@lobehub/chat 1.115.0 → 1.116.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.cursor/rules/add-provider-doc.mdc +183 -0
- package/.env.example +8 -0
- package/.github/workflows/release.yml +3 -3
- package/.github/workflows/test.yml +3 -7
- package/CHANGELOG.md +25 -0
- package/CLAUDE.md +6 -6
- package/Dockerfile +5 -1
- package/Dockerfile.database +5 -1
- package/Dockerfile.pglite +5 -1
- package/changelog/v1.json +9 -0
- package/docs/development/basic/setup-development.mdx +10 -13
- package/docs/development/basic/setup-development.zh-CN.mdx +9 -12
- package/docs/self-hosting/environment-variables/model-provider.mdx +27 -2
- package/docs/self-hosting/environment-variables/model-provider.zh-CN.mdx +27 -2
- package/docs/usage/providers/bfl.mdx +68 -0
- package/docs/usage/providers/bfl.zh-CN.mdx +67 -0
- package/locales/ar/components.json +11 -0
- package/locales/ar/error.json +11 -0
- package/locales/ar/models.json +64 -4
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/components.json +11 -0
- package/locales/bg-BG/error.json +11 -0
- package/locales/bg-BG/models.json +64 -4
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/components.json +11 -0
- package/locales/de-DE/error.json +11 -12
- package/locales/de-DE/models.json +64 -4
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/components.json +6 -0
- package/locales/en-US/error.json +11 -12
- package/locales/en-US/models.json +64 -4
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/components.json +11 -0
- package/locales/es-ES/error.json +11 -0
- package/locales/es-ES/models.json +64 -6
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/components.json +11 -0
- package/locales/fa-IR/error.json +11 -0
- package/locales/fa-IR/models.json +64 -4
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/components.json +11 -0
- package/locales/fr-FR/error.json +11 -12
- package/locales/fr-FR/models.json +64 -4
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/components.json +11 -0
- package/locales/it-IT/error.json +11 -0
- package/locales/it-IT/models.json +64 -4
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/components.json +11 -0
- package/locales/ja-JP/error.json +11 -12
- package/locales/ja-JP/models.json +64 -4
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/components.json +11 -0
- package/locales/ko-KR/error.json +11 -12
- package/locales/ko-KR/models.json +64 -6
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/components.json +11 -0
- package/locales/nl-NL/error.json +11 -0
- package/locales/nl-NL/models.json +62 -4
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/components.json +11 -0
- package/locales/pl-PL/error.json +11 -0
- package/locales/pl-PL/models.json +64 -4
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/components.json +11 -0
- package/locales/pt-BR/error.json +11 -0
- package/locales/pt-BR/models.json +64 -4
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/components.json +11 -0
- package/locales/ru-RU/error.json +11 -0
- package/locales/ru-RU/models.json +64 -4
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/components.json +11 -0
- package/locales/tr-TR/error.json +11 -0
- package/locales/tr-TR/models.json +64 -4
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/components.json +11 -0
- package/locales/vi-VN/error.json +11 -0
- package/locales/vi-VN/models.json +64 -4
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/components.json +6 -0
- package/locales/zh-CN/error.json +11 -0
- package/locales/zh-CN/models.json +64 -4
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/components.json +11 -0
- package/locales/zh-TW/error.json +11 -12
- package/locales/zh-TW/models.json +64 -6
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +1 -1
- package/packages/model-runtime/src/google/index.ts +3 -0
- package/packages/model-runtime/src/qwen/createImage.test.ts +0 -19
- package/packages/model-runtime/src/qwen/createImage.ts +1 -27
- package/packages/model-runtime/src/utils/streams/google-ai.ts +26 -14
- package/packages/types/src/aiModel.ts +2 -1
- package/src/config/aiModels/google.ts +22 -1
- package/src/config/aiModels/qwen.ts +2 -2
- package/src/config/aiModels/vertexai.ts +22 -0
- package/.cursor/rules/debug.mdc +0 -193
@@ -332,12 +332,21 @@
|
|
332
332
|
"Qwen/Qwen3-30B-A3B-Instruct-2507": {
|
333
333
|
"description": "Qwen3-30B-A3B-Instruct-2507 es una versión actualizada del modelo Qwen3-30B-A3B en modo no reflexivo. Es un modelo de expertos mixtos (MoE) con un total de 30.5 mil millones de parámetros y 3.3 mil millones de parámetros activados. El modelo ha mejorado significativamente en varios aspectos, incluyendo el seguimiento de instrucciones, razonamiento lógico, comprensión de texto, matemáticas, ciencias, codificación y uso de herramientas. Además, ha logrado avances sustanciales en la cobertura de conocimientos multilingües de cola larga y se alinea mejor con las preferencias del usuario en tareas subjetivas y abiertas, generando respuestas más útiles y textos de mayor calidad. También se ha mejorado la capacidad de comprensión de textos largos hasta 256K. Este modelo solo soporta el modo no reflexivo y no genera etiquetas `<think></think>` en su salida."
|
334
334
|
},
|
335
|
+
"Qwen/Qwen3-30B-A3B-Thinking-2507": {
|
336
|
+
"description": "Qwen3-30B-A3B-Thinking-2507 es el último modelo de pensamiento de la serie Qwen3, publicado por el equipo Tongyi Qianwen de Alibaba. Como un modelo Mixture of Experts (MoE) con 30.500 millones de parámetros en total y 3.300 millones de parámetros activados, está enfocado en mejorar la capacidad de abordar tareas complejas. Este modelo muestra mejoras significativas en razonamiento lógico, matemáticas, ciencias, programación y en evaluaciones académicas que requieren conocimientos humanos especializados. Al mismo tiempo, presenta avances notables en capacidades generales como el cumplimiento de instrucciones, el uso de herramientas, la generación de texto y la alineación con las preferencias humanas. El modelo soporta de forma nativa la comprensión de contextos largos de 256K tokens y puede ampliarse hasta 1 millón de tokens. Esta versión está diseñada específicamente para el “modo de pensamiento”, con el objetivo de resolver tareas altamente complejas mediante razonamientos detallados y paso a paso; asimismo, sus capacidades como agente (Agent) también resultan sobresalientes."
|
337
|
+
},
|
335
338
|
"Qwen/Qwen3-32B": {
|
336
339
|
"description": "Qwen3 es un nuevo modelo de Tongyi Qianwen de próxima generación con capacidades significativamente mejoradas, alcanzando niveles líderes en la industria en razonamiento, general, agente y múltiples idiomas, y admite el cambio de modo de pensamiento."
|
337
340
|
},
|
338
341
|
"Qwen/Qwen3-8B": {
|
339
342
|
"description": "Qwen3 es un nuevo modelo de Tongyi Qianwen de próxima generación con capacidades significativamente mejoradas, alcanzando niveles líderes en la industria en razonamiento, general, agente y múltiples idiomas, y admite el cambio de modo de pensamiento."
|
340
343
|
},
|
344
|
+
"Qwen/Qwen3-Coder-30B-A3B-Instruct": {
|
345
|
+
"description": "Qwen3-Coder-30B-A3B-Instruct es un modelo de código de la serie Qwen3 desarrollado por el equipo Tongyi Qianwen (通义千问) de Alibaba. Como un modelo depurado y optimizado, mantiene un alto rendimiento y eficiencia a la vez que se centra en mejorar la capacidad de procesamiento de código. Este modelo muestra una ventaja de rendimiento notable frente a otros modelos de código abierto en tareas complejas como la programación agente (Agentic Coding), la automatización de operaciones en navegadores y la invocación de herramientas. Soporta de forma nativa contextos largos de 256K tokens y puede ampliarse hasta 1M tokens, lo que le permite entender y gestionar mejor repositorios de código a escala. Además, proporciona un sólido soporte de codificación por agentes para plataformas como Qwen Code y CLINE, y está diseñado con un formato específico para llamadas a funciones."
|
346
|
+
},
|
347
|
+
"Qwen/Qwen3-Coder-480B-A35B-Instruct": {
|
348
|
+
"description": "Qwen3-Coder-480B-A35B-Instruct es un modelo de código publicado por Alibaba, hasta la fecha el más capaz en términos de agencia (agentic). Es un modelo de expertos mixtos (MoE) con 480 000 millones de parámetros en total y 35 000 millones de parámetros de activación, que logra un equilibrio entre eficiencia y rendimiento. El modelo admite de forma nativa una longitud de contexto de 256K (aprox. 260 000) tokens y puede ampliarse hasta 1 000 000 tokens mediante métodos de extrapolación como YaRN, lo que le permite manejar bases de código a gran escala y tareas de programación complejas. Qwen3-Coder está diseñado para flujos de trabajo de codificación orientados a agentes: no solo genera código, sino que puede interactuar de forma autónoma con herramientas y entornos de desarrollo para resolver problemas de programación complejos. En múltiples pruebas de referencia de tareas de codificación y de agente, este modelo ha alcanzado un nivel superior entre los modelos de código abierto, y su rendimiento puede compararse con el de modelos líderes como Claude Sonnet 4."
