@lobehub/chat 1.114.6 → 1.116.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.cursor/rules/add-provider-doc.mdc +183 -0
- package/.cursor/rules/project-introduce.mdc +1 -15
- package/.cursor/rules/project-structure.mdc +227 -0
- package/.cursor/rules/testing-guide/db-model-test.mdc +5 -3
- package/.cursor/rules/testing-guide/testing-guide.mdc +153 -168
- package/.env.example +8 -0
- package/.github/workflows/claude.yml +1 -1
- package/.github/workflows/release.yml +3 -3
- package/.github/workflows/test.yml +10 -5
- package/CHANGELOG.md +50 -0
- package/CLAUDE.md +17 -33
- package/Dockerfile +5 -1
- package/Dockerfile.database +5 -1
- package/Dockerfile.pglite +5 -1
- package/changelog/v1.json +14 -0
- package/docs/development/basic/feature-development.mdx +1 -1
- package/docs/development/basic/feature-development.zh-CN.mdx +1 -1
- package/docs/development/basic/setup-development.mdx +10 -13
- package/docs/development/basic/setup-development.zh-CN.mdx +9 -12
- package/docs/self-hosting/environment-variables/model-provider.mdx +27 -2
- package/docs/self-hosting/environment-variables/model-provider.zh-CN.mdx +27 -2
- package/docs/usage/providers/bfl.mdx +68 -0
- package/docs/usage/providers/bfl.zh-CN.mdx +67 -0
- package/locales/ar/components.json +11 -0
- package/locales/ar/error.json +11 -0
- package/locales/ar/models.json +64 -4
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/components.json +11 -0
- package/locales/bg-BG/error.json +11 -0
- package/locales/bg-BG/models.json +64 -4
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/components.json +11 -0
- package/locales/de-DE/error.json +11 -12
- package/locales/de-DE/models.json +64 -4
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/components.json +6 -0
- package/locales/en-US/error.json +11 -12
- package/locales/en-US/models.json +64 -4
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/components.json +11 -0
- package/locales/es-ES/error.json +11 -0
- package/locales/es-ES/models.json +64 -6
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/components.json +11 -0
- package/locales/fa-IR/error.json +11 -0
- package/locales/fa-IR/models.json +64 -4
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/components.json +11 -0
- package/locales/fr-FR/error.json +11 -12
- package/locales/fr-FR/models.json +64 -4
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/components.json +11 -0
- package/locales/it-IT/error.json +11 -0
- package/locales/it-IT/models.json +64 -4
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/components.json +11 -0
- package/locales/ja-JP/error.json +11 -12
- package/locales/ja-JP/models.json +64 -4
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/components.json +11 -0
- package/locales/ko-KR/error.json +11 -12
- package/locales/ko-KR/models.json +64 -6
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/components.json +11 -0
- package/locales/nl-NL/error.json +11 -0
- package/locales/nl-NL/models.json +62 -4
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/components.json +11 -0
- package/locales/pl-PL/error.json +11 -0
- package/locales/pl-PL/models.json +64 -4
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/components.json +11 -0
- package/locales/pt-BR/error.json +11 -0
- package/locales/pt-BR/models.json +64 -4
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/components.json +11 -0
- package/locales/ru-RU/error.json +11 -0
- package/locales/ru-RU/models.json +64 -4
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/components.json +11 -0
- package/locales/tr-TR/error.json +11 -0
- package/locales/tr-TR/models.json +64 -4
