/basic/setup-development.zh-CN.mdx +9 -12
- package/docs/self-hosting/environment-variables/model-provider.mdx +27 -2
- package/docs/self-hosting/environment-variables/model-provider.zh-CN.mdx +27 -2
- package/docs/usage/providers/bfl.mdx +68 -0
- package/docs/usage/providers/bfl.zh-CN.mdx +67 -0
- package/locales/ar/components.json +11 -0
- package/locales/ar/error.json +11 -0
- package/locales/ar/models.json +64 -4
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/components.json +11 -0
- package/locales/bg-BG/error.json +11 -0
- package/locales/bg-BG/models.json +64 -4
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/components.json +11 -0
- package/locales/de-DE/error.json +11 -12
- package/locales/de-DE/models.json +64 -4
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/components.json +6 -0
- package/locales/en-US/error.json +11 -12
- package/locales/en-US/models.json +64 -4
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/components.json +11 -0
- package/locales/es-ES/error.json +11 -0
- package/locales/es-ES/models.json +64 -6
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/components.json +11 -0
- package/locales/fa-IR/error.json +11 -0
- package/locales/fa-IR/models.json +64 -4
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/components.json +11 -0
- package/locales/fr-FR/error.json +11 -12
- package/locales/fr-FR/models.json +64 -4
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/components.json +11 -0
- package/locales/it-IT/error.json +11 -0
- package/locales/it-IT/models.json +64 -4
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/components.json +11 -0
- package/locales/ja-JP/error.json +11 -12
- package/locales/ja-JP/models.json +64 -4
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/components.json +11 -0
- package/locales/ko-KR/error.json +11 -12
- package/locales/ko-KR/models.json +64 -6
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/components.json +11 -0
- package/locales/nl-NL/error.json +11 -0
- package/locales/nl-NL/models.json +62 -4
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/components.json +11 -0
- package/locales/pl-PL/error.json +11 -0
- package/locales/pl-PL/models.json +64 -4
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/components.json +11 -0
- package/locales/pt-BR/error.json +11 -0
- package/locales/pt-BR/models.json +64 -4
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/components.json +11 -0
- package/locales/ru-RU/error.json +11 -0
- package/locales/ru-RU/models.json +64 -4
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/components.json +11 -0
- package/locales/tr-TR/error.json +11 -0
- package/locales/tr-TR/models.json +64 -4
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/components.json +11 -0
- package/locales/vi-VN/error.json +11 -0
- package/locales/vi-VN/models.json +64 -4
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/components.json +6 -0
- package/locales/zh-CN/error.json +11 -0
- package/locales/zh-CN/models.json +64 -4
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/components.json +11 -0
- package/locales/zh-TW/error.json +11 -12
- package/locales/zh-TW/models.json +64 -6
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +1 -1
- package/packages/model-runtime/src/google/index.ts +3 -0
- package/packages/model-runtime/src/qwen/createImage.test.ts +0 -19
- package/packages/model-runtime/src/qwen/createImage.ts +1 -27
- package/packages/model-runtime/src/utils/streams/google-ai.ts +26 -14
- package/packages/types/src/aiModel.ts +2 -1
- package/src/config/aiModels/google.ts +22 -1
- package/src/config/aiModels/qwen.ts +2 -2
- package/src/config/aiModels/vertexai.ts +22 -0
- package/.cursor/rules/debug.mdc +0 -193
@@ -332,12 +332,21 @@
|
|
332
332
|
"Qwen/Qwen3-30B-A3B-Instruct-2507": {
|
333
333
|
"description": "Qwen3-30B-A3B-Instruct-2507, Qwen3-30B-A3B'nin düşünme modu olmayan güncellenmiş bir versiyonudur. Bu, toplam 30,5 milyar parametre ve 3,3 milyar aktif parametreye sahip bir Hibrit Uzman (MoE) modelidir. Model, talimat takibi, mantıksal akıl yürütme, metin anlama, matematik, bilim, kodlama ve araç kullanımı gibi genel yeteneklerde önemli geliştirmeler içermektedir. Ayrıca, çok dilli uzun kuyruk bilgi kapsamı açısından kayda değer ilerlemeler kaydetmiş ve kullanıcıların öznel ve açık uçlu görevlerdeki tercihlerine daha iyi uyum sağlayarak daha faydalı yanıtlar ve daha yüksek kaliteli metinler üretebilmektedir. Buna ek olarak, modelin uzun metin anlama kapasitesi 256K'ya kadar artırılmıştır. Bu model yalnızca düşünme modu dışındadır ve çıktılarında `<think></think>` etiketleri oluşturmaz."
|
334
334
|
},
|
335
|
+
"Qwen/Qwen3-30B-A3B-Thinking-2507": {
|
336
|
+
"description": "Qwen3-30B-A3B-Thinking-2507, Alibaba'nın Tongyi Qianwen ekibi tarafından yayımlanan Qwen3 serisinin en yeni düşünme modelidir. Toplam 30,5 milyar parametreye ve 3,3 milyar aktif parametreye sahip bir melez uzman (MoE) modeli olarak karmaşık görevleri ele alma yeteneğini artırmaya odaklanır. Bu model mantıksal akıl yürütme, matematik, bilim, programlama ve insan uzmanlığı gerektiren akademik kıyaslama testlerinde belirgin performans artışları göstermektedir. Aynı zamanda talimatlara uyum, araç kullanımı, metin üretimi ve insan tercihlerine hizalanma gibi genel yeteneklerde de önemli ölçüde geliştirilmiştir. Model yerel olarak 256K uzun bağlam anlama yeteneğini destekler ve 1 milyona kadar token'a genişletilebilir. Bu sürüm, ayrıntılı adım adım akıl yürütmeyle yüksek derecede karmaşık görevleri çözmeyi amaçlayan \"düşünme modu\" için özel olarak tasarlanmıştır; ajan yetenekleri de öne çıkmaktadır."
|
337
|
+
},
|
335
338
|
"Qwen/Qwen3-32B": {
|
336
339
|
"description": "Qwen3, akıl yürütme, genel, Ajan ve çok dilli gibi birçok temel yetenekte önemli ölçüde geliştirilmiş yeni nesil Tongyi Qianwen büyük modelidir ve düşünme modu geçişini destekler."
|
337
340
|
},
|
338
341
|
"Qwen/Qwen3-8B": {
|
339
342
|
"description": "Qwen3, akıl yürütme, genel, Ajan ve çok dilli gibi birçok temel yetenekte önemli ölçüde geliştirilmiş yeni nesil Tongyi Qianwen büyük modelidir ve düşünme modu geçişini destekler."
|
340
343
|
},
|
344
|
+
"Qwen/Qwen3-Coder-30B-A3B-Instruct": {
|
345
|
+
"description": "Qwen3-Coder-30B-A3B-Instruct, Alibaba'nın Tongyi Qianwen ekibi tarafından geliştirilen Qwen3 serisindeki bir kod modelidir. Optimize edilmiş ve sadeleştirilmiş bir model olarak, yüksek performans ve verimliliği korurken özellikle kod işleme yeteneklerini artırmaya odaklanır. Bu model, ajan programlama (Agentic Coding), otomatik tarayıcı işlemleri ve araç çağırma gibi karmaşık görevlerde açık kaynak modeller içinde belirgin bir performans avantajı gösterir. Yerel olarak 256K token uzunluğunda bağlamı destekler ve 1M token'a kadar genişletilebilir; bu sayede kod tabanı düzeyinde anlama ve işleme kapasitesi artar. Ayrıca model, Qwen Code ve CLINE gibi platformlara güçlü ajan kodlama desteği sağlar ve özel bir fonksiyon çağırma formatı için tasarlanmıştır."
|
346
|
+
},
|
347
|
+
"Qwen/Qwen3-Coder-480B-A35B-Instruct": {
|
348
|
+
"description": "Qwen3-Coder-480B-A35B-Instruct, Alibaba tarafından yayımlanan ve şimdiye kadar en gelişmiş ajan (Agentic) yeteneklerine sahip kod modelidir. Bu model, toplam 480 milyar parametre ve 35 milyar aktifleşen parametreye sahip bir Mixture-of-Experts (MoE, karışık uzman) modelidir ve verimlilik ile performans arasında bir denge sağlar. Model, yerel olarak 256K (yaklaşık 260.000) token bağlam uzunluğunu destekler ve YaRN gibi dışa genelleme yöntemleriyle 1.000.000 token seviyesine kadar genişletilebilerek büyük ölçekli kod tabanları ve karmaşık programlama görevleriyle başa çıkabilir. Qwen3-Coder, ajan tabanlı kodlama iş akışları için tasarlanmış olup yalnızca kod üretmez; aynı zamanda geliştirme araçları ve ortamlarla bağımsız şekilde etkileşime girerek karmaşık programlama problemlerini çözer. Birçok kodlama ve ajan görevindeki kıyaslama testlerinde bu model, açık kaynak modeller arasında en üst düzey performansı göstermiş ve performansı Claude Sonnet 4 gibi önde gelen modellerle kıyaslanabilir düzeydedir."