|
349
|
+
},
|
341
350
|
"Qwen2-72B-Instruct": {
|
342
351
|
"description": "Qwen2 es la última serie del modelo Qwen, que admite un contexto de 128k. En comparación con los modelos de código abierto más óptimos actuales, Qwen2-72B supera significativamente a los modelos líderes actuales en comprensión del lenguaje natural, conocimiento, código, matemáticas y capacidades multilingües."
|
343
352
|
},
|
@@ -1103,12 +1112,27 @@
|
|
1103
1112
|
"flux-dev": {
|
1104
1113
|
"description": "FLUX.1 [dev] es un modelo refinado y de pesos abiertos para aplicaciones no comerciales. Mantiene una calidad de imagen y capacidad de seguimiento de instrucciones similar a la versión profesional de FLUX, pero con mayor eficiencia operativa. En comparación con modelos estándar de tamaño similar, es más eficiente en el uso de recursos."
|
1105
1114
|
},
|
1115
|
+
"flux-kontext-max": {
|
1116
|
+
"description": "Generación y edición de imágenes contextuales de vanguardia — combinando texto e imágenes para obtener resultados precisos y coherentes."
|
1117
|
+
},
|
1118
|
+
"flux-kontext-pro": {
|
1119
|
+
"description": "Generación y edición de imágenes contextuales de vanguardia: combina texto e imágenes para obtener resultados precisos y coherentes."
|
1120
|
+
},
|
1106
1121
|
"flux-kontext/dev": {
|
1107
1122
|
"description": "Modelo FLUX.1 centrado en tareas de edición de imágenes, compatible con entradas de texto e imagen."
|
1108
1123
|
},
|
1109
1124
|
"flux-merged": {
|
1110
1125
|
"description": "El modelo FLUX.1-merged combina las características profundas exploradas durante la fase de desarrollo de “DEV” con las ventajas de ejecución rápida representadas por “Schnell”. Esta combinación no solo amplía los límites de rendimiento del modelo, sino que también amplía su rango de aplicaciones."
|
1111
1126
|
},
|
1127
|
+
"flux-pro": {
|
1128
|
+
"description": "Modelo comercial de generación de imágenes por IA de primer nivel — calidad de imagen incomparable y gran diversidad de resultados."
|
1129
|
+
},
|
1130
|
+
"flux-pro-1.1": {
|
1131
|
+
"description": "Modelo profesional mejorado de generación de imágenes con IA — ofrece una calidad de imagen excepcional y una capacidad precisa para seguir las indicaciones."
|
1132
|
+
},
|
1133
|
+
"flux-pro-1.1-ultra": {
|
1134
|
+
"description": "Generación de imágenes por IA de ultra alta resolución — compatible con salida de 4 megapíxeles; genera imágenes en alta definición en menos de 10 segundos."
|
1135
|
+
},
|
1112
1136
|
"flux-pro/kontext": {
|
1113
1137
|
"description": "FLUX.1 Kontext [pro] puede procesar texto e imágenes de referencia como entrada, logrando sin problemas ediciones locales específicas y transformaciones complejas de escenas completas."
|
1114
1138
|
},
|
@@ -1193,6 +1217,9 @@
|
|
1193
1217
|
"gemini-2.5-flash": {
|
1194
1218
|
"description": "Gemini 2.5 Flash es el modelo de mejor relación calidad-precio de Google, que ofrece funcionalidades completas."
|
1195
1219
|
},
|
1220
|
+
"gemini-2.5-flash-image-preview": {
|
1221
|
+
"description": "Gemini 2.5 Flash Image Preview es el modelo multimodal nativo más reciente, rápido y eficiente de Google; le permite generar y editar imágenes a través de conversaciones."
|
1222
|
+
},
|
1196
1223
|
"gemini-2.5-flash-lite": {
|
1197
1224
|
"description": "Gemini 2.5 Flash-Lite es el modelo más pequeño y rentable de Google, diseñado para un uso a gran escala."
|
1198
1225
|
},
|
@@ -1295,6 +1322,9 @@
|
|
1295
1322
|
"glm-4.5-x": {
|
1296
1323
|
"description": "Versión ultra rápida de GLM-4.5, que combina un rendimiento potente con una velocidad de generación de hasta 100 tokens por segundo."
|
1297
1324
|
},
|
1325
|
+
"glm-4.5v": {
|
1326
|
+
"description": "La nueva generación del modelo de razonamiento visual de Zhipu, basada en la arquitectura MOE, cuenta con 106B de parámetros totales y 12B de parámetros de activación; alcanza el estado del arte (SOTA) entre los modelos multimodales de código abierto de la misma categoría a nivel mundial en diversas pruebas de referencia, y cubre tareas comunes como comprensión de imágenes, vídeo, documentos y tareas de interfaz gráfica de usuario (GUI)."
|
1327
|
+
},
|
1298
1328
|
"glm-4v": {
|
1299
1329
|
"description": "GLM-4V proporciona una poderosa capacidad de comprensión e inferencia de imágenes, soportando diversas tareas visuales."
|
1300
1330
|
},
|
@@ -1433,9 +1463,7 @@
|
|
1433
1463
|
"gpt-4.1-nano": {
|
1434
1464
|
"description": "GPT-4.1 mini ofrece un equilibrio entre inteligencia, velocidad y costo, lo que lo convierte en un modelo atractivo para muchos casos de uso."
|
1435
1465
|
},
|
1436
|
-
"gpt-4.5-preview":
|
1437
|
-
"description": "Versión de investigación de GPT-4.5, que es nuestro modelo GPT más grande y potente hasta la fecha. Posee un amplio conocimiento del mundo y puede comprender mejor la intención del usuario, lo que lo hace destacar en tareas creativas y planificación autónoma. GPT-4.5 acepta entradas de texto e imagen y genera salidas de texto (incluidas salidas estructuradas). Soporta funciones clave para desarrolladores, como llamadas a funciones, API por lotes y salida en streaming. En tareas que requieren pensamiento creativo, abierto y diálogo (como escritura, aprendizaje o exploración de nuevas ideas), GPT-4.5 brilla especialmente. La fecha límite de conocimiento es octubre de 2023."
|
1438
|
-
},
|
1466
|
+
"gpt-4.5-preview": "GPT-4.5-preview es el modelo de propósito general más reciente, con un profundo conocimiento del mundo y una mejor comprensión de las intenciones de los usuarios; destaca en tareas creativas y en la planificación de agentes. El conocimiento de este modelo está actualizado hasta octubre de 2023.",
|
1439
1467
|
"gpt-4o": {
|
1440
1468
|
"description": "ChatGPT-4o es un modelo dinámico que se actualiza en tiempo real para mantener la versión más actual. Combina una poderosa comprensión y generación de lenguaje, adecuado para aplicaciones a gran escala, incluyendo servicio al cliente, educación y soporte técnico."
|
1441
1469
|
},
|
@@ -1637,9 +1665,18 @@
|
|
1637
1665
|
"image-01-live": {
|
1638
1666
|
"description": "Modelo de generación de imágenes con detalles finos, soporta generación a partir de texto y configuración de estilo artístico."
|
1639
1667
|
},
|
1668
|
+
"imagen-4.0-fast-generate-001": {
|
1669
|
+
"description": "Versión Fast de la serie de modelos Imagen de texto a imagen de cuarta generación"
|
1670
|
+
},
|
1671
|
+
"imagen-4.0-generate-001": {
|
1672
|
+
"description": "Serie Imagen de cuarta generación para generar imágenes a partir de texto."
|
1673
|
+
},
|
1640
1674
|
"imagen-4.0-generate-preview-06-06": {
|
1641
1675
|
"description": "Serie de modelos de texto a imagen de cuarta generación de Imagen"
|
1642
1676
|
},
|
1677
|
+
"imagen-4.0-ultra-generate-001": {
|
1678
|
+
"description": "Imagen, serie de modelos de texto a imagen de cuarta generación, versión Ultra"
|
1679
|
+
},
|
1643
1680
|
"imagen-4.0-ultra-generate-preview-06-06": {
|
1644
1681
|
"description": "Serie de modelos de texto a imagen de cuarta generación de Imagen, versión Ultra"
|
1645
1682
|
},
|
@@ -1679,6 +1716,9 @@
|
|
1679
1716
|
"kimi-k2-0711-preview": {
|
1680
1717
|
"description": "kimi-k2 es un modelo base con arquitectura MoE que posee capacidades excepcionales en código y agentes, con un total de 1T parámetros y 32B parámetros activados. En pruebas de rendimiento en categorías principales como razonamiento general, programación, matemáticas y agentes, el modelo K2 supera a otros modelos de código abierto populares."