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/components.json +11 -0
- package/locales/vi-VN/error.json +11 -0
- package/locales/vi-VN/models.json +64 -4
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/components.json +6 -0
- package/locales/zh-CN/error.json +11 -0
- package/locales/zh-CN/models.json +64 -4
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/components.json +11 -0
- package/locales/zh-TW/error.json +11 -12
- package/locales/zh-TW/models.json +64 -6
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +4 -4
- package/packages/const/src/image.ts +28 -0
- package/packages/const/src/index.ts +1 -0
- package/packages/database/package.json +4 -2
- package/packages/database/src/repositories/aiInfra/index.ts +1 -1
- package/packages/database/tests/setup-db.ts +3 -0
- package/packages/database/vitest.config.mts +33 -0
- package/packages/model-runtime/src/google/index.ts +3 -0
- package/packages/model-runtime/src/qwen/createImage.test.ts +0 -19
- package/packages/model-runtime/src/qwen/createImage.ts +1 -27
- package/packages/model-runtime/src/utils/modelParse.ts +1 -1
- package/packages/model-runtime/src/utils/streams/google-ai.ts +26 -14
- package/packages/types/src/aiModel.ts +2 -1
- package/packages/utils/src/client/imageDimensions.test.ts +95 -0
- package/packages/utils/src/client/imageDimensions.ts +54 -0
- package/packages/utils/src/number.test.ts +3 -1
- package/packages/utils/src/number.ts +1 -2
- package/src/app/[variants]/(main)/image/@menu/components/SeedNumberInput/index.tsx +1 -1
- package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/components/DimensionControlGroup.tsx +0 -1
- package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/components/ImageUpload.tsx +16 -6
- package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/components/ImageUrl.tsx +14 -2
- package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/components/ImageUrlsUpload.tsx +27 -2
- package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/components/MultiImagesUpload/index.tsx +23 -5
- package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/hooks/useAutoDimensions.ts +56 -0
- package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/index.tsx +82 -5
- package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/utils/__tests__/dimensionConstraints.test.ts +235 -0
- package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/utils/__tests__/imageValidation.test.ts +401 -0
- package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/utils/dimensionConstraints.ts +54 -0
- package/src/app/[variants]/(main)/image/@topic/features/Topics/TopicItem.tsx +3 -1
- package/src/app/[variants]/(main)/image/@topic/features/Topics/TopicList.tsx +15 -2
- package/src/app/[variants]/(main)/image/features/GenerationFeed/GenerationItem/utils.ts +5 -4
- package/src/config/aiModels/google.ts +22 -1
- package/src/config/aiModels/qwen.ts +2 -2
- package/src/config/aiModels/vertexai.ts +22 -0
- package/src/libs/standard-parameters/index.ts +1 -1
- package/src/server/services/generation/index.ts +1 -1
- package/src/store/chat/slices/builtinTool/actions/dalle.test.ts +20 -13
- package/src/store/file/slices/upload/action.ts +18 -7
- package/src/store/image/slices/generationConfig/hooks.ts +1 -1
- package/tsconfig.json +1 -10
- package/.cursor/rules/debug.mdc +0 -193
- package/packages/const/src/imageGeneration.ts +0 -16
- package/src/app/(backend)/trpc/desktop/[trpc]/route.ts +0 -26
- package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/components/AspectRatioSelect.tsx +0 -24
- package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/components/SizeSliderInput.tsx +0 -15