|
349
|
+
},
|
341
350
|
"Qwen2-72B-Instruct": {
|
342
351
|
"description": "Qwen2, Qwen modelinin en yeni serisidir ve 128k bağlamı destekler. Mevcut en iyi açık kaynak modellerle karşılaştırıldığında, Qwen2-72B doğal dil anlama, bilgi, kod, matematik ve çok dilli yetenekler açısından mevcut lider modelleri önemli ölçüde aşmaktadır."
|
343
352
|
},
|
@@ -1103,12 +1112,27 @@
|
|
1103
1112
|
"flux-dev": {
|
1104
1113
|
"description": "FLUX.1 [dev], ticari olmayan uygulamalar için açık kaynaklı ağırlık ve rafine modeldir. FLUX.1 [dev], FLUX profesyonel sürümüne yakın görüntü kalitesi ve talimat uyumu sağlarken daha yüksek çalışma verimliliğine sahiptir. Aynı boyuttaki standart modellere kıyasla kaynak kullanımı açısından daha etkilidir."
|
1105
1114
|
},
|
1115
|
+
"flux-kontext-max": {
|
1116
|
+
"description": "En gelişmiş bağlamsal görsel oluşturma ve düzenleme — metin ve görselleri birleştirerek hassas ve tutarlı sonuçlar sunar."
|
1117
|
+
},
|
1118
|
+
"flux-kontext-pro": {
|
1119
|
+
"description": "Metin ve görüntüleri birleştirerek hassas ve tutarlı sonuçlar elde etmek için en gelişmiş bağlamsal görüntü oluşturma ve düzenleme."
|
1120
|
+
},
|
1106
1121
|
"flux-kontext/dev": {
|
1107
1122
|
"description": "Metin ve görsel girdileri destekleyen, görüntü düzenleme görevlerine odaklanan FLUX.1 modeli."
|
1108
1123
|
},
|
1109
1124
|
"flux-merged": {
|
1110
1125
|
"description": "FLUX.1-merged modeli, geliştirme aşamasında \"DEV\" tarafından keşfedilen derin özellikler ile \"Schnell\" in yüksek hızlı yürütme avantajlarını birleştirir. Bu sayede model performans sınırlarını artırır ve uygulama alanlarını genişletir."
|
1111
1126
|
},
|
1127
|
+
"flux-pro": {
|
1128
|
+
"description": "En üst düzey ticari yapay zeka görüntü oluşturma modeli — eşsiz görüntü kalitesi ve çok çeşitli çıktı yetenekleri."
|
1129
|
+
},
|
1130
|
+
"flux-pro-1.1": {
|
1131
|
+
"description": "Geliştirilmiş profesyonel düzeyde yapay zeka görüntü oluşturma modeli — üstün görüntü kalitesi ve verilen promptlara/komutlara hassas uyum sağlama yeteneği sunar."
|
1132
|
+
},
|
1133
|
+
"flux-pro-1.1-ultra": {
|
1134
|
+
"description": "Ultra yüksek çözünürlüklü yapay zeka ile görüntü üretimi — 4 megapiksel çıktı desteği; 10 saniye içinde ultra net görseller oluşturur."
|
1135
|
+
},
|
1112
1136
|
"flux-pro/kontext": {
|
1113
1137
|
"description": "FLUX.1 Kontext [pro], metin ve referans görüntüleri girdi olarak işleyebilir, hedefe yönelik yerel düzenlemeler ve karmaşık genel sahne dönüşümlerini sorunsuz bir şekilde gerçekleştirebilir."
|
1114
1138
|
},
|
@@ -1193,6 +1217,9 @@
|
|
1193
1217
|
"gemini-2.5-flash": {
|
1194
1218
|
"description": "Gemini 2.5 Flash, Google'ın en yüksek maliyet-performans modelidir ve kapsamlı özellikler sunar."
|
1195
1219
|
},
|
1220
|
+
"gemini-2.5-flash-image-preview": {
|
1221
|
+
"description": "Gemini 2.5 Flash Image Preview, Google'ın en yeni, en hızlı ve en verimli yerel çok modlu modelidir; sohbet yoluyla görüntü oluşturmanıza ve düzenlemenize olanak tanır."
|
1222
|
+
},
|
1196
1223
|
"gemini-2.5-flash-lite": {
|
1197
1224
|
"description": "Gemini 2.5 Flash-Lite, Google'ın en küçük ve en uygun maliyetli modeli olup, geniş çaplı kullanım için tasarlanmıştır."
|
1198
1225
|
},
|
@@ -1295,6 +1322,9 @@
|
|
1295
1322
|
"glm-4.5-x": {
|
1296
1323
|
"description": "GLM-4.5'in ultra hızlı versiyonu olup güçlü performansla birlikte saniyede 100 token üretim hızına ulaşır."
|
1297
1324
|
},
|
1325
|
+
"glm-4.5v": {
|
1326
|
+
"description": "Zhipu'nun MOE mimarisine dayanan yeni nesil görsel akıl yürütme modeli; 106B toplam parametreye ve 12B aktif parametreye sahip olup çeşitli kıyaslama testlerinde aynı seviyedeki açık kaynaklı çok modlu modeller arasında dünya çapında SOTA'ya ulaşır; görüntü, video, belge anlama ve GUI görevleri gibi yaygın görevleri kapsar."
|
1327
|
+
},
|
1298
1328
|
"glm-4v": {
|
1299
1329
|
"description": "GLM-4V, güçlü görüntü anlama ve akıl yürütme yetenekleri sunar, çeşitli görsel görevleri destekler."
|
1300
1330
|
},
|
@@ -1434,7 +1464,7 @@
|
|
1434
1464
|
"description": "GPT-4.1 mini, zeka, hız ve maliyet arasında bir denge sunarak birçok kullanım durumu için çekici bir model haline getirir."
|
1435
1465
|
},
|
1436
1466
|
"gpt-4.5-preview": {
|
1437
|
-
"description": "GPT-4.5
|
1467
|
+
"description": "GPT-4.5-preview, kapsamlı dünya bilgisine ve kullanıcı niyetlerini daha iyi anlama yeteneğine sahip en yeni genel amaçlı modeldir; yaratıcı görevler ve ajan planlaması konusunda uzmandır. Modelin bilgi kesiti Ekim 2023'tür."
|
1438
1468
|
},
|
1439
1469
|
"gpt-4o": {
|
1440
1470
|
"description": "ChatGPT-4o, güncel versiyonunu korumak için gerçek zamanlı olarak güncellenen dinamik bir modeldir. Güçlü dil anlama ve üretme yeteneklerini birleştirir, müşteri hizmetleri, eğitim ve teknik destek gibi geniş ölçekli uygulama senaryoları için uygundur."
|
@@ -1637,9 +1667,18 @@
|
|
1637
1667
|
"image-01-live": {
|
1638
1668
|
"description": "Görüntü oluşturma modeli, ince detaylı görseller sunar; metinden görüntü oluşturmayı ve stil ayarlarını destekler."
|
1639
1669
|
},
|
1670
|
+
"imagen-4.0-fast-generate-001": {
|
1671
|
+
"description": "Imagen 4. nesil metinden görsele model serisi — Hızlı sürüm"
|
1672
|
+
},
|
1673
|
+
"imagen-4.0-generate-001": {
|
1674
|
+
"description": "Imagen 4. nesil metinden görüntüye model serisi"
|
1675
|
+
},
|
1640
1676
|
"imagen-4.0-generate-preview-06-06": {
|
1641
1677
|
"description": "Imagen 4. nesil metinden görüntüye model serisi"
|
1642
1678
|
},
|
1679
|
+
"imagen-4.0-ultra-generate-001": {
|
1680
|
+
"description": "Imagen 4. nesil metinden-görüntüye model serisi, Ultra sürümü"
|
1681
|
+
},
|
1643
1682
|
"imagen-4.0-ultra-generate-preview-06-06": {
|
1644
1683
|
"description": "Imagen 4. nesil metinden görüntüye model serisi Ultra versiyonu"
|
1645
1684
|
},
|
@@ -1679,6 +1718,9 @@
|
|
1679
1718
|
"kimi-k2-0711-preview": {
|
1680
1719
|
"description": "kimi-k2, son derece güçlü kodlama ve Agent yeteneklerine sahip MoE mimarili temel bir modeldir. Toplam parametre sayısı 1T, aktif parametre sayısı 32B'dir. Genel bilgi çıkarımı, programlama, matematik, Agent gibi ana kategorilerde yapılan kıyaslama testlerinde K2 modeli, diğer önde gelen açık kaynak modelleri geride bırakmıştır."
