@lobehub/chat 1.115.0 → 1.116.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (98) hide show
  1. package/.cursor/rules/add-provider-doc.mdc +183 -0
  2. package/.env.example +8 -0
  3. package/.github/workflows/release.yml +3 -3
  4. package/.github/workflows/test.yml +3 -7
  5. package/CHANGELOG.md +25 -0
  6. package/CLAUDE.md +6 -6
  7. package/Dockerfile +5 -1
  8. package/Dockerfile.database +5 -1
  9. package/Dockerfile.pglite +5 -1
  10. package/changelog/v1.json +9 -0
  11. package/docs/development/basic/setup-development.mdx +10 -13
  12. package/docs/development/basic/setup-development.zh-CN.mdx +9 -12
  13. package/docs/self-hosting/environment-variables/model-provider.mdx +27 -2
  14. package/docs/self-hosting/environment-variables/model-provider.zh-CN.mdx +27 -2
  15. package/docs/usage/providers/bfl.mdx +68 -0
  16. package/docs/usage/providers/bfl.zh-CN.mdx +67 -0
  17. package/locales/ar/components.json +11 -0
  18. package/locales/ar/error.json +11 -0
  19. package/locales/ar/models.json +64 -4
  20. package/locales/ar/providers.json +3 -0
  21. package/locales/bg-BG/components.json +11 -0
  22. package/locales/bg-BG/error.json +11 -0
  23. package/locales/bg-BG/models.json +64 -4
  24. package/locales/bg-BG/providers.json +3 -0
  25. package/locales/de-DE/components.json +11 -0
  26. package/locales/de-DE/error.json +11 -12
  27. package/locales/de-DE/models.json +64 -4
  28. package/locales/de-DE/providers.json +3 -0
  29. package/locales/en-US/components.json +6 -0
  30. package/locales/en-US/error.json +11 -12
  31. package/locales/en-US/models.json +64 -4
  32. package/locales/en-US/providers.json +3 -0
  33. package/locales/es-ES/components.json +11 -0
  34. package/locales/es-ES/error.json +11 -0
  35. package/locales/es-ES/models.json +64 -6
  36. package/locales/es-ES/providers.json +3 -0
  37. package/locales/fa-IR/components.json +11 -0
  38. package/locales/fa-IR/error.json +11 -0
  39. package/locales/fa-IR/models.json +64 -4
  40. package/locales/fa-IR/providers.json +3 -0
  41. package/locales/fr-FR/components.json +11 -0
  42. package/locales/fr-FR/error.json +11 -12
  43. package/locales/fr-FR/models.json +64 -4
  44. package/locales/fr-FR/providers.json +3 -0
  45. package/locales/it-IT/components.json +11 -0
  46. package/locales/it-IT/error.json +11 -0
  47. package/locales/it-IT/models.json +64 -4
  48. package/locales/it-IT/providers.json +3 -0
  49. package/locales/ja-JP/components.json +11 -0
  50. package/locales/ja-JP/error.json +11 -12
  51. package/locales/ja-JP/models.json +64 -4
  52. package/locales/ja-JP/providers.json +3 -0
  53. package/locales/ko-KR/components.json +11 -0
  54. package/locales/ko-KR/error.json +11 -12
  55. package/locales/ko-KR/models.json +64 -6
  56. package/locales/ko-KR/providers.json +3 -0
  57. package/locales/nl-NL/components.json +11 -0
  58. package/locales/nl-NL/error.json +11 -0
  59. package/locales/nl-NL/models.json +62 -4
  60. package/locales/nl-NL/providers.json +3 -0
  61. package/locales/pl-PL/components.json +11 -0
  62. package/locales/pl-PL/error.json +11 -0
  63. package/locales/pl-PL/models.json +64 -4
  64. package/locales/pl-PL/providers.json +3 -0
  65. package/locales/pt-BR/components.json +11 -0
  66. package/locales/pt-BR/error.json +11 -0
  67. package/locales/pt-BR/models.json +64 -4
  68. package/locales/pt-BR/providers.json +3 -0
  69. package/locales/ru-RU/components.json +11 -0
  70. package/locales/ru-RU/error.json +11 -0
  71. package/locales/ru-RU/models.json +64 -4
  72. package/locales/ru-RU/providers.json +3 -0
  73. package/locales/tr-TR/components.json +11 -0
  74. package/locales/tr-TR/error.json +11 -0
  75. package/locales/tr-TR/models.json +64 -4
  76. package/locales/tr-TR/providers.json +3 -0
  77. package/locales/vi-VN/components.json +11 -0
  78. package/locales/vi-VN/error.json +11 -0
  79. package/locales/vi-VN/models.json +64 -4
  80. package/locales/vi-VN/providers.json +3 -0
  81. package/locales/zh-CN/components.json +6 -0
  82. package/locales/zh-CN/error.json +11 -0
  83. package/locales/zh-CN/models.json +64 -4
  84. package/locales/zh-CN/providers.json +3 -0
  85. package/locales/zh-TW/components.json +11 -0
  86. package/locales/zh-TW/error.json +11 -12
  87. package/locales/zh-TW/models.json +64 -6
  88. package/locales/zh-TW/providers.json +3 -0
  89. package/package.json +1 -1
  90. package/packages/model-runtime/src/google/index.ts +3 -0
  91. package/packages/model-runtime/src/qwen/createImage.test.ts +0 -19
  92. package/packages/model-runtime/src/qwen/createImage.ts +1 -27
  93. package/packages/model-runtime/src/utils/streams/google-ai.ts +26 -14
  94. package/packages/types/src/aiModel.ts +2 -1
  95. package/src/config/aiModels/google.ts +22 -1
  96. package/src/config/aiModels/qwen.ts +2 -2
  97. package/src/config/aiModels/vertexai.ts +22 -0
  98. package/.cursor/rules/debug.mdc +0 -193
@@ -332,12 +332,21 @@
332
332
  "Qwen/Qwen3-30B-A3B-Instruct-2507": {
333
333
  "description": "Qwen3-30B-A3B-Instruct-2507 é uma versão atualizada do Qwen3-30B-A3B no modo não reflexivo. Este é um modelo de especialista misto (MoE) com um total de 30,5 bilhões de parâmetros e 3,3 bilhões de parâmetros ativados. O modelo apresenta melhorias significativas em vários aspectos, incluindo um aumento notável na capacidade de seguir instruções, raciocínio lógico, compreensão de texto, matemática, ciências, codificação e uso de ferramentas. Além disso, alcança avanços substanciais na cobertura de conhecimento em múltiplos idiomas e melhor alinhamento com as preferências dos usuários em tarefas subjetivas e abertas, permitindo gerar respostas mais úteis e textos de maior qualidade. A capacidade de compreensão de textos longos também foi ampliada para 256K. Este modelo suporta apenas o modo não reflexivo e não gera tags `<think></think>` em sua saída."
334
334
  },
335
+ "Qwen/Qwen3-30B-A3B-Thinking-2507": {
336
+ "description": "Qwen3-30B-A3B-Thinking-2507 é o mais recente modelo de raciocínio da série Qwen3, lançado pela equipe Tongyi Qianwen da Alibaba. Como um modelo Mixture-of-Experts (MoE) com um total de 30,5 bilhões de parâmetros e 3,3 bilhões de parâmetros de ativação, ele foca em aprimorar a capacidade de lidar com tarefas complexas. O modelo apresenta melhorias de desempenho significativas em benchmarks acadêmicos de raciocínio lógico, matemática, ciências, programação e outras tarefas que exigem conhecimento especializado humano. Além disso, suas capacidades gerais — como cumprimento de instruções, uso de ferramentas, geração de texto e alinhamento com preferências humanas — também foram significativamente aprimoradas. O modelo oferece suporte nativo à compreensão de contexto longo de 256K tokens e pode ser expandido até 1 milhão de tokens. Esta versão foi projetada especificamente para o 'modo de pensamento', visando resolver tarefas altamente complexas por meio de um raciocínio passo a passo detalhado, e suas capacidades como agente (Agent) também se destacam."