|
1681
1718
|
},
|
1719
|
+
"kimi-k2-turbo-preview": {
|
1720
|
+
"description": "kimi-k2 es un modelo base con arquitectura MoE que ofrece potentes capacidades para código y agentes, con 1T parámetros totales y 32B parámetros activados. En las pruebas de referencia en categorías principales como razonamiento de conocimiento general, programación, matemáticas y agentes, el rendimiento del modelo K2 supera al de otros modelos de código abierto más extendidos."
|
1721
|
+
},
|
1682
1722
|
"kimi-latest": {
|
1683
1723
|
"description": "El producto asistente inteligente Kimi utiliza el último modelo grande de Kimi, que puede incluir características que aún no están estables. Soporta la comprensión de imágenes y seleccionará automáticamente el modelo de facturación de 8k/32k/128k según la longitud del contexto de la solicitud."
|
1684
1724
|
},
|
@@ -1763,6 +1803,9 @@
|
|
1763
1803
|
"llava:34b": {
|
1764
1804
|
"description": "LLaVA es un modelo multimodal que combina un codificador visual y Vicuna, utilizado para una poderosa comprensión visual y lingüística."
|
1765
1805
|
},
|
1806
|
+
"magistral-medium-latest": {
|
1807
|
+
"description": "Magistral Medium 1.1 es un modelo de inferencia de última generación lanzado por Mistral AI en julio de 2025."
|
1808
|
+
},
|
1766
1809
|
"mathstral": {
|
1767
1810
|
"description": "MathΣtral está diseñado para la investigación científica y el razonamiento matemático, proporcionando capacidades de cálculo efectivas y explicación de resultados."
|
1768
1811
|
},
|
@@ -2094,7 +2137,7 @@
|
|
2094
2137
|
"description": "o1-mini es un modelo de inferencia rápido y rentable diseñado para aplicaciones de programación, matemáticas y ciencias. Este modelo tiene un contexto de 128K y una fecha de corte de conocimiento en octubre de 2023."
|
2095
2138
|
},
|
2096
2139
|
"o1-preview": {
|
2097
|
-
"description": "
|
2140
|
+
"description": "Enfocado en el razonamiento avanzado y en la resolución de problemas complejos, incluidas tareas de matemáticas y de ciencias. Es ideal para aplicaciones que requieren una comprensión profunda del contexto y flujos de trabajo autónomos."
|
2098
2141
|
},
|
2099
2142
|
"o1-pro": {
|
2100
2143
|
"description": "La serie o1 ha sido entrenada mediante aprendizaje reforzado para pensar antes de responder y ejecutar tareas de razonamiento complejas. El modelo o1-pro utiliza más recursos computacionales para un pensamiento más profundo, proporcionando respuestas de calidad superior de manera constante."
|
@@ -2213,8 +2256,14 @@
|
|
2213
2256
|
"qwen-coder-turbo-latest": {
|
2214
2257
|
"description": "El modelo de código Tongyi Qwen."
|
2215
2258
|
},
|
2259
|
+
"qwen-flash": {
|
2260
|
+
"description": "La serie Tongyi Qianwen ofrece modelos de la mayor rapidez y de coste extremadamente bajo, adecuados para tareas sencillas."
|
2261
|
+
},
|
2216
2262
|
"qwen-image": {
|
2217
|
-
"description": "
|
2263
|
+
"description": "Qwen-Image es un modelo de generación de imágenes de uso general que admite diversos estilos artísticos y destaca por su capacidad para renderizar textos complejos, especialmente textos en chino e inglés. El modelo soporta maquetación en varias líneas, generación de texto a nivel de párrafo y representación de detalles finos, lo que permite crear diseños complejos que combinan texto e imagen."
|
2264
|
+
},
|
2265
|
+
"qwen-image-edit": {
|
2266
|
+
"description": "Modelo profesional de edición de imágenes lanzado por el equipo Qwen. Admite edición semántica y de apariencia, puede editar con precisión texto en chino e inglés y realizar ediciones de alta calidad, como transferencia de estilo y rotación de objetos."
|
2218
2267
|
},
|
2219
2268
|
"qwen-long": {
|
2220
2269
|
"description": "Qwen es un modelo de lenguaje a gran escala que admite contextos de texto largos y funciones de conversación basadas en documentos largos y múltiples."
|
@@ -2241,7 +2290,7 @@
|
|
2241
2290
|
"description": "La versión mejorada del modelo de lenguaje a gran escala Qwen admite entradas en diferentes idiomas como chino e inglés."
|
2242
2291
|
},
|
2243
2292
|
"qwen-turbo": {
|
2244
|
-
"description": "
|
2293
|
+
"description": "通义千问 Turbo dejará de recibir actualizaciones; se recomienda sustituirlo por 通义千问 Flash. 通义千问 es un modelo de lenguaje a gran escala que admite entradas en chino, inglés y otros idiomas."
|
2245
2294
|
},
|
2246
2295
|
"qwen-vl-chat-v1": {
|
2247
2296
|
"description": "Qwen VL admite formas de interacción flexibles, incluyendo múltiples imágenes, preguntas y respuestas en múltiples rondas, y capacidades creativas."
|
@@ -2558,9 +2607,15 @@
|
|
2558
2607
|
"step-2x-large": {
|
2559
2608
|
"description": "Nueva generación del modelo Step Star para generación de imágenes, enfocado en tareas de generación basadas en texto, capaz de crear imágenes de alta calidad según descripciones proporcionadas por el usuario. El nuevo modelo produce imágenes con texturas más realistas y mejor capacidad para generar texto en chino e inglés."
|
2560
2609
|
},
|
2610
|
+
"step-3": {
|
2611
|
+
"description": "Este modelo cuenta con una destacada capacidad de percepción visual y de razonamiento complejo. Es capaz de realizar con precisión la comprensión de conocimientos complejos entre distintos ámbitos, el análisis cruzado de información matemática y visual, así como una amplia variedad de problemas de análisis visual en la vida cotidiana."
|
2612
|
+
},
|
2561
2613
|
"step-r1-v-mini": {
|
2562
2614
|
"description": "Este modelo es un gran modelo de inferencia con una poderosa capacidad de comprensión de imágenes, capaz de procesar información de imágenes y texto, generando contenido textual tras un profundo razonamiento. Este modelo destaca en el campo del razonamiento visual, además de poseer capacidades de razonamiento matemático, de código y textual de primer nivel. La longitud del contexto es de 100k."
|
2563
2615
|
},
|
2616
|
+
"stepfun-ai/step3": {
|
2617
|
+
"description": "Step3 es un modelo de inferencia multimodal de vanguardia publicado por 阶跃星辰 (StepFun), construido sobre una arquitectura Mixture-of-Experts (MoE) con 321B de parámetros totales y 38B de parámetros de activación. El modelo presenta un diseño de extremo a extremo orientado a minimizar el coste de decodificación, al tiempo que ofrece un rendimiento de primer nivel en razonamiento visual-lingüístico. Gracias al diseño sinérgico entre la atención por descomposición de múltiples matrices (MFA) y el desacoplamiento atención‑FFN (AFD), Step3 mantiene una eficiencia sobresaliente tanto en aceleradores de gama alta como de gama baja. En la fase de preentrenamiento, Step3 procesó más de 20T de tokens de texto y 4T de tokens mixtos imagen-texto, abarcando más de una decena de idiomas. El modelo ha alcanzado niveles líderes entre los modelos de código abierto en múltiples benchmarks, incluidos matemáticas, código y tareas multimodales."
|
2618
|
+
},
|
2564
2619
|
"taichu_llm": {
|
2565
2620
|
"description": "El modelo de lenguaje Taichu de Zīdōng tiene una poderosa capacidad de comprensión del lenguaje, así como habilidades en creación de textos, preguntas y respuestas, programación de código, cálculos matemáticos, razonamiento lógico, análisis de sentimientos y resúmenes de texto. Combina de manera innovadora el preentrenamiento con grandes datos y un conocimiento rico de múltiples fuentes, perfeccionando continuamente la tecnología algorítmica y absorbiendo nuevos conocimientos en vocabulario, estructura, gramática y semántica de grandes volúmenes de datos textuales, logrando una evolución constante del modelo. Proporciona a los usuarios información y servicios más convenientes, así como una experiencia más inteligente."