|
1681
1720
|
},
|
1721
|
+
"kimi-k2-turbo-preview": {
|
1722
|
+
"description": "kimi-k2, son derece güçlü kod yazma ve Agent yeteneklerine sahip MoE mimarisine dayanan bir temel modeldir; toplam parametre sayısı 1T, aktif (etkin) parametre sayısı 32B. Genel bilgi çıkarımı, programlama, matematik ve Agent gibi ana kategorilerde yapılan karşılaştırmalı performans testlerinde K2 modelinin performansı diğer önde gelen açık kaynak modellerinin üzerindedir."
|
1723
|
+
},
|
1682
1724
|
"kimi-latest": {
|
1683
1725
|
"description": "Kimi akıllı asistan ürünü, en son Kimi büyük modelini kullanır ve henüz kararlı olmayan özellikler içerebilir. Görüntü anlayışını desteklerken, isteğin bağlam uzunluğuna göre 8k/32k/128k modelini faturalama modeli olarak otomatik olarak seçecektir."
|
1684
1726
|
},
|
@@ -1763,6 +1805,9 @@
|
|
1763
1805
|
"llava:34b": {
|
1764
1806
|
"description": "LLaVA, görsel kodlayıcı ve Vicuna'yı birleştiren çok modlu bir modeldir, güçlü görsel ve dil anlama yetenekleri sunar."
|
1765
1807
|
},
|
1808
|
+
"magistral-medium-latest": {
|
1809
|
+
"description": "Magistral Medium 1.1, Mistral AI tarafından Temmuz 2025'te yayımlanan ileri düzey bir çıkarım modelidir."
|
1810
|
+
},
|
1766
1811
|
"mathstral": {
|
1767
1812
|
"description": "MathΣtral, bilimsel araştırma ve matematik akıl yürütme için tasarlanmış, etkili hesaplama yetenekleri ve sonuç açıklamaları sunar."
|
1768
1813
|
},
|
@@ -2094,7 +2139,7 @@
|
|
2094
2139
|
"description": "o1-mini, programlama, matematik ve bilim uygulama senaryoları için tasarlanmış hızlı ve ekonomik bir akıl yürütme modelidir. Bu model, 128K bağlam ve Ekim 2023 bilgi kesim tarihi ile donatılmıştır."
|
2095
2140
|
},
|
2096
2141
|
"o1-preview": {
|
2097
|
-
"description": "
|
2142
|
+
"description": "İleri düzey muhakeme ve matematik ile fen görevleri dahil olmak üzere karmaşık sorunların çözümüne odaklanır. Derin bağlam anlayışı ve özerk iş akışları gerektiren uygulamalar için son derece uygundur."
|
2098
2143
|
},
|
2099
2144
|
"o1-pro": {
|
2100
2145
|
"description": "o1 serisi modeller, yanıtlamadan önce düşünme yapabilen ve karmaşık akıl yürütme görevlerini yerine getirebilen pekiştirmeli öğrenme ile eğitilmiştir. o1-pro modeli, daha derin düşünme için daha fazla hesaplama kaynağı kullanır ve böylece sürekli olarak daha kaliteli yanıtlar sunar."
|
@@ -2213,8 +2258,14 @@
|
|
2213
2258
|
"qwen-coder-turbo-latest": {
|
2214
2259
|
"description": "Tongyi Qianwen kodlama modeli."
|
2215
2260
|
},
|
2261
|
+
"qwen-flash": {
|
2262
|
+
"description": "Tongyi Qianwen serisi, en hızlı ve maliyeti son derece düşük modeller sunar; basit görevler için uygundur."
|
2263
|
+
},
|
2216
2264
|
"qwen-image": {
|
2217
|
-
"description": "Qwen
|
2265
|
+
"description": "Qwen-Image, çeşitli sanat stillerini destekleyen genel amaçlı bir görsel oluşturma modelidir; karmaşık metin renderleme konusunda, özellikle Çince ve İngilizce metinlerin renderlenmesinde uzmandır. Model çok satırlı düzenleri, paragraf düzeyinde metin üretimini ve ince ayrıntıların işlenmesini destekler; karmaşık görsel-metin karışık düzen tasarımlarının oluşturulmasına olanak tanır."
|
2266
|
+
},
|
2267
|
+
"qwen-image-edit": {
|
2268
|
+
"description": "Qwen ekibi tarafından yayımlanan profesyonel görüntü düzenleme modeli, anlamsal düzenleme ve görünüm düzenlemeyi destekler; Çince ve İngilizce metinleri hassas şekilde düzenleyebilir ve stil dönüşümü, nesne döndürme gibi yüksek kaliteli görüntü düzenlemeleri gerçekleştirir."
|
2218
2269
|
},
|
2219
2270
|
"qwen-long": {
|
2220
2271
|
"description": "Tongyi Qianwen, uzun metin bağlamını destekleyen ve uzun belgeler, çoklu belgeler gibi çeşitli senaryolar için diyalog işlevselliği sunan büyük ölçekli bir dil modelidir."
|
@@ -2241,7 +2292,7 @@
|
|
2241
2292
|
"description": "Tongyi Qianwen, Çince, İngilizce gibi farklı dil girişlerini destekleyen geliştirilmiş büyük ölçekli bir dil modelidir."
|
2242
2293
|
},
|
2243
2294
|
"qwen-turbo": {
|
2244
|
-
"description": "Tongyi Qianwen
|
2295
|
+
"description": "Tongyi Qianwen Turbo bundan sonra güncellenmeyecektir; yerine Tongyi Qianwen Flash kullanılması önerilir. Tongyi Qianwen, çok büyük ölçekli bir dil modelidir ve Çince, İngilizce gibi farklı dillerde girişleri destekler."
|
2245
2296
|
},
|
2246
2297
|
"qwen-vl-chat-v1": {
|
2247
2298
|
"description": "Tongyi Qianwen VL, çoklu görüntü, çok turlu soru-cevap, yaratım gibi esnek etkileşim yöntemlerini destekleyen bir modeldir."
|
@@ -2558,9 +2609,15 @@
|
|
2558
2609
|
"step-2x-large": {
|
2559
2610
|
"description": "Jieyue Xingchen'in yeni nesil görüntü oluşturma modelidir. Model, kullanıcı tarafından sağlanan metin açıklamalarına göre yüksek kaliteli görüntüler oluşturur. Yeni model, daha gerçekçi doku ve hem Çince hem İngilizce metin oluşturma yeteneklerinde gelişmiş performans sunar."
|
2560
2611
|
},
|
2612
|
+
"step-3": {
|
2613
|
+
"description": "Bu model güçlü görsel algılama ve karmaşık akıl yürütme yeteneklerine sahiptir. Disiplinlerarası karmaşık bilgi anlayışını, matematiksel ve görsel verilerin çapraz analizini ve günlük hayattaki çeşitli görsel analiz gereksinimlerini doğru ve tutarlı şekilde yerine getirebilir."
|
2614
|
+
},
|
2561
2615
|
"step-r1-v-mini": {
|
2562
2616
|
"description": "Bu model, güçlü görüntü anlama yeteneğine sahip bir çıkarım büyük modelidir, görüntü ve metin bilgilerini işleyebilir, derin düşünme sonrası metin oluşturma çıktısı verebilir. Bu model, görsel çıkarım alanında öne çıkarken, birinci sınıf matematik, kod ve metin çıkarım yeteneklerine de sahiptir. Bağlam uzunluğu 100k'dır."