337
+ },
335
338
  "Qwen/Qwen3-32B": {
336
339
  "description": "O Qwen3 é um novo modelo de grande escala da Tongyi Qianwen com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, tarefas gerais, agentes e multilinguismo, e suporta a alternância de modos de pensamento."
337
340
  },
338
341
  "Qwen/Qwen3-8B": {
339
342
  "description": "O Qwen3 é um novo modelo de grande escala da Tongyi Qianwen com capacidades significativamente aprimoradas, alcançando níveis líderes da indústria em raciocínio, tarefas gerais, agentes e multilinguismo, e suporta a alternância de modos de pensamento."
340
343
  },
344
+ "Qwen/Qwen3-Coder-30B-A3B-Instruct": {
345
+ "description": "Qwen3-Coder-30B-A3B-Instruct é um modelo de código da série Qwen3 desenvolvido pela equipe Tongyi Qianwen da Alibaba. Como um modelo enxuto e otimizado, ele mantém alto desempenho e eficiência, ao mesmo tempo em que se concentra em aprimorar a capacidade de processamento de código. Esse modelo demonstra vantagens de desempenho notáveis entre modelos de código aberto em tarefas complexas, como programação agente (Agentic Coding), automação de operações de navegador e chamadas de ferramentas. Ele suporta nativamente contexto longo de 256K tokens e pode ser expandido até 1M tokens, permitindo um entendimento e processamento mais aprofundados em nível de repositório de código. Além disso, o modelo oferece forte suporte a codificação por agentes em plataformas como Qwen Code e CLINE, e foi projetado com um formato dedicado para chamadas de função."
346
+ },
347
+ "Qwen/Qwen3-Coder-480B-A35B-Instruct": {
348
+ "description": "Qwen3-Coder-480B-A35B-Instruct é o modelo de código com maior capacidade agentic (de atuação autônoma) publicado pela Alibaba até o momento. É um modelo de especialistas mistos (MoE) com 480 bilhões de parâmetros totais e 35 bilhões de parâmetros ativados, que alcança um equilíbrio entre eficiência e desempenho. O modelo oferece suporte nativo a um comprimento de contexto de 256K (aproximadamente 260 mil) tokens e pode ser estendido até 1 milhão de tokens por meio de métodos de extrapolação como YaRN, permitindo lidar com grandes bases de código e tarefas de programação complexas. O Qwen3-Coder foi projetado para fluxos de trabalho de codificação baseados em agentes: além de gerar código, ele pode interagir de forma autônoma com ferramentas e ambientes de desenvolvimento para resolver problemas de programação complexos. Em diversos benchmarks de tarefas de codificação e de agentes, este modelo alcançou desempenho de ponta entre os modelos de código aberto, comparável a modelos líderes como o Claude Sonnet 4."
349
+ },
341
350
  "Qwen2-72B-Instruct": {
342
351
  "description": "Qwen2 é a mais recente série do modelo Qwen, suportando 128k de contexto. Em comparação com os melhores modelos de código aberto atuais, o Qwen2-72B supera significativamente os modelos líderes em várias capacidades, incluindo compreensão de linguagem natural, conhecimento, código, matemática e multilinguismo."
343
352
  },
@@ -1103,12 +1112,27 @@
1103
1112
  "flux-dev": {
1104
1113
  "description": "FLUX.1 [dev] é um modelo open source refinado e com pesos voltado para aplicações não comerciais. Mantém qualidade de imagem e capacidade de seguir instruções próximas à versão profissional FLUX, com maior eficiência operacional. Em comparação com modelos padrão de tamanho similar, é mais eficiente no uso de recursos."
1105
1114
  },
1115
+ "flux-kontext-max": {
1116
+ "description": "Geração e edição de imagens contextuais de ponta — combinando texto e imagens para obter resultados precisos e coerentes."
1117
+ },
1118
+ "flux-kontext-pro": {
1119
+ "description": "Geração e edição de imagens contextuais de ponta — combinando texto e imagens para obter resultados precisos e coerentes."
1120
+ },
1106
1121
  "flux-kontext/dev": {
1107
1122
  "description": "Modelo FLUX.1 focado em tarefas de edição de imagens, suportando entrada de texto e imagem."
1108
1123
  },
1109
1124
  "flux-merged": {
1110
1125
  "description": "O modelo FLUX.1-merged combina as características profundas exploradas na fase de desenvolvimento \"DEV\" com as vantagens de execução rápida representadas por \"Schnell\". Essa combinação não só eleva os limites de desempenho do modelo, como também amplia seu campo de aplicação."
1111
1126
  },
1127
+ "flux-pro": {
1128
+ "description": "Modelo de geração de imagens por IA de primeira linha para uso comercial — qualidade de imagem incomparável e resultados altamente diversificados."
1129
+ },
1130
+ "flux-pro-1.1": {
1131
+ "description": "Modelo profissional aprimorado de geração de imagens por IA — oferece qualidade de imagem excepcional e precisão no atendimento às instruções de prompt."
1132
+ },
1133
+ "flux-pro-1.1-ultra": {
1134
+ "description": "Geração de imagens por IA em altíssima resolução — suporta saída de 4 megapixels e gera imagens em alta definição em até 10 segundos."
1135
+ },
1112
1136
  "flux-pro/kontext": {
1113
1137
  "description": "FLUX.1 Kontext [pro] pode processar texto e imagens de referência como entrada, realizando edições locais direcionadas e transformações complexas de cenas inteiras de forma fluida."
1114
1138
  },
@@ -1193,6 +1217,9 @@
1193
1217
  "gemini-2.5-flash": {
1194
1218
  "description": "Gemini 2.5 Flash é o modelo com melhor custo-benefício do Google, oferecendo funcionalidades abrangentes."
1195
1219
  },
1220
+ "gemini-2.5-flash-image-preview": {
1221
+ "description": "Gemini 2.5 Flash Image Preview é o modelo multimodal nativo mais recente, mais rápido e mais eficiente do Google, que permite gerar e editar imagens por meio de conversas."
1222
+ },
1196
1223
  "gemini-2.5-flash-lite": {
1197
1224
  "description": "Gemini 2.5 Flash-Lite é o modelo mais compacto e com melhor custo-benefício do Google, projetado para uso em larga escala."
1198
1225
  },
@@ -1295,6 +1322,9 @@
1295
1322
  "glm-4.5-x": {
1296
1323
  "description": "Versão ultrarrápida do GLM-4.5, combinando alto desempenho com velocidade de geração de até 100 tokens por segundo."
1297
1324
  },
1325
+ "glm-4.5v": {
1326
+ "description": "A nova geração do modelo de raciocínio visual da Zhipu, baseada na arquitetura MOE, com 106B de parâmetros totais e 12B de parâmetros de ativação, alcança o estado da arte (SOTA) entre modelos multimodais de código aberto de nível semelhante em diversos benchmarks, abrangendo tarefas comuns como compreensão de imagens, vídeos, documentos e de interfaces gráficas (GUI)."
1327
+ },
1298
1328
  "glm-4v": {
1299
1329
  "description": "O GLM-4V oferece uma forte capacidade de compreensão e raciocínio de imagens, suportando várias tarefas visuais."