|
2566
2621
|
},
|
@@ -2707,5 +2762,8 @@
|
|
2707
2762
|
},
|
2708
2763
|
"zai-org/GLM-4.5-Air": {
|
2709
2764
|
"description": "GLM-4.5-Air es un modelo base diseñado para aplicaciones de agentes inteligentes, utilizando arquitectura Mixture-of-Experts (MoE). Está profundamente optimizado para llamadas a herramientas, navegación web, ingeniería de software y programación frontend, soportando integración fluida con agentes de código como Claude Code y Roo Code. GLM-4.5 emplea un modo de inferencia híbrido que se adapta a escenarios de razonamiento complejo y uso cotidiano."
|
2765
|
+
},
|
2766
|
+
"zai-org/GLM-4.5V": {
|
2767
|
+
"description": "GLM-4.5V es la última generación de modelo de lenguaje visual (VLM) publicada por Zhipu AI. Este modelo se basa en el modelo de texto insignia GLM-4.5-Air, que cuenta con 106.000 millones de parámetros totales y 12.000 millones de parámetros de activación, y emplea una arquitectura de expertos mixtos (MoE) para lograr un rendimiento excelente con un coste de inferencia reducido. Técnicamente, GLM-4.5V continúa la línea de GLM-4.1V-Thinking e introduce innovaciones como el codificado rotacional de posiciones en 3D (3D-RoPE), que mejora de forma notable la percepción y el razonamiento sobre las relaciones en el espacio tridimensional. Gracias a optimizaciones en preentrenamiento, ajuste supervisado y aprendizaje por refuerzo, este modelo es capaz de procesar diversos tipos de contenido visual, como imágenes, vídeo y documentos largos, y ha alcanzado niveles punteros entre los modelos open source de su categoría en 41 benchmarks multimodales públicos. Además, el modelo incorpora un interruptor de 'modo de pensamiento' que permite a los usuarios alternar entre respuestas rápidas y razonamiento profundo para equilibrar eficiencia y rendimiento."
|
2710
2768
|
}
|
2711
2769
|
}
|
@@ -26,6 +26,9 @@
|
|
26
26
|
"bedrock": {
|
27
27
|
"description": "Bedrock es un servicio proporcionado por Amazon AWS, enfocado en ofrecer modelos de lenguaje y visuales avanzados para empresas. Su familia de modelos incluye la serie Claude de Anthropic, la serie Llama 3.1 de Meta, entre otros, abarcando una variedad de opciones desde ligeras hasta de alto rendimiento, apoyando tareas como generación de texto, diálogos y procesamiento de imágenes, adecuadas para aplicaciones empresariales de diferentes escalas y necesidades."
|
28
28
|
},
|
29
|
+
"bfl": {
|
30
|
+
"description": "Laboratorio líder en investigación de inteligencia artificial de vanguardia, construyendo la infraestructura visual del mañana."
|
31
|
+
},
|
29
32
|
"cloudflare": {
|
30
33
|
"description": "Ejecuta modelos de aprendizaje automático impulsados por GPU sin servidor en la red global de Cloudflare."
|
31
34
|
},
|
@@ -1,4 +1,9 @@
|
|
1
1
|
{
|
2
|
+
"ArgsInput": {
|
3
|
+
"addArgument": "افزودن پارامتر",
|
4
|
+
"argumentPlaceholder": "پارامتر {{index}}",
|
5
|
+
"enterFirstArgument": "اولین پارامتر را وارد کنید..."
|
6
|
+
},
|
2
7
|
"DragUpload": {
|
3
8
|
"dragDesc": "فایلها را اینجا بکشید، امکان بارگذاری چندین تصویر وجود دارد.",
|
4
9
|
"dragFileDesc": "تصاویر و فایلها را اینجا بکشید، امکان بارگذاری چندین تصویر و فایل وجود دارد.",
|
@@ -125,6 +130,12 @@
|
|
125
130
|
},
|
126
131
|
"progress": {
|
127
132
|
"uploadingWithCount": "{{completed}}/{{total}} بارگذاری شده"
|
133
|
+
},
|
134
|
+
"validation": {
|
135
|
+
"fileSizeExceeded": "اندازه فایل از حد مجاز فراتر رفته",
|
136
|
+
"fileSizeExceededDetail": "{{fileName}} ({{actualSize}}) از حداکثر اندازه مجاز {{maxSize}} فراتر رفته است",
|
137
|
+
"fileSizeExceededMultiple": "{{count}} فایل از حداکثر اندازه مجاز {{maxSize}} فراتر رفتهاند: {{fileList}}",
|
138
|
+
"imageCountExceeded": "تعداد تصاویر از حد مجاز فراتر رفته"
|
128
139
|
}
|
129
140
|
},
|
130
141
|
"OllamaSetupGuide": {
|
package/locales/fa-IR/error.json
CHANGED
@@ -85,6 +85,17 @@
|
|
85
85
|
"CreateMessageError": "متأسفیم، پیام نتوانست به درستی ارسال شود، لطفاً محتوا را کپی کرده و دوباره ارسال کنید، پس از تازهسازی صفحه، این پیام حفظ نخواهد شد",
|
86
86
|
"ExceededContextWindow": "محتوای درخواست فعلی از طول قابل پردازش مدل فراتر رفته است، لطفاً حجم محتوا را کاهش داده و دوباره تلاش کنید",
|
87
87
|
"FreePlanLimit": "شما در حال حاضر کاربر رایگان هستید و نمیتوانید از این قابلیت استفاده کنید، لطفاً به یک طرح پولی ارتقا دهید تا ادامه دهید",
|
88
|
+
"GoogleAIBlockReason": {
|
89
|
+
"BLOCKLIST": "محتوای شما حاوی واژگان ممنوعه است. لطفاً ورودی خود را بررسی و اصلاح کرده و دوباره تلاش کنید.",
|
90
|
+
"IMAGE_SAFETY": "تولید تصویر به دلایل امنیتی مسدود شد. لطفاً درخواست تولید تصویر را ویرایش کرده و دوباره تلاش کنید.",
|
91
|
+
"LANGUAGE": "زبان مورد استفادهٔ شما در حال حاضر پشتیبانی نمیشود. لطفاً به انگلیسی یا یکی از زبانهای پشتیبانیشده سؤال خود را مطرح کنید.",
|
92
|
+
"OTHER": "بهخاطر یک مشکل نامشخص، محتوا مسدود شد. لطفاً درخواست خود را مجدداً بیان کنید.",
|
93
|
+
"PROHIBITED_CONTENT": "درخواست شما ممکن است شامل محتوای ممنوعه باشد. لطفاً درخواست خود را اصلاح کنید تا با ضوابط استفاده سازگار باشد.",
|
94
|
+
"RECITATION": "محتوای شما بهخاطر احتمال نقض حق نشر مسدود شد. لطفاً از محتوای اصلی استفاده کنید یا درخواست خود را بازنویسی کنید.",
|
95
|
+
"SAFETY": "محتوای شما بهخاطر سیاستهای ایمنی مسدود شد. لطفاً درخواست خود را طوری تنظیم کنید که شامل محتوای مضر یا نامناسب نباشد.",
|
96
|
+
"SPII": "محتوای شما ممکن است شامل اطلاعات حساس هویتی شخصی باشد. برای حفاظت از حریم خصوصی، لطفاً اطلاعات حساس مرتبط را حذف کرده و دوباره تلاش کنید.",
|
97
|
+
"default": "محتوا مسدود شد: {{blockReason}}. لطفاً درخواست خود را اصلاح کرده و دوباره تلاش کنید."
|
98
|
+
},
|
88
99
|
"InsufficientQuota": "متأسفیم، سهمیه این کلید به حداکثر رسیده است، لطفاً موجودی حساب خود را بررسی کرده یا سهمیه کلید را افزایش دهید و دوباره تلاش کنید",
|
89
100
|
"InvalidAccessCode": "رمز عبور نادرست یا خالی است، لطفاً رمز عبور صحیح را وارد کنید یا API Key سفارشی اضافه کنید",
|
90
101
|
"InvalidBedrockCredentials": "اعتبارسنجی Bedrock ناموفق بود، لطفاً AccessKeyId/SecretAccessKey را بررسی کرده و دوباره تلاش کنید",
|
@@ -332,12 +332,21 @@
|
|
332
332
|
"Qwen/Qwen3-30B-A3B-Instruct-2507": {
|
333
333
|
"description": "Qwen3-30B-A3B-Instruct-2507 نسخه بهروزرسانی شده مدل غیرتفکری Qwen3-30B-A3B است. این یک مدل متخصص ترکیبی (MoE) با مجموع ۳۰.۵ میلیارد پارامتر و ۳.۳ میلیارد پارامتر فعال است. این مدل در جنبههای مختلف بهبودهای کلیدی داشته است، از جمله افزایش قابل توجه در پیروی از دستورالعملها، استدلال منطقی، درک متن، ریاضیات، علوم، برنامهنویسی و استفاده از ابزارها. همچنین، پیشرفت قابل توجهی در پوشش دانش چندزبانه و تطابق بهتر با ترجیحات کاربران در وظایف ذهنی و باز دارد، که منجر به تولید پاسخهای مفیدتر و متون با کیفیت بالاتر میشود. علاوه بر این، توانایی درک متنهای بلند این مدل تا ۲۵۶ هزار توکن افزایش یافته است. این مدل فقط از حالت غیرتفکری پشتیبانی میکند و خروجی آن شامل برچسبهای `<think></think>` نخواهد بود."