|
2563
2617
|
},
|
2618
|
+
"stepfun-ai/step3": {
|
2619
|
+
"description": "Step3, StepFun tarafından yayımlanan öncü çok modlu çıkarım modelidir; 321 milyar toplam ve 38 milyar aktif parametreye sahip Uzman Karışımı (MoE) mimarisi üzerine inşa edilmiştir. Model uçtan uca bir tasarımla kod çözme maliyetlerini en aza indirmeyi hedeflerken görsel-dilsel çıkarımda üst düzey performans sunar. Çoklu matris faktorizasyonlu dikkat (MFA) ile dikkat-FFN ayrıştırmasının (AFD) uyumlu tasarımı sayesinde Step3, hem üst düzey hem de düşük kapasiteli hızlandırıcılarda yüksek verimliliğini korur. Ön eğitim aşamasında Step3, 20 trilyondan fazla metin tokeni ve 4 trilyon görsel-metin tokeni işlemiş olup on'dan fazla dili kapsar. Model, matematik, kodlama ve çok modlu görevler gibi çeşitli kıyaslama testlerinde açık kaynak modeller arasında lider düzeye ulaşmıştır."
|
2620
|
+
},
|
2564
2621
|
"taichu_llm": {
|
2565
2622
|
"description": "Zidong Taichu dil büyük modeli, güçlü dil anlama yeteneği ile metin oluşturma, bilgi sorgulama, kod programlama, matematik hesaplama, mantıksal akıl yürütme, duygu analizi, metin özeti gibi yeteneklere sahiptir. Yenilikçi bir şekilde büyük veri ön eğitimi ile çok kaynaklı zengin bilgiyi birleştirir, algoritma teknolojisini sürekli olarak geliştirir ve büyük metin verilerinden kelime, yapı, dil bilgisi, anlam gibi yeni bilgileri sürekli olarak edinir, modelin performansını sürekli olarak evrimleştirir. Kullanıcılara daha kolay bilgi ve hizmetler sunar ve daha akıllı bir deneyim sağlar."
|
2566
2623
|
},
|
@@ -2707,5 +2764,8 @@
|
|
2707
2764
|
},
|
2708
2765
|
"zai-org/GLM-4.5-Air": {
|
2709
2766
|
"description": "GLM-4.5-Air, akıllı ajan uygulamaları için tasarlanmış temel modeldir ve Mixture-of-Experts (MoE) mimarisi kullanır. Araç çağrısı, web tarama, yazılım mühendisliği ve ön uç programlama alanlarında derin optimizasyonlar içerir. Claude Code, Roo Code gibi kod ajanlarına sorunsuz entegrasyon destekler. GLM-4.5, karmaşık çıkarım ve günlük kullanım gibi çeşitli senaryolara uyum sağlayan hibrit çıkarım moduna sahiptir."
|
2767
|
+
},
|
2768
|
+
"zai-org/GLM-4.5V": {
|
2769
|
+
"description": "GLM-4.5V, Zhipu AI(智谱 AI) tarafından yayımlanan en son nesil görsel-dil modeli (VLM)'dir. Bu model, 106 milyar toplam parametre ve 12 milyar aktivasyon parametresine sahip amiral gemisi metin modeli GLM-4.5-Air üzerine inşa edilmiş olup, karma uzman (Mixture-of-Experts, MoE) mimarisini kullanır ve daha düşük çıkarım maliyetiyle üstün performans sağlamayı hedefler. GLM-4.5V teknik olarak GLM-4.1V-Thinking hattını sürdürürken üç boyutlu döndürmeli pozisyon kodlaması (3D-RoPE) gibi yenilikleri de getirerek üç boyutlu uzaysal ilişkilerin algılanması ve çıkarımı yeteneğini önemli ölçüde güçlendirir. Ön eğitme, denetimli ince ayar ve pekiştirmeli öğrenme aşamalarında yapılan optimizasyonlar sayesinde model; görüntü, video ve uzun belgeler gibi çeşitli görsel içerikleri işleyebilir ve 41 açık çok modlu kıyaslama testinde aynı seviyedeki açık kaynak modeller arasında en üst düzey performansa ulaşmıştır. Ayrıca modele eklenen \"düşünme modu\" anahtarı, kullanıcıların hızlı yanıt ile derin çıkarım arasında esnekçe tercih yaparak verim ile etki arasında denge kurmasına olanak tanır."
|
2710
2770
|
}
|
2711
2771
|
}
|
@@ -26,6 +26,9 @@
|
|
26
26
|
"bedrock": {
|
27
27
|
"description": "Bedrock, Amazon AWS tarafından sunulan bir hizmettir ve işletmelere gelişmiş yapay zeka dil modelleri ve görsel modeller sağlamaya odaklanmaktadır. Model ailesi, Anthropic'in Claude serisi, Meta'nın Llama 3.1 serisi gibi seçenekleri içermekte olup, metin üretimi, diyalog, görüntü işleme gibi çeşitli görevleri desteklemektedir. Farklı ölçek ve ihtiyaçlara uygun kurumsal uygulamalar için geniş bir yelpaze sunmaktadır."
|
28
28
|
},
|
29
|
+
"bfl": {
|
30
|
+
"description": "Önde gelen bir ileri düzey yapay zeka araştırma laboratuvarı; yarının görsel altyapısını inşa ediyor."
|
31
|
+
},
|
29
32
|
"cloudflare": {
|
30
33
|
"description": "Cloudflare'ın küresel ağı üzerinde sunucusuz GPU destekli makine öğrenimi modelleri çalıştırın."
|
31
34
|
},
|
@@ -1,4 +1,9 @@
|
|
1
1
|
{
|
2
|
+
"ArgsInput": {
|
3
|
+
"addArgument": "Thêm tham số",
|
4
|
+
"argumentPlaceholder": "Tham số {{index}}",
|
5
|
+
"enterFirstArgument": "Nhập tham số đầu tiên..."
|
6
|
+
},
|
2
7
|
"DragUpload": {
|
3
8
|
"dragDesc": "Kéo và thả tệp vào đây, hỗ trợ tải lên nhiều hình ảnh.",
|
4
9
|
"dragFileDesc": "Kéo và thả hình ảnh và tệp vào đây, hỗ trợ tải lên nhiều hình ảnh và tệp.",
|
@@ -125,6 +130,12 @@
|
|
125
130
|
},
|
126
131
|
"progress": {
|
127
132
|
"uploadingWithCount": "Đã tải lên {{completed}}/{{total}}"
|
133
|
+
},
|
134
|
+
"validation": {
|
135
|
+
"fileSizeExceeded": "Kích thước tệp vượt quá giới hạn",
|
136
|
+
"fileSizeExceededDetail": "{{fileName}} ({{actualSize}}) vượt quá kích thước tối đa cho phép là {{maxSize}}",
|
137
|
+
"fileSizeExceededMultiple": "{{count}} tệp vượt quá kích thước tối đa cho phép là {{maxSize}}: {{fileList}}",
|
138
|
+
"imageCountExceeded": "Số lượng hình ảnh vượt quá giới hạn"
|
128
139
|
}
|
129
140
|
},
|
130
141
|
"OllamaSetupGuide": {
|
package/locales/vi-VN/error.json
CHANGED
@@ -85,6 +85,17 @@
|
|
85
85
|
"CreateMessageError": "Xin lỗi, tin nhắn không thể được gửi đi bình thường, vui lòng sao chép nội dung và gửi lại, tin nhắn này sẽ không được lưu lại sau khi làm mới trang.",
|
86
86
|
"ExceededContextWindow": "Nội dung yêu cầu hiện tại vượt quá độ dài mà mô hình có thể xử lý, vui lòng giảm khối lượng nội dung và thử lại",
|
87
87
|
"FreePlanLimit": "Hiện tại bạn đang sử dụng tài khoản miễn phí, không thể sử dụng tính năng này. Vui lòng nâng cấp lên gói trả phí để tiếp tục sử dụng.",
|
88
|
+
"GoogleAIBlockReason": {
|
89
|
+
"BLOCKLIST": "Nội dung của bạn chứa các từ bị cấm. Vui lòng kiểm tra và chỉnh sửa nội dung rồi thử lại.",
|
90
|
+
"IMAGE_SAFETY": "Nội dung hình ảnh được tạo đã bị chặn vì lý do an toàn. Vui lòng thử chỉnh sửa yêu cầu tạo ảnh.",
|
91
|
+
"LANGUAGE": "Ngôn ngữ bạn đang sử dụng hiện chưa được hỗ trợ. Vui lòng thử dùng tiếng Anh hoặc ngôn ngữ khác được hỗ trợ để hỏi lại.",
|
92
|
+
"OTHER": "Nội dung đã bị chặn vì lý do không rõ. Vui lòng thử diễn đạt lại yêu cầu.",
|
93
|
+
"PROHIBITED_CONTENT": "Yêu cầu của bạn có thể chứa nội dung bị cấm. Vui lòng điều chỉnh yêu cầu để đảm bảo tuân thủ quy định sử dụng.",
|
94
|
+
"RECITATION": "Nội dung của bạn có thể vi phạm bản quyền và đã bị chặn. Vui lòng thử sử dụng nội dung nguyên bản hoặc diễn đạt lại yêu cầu.",
|
95
|
+
"SAFETY": "Nội dung của bạn đã bị chặn do chính sách an toàn. Vui lòng điều chỉnh yêu cầu, tránh chứa nội dung có thể gây hại hoặc không phù hợp.",
|
96
|
+
"SPII": "Nội dung của bạn có thể chứa thông tin cá nhân nhạy cảm. Để bảo vệ quyền riêng tư, vui lòng loại bỏ các thông tin nhạy cảm rồi thử lại.",
|
97
|
+
"default": "Nội dung bị chặn: {{blockReason}}. Vui lòng điều chỉnh yêu cầu rồi thử lại."