1300
1330
  },
@@ -1434,7 +1464,7 @@
1434
1464
  "description": "GPT-4.1 mini oferece um equilíbrio entre inteligência, velocidade e custo, tornando-se um modelo atraente para muitos casos de uso."
1435
1465
  },
1436
1466
  "gpt-4.5-preview": {
1437
- "description": "Versão de pesquisa do GPT-4.5, que é o nosso maior e mais poderoso modelo GPT até agora. Ele possui um amplo conhecimento sobre o mundo e consegue entender melhor a intenção do usuário, destacando-se em tarefas criativas e planejamento autônomo. O GPT-4.5 aceita entradas de texto e imagem, gerando saídas de texto (incluindo saídas estruturadas). Suporta recursos essenciais para desenvolvedores, como chamadas de função, API em lote e saída em fluxo. O GPT-4.5 se destaca especialmente em tarefas que requerem criatividade, pensamento aberto e diálogo (como escrita, aprendizado ou exploração de novas ideias). A data limite do conhecimento é outubro de 2023."
1467
+ "description": "GPT-4.5-preview é o modelo de uso geral mais recente, com amplo conhecimento do mundo e uma compreensão aprimorada das intenções dos usuários, sendo proficiente em tarefas criativas e no planejamento de agentes. A data de corte do conhecimento deste modelo é outubro de 2023."
1438
1468
  },
1439
1469
  "gpt-4o": {
1440
1470
  "description": "O ChatGPT-4o é um modelo dinâmico, atualizado em tempo real para manter a versão mais atual. Ele combina uma poderosa capacidade de compreensão e geração de linguagem, adequado para cenários de aplicação em larga escala, incluindo atendimento ao cliente, educação e suporte técnico."
@@ -1637,9 +1667,18 @@
1637
1667
  "image-01-live": {
1638
1668
  "description": "Modelo de geração de imagens com detalhes refinados, suportando geração a partir de texto e configuração de estilo visual."
1639
1669
  },
1670
+ "imagen-4.0-fast-generate-001": {
1671
+ "description": "Imagen, série de modelos texto para imagem de 4ª geração — versão Fast"
1672
+ },
1673
+ "imagen-4.0-generate-001": {
1674
+ "description": "Série de modelos Imagen de 4ª geração para gerar imagens a partir de texto"
1675
+ },
1640
1676
  "imagen-4.0-generate-preview-06-06": {
1641
1677
  "description": "Série de modelos de texto para imagem da 4ª geração Imagen"
1642
1678
  },
1679
+ "imagen-4.0-ultra-generate-001": {
1680
+ "description": "Imagen: modelo de geração de imagens a partir de texto de 4ª geração — versão Ultra"
1681
+ },
1643
1682
  "imagen-4.0-ultra-generate-preview-06-06": {
1644
1683
  "description": "Série de modelos de texto para imagem da 4ª geração Imagen, versão Ultra"
1645
1684
  },
@@ -1679,6 +1718,9 @@
1679
1718
  "kimi-k2-0711-preview": {
1680
1719
  "description": "kimi-k2 é um modelo base com arquitetura MoE, com capacidades excepcionais em código e agentes, totalizando 1T de parâmetros e 32B de parâmetros ativados. Nos principais benchmarks de raciocínio de conhecimento geral, programação, matemática e agentes, o modelo K2 supera outros modelos open source populares."
1681
1720
  },
1721
+ "kimi-k2-turbo-preview": {
1722
+ "description": "kimi-k2 é um modelo base com arquitetura MoE que oferece capacidades avançadas para programação e agentes, com 1T de parâmetros totais e 32B de parâmetros ativados. Em testes de benchmark nas principais categorias — raciocínio de conhecimento geral, programação, matemática e agentes — o desempenho do modelo K2 supera outros modelos de código aberto mais populares."
1723
+ },
1682
1724
  "kimi-latest": {
1683
1725
  "description": "O produto assistente inteligente Kimi utiliza o mais recente modelo Kimi, que pode conter recursos ainda não estáveis. Suporta compreensão de imagens e seleciona automaticamente o modelo de cobrança de 8k/32k/128k com base no comprimento do contexto da solicitação."
1684
1726
  },
@@ -1763,6 +1805,9 @@
1763
1805
  "llava:34b": {
1764
1806
  "description": "LLaVA é um modelo multimodal que combina um codificador visual e Vicuna, projetado para forte compreensão visual e linguística."
1765
1807
  },
1808
+ "magistral-medium-latest": {
1809
+ "description": "Magistral Medium 1.1 é um modelo de inferência de ponta lançado pela Mistral AI em julho de 2025."
1810
+ },
1766
1811
  "mathstral": {
1767
1812
  "description": "MathΣtral é projetado para pesquisa científica e raciocínio matemático, oferecendo capacidade de cálculo eficaz e interpretação de resultados."
1768
1813
  },
@@ -2094,7 +2139,7 @@
2094
2139
  "description": "o1-mini é um modelo de raciocínio rápido e econômico, projetado para cenários de programação, matemática e ciências. Este modelo possui um contexto de 128K e uma data limite de conhecimento em outubro de 2023."
2095
2140
  },
2096
2141
  "o1-preview": {
2097
- "description": "o1 é o novo modelo de raciocínio da OpenAI, adequado para tarefas complexas que exigem amplo conhecimento geral. Este modelo possui um contexto de 128K e uma data limite de conhecimento em outubro de 2023."
2142
+ "description": "Focado em raciocínio avançado e na resolução de problemas complexos, incluindo tarefas de matemática e ciências. Muito adequado para aplicações que exigem compreensão profunda do contexto e fluxos de trabalho autônomos."
2098
2143
  },
2099
2144
  "o1-pro": {
2100
2145
  "description": "A série o1 é treinada com aprendizado por reforço, capaz de pensar antes de responder e executar tarefas complexas de raciocínio. O modelo o1-pro utiliza mais recursos computacionais para um pensamento mais profundo, oferecendo respostas de qualidade superior continuamente."
@@ -2213,8 +2258,14 @@
2213
2258
  "qwen-coder-turbo-latest": {
2214
2259
  "description": "Modelo de código Qwen."
2215
2260
  },
2261
+ "qwen-flash": {
2262
+ "description": "A série Tongyi Qianwen oferece modelos com a maior velocidade e custo muito baixo, adequados para tarefas simples."
2263
+ },
2216
2264
  "qwen-image": {
2217
- "description": "Modelo poderoso de imagens brutas da equipe Qwen, com impressionante capacidade de geração de texto em chinês e diversos estilos visuais de imagens."
2265
+ "description": "Qwen-Image é um modelo de geração de imagens de uso geral que suporta diversos estilos artísticos. É especialmente eficaz na renderização de textos complexos, em particular na renderização de textos em chinês e inglês. O modelo oferece suporte a layouts de múltiplas linhas, geração de texto em nível de parágrafo e detalhamento de alta precisão, possibilitando a criação de designs complexos com layouts híbridos de imagem e texto."
2266
+ },
2267
+ "qwen-image-edit": {
2268
+ "description": "O modelo profissional de edição de imagens lançado pela equipe Qwen suporta edição semântica e de aparência, conseguindo editar com precisão textos em chinês e inglês e realizar transformações de estilo, rotação de objetos e outras edições de imagem de alta qualidade."
2218
2269
  },
2219
2270
  "qwen-long": {
2220
2271
  "description": "O Qwen é um modelo de linguagem em larga escala que suporta contextos de texto longos e funcionalidades de diálogo baseadas em documentos longos e múltiplos cenários."