|
334
334
|
},
|
335
|
+
"Qwen/Qwen3-30B-A3B-Thinking-2507": {
|
336
|
+
"description": "Qwen3-30B-A3B-Thinking-2507 توسط تیم Tongyi Qianwen شرکت علیبابا بهعنوان جدیدترین مدل «تفکر» از سری Qwen3 منتشر شده است. این مدل که یک مدل ترکیبی از متخصصان (MoE) با مجموع 30.5 میلیارد پارامتر و 3.3 میلیارد پارامتر فعالشونده است، بر ارتقای توانایی پردازش وظایف پیچیده تمرکز دارد. این مدل در معیارهای علمی نیازمند تخصص انسانی—از جمله استدلال منطقی، ریاضیات، علوم و برنامهنویسی—بهبود قابلتوجهی در عملکرد نشان داده است. همچنین توانمندیهای عمومی آن در پیروی از دستورالعملها، استفاده از ابزارها، تولید متن و همسویی با ترجیحهای انسانی نیز بهسرعت تقویت شدهاند. مدل بهطور ذاتی از درک بافتهای طولانی تا 256K پشتیبانی میکند و قابل گسترش تا 1,000,000 توکن است. این نسخه بهطور ویژه برای «حالت تفکر» طراحی شده است تا از طریق استدلال گامبهگام دقیق مسائل بسیار پیچیده را حل کند و قابلیتهای عامل (Agent) آن نیز درخشان است."
|
337
|
+
},
|
335
338
|
"Qwen/Qwen3-32B": {
|
336
339
|
"description": "Qwen3 یک مدل بزرگ جدید با تواناییهای بهبود یافته است که در استدلال، عمومی، نمایندگی و چند زبانی به سطح پیشرفته صنعت دست یافته و از تغییر حالت تفکر پشتیبانی میکند."
|
337
340
|
},
|
338
341
|
"Qwen/Qwen3-8B": {
|
339
342
|
"description": "Qwen3 یک مدل بزرگ جدید با تواناییهای بهبود یافته است که در استدلال، عمومی، نمایندگی و چند زبانی به سطح پیشرفته صنعت دست یافته و از تغییر حالت تفکر پشتیبانی میکند."
|
340
343
|
},
|
344
|
+
"Qwen/Qwen3-Coder-30B-A3B-Instruct": {
|
345
|
+
"description": "Qwen3-Coder-30B-A3B-Instruct یک مدل کدنویسی از مجموعه Qwen3 است که توسط تیم Tongyi Qianwen شرکت علیبابا توسعه یافته است. بهعنوان یک مدل پالایششده و بهینهشده، این مدل در حالی که عملکرد و کارایی بالایی را حفظ میکند، بر بهبود توانمندیهای پردازش کد متمرکز شده است. این مدل در وظایف پیچیدهای مانند برنامهنویسی عاملمحور (Agentic Coding)، خودکارسازی عملیات مرورگر و فراخوانی ابزارها، نسبت به مدلهای متنباز مزایای عملکرد چشمگیری از خود نشان میدهد. این مدل بهصورت بومی از زمینههای متنی طولانی تا 256K توکن پشتیبانی میکند و قابل گسترش تا 1M توکن است، که امکان درک و پردازش در سطح مخازن کد را بهبود میبخشد. علاوه بر این، این مدل پشتیبانی قدرتمندی برای کدنویسی عاملی در پلتفرمهایی مانند Qwen Code و CLINE فراهم میآورد و فرمت ویژهای برای فراخوانی توابع طراحی شده است."
|
346
|
+
},
|
347
|
+
"Qwen/Qwen3-Coder-480B-A35B-Instruct": {
|
348
|
+
"description": "Qwen3-Coder-480B-A35B-Instruct مدلی برای برنامهنویسی است که توسط علیبابا منتشر شده و تا کنون بیشترین قابلیتهای عاملمحور (Agentic) را داراست. این مدل یک مدل ترکیب متخصصان (Mixture of Experts - MoE) با حدود 480 میلیارد پارامتر کل و 35 میلیارد پارامتر فعال است که تعادلی میان کارایی و عملکرد برقرار میکند. این مدل بهصورت بومی از طول زمینه 256K (حدود 260 هزار) توکن پشتیبانی میکند و با استفاده از روشهای برونیابی مانند YaRN میتواند تا 1,000,000 توکن گسترش یابد، که آن را قادر میسازد مخازن کد بزرگ و وظایف پیچیده برنامهنویسی را پردازش کند. Qwen3-Coder برای جریانهای کاری کدنویسی عاملمحور طراحی شده است؛ نه تنها میتواند کد تولید کند، بلکه قادر است بهصورت خودکار با ابزارها و محیطهای توسعه تعامل نماید تا مسائل پیچیده برنامهنویسی را حل کند. در چندین بنچمارک مربوط به کدنویسی و وظایف عامل، این مدل در میان مدلهای متنباز در سطح برتر قرار گرفته و عملکرد آن با مدلهای پیشرو مانند Claude Sonnet 4 قابل مقایسه است."
|
349
|
+
},
|
341
350
|
"Qwen2-72B-Instruct": {
|
342
351
|
"description": "Qwen2 جدیدترین سری مدلهای Qwen است که از 128k زمینه پشتیبانی میکند. در مقایسه با بهترین مدلهای متنباز فعلی، Qwen2-72B در درک زبان طبیعی، دانش، کد، ریاضی و چندزبانگی به طور قابل توجهی از مدلهای پیشرو فعلی فراتر رفته است."
|
343
352
|
},
|
@@ -1103,12 +1112,27 @@
|
|
1103
1112
|
"flux-dev": {
|
1104
1113
|
"description": "FLUX.1 [dev] یک مدل وزن باز و پالایش شده متنباز برای کاربردهای غیرتجاری است. این مدل کیفیت تصویر و پیروی از دستورالعمل را نزدیک به نسخه حرفهای FLUX حفظ کرده و در عین حال کارایی اجرایی بالاتری دارد. نسبت به مدلهای استاندارد با اندازه مشابه، بهرهوری منابع بهتری دارد."
|
1105
1114
|
},
|
1115
|
+
"flux-kontext-max": {
|
1116
|
+
"description": "پیشرفتهترین فناوری تولید و ویرایش تصاویر مبتنی بر زمینه — ترکیب متن و تصویر برای دستیابی به نتایجی دقیق و منسجم."
|
1117
|
+
},
|
1118
|
+
"flux-kontext-pro": {
|
1119
|
+
"description": "پیشرفتهترین تولید و ویرایش تصاویر زمینهای — ترکیب متن و تصویر برای بهدست آوردن نتایجی دقیق و منسجم."
|
1120
|
+
},
|
1106
1121
|
"flux-kontext/dev": {
|
1107
1122
|
"description": "مدل FLUX.1 متمرکز بر وظایف ویرایش تصویر، با پشتیبانی از ورودیهای متنی و تصویری."
|
1108
1123
|
},
|
1109
1124
|
"flux-merged": {
|
1110
1125
|
"description": "مدل FLUX.1-merged ترکیبی از ویژگیهای عمیق کشف شده در مرحله توسعه \"DEV\" و مزایای اجرای سریع \"Schnell\" است. این اقدام باعث افزایش مرزهای عملکرد مدل و گسترش دامنه کاربردهای آن شده است."
|
1111
1126
|
},
|
1127
|
+
"flux-pro": {
|
1128
|
+
"description": "پیشرفتهترین مدل تولید تصاویر مبتنی بر هوش مصنوعی برای مصارف تجاری — کیفیت تصویر بینظیر و تنوع خروجی چشمگیر."
|
1129
|
+
},
|
1130
|
+
"flux-pro-1.1": {
|
1131
|
+
"description": "نسخهٔ ارتقاء یافتهٔ مدل تولید تصویر حرفهای مبتنی بر هوش مصنوعی — کیفیت تصویر برجسته و توانایی دقیق در پیروی از پرومپتها را ارائه میدهد."
|
1132
|
+
},
|
1133
|
+
"flux-pro-1.1-ultra": {
|
1134
|
+
"description": "تولید تصاویر هوش مصنوعی با رزولوشن فوقالعاده — پشتیبانی از خروجی ۴ مگاپیکسلی و تولید تصاویر با وضوح بالا در کمتر از ۱۰ ثانیه."