|
98
|
+
},
|
88
99
|
"InsufficientQuota": "Xin lỗi, hạn mức của khóa này đã đạt giới hạn, vui lòng kiểm tra số dư tài khoản của bạn hoặc tăng hạn mức khóa trước khi thử lại",
|
89
100
|
"InvalidAccessCode": "Mật khẩu truy cập không hợp lệ hoặc trống, vui lòng nhập mật khẩu truy cập đúng hoặc thêm Khóa API tùy chỉnh",
|
90
101
|
"InvalidBedrockCredentials": "Xác thực Bedrock không thành công, vui lòng kiểm tra AccessKeyId/SecretAccessKey và thử lại",
|
@@ -332,12 +332,21 @@
|
|
332
332
|
"Qwen/Qwen3-30B-A3B-Instruct-2507": {
|
333
333
|
"description": "Qwen3-30B-A3B-Instruct-2507 là phiên bản cập nhật của Qwen3-30B-A3B ở chế độ không suy nghĩ. Đây là một mô hình chuyên gia hỗn hợp (MoE) với tổng cộng 30,5 tỷ tham số và 3,3 tỷ tham số kích hoạt. Mô hình này đã được cải tiến quan trọng ở nhiều khía cạnh, bao gồm nâng cao đáng kể khả năng tuân thủ chỉ dẫn, suy luận logic, hiểu văn bản, toán học, khoa học, lập trình và sử dụng công cụ. Đồng thời, nó đạt được tiến bộ thực chất trong việc bao phủ kiến thức đa ngôn ngữ và có khả năng điều chỉnh tốt hơn với sở thích của người dùng trong các nhiệm vụ chủ quan và mở, từ đó tạo ra các phản hồi hữu ích hơn và văn bản chất lượng cao hơn. Ngoài ra, khả năng hiểu văn bản dài của mô hình cũng được nâng lên đến 256K. Mô hình này chỉ hỗ trợ chế độ không suy nghĩ và không tạo ra thẻ `<think></think>` trong đầu ra."
|
334
334
|
},
|
335
|
+
"Qwen/Qwen3-30B-A3B-Thinking-2507": {
|
336
|
+
"description": "Qwen3-30B-A3B-Thinking-2507 là mô hình \"suy nghĩ\" mới nhất trong dòng Qwen3, được phát hành bởi nhóm Tongyi Qianwen của Alibaba. Là một mô hình chuyên gia hỗn hợp (MoE) với tổng cộng 305亿 (30,5 tỷ) tham số và 33亿 (3,3 tỷ) tham số kích hoạt, mô hình tập trung vào nâng cao khả năng xử lý các nhiệm vụ phức tạp. Mô hình này thể hiện hiệu năng cải thiện rõ rệt trên các chuẩn đánh giá học thuật về suy luận logic, toán học, khoa học, lập trình và những bài toán đòi hỏi chuyên môn của con người. Đồng thời, các năng lực chung như tuân thủ hướng dẫn, sử dụng công cụ, sinh văn bản và căn chỉnh theo sở thích con người cũng được tăng cường đáng kể. Mô hình hỗ trợ nguyên sinh khả năng hiểu ngữ cảnh dài 256K và có thể mở rộng lên tới 1 triệu token. Phiên bản này được thiết kế dành cho \"chế độ suy nghĩ\", nhằm giải quyết các nhiệm vụ có độ phức tạp cao thông qua quá trình suy luận từng bước chi tiết, đồng thời năng lực tác nhân (Agent) của nó cũng thể hiện xuất sắc."
|
337
|
+
},
|
335
338
|
"Qwen/Qwen3-32B": {
|
336
339
|
"description": "Qwen3 là một mô hình lớn thế hệ mới của Tongyi Qianwen với khả năng nâng cao đáng kể, đạt được trình độ hàng đầu trong nhiều khả năng cốt lõi như suy luận, tổng quát, đại lý và đa ngôn ngữ, đồng thời hỗ trợ chuyển đổi chế độ suy nghĩ."
|
337
340
|
},
|
338
341
|
"Qwen/Qwen3-8B": {
|
339
342
|
"description": "Qwen3 là một mô hình lớn thế hệ mới của Tongyi Qianwen với khả năng nâng cao đáng kể, đạt được trình độ hàng đầu trong nhiều khả năng cốt lõi như suy luận, tổng quát, đại lý và đa ngôn ngữ, đồng thời hỗ trợ chuyển đổi chế độ suy nghĩ."
|
340
343
|
},
|
344
|
+
"Qwen/Qwen3-Coder-30B-A3B-Instruct": {
|
345
|
+
"description": "Qwen3-Coder-30B-A3B-Instruct là một mô hình mã trong dòng Qwen3 được phát triển bởi đội ngũ Tongyi Qianwen của Alibaba. Là một mô hình được tinh giản và tối ưu hóa, nó tập trung nâng cao khả năng xử lý mã nguồn trong khi vẫn duy trì hiệu năng và hiệu suất cao. Mô hình này thể hiện ưu thế hiệu năng nổi bật so với các mô hình mã nguồn mở trong các tác vụ phức tạp như lập trình tác nhân (Agentic Coding), tự động hóa thao tác trình duyệt và gọi công cụ. Nó hỗ trợ ngữ cảnh dài 256K token một cách nguyên bản và có thể mở rộng tới 1M token, giúp hiểu và xử lý ở mức độ toàn bộ kho mã tốt hơn. Ngoài ra, mô hình còn cung cấp hỗ trợ lập trình tác nhân mạnh mẽ cho các nền tảng như Qwen Code, CLINE và được thiết kế với định dạng gọi hàm chuyên biệt."
|
346
|
+
},
|
347
|
+
"Qwen/Qwen3-Coder-480B-A35B-Instruct": {
|
348
|
+
"description": "Qwen3-Coder-480B-A35B-Instruct là mô hình mã do Alibaba phát hành, được đánh giá là có khả năng tác nhân (agentic) mạnh mẽ nhất tính đến nay. Đây là một mô hình chuyên gia hỗn hợp (Mixture of Experts, MoE) với tổng cộng 480 tỷ tham số và 35 tỷ tham số kích hoạt, cân bằng giữa hiệu suất và hiệu quả. Mô hình này hỗ trợ ngữ cảnh gốc dài 256K (khoảng 260 nghìn) token và có thể được mở rộng tới 1 triệu token thông qua các phương pháp ngoại suy như YaRN, giúp nó xử lý các kho mã quy mô lớn và các nhiệm vụ lập trình phức tạp. Qwen3-Coder được thiết kế cho quy trình làm việc lập trình theo mô hình tác nhân, không chỉ sinh mã mà còn có khả năng tương tác tự chủ với các công cụ và môi trường phát triển để giải quyết những vấn đề lập trình phức tạp. Trong nhiều bộ đánh giá chuẩn về mã nguồn và nhiệm vụ tác nhân, mô hình này đạt thứ hạng dẫn đầu trong các mô hình mã nguồn mở, với hiệu năng có thể sánh ngang các mô hình hàng đầu như Claude Sonnet 4."
|
349
|
+
},
|
341
350
|
"Qwen2-72B-Instruct": {
|
342
351
|
"description": "Qwen2 là dòng mô hình mới nhất của Qwen, hỗ trợ ngữ cảnh 128k, so với các mô hình mã nguồn mở tốt nhất hiện tại, Qwen2-72B vượt trội hơn hẳn trong nhiều khả năng như hiểu ngôn ngữ tự nhiên, kiến thức, mã, toán học và đa ngôn ngữ."