@@ -2241,7 +2292,7 @@
2241
2292
  "description": "Versão aprimorada do modelo de linguagem em larga escala Qwen, que suporta entradas em diferentes idiomas, como português e inglês."
2242
2293
  },
2243
2294
  "qwen-turbo": {
2244
- "description": "O modelo de linguagem em larga escala Qwen suporta entradas em diferentes idiomas, como português e inglês."
2295
+ "description": "通义千问 Turbo não receberá mais atualizações; recomendamos substituí-lo pelo 通义千问 Flash. 通义千问 é um modelo de linguagem em larga escala que suporta entradas em chinês, inglês e outros idiomas."
2245
2296
  },
2246
2297
  "qwen-vl-chat-v1": {
2247
2298
  "description": "O Qwen VL suporta uma maneira de interação flexível, incluindo múltiplas imagens, perguntas e respostas em várias rodadas, e capacidades criativas."
@@ -2558,9 +2609,15 @@
2558
2609
  "step-2x-large": {
2559
2610
  "description": "Nova geração do modelo Xingchen Step, focado em geração de imagens, capaz de criar imagens de alta qualidade a partir de descrições textuais fornecidas pelo usuário. O novo modelo gera imagens com textura mais realista e melhor capacidade de geração de texto em chinês e inglês."
2560
2611
  },
2612
+ "step-3": {
2613
+ "description": "Este modelo possui forte percepção visual e capacidade de raciocínio complexo. Pode realizar com precisão a compreensão de conhecimentos complexos entre diferentes áreas, a análise cruzada entre informações matemáticas e visuais, além de resolver diversos tipos de problemas de análise visual do cotidiano."
2614
+ },
2561
2615
  "step-r1-v-mini": {
2562
2616
  "description": "Este modelo é um grande modelo de inferência com forte capacidade de compreensão de imagens, capaz de processar informações de imagem e texto, gerando conteúdo textual após um profundo raciocínio. O modelo se destaca no campo do raciocínio visual, além de possuir habilidades de raciocínio matemático, código e texto de primeira linha. O comprimento do contexto é de 100k."
2563
2617
  },
2618
+ "stepfun-ai/step3": {
2619
+ "description": "Step3 é um modelo avançado de raciocínio multimodal lançado pela StepFun, construído sobre uma arquitetura de mistura de especialistas (Mixture of Experts, MoE) com 321B de parâmetros totais e 38B de parâmetros de ativação. O modelo adota um design ponta a ponta, visando minimizar o custo de decodificação enquanto oferece desempenho de primeira linha em raciocínio visão-linguagem. Por meio do design cooperativo de Atenção por Decomposição em Múltiplas Matrizes (MFA) e do Desacoplamento Atenção-FFN (AFD), o Step3 mantém excelente eficiência tanto em aceleradores de alto desempenho quanto em aceleradores de baixo custo. Na fase de pré-treinamento, o Step3 processou mais de 20T tokens de texto e 4T tokens multimodais de imagem e texto, cobrindo mais de dez idiomas. O modelo alcançou posições de liderança entre modelos open-source em vários benchmarks, incluindo matemática, código e tarefas multimodais."
2620
+ },
2564
2621
  "taichu_llm": {
2565
2622
  "description": "O modelo de linguagem Taichu possui uma forte capacidade de compreensão de linguagem, além de habilidades em criação de texto, perguntas e respostas, programação de código, cálculos matemáticos, raciocínio lógico, análise de sentimentos e resumo de texto. Inova ao combinar pré-treinamento com grandes dados e conhecimento rico de múltiplas fontes, aprimorando continuamente a tecnologia de algoritmos e absorvendo novos conhecimentos de vocabulário, estrutura, gramática e semântica de grandes volumes de dados textuais, proporcionando aos usuários informações e serviços mais convenientes e uma experiência mais inteligente."
2566
2623
  },
@@ -2707,5 +2764,8 @@
2707
2764
  },
2708
2765
  "zai-org/GLM-4.5-Air": {
2709
2766
  "description": "GLM-4.5-Air é um modelo base projetado para aplicações de agentes inteligentes, utilizando arquitetura Mixture-of-Experts (MoE). Otimizado para chamadas de ferramentas, navegação web, engenharia de software e programação front-end, suporta integração perfeita com agentes de código como Claude Code e Roo Code. Adota modo de raciocínio híbrido, adaptando-se a cenários de raciocínio complexo e uso cotidiano."
2767
+ },
2768
+ "zai-org/GLM-4.5V": {
2769
+ "description": "GLM-4.5V é a mais recente geração de modelo de linguagem visual (VLM) lançada pela Zhipu AI (智谱 AI). O modelo é construído sobre o modelo de texto carro‑chefe GLM-4.5-Air, que possui 106 bilhões de parâmetros totais e 12 bilhões de parâmetros de ativação, adotando uma arquitetura de especialistas mistos (MoE) com o objetivo de oferecer desempenho de alto nível a um custo de inferência reduzido. Tecnicamente, o GLM-4.5V dá continuidade à linha do GLM-4.1V-Thinking e introduz inovações como a codificação de posição rotacional 3D (3D-RoPE), que aumentam significativamente a percepção e o raciocínio sobre relações espaciais tridimensionais. Por meio de otimizações nas fases de pré-treinamento, ajuste fino supervisionado e aprendizado por reforço, o modelo é capaz de processar diversos tipos de conteúdo visual — incluindo imagens, vídeos e longos documentos — e alcançou desempenho de ponta entre modelos open-source da mesma categoria em 41 benchmarks multimodais públicos. Além disso, o modelo inclui um interruptor de \"modo de pensamento\", que permite aos usuários alternar de forma flexível entre respostas rápidas e raciocínio aprofundado, equilibrando eficiência e eficácia."
2710
2770
  }
2711
2771
  }
@@ -26,6 +26,9 @@
26
26
  "bedrock": {
27
27
  "description": "Bedrock é um serviço oferecido pela Amazon AWS, focado em fornecer modelos de linguagem e visão de IA avançados para empresas. Sua família de modelos inclui a série Claude da Anthropic, a série Llama 3.1 da Meta, entre outros, abrangendo uma variedade de opções, desde modelos leves até de alto desempenho, suportando geração de texto, diálogos, processamento de imagens e outras tarefas, adequando-se a aplicações empresariais de diferentes escalas e necessidades."
28
28
  },
29
+ "bfl": {
30
+ "description": "Laboratório líder de pesquisa de ponta em inteligência artificial, construindo a infraestrutura visual do amanhã."
31
+ },
29
32
  "cloudflare": {
30
33
  "description": "Execute modelos de aprendizado de máquina impulsionados por GPU sem servidor na rede global da Cloudflare."
31
34
  },
@@ -1,4 +1,9 @@
1
1
  {
2
+ "ArgsInput": {
3
+ "addArgument": "Добавить параметр",
4
+ "argumentPlaceholder": "Параметр {{index}}",
5
+ "enterFirstArgument": "Введите первый параметр..."