|
1135
|
+
},
|
1112
1136
|
"flux-pro/kontext": {
|
1113
1137
|
"description": "FLUX.1 Kontext [pro] قادر است متن و تصاویر مرجع را به عنوان ورودی پردازش کند و ویرایشهای موضعی هدفمند و تغییرات پیچیده در کل صحنه را بهصورت یکپارچه انجام دهد."
|
1114
1138
|
},
|
@@ -1193,6 +1217,9 @@
|
|
1193
1217
|
"gemini-2.5-flash": {
|
1194
1218
|
"description": "Gemini 2.5 Flash مدل با بهترین نسبت قیمت به کارایی گوگل است که امکانات جامع را ارائه میدهد."
|
1195
1219
|
},
|
1220
|
+
"gemini-2.5-flash-image-preview": {
|
1221
|
+
"description": "Gemini 2.5 Flash Image Preview آخرین، سریعترین و کارآمدترین مدل چندمودالی بومی گوگل است که به شما امکان میدهد از طریق گفتگو تصاویر را تولید و ویرایش کنید."
|
1222
|
+
},
|
1196
1223
|
"gemini-2.5-flash-lite": {
|
1197
1224
|
"description": "Gemini 2.5 Flash-Lite کوچکترین و مقرونبهصرفهترین مدل گوگل است که برای استفاده در مقیاس وسیع طراحی شده است."
|
1198
1225
|
},
|
@@ -1295,6 +1322,9 @@
|
|
1295
1322
|
"glm-4.5-x": {
|
1296
1323
|
"description": "نسخه فوقالعاده سریع GLM-4.5 که در کنار قدرت عملکرد، سرعت تولید تا 100 توکن در ثانیه را ارائه میدهد."
|
1297
1324
|
},
|
1325
|
+
"glm-4.5v": {
|
1326
|
+
"description": "نسل جدید مدل استنتاج بصری Zhipu مبتنی بر معماری MOE، با مجموع 106B پارامتر و 12B پارامتر فعال، در انواع بنچمارکها به SOTA در میان مدلهای چندمودال متنباز همرده در سطح جهانی دست یافته است و وظایف متداولی مانند درک تصویر، ویدئو، اسناد و تعامل با رابطهای گرافیکی (GUI) را پوشش میدهد."
|
1327
|
+
},
|
1298
1328
|
"glm-4v": {
|
1299
1329
|
"description": "GLM-4V قابلیتهای قدرتمندی در درک و استدلال تصویری ارائه میدهد و از وظایف مختلف بصری پشتیبانی میکند."
|
1300
1330
|
},
|
@@ -1434,7 +1464,7 @@
|
|
1434
1464
|
"description": "GPT-4.1 mini تعادلی بین هوش، سرعت و هزینه ارائه میدهد و آن را به مدلی جذاب در بسیاری از موارد استفاده تبدیل میکند."
|
1435
1465
|
},
|
1436
1466
|
"gpt-4.5-preview": {
|
1437
|
-
"description": "
|
1467
|
+
"description": "GPT-4.5-preview یک مدل عمومی و جدید است که دانش گستردهای از جهان دارد و درک عمیقتری از نیت کاربران ارائه میدهد؛ در انجام وظایف خلاقانه و برنامهریزی بهعنوان عامل (agent planning) توانمند است. دانش این مدل تا اکتبر ۲۰۲۳ بهروز است."
|
1438
1468
|
},
|
1439
1469
|
"gpt-4o": {
|
1440
1470
|
"description": "پیشرفتهترین مدل چندوجهی در سری GPT-4 OpenAI که میتواند ورودیهای متنی و تصویری را پردازش کند."
|
@@ -1637,9 +1667,18 @@
|
|
1637
1667
|
"image-01-live": {
|
1638
1668
|
"description": "مدل تولید تصویر با نمایش ظریف که از تولید تصویر از متن پشتیبانی میکند و امکان تنظیم سبک نقاشی را دارد."
|
1639
1669
|
},
|
1670
|
+
"imagen-4.0-fast-generate-001": {
|
1671
|
+
"description": "سری مدلهای متنبهتصویر Imagen، نسل چهارم، نسخهٔ سریع"
|
1672
|
+
},
|
1673
|
+
"imagen-4.0-generate-001": {
|
1674
|
+
"description": "سری مدلهای Imagen نسل چهارم برای تولید تصویر از متن"
|
1675
|
+
},
|
1640
1676
|
"imagen-4.0-generate-preview-06-06": {
|
1641
1677
|
"description": "سری مدل متن به تصویر نسل چهارم Imagen"
|
1642
1678
|
},
|
1679
|
+
"imagen-4.0-ultra-generate-001": {
|
1680
|
+
"description": "نسخهٔ اولترا از مجموعهٔ مدلهای متنبهتصویر Imagen نسل چهارم"
|
1681
|
+
},
|
1643
1682
|
"imagen-4.0-ultra-generate-preview-06-06": {
|
1644
1683
|
"description": "نسخه اولترا سری مدل متن به تصویر نسل چهارم Imagen"
|
1645
1684
|
},
|
@@ -1679,6 +1718,9 @@
|
|
1679
1718
|
"kimi-k2-0711-preview": {
|
1680
1719
|
"description": "kimi-k2 یک مدل پایه با معماری MoE است که دارای تواناییهای بسیار قوی در کدنویسی و عاملسازی است، با مجموع یک تریلیون پارامتر و 32 میلیارد پارامتر فعال. در تستهای معیار عملکرد در حوزههای دانش عمومی، برنامهنویسی، ریاضیات و عاملها، مدل K2 عملکردی فراتر از سایر مدلهای متنباز اصلی دارد."
|
1681
1720
|
},
|
1721
|
+
"kimi-k2-turbo-preview": {
|
1722
|
+
"description": "kimi-k2 یک مدل پایه با معماری MoE است که دارای توانمندیهای بسیار قوی در حوزهٔ برنامهنویسی و عاملها (Agent) میباشد. مجموع پارامترها 1T و پارامترهای فعالشده 32B است. در آزمونهای بنچمارک در دستههای اصلی مانند استدلال دانش عمومی، برنامهنویسی، ریاضیات و Agent، عملکرد مدل K2 از سایر مدلهای متنباز مرسوم پیشی گرفته است."
|
1723
|
+
},
|
1682
1724
|
"kimi-latest": {
|
1683
1725
|
"description": "محصول دستیار هوشمند کیمی از جدیدترین مدل بزرگ کیمی استفاده میکند و ممکن است شامل ویژگیهای ناپایدار باشد. از درک تصویر پشتیبانی میکند و بهطور خودکار بر اساس طول متن درخواست، مدلهای 8k/32k/128k را بهعنوان مدل محاسبه انتخاب میکند."
|
1684
1726
|
},
|
@@ -1763,6 +1805,9 @@
|
|
1763
1805
|
"llava:34b": {
|
1764
1806
|
"description": "LLaVA یک مدل چندوجهی است که رمزگذار بصری و Vicuna را برای درک قدرتمند زبان و تصویر ترکیب میکند."
|
1765
1807
|
},
|
1808
|
+
"magistral-medium-latest": {
|
1809
|
+
"description": "Magistral Medium 1.1 یک مدل استنتاج پیشرفته است که توسط Mistral AI در ژوئیهٔ ۲۰۲۵ منتشر شد."
|
1810
|
+
},
|
1766
1811
|
"mathstral": {
|
1767
1812
|
"description": "MathΣtral بهطور ویژه برای تحقیقات علمی و استدلالهای ریاضی طراحی شده است و توانایی محاسباتی مؤثر و تفسیر نتایج را ارائه میدهد."
|
1768
1813
|
},
|
@@ -2094,7 +2139,7 @@
|
|
2094
2139
|
"description": "کوچکتر و سریعتر از o1-preview، با ۸۰٪ هزینه کمتر، و عملکرد خوب در تولید کد و عملیات با زمینههای کوچک."
|
2095
2140
|
},
|
2096
2141
|
"o1-preview": {
|
2097
|
-
"description": "
|
2142
|
+
"description": "متمرکز بر استدلال پیشرفته و حل مسائل پیچیده، از جمله مسائل ریاضی و علمی. بسیار مناسب برای برنامههایی که نیاز به درک عمیقِ زمینه و جریانهای کاری خودگردان دارند."
|
2098
2143
|
},
|
2099
2144
|
"o1-pro": {
|
2100
2145
|
"description": "مدلهای سری o1 با آموزش تقویت یادگیری قادرند پیش از پاسخدهی تفکر کنند و وظایف استدلال پیچیده را انجام دهند. مدل o1-pro از منابع محاسباتی بیشتری استفاده میکند تا تفکر عمیقتری داشته باشد و پاسخهای با کیفیتتری ارائه دهد."