|
343
352
|
},
|
@@ -1103,12 +1112,27 @@
|
|
1103
1112
|
"flux-dev": {
|
1104
1113
|
"description": "FLUX.1 [dev] là mô hình tinh luyện mã nguồn mở dành cho ứng dụng phi thương mại. FLUX.1 [dev] duy trì chất lượng hình ảnh và khả năng tuân thủ chỉ dẫn gần tương đương phiên bản chuyên nghiệp FLUX, đồng thời có hiệu suất vận hành cao hơn. So với mô hình chuẩn cùng kích thước, nó sử dụng tài nguyên hiệu quả hơn."
|
1105
1114
|
},
|
1115
|
+
"flux-kontext-max": {
|
1116
|
+
"description": "Tạo và chỉnh sửa hình ảnh theo ngữ cảnh tiên tiến nhất — kết hợp văn bản và hình ảnh để có kết quả chính xác, mạch lạc."
|
1117
|
+
},
|
1118
|
+
"flux-kontext-pro": {
|
1119
|
+
"description": "Tạo và chỉnh sửa hình ảnh theo ngữ cảnh tiên tiến nhất — kết hợp văn bản và hình ảnh để đạt được kết quả chính xác, mạch lạc."
|
1120
|
+
},
|
1106
1121
|
"flux-kontext/dev": {
|
1107
1122
|
"description": "Mô hình FLUX.1 tập trung vào nhiệm vụ chỉnh sửa hình ảnh, hỗ trợ đầu vào văn bản và hình ảnh."
|
1108
1123
|
},
|
1109
1124
|
"flux-merged": {
|
1110
1125
|
"description": "Mô hình FLUX.1-merged kết hợp các đặc tính sâu sắc được khám phá trong giai đoạn phát triển của \"DEV\" và ưu thế thực thi nhanh của \"Schnell\". Qua đó, FLUX.1-merged không chỉ nâng cao giới hạn hiệu suất mà còn mở rộng phạm vi ứng dụng."
|
1111
1126
|
},
|
1127
|
+
"flux-pro": {
|
1128
|
+
"description": "Mô hình tạo ảnh AI thương mại hàng đầu — chất lượng hình ảnh vô song và độ đa dạng đầu ra vượt trội."
|
1129
|
+
},
|
1130
|
+
"flux-pro-1.1": {
|
1131
|
+
"description": "Mô hình tạo ảnh AI chuyên nghiệp phiên bản nâng cấp — cung cấp chất lượng hình ảnh vượt trội và khả năng tuân thủ chính xác các gợi ý."
|
1132
|
+
},
|
1133
|
+
"flux-pro-1.1-ultra": {
|
1134
|
+
"description": "Tạo ảnh AI độ phân giải cực cao — hỗ trợ xuất ảnh 4 megapixel, tạo ảnh siêu nét trong vòng 10 giây."
|
1135
|
+
},
|
1112
1136
|
"flux-pro/kontext": {
|
1113
1137
|
"description": "FLUX.1 Kontext [pro] có khả năng xử lý văn bản và hình ảnh tham khảo làm đầu vào, thực hiện chỉnh sửa cục bộ có mục tiêu và biến đổi cảnh tổng thể phức tạp một cách liền mạch."
|
1114
1138
|
},
|
@@ -1193,6 +1217,9 @@
|
|
1193
1217
|
"gemini-2.5-flash": {
|
1194
1218
|
"description": "Gemini 2.5 Flash là mô hình có hiệu suất chi phí tốt nhất của Google, cung cấp đầy đủ các chức năng."
|
1195
1219
|
},
|
1220
|
+
"gemini-2.5-flash-image-preview": {
|
1221
|
+
"description": "Gemini 2.5 Flash Image Preview là mô hình đa phương thức nguyên bản mới nhất, nhanh nhất và hiệu quả nhất của Google; nó cho phép bạn tạo và chỉnh sửa hình ảnh thông qua hội thoại."
|
1222
|
+
},
|
1196
1223
|
"gemini-2.5-flash-lite": {
|
1197
1224
|
"description": "Gemini 2.5 Flash-Lite là mô hình nhỏ nhất và có hiệu suất chi phí tốt nhất của Google, được thiết kế dành cho việc sử dụng quy mô lớn."
|
1198
1225
|
},
|
@@ -1295,6 +1322,9 @@
|
|
1295
1322
|
"glm-4.5-x": {
|
1296
1323
|
"description": "Phiên bản tốc độ cao của GLM-4.5, vừa mạnh mẽ về hiệu suất, vừa đạt tốc độ tạo 100 token/giây."
|
1297
1324
|
},
|
1325
|
+
"glm-4.5v": {
|
1326
|
+
"description": "Mô hình suy luận thị giác thế hệ mới của Zhipu dựa trên kiến trúc MOE, với tổng số tham số 106B và 12B tham số kích hoạt, đạt SOTA trong số các mô hình đa phương thức mã nguồn mở cùng cấp trên toàn cầu trên nhiều bộ đánh giá, bao gồm các nhiệm vụ phổ biến như hiểu ảnh, video, tài liệu và giao diện người dùng (GUI)."
|
1327
|
+
},
|
1298
1328
|
"glm-4v": {
|
1299
1329
|
"description": "GLM-4V cung cấp khả năng hiểu và suy luận hình ảnh mạnh mẽ, hỗ trợ nhiều nhiệm vụ hình ảnh."
|
1300
1330
|
},
|
@@ -1434,7 +1464,7 @@
|
|
1434
1464
|
"description": "GPT-4.1 mini cung cấp sự cân bằng giữa trí tuệ, tốc độ và chi phí, khiến nó trở thành mô hình hấp dẫn cho nhiều trường hợp sử dụng."
|
1435
1465
|
},
|
1436
1466
|
"gpt-4.5-preview": {
|
1437
|
-
"description": "
|
1467
|
+
"description": "GPT-4.5-preview là mô hình tổng quát mới nhất, sở hữu kiến thức toàn cầu sâu rộng và khả năng hiểu ý định người dùng tốt hơn, mạnh trong các nhiệm vụ sáng tạo và trong việc lập kế hoạch cho các tác nhân. Kiến thức của mô hình được cập nhật đến tháng 10 năm 2023."
|
1438
1468
|
},
|
1439
1469
|
"gpt-4o": {
|
1440
1470
|
"description": "ChatGPT-4o là một mô hình động, được cập nhật theo thời gian thực để giữ phiên bản mới nhất. Nó kết hợp khả năng hiểu và sinh ngôn ngữ mạnh mẽ, phù hợp cho các ứng dụng quy mô lớn, bao gồm dịch vụ khách hàng, giáo dục và hỗ trợ kỹ thuật."
|
@@ -1637,9 +1667,18 @@
|
|
1637
1667
|
"image-01-live": {
|
1638
1668
|
"description": "Mô hình tạo hình ảnh với chất lượng tinh tế, hỗ trợ tạo hình ảnh từ văn bản và thiết lập phong cách hình ảnh."
|
1639
1669
|
},
|
1670
|
+
"imagen-4.0-fast-generate-001": {
|
1671
|
+
"description": "Imagen — dòng mô hình tạo ảnh từ văn bản thế hệ thứ 4, phiên bản nhanh."
|
1672
|
+
},
|
1673
|
+
"imagen-4.0-generate-001": {
|
1674
|
+
"description": "Dòng mô hình Imagen thế hệ thứ tư chuyển văn bản thành hình ảnh"
|
1675
|
+
},
|
1640
1676
|
"imagen-4.0-generate-preview-06-06": {
|
1641
1677
|
"description": "Dòng mô hình chuyển đổi văn bản thành hình ảnh thế hệ thứ 4 của Imagen"
|
1642
1678
|
},
|
1679
|
+
"imagen-4.0-ultra-generate-001": {
|
1680
|
+
"description": "Imagen thế hệ thứ 4, dòng mô hình chuyển văn bản sang hình ảnh — phiên bản Ultra"
|
1681
|
+
},
|
1643
1682
|
"imagen-4.0-ultra-generate-preview-06-06": {
|
1644
1683
|
"description": "Phiên bản Ultra của dòng mô hình chuyển đổi văn bản thành hình ảnh thế hệ thứ 4 của Imagen"
|
1645
1684
|
},
|
@@ -1679,6 +1718,9 @@
|
|
1679
1718
|
"kimi-k2-0711-preview": {
|
1680
1719
|
"description": "kimi-k2 là mô hình cơ sở kiến trúc MoE với khả năng mã hóa và Agent cực mạnh, tổng số tham số 1T, tham số kích hoạt 32B. Trong các bài kiểm tra hiệu năng chuẩn về suy luận kiến thức chung, lập trình, toán học, Agent và các lĩnh vực chính khác, mô hình K2 vượt trội hơn các mô hình mã nguồn mở phổ biến khác."