6
+ },
2
7
  "DragUpload": {
3
8
  "dragDesc": "Перетащите файлы сюда, поддерживается загрузка нескольких изображений.",
4
9
  "dragFileDesc": "Перетащите изображения и файлы сюда, поддерживается загрузка нескольких изображений и файлов.",
@@ -125,6 +130,12 @@
125
130
  },
126
131
  "progress": {
127
132
  "uploadingWithCount": "{{completed}}/{{total}} загружено"
133
+ },
134
+ "validation": {
135
+ "fileSizeExceeded": "Превышен допустимый размер файла",
136
+ "fileSizeExceededDetail": "{{fileName}} ({{actualSize}}) превышает максимально допустимый размер {{maxSize}}",
137
+ "fileSizeExceededMultiple": "{{count}} файлов превышают максимально допустимый размер {{maxSize}}: {{fileList}}",
138
+ "imageCountExceeded": "Превышено допустимое количество изображений"
128
139
  }
129
140
  },
130
141
  "OllamaSetupGuide": {
@@ -85,6 +85,17 @@
85
85
  "CreateMessageError": "Извините, сообщение не удалось отправить. Пожалуйста, скопируйте содержимое и отправьте его снова. После обновления страницы это сообщение не будет сохранено.",
86
86
  "ExceededContextWindow": "Содержимое текущего запроса превышает длину, которую модель может обработать. Пожалуйста, уменьшите объем содержимого и попробуйте снова.",
87
87
  "FreePlanLimit": "Вы являетесь бесплатным пользователем и не можете использовать эту функцию. Пожалуйста, перейдите на платный план для продолжения использования.",
88
+ "GoogleAIBlockReason": {
89
+ "BLOCKLIST": "Ваше содержимое содержит запрещённые выражения. Пожалуйста, проверьте и исправьте ваш ввод, затем попробуйте снова.",
90
+ "IMAGE_SAFETY": "Создание изображения было заблокировано по соображениям безопасности. Попробуйте изменить запрос на генерацию изображения.",
91
+ "LANGUAGE": "Используемый вами язык пока не поддерживается. Пожалуйста, попробуйте задать вопрос на английском или другом поддерживаемом языке.",
92
+ "OTHER": "Содержимое было заблокировано по неизвестной причине. Попробуйте переформулировать ваш запрос.",
93
+ "PROHIBITED_CONTENT": "Ваш запрос может содержать запрещённый контент. Пожалуйста, измените запрос, чтобы он соответствовал правилам использования.",
94
+ "RECITATION": "Ваше содержимое было заблокировано из-за возможного нарушения авторских прав. Попробуйте использовать оригинальный материал или переформулировать запрос.",
95
+ "SAFETY": "Ваше содержимое было заблокировано в соответствии с политикой безопасности. Попробуйте изменить запрос, избегая потенциально вредоносного или неподобающего содержания.",
96
+ "SPII": "Ваше содержимое может содержать чувствительные персональные данные. Для защиты приватности удалите соответствующую информацию и повторите попытку.",
97
+ "default": "Содержимое заблокировано: {{blockReason}}. Пожалуйста, отредактируйте запрос и попробуйте снова."
98
+ },
88
99
  "InsufficientQuota": "Извините, квота для этого ключа достигла предела. Пожалуйста, проверьте, достаточно ли средств на вашем счете, или увеличьте квоту ключа и попробуйте снова.",
89
100
  "InvalidAccessCode": "Неверный код доступа: введите правильный код доступа или добавьте пользовательский ключ API",
90
101
  "InvalidBedrockCredentials": "Аутентификация Bedrock не прошла, пожалуйста, проверьте AccessKeyId/SecretAccessKey и повторите попытку",
@@ -332,12 +332,21 @@
332
332
  "Qwen/Qwen3-30B-A3B-Instruct-2507": {
333
333
  "description": "Qwen3-30B-A3B-Instruct-2507 — это обновленная версия модели Qwen3-30B-A3B в режиме без размышлений. Это модель с гибридными экспертами (MoE), имеющая в общей сложности 30,5 миллиарда параметров и 3,3 миллиарда активных параметров. Модель получила ключевые улучшения во многих аспектах, включая значительное повышение способности следовать инструкциям, логического мышления, понимания текста, математики, науки, программирования и использования инструментов. Кроме того, она достигла существенного прогресса в покрытии многоязычных редких знаний и лучше согласуется с предпочтениями пользователей в субъективных и открытых задачах, что позволяет генерировать более полезные ответы и тексты высокого качества. Также улучшена способность к пониманию длинных текстов — теперь до 256K. Эта модель поддерживает только режим без размышлений и не генерирует теги `<think></think>` в выводе."
334
334
  },
335
+ "Qwen/Qwen3-30B-A3B-Thinking-2507": {
336
+ "description": "Qwen3-30B-A3B-Thinking-2507 — это новейшая модель «мышления» в серии Qwen3, выпущенная командой Tongyi Qianwen компании Alibaba. Будучи гибридной экспертной (MoE) моделью с общим числом параметров 30,5 млрд и 3,3 млрд активных параметров, она ориентирована на повышение способности решать сложные задачи. Модель демонстрирует заметное улучшение результатов по академическим бенчмаркам в областях логического рассуждения, математики, естественных наук, программирования и задач, требующих человеческой экспертизы. Также существенно усилены её универсальные способности: следование инструкциям, использование инструментов, генерация текста и согласование с человеческими предпочтениями. Модель изначально поддерживает понимание длинного контекста до 256K токенов и может масштабироваться до 1 млн токенов. Эта версия специально разработана в «режиме мышления» для решения крайне сложных задач посредством подробного пошагового рассуждения; её возможности в роли агента также находятся на высоком уровне."
337
+ },
335
338
  "Qwen/Qwen3-32B": {
336
339
  "description": "Qwen3 — это новая генерация модели Qwen с значительно улучшенными возможностями, достигнувшими ведущих позиций в отрасли по нескольким ключевым направлениям, включая рассуждение, общие задачи, агентские функции и многоязычность, а также поддерживающей переключение режимов размышления."
337
340
  },
338
341
  "Qwen/Qwen3-8B": {
339
342
  "description": "Qwen3 — это новая генерация модели Qwen с значительно улучшенными возможностями, достигнувшими ведущих позиций в отрасли по нескольким ключевым направлениям, включая рассуждение, общие задачи, агентские функции и многоязычность, а также поддерживающей переключение режимов размышления."
340
343
  },
344
+ "Qwen/Qwen3-Coder-30B-A3B-Instruct": {
345
+ "description": "Qwen3-Coder-30B-A3B-Instruct — это модель для работы с кодом из серии Qwen3, разработанная командой Tongyi Qianwen компании Alibaba. Являясь оптимизированной и облегчённой моделью, она сохраняет высокую производительность и эффективность, при этом ориентирована на улучшение обработки кода. Модель демонстрирует заметные преимущества среди открытых моделей в решении сложных задач, таких как агентное программирование (Agentic Coding), автоматизация действий в браузере и вызовы внешних инструментов. Она изначально поддерживает длинный контекст до 256K токенов и может масштабироваться до 1M токенов, что позволяет лучше понимать и обрабатывать кодовые базы. Кроме того, модель обеспечивает мощную поддержку агентного кодирования для платформ вроде Qwen Code и CLINE и включает специализированный формат вызова функций."
346
+ },
347
+ "Qwen/Qwen3-Coder-480B-A35B-Instruct": {
348
+ "description": "Qwen3-Coder-480B-A35B-Instruct — модель для работы с кодом, выпущенная Alibaba, обладающая на сегодняшний день одними из самых выраженных агентных (agentic) возможностей. Это модель смешанных экспертов (Mixture-of-Experts, MoE) с суммарно 4800亿 параметров и 350亿 активных параметров (приблизительно 480 млрд и 35 млрд соответственно), обеспечивающая баланс между эффективностью и производительностью. Модель изначально поддерживает длину контекста 256K (≈260 000) токенов и может быть расширена до 1 000 000 токенов с помощью методов экстраполяции, таких как YaRN, что позволяет ей работать с крупными репозиториями кода и решать сложные программные задачи. Qwen3-Coder спроектирована для агентных рабочих процессов кодирования: она не только генерирует код, но и способна автономно взаимодействовать с инструментами и средами разработки для решения сложных задач. В ряде бенчмарков по кодированию и агентным задачам модель демонстрирует ведущие результаты среди открытых моделей, а её производительность сопоставима с такими передовыми решениями, как Claude Sonnet 4."