|
@@ -2213,8 +2258,14 @@
|
|
2213
2258
|
"qwen-coder-turbo-latest": {
|
2214
2259
|
"description": "مدل کدنویسی تونگی چیانون."
|
2215
2260
|
},
|
2261
|
+
"qwen-flash": {
|
2262
|
+
"description": "مدلهای سری «通义千问» با سریعترین پاسخدهی و هزینهای بسیار پایین، مناسب برای وظایف ساده."
|
2263
|
+
},
|
2216
2264
|
"qwen-image": {
|
2217
|
-
"description": "مدل
|
2265
|
+
"description": "Qwen-Image یک مدل عمومی تولید تصویر است که از سبکهای هنری متنوعی پشتیبانی میکند و بهویژه در رندر متنهای پیچیده تبحر دارد، بهخصوص رندر متنهای چینی و انگلیسی. این مدل از چینش چندخطی، تولید متن در سطح پاراگراف و بازنمایی جزئیات ریز پشتیبانی میکند و قادر است طراحیهای پیچیده ترکیبی متن و تصویر را تحقق بخشد."
|
2266
|
+
},
|
2267
|
+
"qwen-image-edit": {
|
2268
|
+
"description": "مدل ویرایش تصویر حرفهای منتشرشده توسط تیم Qwen که از ویرایش معنایی و ویرایش ظاهر پشتیبانی میکند، قادر به ویرایش دقیق متنهای چینی و انگلیسی بوده و امکان تبدیل سبک، چرخش اشیاء و دیگر ویرایشهای تصویری با کیفیت بالا را فراهم میآورد."
|
2218
2269
|
},
|
2219
2270
|
"qwen-long": {
|
2220
2271
|
"description": "مدل زبانی بسیار بزرگ Tongyi Qianwen که از متنهای طولانی و همچنین قابلیت مکالمه در چندین سناریو مانند اسناد طولانی و چندین سند پشتیبانی میکند."
|
@@ -2241,7 +2292,7 @@
|
|
2241
2292
|
"description": "مدل زبان بسیار بزرگ Qwen در نسخه تقویت شده، از ورودی زبانهای مختلف مانند چینی و انگلیسی پشتیبانی میکند."
|
2242
2293
|
},
|
2243
2294
|
"qwen-turbo": {
|
2244
|
-
"description": "مدل
|
2295
|
+
"description": "نسخهٔ Turbo مدل «通义千问» از این پس بهروزرسانی نخواهد شد؛ پیشنهاد میشود آن را با «通义千问 Flash» جایگزین کنید. 通义千问 یک مدل زبانی فوقالعاده بزرگ است که از ورودیهایی به زبانهای چینی، انگلیسی و دیگر زبانها پشتیبانی میکند."
|
2245
2296
|
},
|
2246
2297
|
"qwen-vl-chat-v1": {
|
2247
2298
|
"description": "مدل Qwen-VL از روشهای تعاملی انعطافپذیر پشتیبانی میکند، از جمله قابلیتهای چندتصویری، پرسش و پاسخ چندمرحلهای و خلاقیت."
|
@@ -2558,9 +2609,15 @@
|
|
2558
2609
|
"step-2x-large": {
|
2559
2610
|
"description": "مدل نسل جدید Step Star برای تولید تصویر است که بر تولید تصویر بر اساس توصیف متنی کاربر تمرکز دارد و تصاویر با کیفیت بالا تولید میکند. مدل جدید تصاویر با بافت واقعیتر و توانایی تولید متنهای چینی و انگلیسی قویتر دارد."
|
2560
2611
|
},
|
2612
|
+
"step-3": {
|
2613
|
+
"description": "این مدل از تواناییهای قوی در ادراک بصری و استدلال پیچیده برخوردار است. میتواند بهدقت مفاهیم پیچیده میانرشتهای را درک کند، تحلیلهای تقاطعی اطلاعات ریاضی و بصری را انجام دهد و به انواع مسائل تحلیل بصری در زندگی روزمره پاسخ دهد."
|
2614
|
+
},
|
2561
2615
|
"step-r1-v-mini": {
|
2562
2616
|
"description": "این مدل یک مدل استدلال بزرگ با تواناییهای قوی در درک تصویر است که میتواند اطلاعات تصویری و متنی را پردازش کند و پس از تفکر عمیق، متن تولید کند. این مدل در زمینه استدلال بصری عملکرد برجستهای دارد و همچنین دارای تواناییهای ریاضی، کدنویسی و استدلال متنی در سطح اول است. طول متن زمینهای 100k است."
|
2563
2617
|
},
|
2618
|
+
"stepfun-ai/step3": {
|
2619
|
+
"description": "Step3 یک مدل استنتاج چندمودالی پیشرفته است که توسط شرکت StepFun منتشر شده است. این مدل بر پایهٔ معماری مخلوط متخصصان (MoE) با مجموع 321 میلیارد پارامتر و 38 میلیارد پارامتر فعال ساخته شده است. طراحی آن انتهابهانتها است و هدفش کمینهسازی هزینهٔ رمزگشایی در حالیست که در استدلال بینایی-زبانی عملکردی در سطح برتر ارائه میدهد. از طریق طراحی همافزا مبتنی بر توجه چند-ماتریسی تجزیهشده (MFA) و جداسازی توجه و FFN (AFD)، Step3 قادر است کارایی برجستهای را هم روی شتابدهندههای ردهپرچمدار و هم روی شتابدهندههای سطح پایین حفظ کند. در مرحلهٔ پیشآموزش، Step3 بیش از 20T توکن متنی و 4T توکن ترکیبی تصویر-متن را پردازش کرده و بیش از ده زبان را پوشش داده است. این مدل در بنچمارکهای متعددی از جمله ریاضیات، کدنویسی و چندمودال در میان مدلهای متنباز در جایگاه پیشرو قرار گرفته است."
|
2620
|
+
},
|
2564
2621
|
"taichu_llm": {
|
2565
2622
|
"description": "Taichu 2.0 بر اساس حجم زیادی از دادههای با کیفیت بالا آموزش دیده است و دارای تواناییهای قویتری در درک متن، تولید محتوا، پرسش و پاسخ در مکالمه و غیره میباشد."
|
2566
2623
|
},
|
@@ -2707,5 +2764,8 @@
|
|
2707
2764
|
},
|
2708
2765
|
"zai-org/GLM-4.5-Air": {
|
2709
2766
|
"description": "GLM-4.5-Air یک مدل پایه طراحی شده برای کاربردهای عامل هوشمند است که از معماری Mixture-of-Experts استفاده میکند. این مدل در زمینههای فراخوانی ابزار، مرور وب، مهندسی نرمافزار و برنامهنویسی فرانتاند بهینهسازی عمیق شده و از ادغام بیوقفه با عاملهای کد مانند Claude Code و Roo Code پشتیبانی میکند. GLM-4.5 از حالت استدلال ترکیبی بهره میبرد و میتواند در سناریوهای استدلال پیچیده و استفاده روزمره به خوبی عمل کند."
|
2767
|
+
},
|
2768
|
+
"zai-org/GLM-4.5V": {
|
2769
|
+
"description": "GLM-4.5V نسل جدیدی از مدلهای زبان-بینایی (VLM) است که توسط Zhipu AI (智谱 AI) منتشر شده. این مدل بر پایهٔ مدل متنی پرچمدار GLM-4.5-Air ساخته شده که دارای 106 میلیارد پارامتر کل و 12 میلیارد پارامتر فعالسازی است؛ از معماری متخصصان ترکیبی (MoE) بهره میبرد و هدفش ارائهٔ عملکرد برجسته با هزینهٔ استدلال کمتر است. از منظر فناوری، GLM-4.5V راهبرد GLM-4.1V-Thinking را ادامه میدهد و نوآوریهایی مانند کدگذاری موقعیت چرخشی سهبعدی (3D-RoPE) را معرفی کرده که بهطور چشمگیری درک و استدلال نسبتهای فضایی سهبعدی را تقویت میکند. با بهینهسازی در مراحل پیشآموزش، ریزتنظیم نظارتی و یادگیری تقویتی، این مدل قادر به پردازش انواع محتواهای بصری از جمله تصویر، ویدیو و اسناد بلند شده و در 41 معیار چندوجهی عمومی به سطح برتر مدلهای متنباز همرده دست یافته است. علاوه بر این، یک سوئیچ «حالت تفکر» به مدل افزوده شده که به کاربران اجازه میدهد بین پاسخدهی سریع و استدلال عمیق بهصورت انعطافپذیر انتخاب کنند تا تعادل بین کارایی و کیفیت برقرار شود."