|
1681
1720
|
},
|
1721
|
+
"kimi-k2-turbo-preview": {
|
1722
|
+
"description": "kimi-k2 là một mô hình nền tảng kiến trúc MoE với khả năng xử lý mã và Agent rất mạnh, tổng số tham số 1T, tham số kích hoạt 32B. Trong các bài kiểm tra chuẩn về hiệu năng ở các hạng mục chính như suy luận kiến thức tổng quát, lập trình, toán học và Agent, mô hình K2 cho hiệu năng vượt trội so với các mô hình mã nguồn mở phổ biến khác."
|
1723
|
+
},
|
1682
1724
|
"kimi-latest": {
|
1683
1725
|
"description": "Sản phẩm trợ lý thông minh Kimi sử dụng mô hình lớn Kimi mới nhất, có thể chứa các tính năng chưa ổn định. Hỗ trợ hiểu hình ảnh, đồng thời tự động chọn mô hình 8k/32k/128k làm mô hình tính phí dựa trên độ dài ngữ cảnh yêu cầu."
|
1684
1726
|
},
|
@@ -1763,6 +1805,9 @@
|
|
1763
1805
|
"llava:34b": {
|
1764
1806
|
"description": "LLaVA là mô hình đa phương thức kết hợp bộ mã hóa hình ảnh và Vicuna, phục vụ cho việc hiểu biết mạnh mẽ về hình ảnh và ngôn ngữ."
|
1765
1807
|
},
|
1808
|
+
"magistral-medium-latest": {
|
1809
|
+
"description": "Magistral Medium 1.1 là một mô hình suy luận tiên tiến do Mistral AI ra mắt vào tháng 7 năm 2025."
|
1810
|
+
},
|
1766
1811
|
"mathstral": {
|
1767
1812
|
"description": "MathΣtral được thiết kế cho nghiên cứu khoa học và suy luận toán học, cung cấp khả năng tính toán hiệu quả và giải thích kết quả."
|
1768
1813
|
},
|
@@ -2094,7 +2139,7 @@
|
|
2094
2139
|
"description": "o1-mini là một mô hình suy diễn nhanh chóng và tiết kiệm chi phí, được thiết kế cho các ứng dụng lập trình, toán học và khoa học. Mô hình này có ngữ cảnh 128K và thời điểm cắt kiến thức vào tháng 10 năm 2023."
|
2095
2140
|
},
|
2096
2141
|
"o1-preview": {
|
2097
|
-
"description": "
|
2142
|
+
"description": "Tập trung vào suy luận nâng cao và giải quyết các vấn đề phức tạp, bao gồm các bài toán và nhiệm vụ khoa học. Rất phù hợp cho những ứng dụng cần khả năng hiểu biết ngữ cảnh sâu sắc và quy trình làm việc tự chủ."
|
2098
2143
|
},
|
2099
2144
|
"o1-pro": {
|
2100
2145
|
"description": "Dòng mô hình o1 được huấn luyện qua học tăng cường, có khả năng suy nghĩ trước khi trả lời và thực hiện các nhiệm vụ suy luận phức tạp. Mô hình o1-pro sử dụng nhiều tài nguyên tính toán hơn để suy nghĩ sâu hơn, từ đó liên tục cung cấp câu trả lời chất lượng cao hơn."
|
@@ -2213,8 +2258,14 @@
|
|
2213
2258
|
"qwen-coder-turbo-latest": {
|
2214
2259
|
"description": "Mô hình mã Qwen."
|
2215
2260
|
},
|
2261
|
+
"qwen-flash": {
|
2262
|
+
"description": "Các mô hình thuộc dòng 通义千问 có tốc độ nhanh nhất và chi phí rất thấp, phù hợp cho các nhiệm vụ đơn giản."
|
2263
|
+
},
|
2216
2264
|
"qwen-image": {
|
2217
|
-
"description": "
|
2265
|
+
"description": "Qwen-Image là một mô hình sinh hình ảnh đa dụng, hỗ trợ nhiều phong cách nghệ thuật và đặc biệt giỏi trong việc tái hiện văn bản phức tạp, nhất là văn bản tiếng Trung và tiếng Anh. Mô hình hỗ trợ bố cục nhiều dòng, sinh văn bản ở cấp đoạn và khắc họa các chi tiết tinh tế, cho phép thực hiện các thiết kế bố cục kết hợp hình ảnh và văn bản phức tạp."
|
2266
|
+
},
|
2267
|
+
"qwen-image-edit": {
|
2268
|
+
"description": "Mô hình chỉnh sửa hình ảnh chuyên nghiệp do nhóm Qwen phát hành, hỗ trợ chỉnh sửa ngữ nghĩa và chỉnh sửa ngoại hình, có thể chỉnh sửa chính xác văn bản tiếng Trung và tiếng Anh, thực hiện chuyển đổi phong cách, xoay đối tượng và các chỉnh sửa hình ảnh chất lượng cao khác."
|
2218
2269
|
},
|
2219
2270
|
"qwen-long": {
|
2220
2271
|
"description": "Mô hình ngôn ngữ quy mô lớn Qwen, hỗ trợ ngữ cảnh văn bản dài và chức năng đối thoại dựa trên tài liệu dài, nhiều tài liệu."
|
@@ -2241,7 +2292,7 @@
|
|
2241
2292
|
"description": "Mô hình ngôn ngữ quy mô lớn Qwen phiên bản nâng cao, hỗ trợ đầu vào bằng tiếng Trung, tiếng Anh và nhiều ngôn ngữ khác."
|
2242
2293
|
},
|
2243
2294
|
"qwen-turbo": {
|
2244
|
-
"description": "
|
2295
|
+
"description": "通义千问 Turbo 将不再更新,建议替换为通义千问 Flash。通义千问是一款超大规模的语言模型,支持中文、英文及其他语言的输入。"
|
2245
2296
|
},
|
2246
2297
|
"qwen-vl-chat-v1": {
|
2247
2298
|
"description": "Mô hình Qwen VL hỗ trợ các phương thức tương tác linh hoạt, bao gồm nhiều hình ảnh, nhiều vòng hỏi đáp, sáng tạo, v.v."
|
@@ -2558,9 +2609,15 @@
|
|
2558
2609
|
"step-2x-large": {
|
2559
2610
|
"description": "Mô hình tạo hình ảnh thế hệ mới của Step Star, tập trung vào tác vụ tạo hình ảnh, có thể tạo ra hình ảnh chất lượng cao dựa trên mô tả văn bản do người dùng cung cấp. Mô hình mới tạo ra hình ảnh có cảm giác thực hơn, khả năng tạo chữ tiếng Trung và tiếng Anh mạnh hơn."
|
2560
2611
|
},
|
2612
|
+
"step-3": {
|
2613
|
+
"description": "Mô hình này có khả năng nhận thức thị giác mạnh mẽ và suy luận phức tạp. Có thể chính xác hoàn thành việc hiểu các kiến thức phức tạp liên ngành, phân tích chéo giữa thông tin toán học và thông tin thị giác, cũng như xử lý các vấn đề phân tích hình ảnh trong đời sống hàng ngày."
|
2614
|
+
},
|
2561
2615
|
"step-r1-v-mini": {
|
2562
2616
|
"description": "Mô hình này là một mô hình suy luận lớn với khả năng hiểu hình ảnh mạnh mẽ, có thể xử lý thông tin hình ảnh và văn bản, và xuất ra nội dung văn bản sau khi suy nghĩ sâu. Mô hình này thể hiện xuất sắc trong lĩnh vực suy luận hình ảnh, đồng thời có khả năng toán học, mã và suy luận văn bản hàng đầu. Độ dài ngữ cảnh là 100k."