349
+ },
341
350
  "Qwen2-72B-Instruct": {
342
351
  "description": "Qwen2 — это последняя серия моделей Qwen, поддерживающая контекст до 128k. По сравнению с текущими лучшими открытыми моделями, Qwen2-72B значительно превосходит ведущие модели по многим аспектам, включая понимание естественного языка, знания, код, математику и многоязычность."
343
352
  },
@@ -1103,12 +1112,27 @@
1103
1112
  "flux-dev": {
1104
1113
  "description": "FLUX.1 [dev] — открытая модель с весами и оптимизациями для некоммерческого использования. Обеспечивает качество изображений и следование инструкциям, близкие к профессиональной версии FLUX, при более высокой эффективности работы и лучшем использовании ресурсов по сравнению с моделями того же размера."
1105
1114
  },
1115
+ "flux-kontext-max": {
1116
+ "description": "Передовая генерация и редактирование изображений с учётом контекста — сочетание текста и изображений для получения точных и согласованных результатов."
1117
+ },
1118
+ "flux-kontext-pro": {
1119
+ "description": "Передовая контекстная генерация и редактирование изображений — объединение текста и изображений для получения точных и последовательных результатов."
1120
+ },
1106
1121
  "flux-kontext/dev": {
1107
1122
  "description": "Модель FLUX.1, ориентированная на задачи редактирования изображений, поддерживает ввод текста и изображений."
1108
1123
  },
1109
1124
  "flux-merged": {
1110
1125
  "description": "Модель FLUX.1-merged объединяет глубокие особенности, исследованные в фазе разработки \"DEV\", и преимущества высокой скорости исполнения, представленные в \"Schnell\". Это позволяет расширить границы производительности модели и увеличить её применимость."
1111
1126
  },
1127
+ "flux-pro": {
1128
+ "description": "Премиальная коммерческая модель ИИ для генерации изображений — непревзойдённое качество изображений и разнообразие выходных результатов."
1129
+ },
1130
+ "flux-pro-1.1": {
1131
+ "description": "Усовершенствованная профессиональная модель ИИ для генерации изображений — обеспечивает превосходное качество изображений и точное следование подсказкам."
1132
+ },
1133
+ "flux-pro-1.1-ultra": {
1134
+ "description": "Генерация изображений ИИ ультравысокого разрешения — поддерживает вывод 4 мегапикселей, генерирует сверхчёткие изображения менее чем за 10 секунд."
1135
+ },
1112
1136
  "flux-pro/kontext": {
1113
1137
  "description": "FLUX.1 Kontext [pro] способен обрабатывать текст и эталонные изображения в качестве входных данных, обеспечивая бесшовное целенаправленное локальное редактирование и сложные преобразования всей сцены."
1114
1138
  },
@@ -1193,6 +1217,9 @@
1193
1217
  "gemini-2.5-flash": {
1194
1218
  "description": "Gemini 2.5 Flash — самая экономичная модель Google, предоставляющая полный набор функций."
1195
1219
  },
1220
+ "gemini-2.5-flash-image-preview": {
1221
+ "description": "Gemini 2.5 Flash Image Preview — новейшая, самая быстрая и наиболее эффективная нативная мультимодальная модель Google, которая позволяет генерировать и редактировать изображения в диалоге."
1222
+ },
1196
1223
  "gemini-2.5-flash-lite": {
1197
1224
  "description": "Gemini 2.5 Flash-Lite — это самая компактная и экономичная модель от Google, разработанная для масштабного использования."
1198
1225
  },
@@ -1295,6 +1322,9 @@
1295
1322
  "glm-4.5-x": {
1296
1323
  "description": "Ускоренная версия GLM-4.5 с высокой производительностью и скоростью генерации до 100 токенов в секунду."
1297
1324
  },
1325
+ "glm-4.5v": {
1326
+ "description": "Zhipu нового поколения — модель визуального вывода на основе архитектуры MOE. При общем объёме параметров 106B и 12B активируемых параметров она достигает SOTA среди открытых мультимодальных моделей сопоставимого уровня в различных бенчмарках, охватывая такие распространённые задачи, как понимание изображений, видео, документов и задачи графического интерфейса (GUI)."
1327
+ },
1298
1328
  "glm-4v": {
1299
1329
  "description": "GLM-4V предлагает мощные способности понимания и вывода изображений, поддерживает множество визуальных задач."
1300
1330
  },
@@ -1434,7 +1464,7 @@
1434
1464
  "description": "GPT-4.1 mini предлагает баланс между интеллектом, скоростью и стоимостью, что делает его привлекательной моделью для многих случаев использования."
1435
1465
  },
1436
1466
  "gpt-4.5-preview": {
1437
- "description": "Предварительная версия исследования GPT-4.5, это наша самая большая и мощная модель GPT на сегодняшний день. Она обладает обширными знаниями о мире и лучше понимает намерения пользователей, что делает её выдающейся в творческих задачах и автономном планировании. GPT-4.5 принимает текстовые и графические входные данные и генерирует текстовый вывод (включая структурированный вывод). Поддерживает ключевые функции для разработчиков, такие как вызовы функций, пакетный API и потоковый вывод. В задачах, требующих креативного, открытого мышления и диалога (таких как написание, обучение или исследование новых идей), GPT-4.5 особенно эффективен. Дата окончания знаний - октябрь 2023 года."
1467
+ "description": "GPT-4.5-preview новейшая универсальная модель, обладающая глубокими знаниями о мире и лучшим пониманием намерений пользователей; отлично подходит для творческих задач и агентного планирования. Знания этой модели актуальны на октябрь 2023 года."
1438
1468
  },
1439
1469
  "gpt-4o": {
1440
1470
  "description": "ChatGPT-4o — это динамическая модель, которая обновляется в реальном времени, чтобы оставаться актуальной. Она сочетает в себе мощное понимание языка и генерацию, подходя для масштабных приложений, включая обслуживание клиентов, образование и техническую поддержку."
@@ -1637,9 +1667,18 @@
1637
1667
  "image-01-live": {
1638
1668
  "description": "Модель генерации изображений с детальной прорисовкой, поддерживающая генерацию из текста и настройку стиля изображения."
1639
1669
  },
1670
+ "imagen-4.0-fast-generate-001": {
1671
+ "description": "Imagen — серия моделей преобразования текста в изображение 4-го поколения, быстрая версия"
1672
+ },
1673
+ "imagen-4.0-generate-001": {
1674
+ "description": "Серия моделей Imagen четвёртого поколения для преобразования текста в изображение"
1675
+ },
1640
1676
  "imagen-4.0-generate-preview-06-06": {
1641
1677
  "description": "Серия моделей Imagen 4-го поколения для преобразования текста в изображение"
1642
1678
  },
1679
+ "imagen-4.0-ultra-generate-001": {
1680
+ "description": "Серия моделей Imagen четвёртого поколения для преобразования текста в изображение, версия Ultra."
1681
+ },
1643
1682
  "imagen-4.0-ultra-generate-preview-06-06": {
1644
1683
  "description": "Ультра-версия серии моделей Imagen 4-го поколения для преобразования текста в изображение"
1645
1684
  },
@@ -1679,6 +1718,9 @@
1679
1718
  "kimi-k2-0711-preview": {
1680
1719
  "description": "kimi-k2 — базовая модель с архитектурой MoE, обладающая мощными возможностями кода и агента, с общим числом параметров 1 триллион и 32 миллиарда активных параметров. В тестах производительности по основным категориям, таким как универсальное знание, программирование, математика и агенты, модель K2 превосходит другие ведущие открытые модели."