|
2710
2770
|
}
|
2711
2771
|
}
|
@@ -26,6 +26,9 @@
|
|
26
26
|
"bedrock": {
|
27
27
|
"description": "Bedrock یک سرویس ارائه شده توسط آمازون AWS است که بر ارائه مدلهای پیشرفته زبان AI و مدلهای بصری برای شرکتها تمرکز دارد. خانواده مدلهای آن شامل سری Claude از Anthropic، سری Llama 3.1 از Meta و غیره است که از مدلهای سبک تا مدلهای با عملکرد بالا را پوشش میدهد و از وظایفی مانند تولید متن، مکالمه و پردازش تصویر پشتیبانی میکند. این سرویس برای برنامههای شرکتی با مقیاسها و نیازهای مختلف مناسب است."
|
28
28
|
},
|
29
|
+
"bfl": {
|
30
|
+
"description": "آزمایشگاهی پیشرو در پژوهشهای پیشرفتهٔ هوش مصنوعی که زیرساختهای بصریِ فردا را میسازد."
|
31
|
+
},
|
29
32
|
"cloudflare": {
|
30
33
|
"description": "مدلهای یادگیری ماشین مبتنی بر GPU بدون سرور را در شبکه جهانی Cloudflare اجرا کنید."
|
31
34
|
},
|
@@ -1,4 +1,9 @@
|
|
1
1
|
{
|
2
|
+
"ArgsInput": {
|
3
|
+
"addArgument": "Ajouter un paramètre",
|
4
|
+
"argumentPlaceholder": "Paramètre {{index}}",
|
5
|
+
"enterFirstArgument": "Saisissez le premier paramètre..."
|
6
|
+
},
|
2
7
|
"DragUpload": {
|
3
8
|
"dragDesc": "Faites glisser des fichiers ici, plusieurs images peuvent être téléchargées.",
|
4
9
|
"dragFileDesc": "Faites glisser des images et des fichiers ici, plusieurs images et fichiers peuvent être téléchargés.",
|
@@ -125,6 +130,12 @@
|
|
125
130
|
},
|
126
131
|
"progress": {
|
127
132
|
"uploadingWithCount": "{{completed}}/{{total}} téléchargées"
|
133
|
+
},
|
134
|
+
"validation": {
|
135
|
+
"fileSizeExceeded": "Taille du fichier dépassée",
|
136
|
+
"fileSizeExceededDetail": "{{fileName}} ({{actualSize}}) dépasse la taille maximale autorisée de {{maxSize}}",
|
137
|
+
"fileSizeExceededMultiple": "{{count}} fichiers dépassent la taille maximale autorisée de {{maxSize}} : {{fileList}}",
|
138
|
+
"imageCountExceeded": "Limite du nombre d'images dépassée"
|
128
139
|
}
|
129
140
|
},
|
130
141
|
"OllamaSetupGuide": {
|
package/locales/fr-FR/error.json
CHANGED
@@ -85,6 +85,17 @@
|
|
85
85
|
"CreateMessageError": "Désolé, le message n'a pas pu être envoyé correctement. Veuillez copier le contenu et le renvoyer. Ce message ne sera pas conservé après le rafraîchissement de la page.",
|
86
86
|
"ExceededContextWindow": "Le contenu de la demande actuelle dépasse la longueur que le modèle peut traiter. Veuillez réduire la quantité de contenu et réessayer.",
|
87
87
|
"FreePlanLimit": "Vous êtes actuellement un utilisateur gratuit et ne pouvez pas utiliser cette fonction. Veuillez passer à un plan payant pour continuer à l'utiliser.",
|
88
|
+
"GoogleAIBlockReason": {
|
89
|
+
"BLOCKLIST": "Votre contenu contient des termes interdits. Veuillez vérifier et modifier votre saisie, puis réessayez.",
|
90
|
+
"IMAGE_SAFETY": "La génération de l'image a été bloquée pour des raisons de sécurité. Veuillez modifier votre requête de génération d'image et réessayer.",
|
91
|
+
"LANGUAGE": "La langue que vous utilisez n'est pas prise en charge pour le moment. Veuillez réessayer en anglais ou dans une autre langue prise en charge.",
|
92
|
+
"OTHER": "Le contenu a été bloqué pour une raison inconnue. Veuillez reformuler votre demande et réessayer.",
|
93
|
+
"PROHIBITED_CONTENT": "Votre requête pourrait contenir du contenu prohibé. Veuillez ajuster votre demande pour qu'elle respecte les règles d'utilisation.",
|
94
|
+
"RECITATION": "Votre contenu a été bloqué car il pourrait enfreindre des droits d'auteur. Veuillez utiliser du contenu original ou reformuler votre demande.",
|
95
|
+
"SAFETY": "Votre contenu a été bloqué en raison des règles de sécurité. Veuillez modifier votre demande pour éviter tout contenu potentiellement dangereux ou inapproprié.",
|
96
|
+
"SPII": "Votre contenu pourrait contenir des informations personnelles sensibles. Pour protéger la confidentialité, supprimez ces informations sensibles puis réessayez.",
|
97
|
+
"default": "Contenu bloqué : {{blockReason}}。请调整您的请求内容后重试。"
|
98
|
+
},
|
88
99
|
"InsufficientQuota": "Désolé, le quota de cette clé a atteint sa limite. Veuillez vérifier si le solde de votre compte est suffisant ou augmenter le quota de la clé avant de réessayer.",
|
89
100
|
"InvalidAccessCode": "Le mot de passe est incorrect ou vide. Veuillez saisir le mot de passe d'accès correct ou ajouter une clé API personnalisée.",
|
90
101
|
"InvalidBedrockCredentials": "L'authentification Bedrock a échoué, veuillez vérifier AccessKeyId/SecretAccessKey et réessayer",
|
@@ -113,18 +124,6 @@
|
|
113
124
|
"PluginServerError": "Erreur de réponse du serveur du plugin. Veuillez vérifier le fichier de description du plugin, la configuration du plugin ou la mise en œuvre côté serveur en fonction des informations d'erreur ci-dessous",
|
114
125
|
"PluginSettingsInvalid": "Ce plugin doit être correctement configuré avant de pouvoir être utilisé. Veuillez vérifier votre configuration",
|
115
126
|
"ProviderBizError": "Erreur de service {{provider}}. Veuillez vérifier les informations suivantes ou réessayer.",
|
116
|
-
|
117
|
-
"GoogleAIBlockReason": {
|
118
|
-
"BLOCKLIST": "Votre contenu contient des termes interdits. Veuillez vérifier et modifier votre saisie avant de réessayer.",
|
119
|
-
"IMAGE_SAFETY": "Le contenu d'image généré a été bloqué pour des raisons de sécurité. Veuillez essayer de modifier votre demande de génération d'image.",
|
120
|
-
"LANGUAGE": "La langue que vous avez utilisée n'est pas supportée. Veuillez essayer d'utiliser l'anglais ou d'autres langues supportées.",
|
121
|
-
"OTHER": "Le contenu a été bloqué pour des raisons inconnues. Veuillez essayer de reformuler votre demande ou contacter le support technique.",
|
122
|
-
"PROHIBITED_CONTENT": "Votre contenu peut contenir des types de contenu interdits. Veuillez ajuster votre demande pour vous assurer qu'elle respecte les directives d'utilisation.",
|
123
|
-
"RECITATION": "Votre contenu a été bloqué en raison de problèmes potentiels de droits d'auteur. Veuillez essayer d'utiliser du contenu original ou de reformuler votre demande.",
|
124
|
-
"SAFETY": "Votre contenu a été bloqué en raison des politiques de sécurité. Veuillez essayer d'ajuster votre demande pour éviter du contenu potentiellement nuisible ou inapproprié.",
|
125
|
-
"SPII": "Votre contenu peut contenir des informations personnelles identifiables sensibles. Pour la protection de la vie privée, veuillez supprimer les informations sensibles pertinentes avant de réessayer.",
|
126
|
-
"default": "Contenu bloqué : {{blockReason}}. Veuillez ajuster le contenu de votre demande et réessayer."
|
127
|
-
},
|
128
127
|
"QuotaLimitReached": "Désolé, l'utilisation actuelle des tokens ou le nombre de requêtes a atteint la limite de quota de cette clé. Veuillez augmenter le quota de cette clé ou réessayer plus tard.",
|
129
128
|
"StreamChunkError": "Erreur de parsing du bloc de message de la requête en streaming. Veuillez vérifier si l'API actuelle respecte les normes ou contacter votre fournisseur d'API pour des conseils.",
|
130
129
|
"SubscriptionKeyMismatch": "Nous sommes désolés, en raison d'une défaillance système occasionnelle, l'utilisation actuelle de l'abonnement est temporairement inactive. Veuillez cliquer sur le bouton ci-dessous pour rétablir votre abonnement ou nous contacter par e-mail pour obtenir de l'aide.",
|