|
2563
2617
|
},
|
2618
|
+
"stepfun-ai/step3": {
|
2619
|
+
"description": "Step3 là mô hình suy luận đa mô thức tiên tiến được phát hành bởi 阶跃星辰 (StepFun). Mô hình này được xây dựng trên kiến trúc Mixture-of-Experts (MoE) với 321B tham số tổng và 38B tham số kích hoạt. Thiết kế đầu-cuối (end-to-end) nhằm tối thiểu hóa chi phí giải mã, đồng thời cung cấp hiệu năng hàng đầu trong suy luận thị giác-ngôn ngữ. Thông qua thiết kế phối hợp giữa Multi-Matrix Factorized Attention (MFA) và Attention-FFN Decoupling (AFD), Step3 duy trì hiệu suất vượt trội trên cả bộ tăng tốc cao cấp và các thiết bị tăng tốc cấp thấp. Trong giai đoạn tiền huấn luyện, Step3 đã xử lý hơn 20T token văn bản và 4T token hỗn hợp ảnh-văn bản, bao phủ hơn mười ngôn ngữ. Mô hình này đã đạt vị thế dẫn đầu trong các benchmark mã nguồn mở ở nhiều lĩnh vực, bao gồm toán học, mã (code) và các nhiệm vụ đa mô thức."
|
2620
|
+
},
|
2564
2621
|
"taichu_llm": {
|
2565
2622
|
"description": "Mô hình ngôn ngữ lớn Taichu có khả năng hiểu ngôn ngữ mạnh mẽ và các khả năng như sáng tạo văn bản, trả lời câu hỏi kiến thức, lập trình mã, tính toán toán học, suy luận logic, phân tích cảm xúc, tóm tắt văn bản. Đổi mới kết hợp giữa đào tạo trước với dữ liệu phong phú từ nhiều nguồn, thông qua việc liên tục cải tiến công nghệ thuật toán và hấp thụ kiến thức mới từ dữ liệu văn bản khổng lồ, giúp mô hình ngày càng hoàn thiện. Cung cấp thông tin và dịch vụ tiện lợi hơn cho người dùng cùng trải nghiệm thông minh hơn."
|
2566
2623
|
},
|
@@ -2707,5 +2764,8 @@
|
|
2707
2764
|
},
|
2708
2765
|
"zai-org/GLM-4.5-Air": {
|
2709
2766
|
"description": "GLM-4.5-Air là mô hình nền tảng dành cho ứng dụng tác nhân thông minh, sử dụng kiến trúc chuyên gia hỗn hợp (Mixture-of-Experts). Được tối ưu sâu trong các lĩnh vực gọi công cụ, duyệt web, kỹ thuật phần mềm và lập trình front-end, hỗ trợ tích hợp liền mạch vào các tác nhân mã như Claude Code, Roo Code. GLM-4.5 sử dụng chế độ suy luận hỗn hợp, thích ứng với nhiều kịch bản ứng dụng như suy luận phức tạp và sử dụng hàng ngày."
|
2767
|
+
},
|
2768
|
+
"zai-org/GLM-4.5V": {
|
2769
|
+
"description": "GLM-4.5V là thế hệ mô hình ngôn ngữ thị giác (VLM) mới nhất được phát hành bởi Zhipu AI. Mô hình này được xây dựng trên cơ sở mô hình văn bản chủ lực GLM-4.5-Air với tổng 106 tỷ tham số và 12 tỷ tham số kích hoạt, sử dụng kiến trúc chuyên gia hỗn hợp (Mixture of Experts - MoE), nhằm đạt hiệu năng xuất sắc với chi phí suy luận thấp hơn. Về mặt kỹ thuật, GLM-4.5V tiếp nối hướng phát triển của GLM-4.1V-Thinking và giới thiệu các đổi mới như mã hóa vị trí xoay ba chiều (3D-RoPE), đáng kể nâng cao khả năng nhận thức và suy luận về các mối quan hệ trong không gian 3D. Thông qua tối ưu hóa ở các giai đoạn tiền huấn luyện, tinh chỉnh có giám sát và học tăng cường, mô hình có khả năng xử lý nhiều dạng nội dung thị giác như hình ảnh, video và tài liệu dài, và đã đạt vị trí hàng đầu trong số các mô hình mã nguồn mở cùng cấp trên 41 bộ đánh giá đa phương thức công khai. Ngoài ra, mô hình còn bổ sung công tắc “chế độ tư duy”, cho phép người dùng linh hoạt lựa chọn giữa phản hồi nhanh và suy luận sâu để cân bằng hiệu quả và chất lượng."
|
2710
2770
|
}
|
2711
2771
|
}
|
@@ -26,6 +26,9 @@
|
|
26
26
|
"bedrock": {
|
27
27
|
"description": "Bedrock là dịch vụ do Amazon AWS cung cấp, tập trung vào việc cung cấp các mô hình ngôn ngữ AI và mô hình hình ảnh tiên tiến cho doanh nghiệp. Gia đình mô hình của nó bao gồm dòng Claude của Anthropic, dòng Llama 3.1 của Meta, v.v., bao quát nhiều lựa chọn từ nhẹ đến hiệu suất cao, hỗ trợ nhiều nhiệm vụ như tạo văn bản, đối thoại, xử lý hình ảnh, phù hợp cho các ứng dụng doanh nghiệp với quy mô và nhu cầu khác nhau."
|
28
28
|
},
|
29
|
+
"bfl": {
|
30
|
+
"description": "Phòng thí nghiệm nghiên cứu trí tuệ nhân tạo tiên phong dẫn đầu, kiến tạo cơ sở hạ tầng thị giác cho ngày mai."
|
31
|
+
},
|
29
32
|
"cloudflare": {
|
30
33
|
"description": "Chạy các mô hình học máy được hỗ trợ bởi GPU không máy chủ trên mạng lưới toàn cầu của Cloudflare."
|
31
34
|
},
|
@@ -130,6 +130,12 @@
|
|
130
130
|
},
|
131
131
|
"progress": {
|
132
132
|
"uploadingWithCount": "{{completed}}/{{total}} 已上传"
|
133
|
+
},
|
134
|
+
"validation": {
|
135
|
+
"fileSizeExceeded": "File size exceeded limit",
|
136
|
+
"fileSizeExceededDetail": "{{fileName}} ({{actualSize}}) exceeds the maximum size limit of {{maxSize}}",
|
137
|
+
"fileSizeExceededMultiple": "{{count}} files exceed the maximum size limit of {{maxSize}}: {{fileList}}",
|
138
|
+
"imageCountExceeded": "Image count exceeded limit"
|
133
139
|
}
|
134
140
|
},
|
135
141
|
"OllamaSetupGuide": {
|
package/locales/zh-CN/error.json
CHANGED
@@ -106,6 +106,17 @@
|
|
106
106
|
"PermissionDenied": "很抱歉,你没有权限访问该服务,请检查你的密钥是否有访问权限",
|
107
107
|
"InvalidProviderAPIKey": "{{provider}} API Key 不正确或为空,请检查 {{provider}} API Key 后重试",
|
108
108
|
"ProviderBizError": "请求 {{provider}} 服务出错,请根据以下信息排查或重试",
|
109
|
+
"GoogleAIBlockReason": {
|
110
|
+
"BLOCKLIST": "您的内容包含被禁止的词汇。请检查并修改您的输入内容后重试。",
|
111
|
+
"IMAGE_SAFETY": "生成的图像内容因安全原因被阻止。请尝试修改您的图像生成请求。",
|
112
|
+
"LANGUAGE": "您使用的语言暂不被支持。请尝试使用英语或其他支持的语言重新提问。",
|
113
|
+
"OTHER": "内容因未知原因被阻止。请尝试重新表述您的请求。",
|
114
|
+
"PROHIBITED_CONTENT": "您的请求可能包含违禁内容。请调整您的请求,确保内容符合使用规范。",
|
115
|
+
"RECITATION": "您的内容因可能涉及版权问题而被阻止。请尝试使用原创内容或重新表述您的请求。",
|
116
|
+
"SAFETY": "您的内容因安全策略而被阻止。请尝试调整您的请求内容,避免包含可能的有害或不当内容。",
|
117
|
+
"SPII": "您的内容可能包含敏感个人身份信息。为保护隐私,请移除相关敏感信息后重试。",
|
118
|
+
"default": "内容被阻止:{{blockReason}}。请调整您的请求内容后重试。"
|
119
|
+
},
|
109
120
|
"NoOpenAIAPIKey": "OpenAI API Key 不正确或为空,请添加自定义 OpenAI API Key",
|
110
121
|
"InvalidVertexCredentials": "Vertex 鉴权未通过,请检查鉴权凭证后重试",
|
111
122
|
"InvalidBedrockCredentials": "Bedrock 鉴权未通过,请检查 AccessKeyId/SecretAccessKey 后重试",
|