1681
1720
  },
1721
+ "kimi-k2-turbo-preview": {
1722
+ "description": "kimi-k2 — это базовая модель архитектуры MoE с выдающимися возможностями в области программирования и агентов. Общий объём параметров — 1 трлн, активируемые параметры — 32 млрд. В бенчмарках по основным категориям (общее знание и рассуждение, программирование, математика, агенты и пр.) модель K2 демонстрирует результаты выше, чем у других ведущих открытых моделей."
1723
+ },
1682
1724
  "kimi-latest": {
1683
1725
  "description": "Продукт Kimi Smart Assistant использует последнюю модель Kimi, которая может содержать нестабильные функции. Поддерживает понимание изображений и автоматически выбирает модель 8k/32k/128k в качестве модели для выставления счетов в зависимости от длины контекста запроса."
1684
1726
  },
@@ -1763,6 +1805,9 @@
1763
1805
  "llava:34b": {
1764
1806
  "description": "LLaVA — это многомодальная модель, объединяющая визуальный кодировщик и Vicuna, предназначенная для мощного понимания визуальной и языковой информации."
1765
1807
  },
1808
+ "magistral-medium-latest": {
1809
+ "description": "Magistral Medium 1.1 — передовая модель для инференса, выпущенная Mistral AI в июле 2025 года."
1810
+ },
1766
1811
  "mathstral": {
1767
1812
  "description": "MathΣtral специально разработан для научных исследований и математического вывода, обеспечивая эффективные вычислительные возможности и интерпретацию результатов."
1768
1813
  },
@@ -2094,7 +2139,7 @@
2094
2139
  "description": "o1-mini — это быстрое и экономичное модель вывода, разработанная для программирования, математики и научных приложений. Модель имеет контекст 128K и срок знания до октября 2023 года."
2095
2140
  },
2096
2141
  "o1-preview": {
2097
- "description": "o1 это новая модель вывода от OpenAI, подходящая для сложных задач, требующих обширных общих знаний. Модель имеет контекст 128K и срок знания до октября 2023 года."
2142
+ "description": "Сосредоточен на продвинутом рассуждении и решении сложных задач, включая задачи по математике и естественным наукам. Отлично подходит для приложений, которым требуется глубокое понимание контекста и автономные рабочие процессы."
2098
2143
  },
2099
2144
  "o1-pro": {
2100
2145
  "description": "Модели серии o1 обучены с использованием обучения с подкреплением, способны размышлять перед ответом и выполнять сложные задачи рассуждения. Модель o1-pro использует больше вычислительных ресурсов для более глубокого мышления, обеспечивая постоянно высокое качество ответов."
@@ -2213,8 +2258,14 @@
2213
2258
  "qwen-coder-turbo-latest": {
2214
2259
  "description": "Модель кода Tongyi Qwen."
2215
2260
  },
2261
+ "qwen-flash": {
2262
+ "description": "Серия моделей «通义千问» обладает наибольшей скоростью и чрезвычайно низкой стоимостью, подходит для простых задач."
2263
+ },
2216
2264
  "qwen-image": {
2217
- "description": "Мощная модель генерации изображений от команды Qwen с впечатляющими возможностями генерации китайского текста и разнообразными визуальными стилями."
2265
+ "description": "Qwen-Image — это универсальная модель генерации изображений, поддерживающая различные художественные стили. Она особенно хорошо справляется с рендерингом сложного текста, в частности с отображением китайских и английских надписей. Модель поддерживает многострочную верстку, генерацию текста на уровне абзацев и тонкую проработку деталей, что позволяет создавать сложные комбинированные макеты с изображениями и текстом."
2266
+ },
2267
+ "qwen-image-edit": {
2268
+ "description": "Профессиональная модель редактирования изображений от команды Qwen, поддерживающая семантическое и визуальное редактирование. Позволяет точно редактировать тексты на китайском и английском языках, выполнять преобразование стиля, поворот объектов и другие операции для высококачественной обработки изображений."
2218
2269
  },
2219
2270
  "qwen-long": {
2220
2271
  "description": "Qwen — это сверхмасштабная языковая модель, поддерживающая длинный контекст текста и диалоговые функции на основе длинных документов и нескольких документов."
@@ -2241,7 +2292,7 @@
2241
2292
  "description": "Улучшенная версия Qwen-Turbo, поддерживающая входные данные на разных языках, включая китайский и английский."
2242
2293
  },
2243
2294
  "qwen-turbo": {
2244
- "description": "Qwen-Turbo — это крупная языковая модель, поддерживающая входные данные на разных языках, включая китайский и английский."
2295
+ "description": "Модель Tongyi Qianwen Turbo впредь не будет обновляться; рекомендуется заменить её на Tongyi Qianwen Flash. Tongyi Qianwen масштабная языковая модель, поддерживающая ввод на китайском, английском и других языках."
2245
2296
  },
2246
2297
  "qwen-vl-chat-v1": {
2247
2298
  "description": "Qwen VL поддерживает гибкие способы взаимодействия, включая многократные изображения, многократные вопросы и ответы, а также творческие способности."
@@ -2558,9 +2609,15 @@
2558
2609
  "step-2x-large": {
2559
2610
  "description": "Новая модель Step Star следующего поколения, ориентированная на генерацию изображений. Модель способна создавать высококачественные изображения на основе текстовых описаний пользователя. Новая версия обеспечивает более реалистичную текстуру изображений и улучшенные возможности генерации текста на китайском и английском языках."
2560
2611
  },
2612
+ "step-3": {
2613
+ "description": "Эта модель обладает мощными возможностями визуального восприятия и сложного рассуждения. Она способна с высокой точностью обеспечивать междисциплинарное понимание сложных знаний, перекрёстный анализ математической и визуальной информации, а также решать различные задачи визуального анализа в повседневной жизни."
2614
+ },
2561
2615
  "step-r1-v-mini": {
2562
2616
  "description": "Эта модель является мощной моделью вывода с сильными способностями к пониманию изображений, способной обрабатывать информацию из изображений и текста, выводя текст после глубокого размышления. Эта модель демонстрирует выдающиеся результаты в области визуального вывода, а также обладает первоклассными способностями в математике, коде и текстовом выводе. Длина контекста составляет 100k."
2563
2617
  },
2618
+ "stepfun-ai/step3": {
2619
+ "description": "Step3 — передовая мультимодальная модель рассуждения, выпущенная компанией StepFun. Она построена на архитектуре mixture-of-experts (MoE) с общим числом параметров 321 млрд и 38 млрд активных параметров. Модель реализована по энд‑ту‑энд схеме и нацелена на минимизацию затрат на декодирование при обеспечении высочайшей производительности в задачах визуально‑языкового рассуждения. Благодаря совместному дизайну многоматричного разложения внимания (MFA) и декуплинга внимания и FFN (AFD), Step3 демонстрирует отличную эффективность как на флагманских, так и на бюджетных ускорителях. На этапе предобучения модель обработала более 20 трлн текстовых токенов и 4 трлн смешанных токенов «текст+изображение», охватив более десяти языков. Step3 показывает лидирующие результаты среди открытых моделей по множеству бенчмарков, включая задачи по математике, коду и мультимодальные задачи."
2620
+ },
2564
2621
  "taichu_llm": {
2565
2622
  "description": "Модель языка TaiChu обладает выдающимися способностями к пониманию языка, а также к созданию текстов, ответам на вопросы, программированию, математическим вычислениям, логическому выводу, анализу эмоций и резюмированию текстов. Инновационно сочетает предобучение на больших данных с богатством многопоточных знаний, постоянно совершенствуя алгоритмические технологии и поглощая новые знания о словах, структуре, грамматике и семантике из огромных объемов текстовых данных, обеспечивая пользователям более удобную информацию и услуги, а также более интеллектуальный опыт."
2566
2623
  },
@@ -2707,5 +2764,8 @@
2707
2764
  },
2708
2765
  "zai-org/GLM-4.5-Air": {
2709
2766
  "description": "GLM-4.5-Air — базовая модель, специально созданная для приложений с агентами, использующая архитектуру смешанных экспертов (Mixture-of-Experts). Модель глубоко оптимизирована для вызова инструментов, веб-браузинга, программной инженерии и фронтенд-разработки, поддерживает бесшовную интеграцию с кодовыми агентами, такими как Claude Code и Roo Code. GLM-4.5 использует смешанный режим вывода, адаптируясь к сложным рассуждениям и повседневным задачам."
2767
+ },
2768
+ "zai-org/GLM-4.5V": {
2769
+ "description": "GLM-4.5V — это новое поколение визуально-языковой модели (VLM), выпущенной Zhipu AI (智谱 AI). Модель построена на флагманской текстовой модели GLM-4.5-Air с общим числом параметров 106B и 12B активных параметров, использует архитектуру смешанных экспертов (MoE) и призвана обеспечивать выдающуюся производительность при более низкой стоимости вывода. Технически GLM-4.5V продолжает линию GLM-4.1V-Thinking и вводит такие новшества, как трёхмерная вращательная позиционная кодировка (3D-RoPE), значительно усиливающие восприятие и выводы о трёхмерных пространственных отношениях. Благодаря оптимизациям на этапах предобучения, контролируемой донастройки и обучения с подкреплением модель способна обрабатывать различные визуальные данные — изображения, видео и длинные документы — и в 41 открытом мультимодальном бенчмарке достигла уровня лучших в своём классе открытых моделей. Кроме того, в модели добавлен переключатель «режим размышления», позволяющий пользователю гибко выбирать между быстрой отдачей и глубокой аналитикой, балансируя эффективность и качество."
2710
2770
  }
2711
2771
  }
@@ -26,6 +26,9 @@
26
26
  "bedrock": {
27
27
  "description": "Bedrock — это сервис, предоставляемый Amazon AWS, сосредоточенный на предоставлении предприятиям передовых AI-языковых и визуальных моделей. Его семейство моделей включает серию Claude от Anthropic, серию Llama 3.1 от Meta и другие, охватывающие широкий спектр от легковесных до высокопроизводительных решений, поддерживающих текстовую генерацию, диалоги, обработку изображений и другие задачи, подходящие для предприятий различного масштаба и потребностей."
28
28
  },
29
+ "bfl": {
30
+ "description": "Ведущая лаборатория передовых исследований в области искусственного интеллекта, создающая визуальную инфраструктуру будущего."
31
+ },
29
32
  "cloudflare": {
30
33
  "description": "Запуск моделей машинного обучения на базе серверов GPU в глобальной сети Cloudflare."
31
34
  },
@@ -1,4 +1,9 @@
1
1
  {
2
+ "ArgsInput": {
3
+ "addArgument": "Argüman ekle",
4
+ "argumentPlaceholder": "Argüman {{index}}",
5
+ "enterFirstArgument": "İlk argümanı girin..."
6
+ },
2
7
  "DragUpload": {
3
8
  "dragDesc": "Dosyaları buraya sürükleyin, birden fazla resim yüklemeyi destekler.",
4
9
  "dragFileDesc": "Resimleri ve dosyaları buraya sürükleyin, birden fazla resim ve dosya yüklemeyi destekler.",
@@ -125,6 +130,12 @@
125
130
  },
126
131
  "progress": {
127
132
  "uploadingWithCount": "{{completed}}/{{total}} yüklendi"
133
+ },
134
+ "validation": {
135
+ "fileSizeExceeded": "Dosya boyutu sınırı aşıldı",
136
+ "fileSizeExceededDetail": "{{fileName}} ({{actualSize}}), izin verilen maksimum boyut olan {{maxSize}}'ı aşıyor",
137
+ "fileSizeExceededMultiple": "{{count}} dosya, izin verilen maksimum boyut olan {{maxSize}}'ı aşıyor: {{fileList}}",
138
+ "imageCountExceeded": "Resim sayısı sınırı aşıldı"
128
139
  }
129
140
  },
130
141
  "OllamaSetupGuide": {
@@ -85,6 +85,17 @@
85
85
  "CreateMessageError": "Üzgünüm, mesaj düzgün bir şekilde gönderilemedi. Lütfen içeriği kopyalayın ve yeniden gönderin, sayfayı yeniledikten sonra bu mesaj kaydedilmeyecek.",
86
86
  "ExceededContextWindow": "Mevcut istek içeriği modelin işleyebileceği uzunluğu aşıyor, lütfen içerik miktarını azaltıp tekrar deneyin",
87
87
  "FreePlanLimit": "Şu anda ücretsiz bir kullanıcısınız, bu özelliği kullanamazsınız. Lütfen devam etmek için bir ücretli plana yükseltin.",
88
+ "GoogleAIBlockReason": {
89
+ "BLOCKLIST": "İçeriğiniz yasaklı kelimeler içeriyor. Lütfen girdinizi kontrol edip düzenledikten sonra tekrar deneyin.",
90
+ "IMAGE_SAFETY": "Oluşturulan görüntü içeriği güvenlik nedeniyle engellendi. Lütfen görüntü oluşturma isteğinizi değiştirerek tekrar deneyin.",
91
+ "LANGUAGE": "Kullandığınız dil şu anda desteklenmiyor. Lütfen İngilizce veya desteklenen diğer dilleri kullanarak tekrar deneyin.",
92
+ "OTHER": "İçerik bilinmeyen bir nedenle engellendi. Lütfen isteğinizi tekrar ifade etmeyi deneyin.",
93
+ "PROHIBITED_CONTENT": "İsteğiniz yasaklı içerik içerebilir. Lütfen isteğinizi düzenleyin ve kullanım kurallarına uygun olduğundan emin olun.",
94
+ "RECITATION": "İçeriğiniz olası telif hakkı sorunları nedeniyle engellendi. Lütfen orijinal içerik kullanmayı veya isteğinizi yeniden ifade etmeyi deneyin.",
95
+ "SAFETY": "İçeriğiniz güvenlik politikası nedeniyle engellendi. Lütfen isteğinizi, olası zararlı veya uygunsuz içerik içermeyecek şekilde düzenleyin.",
96
+ "SPII": "İçeriğiniz hassas kişisel kimlik bilgileri içerebilir. Gizliliği korumak için ilgili hassas bilgileri kaldırıp tekrar deneyin.",
97
+ "default": "İçerik engellendi: {{blockReason}}. Lütfen isteğinizi düzenledikten sonra tekrar deneyin."
98
+ },
88
99
  "InsufficientQuota": "Üzgünüm, bu anahtarın kotası (quota) dolmuş durumda, lütfen hesap bakiyenizi kontrol edin veya anahtar kotasını artırdıktan sonra tekrar deneyin",
89
100
  "InvalidAccessCode": "Geçersiz Erişim Kodu: Geçersiz veya boş bir şifre girdiniz. Lütfen doğru erişim şifresini girin veya özel API Anahtarı ekleyin.",
90
101
  "InvalidBedrockCredentials": "Bedrock kimlik doğrulaması geçersiz, lütfen AccessKeyId/SecretAccessKey bilgilerinizi kontrol edip tekrar deneyin",