- package/src/app/[variants]/(main)/image/@topic/features/Topics/TopicItemContainer.tsx +0 -91
- package/src/app/desktop/devtools/page.tsx +0 -89
- package/src/app/desktop/layout.tsx +0 -31
- /package/apps/desktop/{vitest.config.ts → vitest.config.mts} +0 -0
- /package/packages/database/{vitest.config.ts → vitest.config.server.mts} +0 -0
- /package/packages/electron-server-ipc/{vitest.config.ts → vitest.config.mts} +0 -0
- /package/packages/file-loaders/{vitest.config.ts → vitest.config.mts} +0 -0
- /package/packages/model-runtime/{vitest.config.ts → vitest.config.mts} +0 -0
- /package/packages/prompts/{vitest.config.ts → vitest.config.mts} +0 -0
- /package/packages/utils/{vitest.config.ts → vitest.config.mts} +0 -0
- /package/packages/web-crawler/{vitest.config.ts → vitest.config.mts} +0 -0
- /package/{vitest.config.ts → vitest.config.mts} +0 -0
@@ -332,12 +332,21 @@
|
|
332
332
|
"Qwen/Qwen3-30B-A3B-Instruct-2507": {
|
333
333
|
"description": "Qwen3-30B-A3B-Instruct-2507は、Qwen3-30B-A3Bの非思考モードのアップデート版です。これは総パラメータ数305億、活性化パラメータ数33億の混合エキスパート(MoE)モデルです。本モデルは指示遵守、論理推論、テキスト理解、数学、科学、コーディング、ツール使用などの汎用能力を大幅に強化しました。また、多言語のロングテール知識カバレッジに実質的な進展を遂げ、主観的かつオープンなタスクにおけるユーザーの好みにより良く適合し、より有用な応答と高品質なテキストを生成できます。さらに、本モデルの長文理解能力は256Kにまで強化されています。本モデルは非思考モードのみをサポートし、出力に`<think></think>`タグは生成されません。"
|
334
334
|
},
|
335
|
+
"Qwen/Qwen3-30B-A3B-Thinking-2507": {
|
336
|
+
"description": "Qwen3-30B-A3B-Thinking-2507 はアリババ(Alibaba)の通義千問チームが公開した Qwen3 シリーズの最新の思考モデルです。総パラメータ数305億、アクティベーションパラメータ33億を有する混合エキスパート(MoE)モデルとして、複雑なタスクの処理能力の向上に特化しています。本モデルは論理推論、数学、科学、プログラミング、そして人間の専門知識を要する学術ベンチマークにおいて顕著な性能向上を示しています。同時に、指示の遵守、ツールの利用、テキスト生成、人間の嗜好との整合といった汎用能力も大幅に強化されています。モデルはネイティブで256Kの長文コンテキスト理解をサポートし、最大100万トークンまで拡張可能です。このバージョンは「思考モード」向けに設計されており、詳細なステップごとの推論を通じて高度に複雑なタスクを解決することを目的としており、エージェント機能も優れています。"
|
337
|
+
},
|
335
338
|
"Qwen/Qwen3-32B": {
|
336
339
|
"description": "Qwen3は、能力が大幅に向上した新世代の通義千問大モデルであり、推論、一般、エージェント、多言語などの複数のコア能力で業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
|
337
340
|
},
|
338
341
|
"Qwen/Qwen3-8B": {
|
339
342
|
"description": "Qwen3は、能力が大幅に向上した新世代の通義千問大モデルであり、推論、一般、エージェント、多言語などの複数のコア能力で業界のリーダーレベルに達し、思考モードの切り替えをサポートしています。"
|
340
343
|
},
|
344
|
+
"Qwen/Qwen3-Coder-30B-A3B-Instruct": {
|
345
|
+
"description": "Qwen3-Coder-30B-A3B-Instruct はアリババの通義千問チームが開発した Qwen3 シリーズのコードモデルです。精練・最適化されたモデルとして、高い性能と効率を維持しつつ、コード処理能力の向上に注力しています。本モデルはエージェント型コーディング(Agentic Coding)、自動化ブラウザ操作、ツール呼び出しなどの複雑なタスクにおいて、オープンソースモデルの中で顕著な性能優位を示します。ネイティブで256Kトークンの長文コンテキストをサポートし、最大1Mトークンまで拡張可能であるため、コードベースレベルの理解と処理をより適切に行えます。さらに、本モデルは Qwen Code や CLINE などのプラットフォームに対して強力なエージェントコーディング支援を提供し、専用の関数呼び出しフォーマットを設計しています。"
|
346
|
+
},
|
347
|
+
"Qwen/Qwen3-Coder-480B-A35B-Instruct": {
|
348
|
+
"description": "Qwen3-Coder-480B-A35B-Instruct はアリババが公開した、これまでで最もエージェント(Agentic)能力に優れたコードモデルです。合計4,800億の総パラメータと350億のアクティベーションパラメータを持つ混合エキスパート(MoE)モデルで、効率性と性能のバランスを実現しています。本モデルはネイティブに256K(約26万)トークンのコンテキスト長をサポートし、YaRNなどの外挿手法により最大100万トークンまで拡張可能で、大規模なコードベースや複雑なプログラミングタスクの処理が可能です。Qwen3-Coderはエージェント型のコーディングワークフロー向けに設計されており、コードを生成するだけでなく、開発ツールや環境と自律的に相互作用して複雑なプログラミング課題を解決します。複数のコーディングおよびエージェントタスクのベンチマークにおいて、本モデルはオープンソースモデルの中でトップクラスの性能を示しており、その性能はClaude Sonnet 4などの先進モデルと比肩するものです。"
|
349
|
+
},
|
341
350
|
"Qwen2-72B-Instruct": {
|
342
351
|
"description": "Qwen2はQwenモデルの最新シリーズで、128kのコンテキストをサポートしています。現在の最適なオープンソースモデルと比較して、Qwen2-72Bは自然言語理解、知識、コード、数学、そして多言語などの能力において、現在のリーディングモデルを大幅に上回っています。"
|
343
352
|
},
|
@@ -1103,12 +1112,27 @@
|
|
1103
1112
|
"flux-dev": {
|
1104
1113
|
"description": "FLUX.1 [dev]は非商用用途向けのオープンソースの重み付き精錬モデルで、FLUXプロフェッショナル版に近い画像品質と指示遵守能力を維持しつつ、より高い実行効率を実現。標準モデルと同サイズながらリソース利用効率が向上しています。"
|
1105
1114
|
},
|
1115
|
+
"flux-kontext-max": {
|
1116
|
+
"description": "最先端のコンテキスト対応画像生成および編集 — テキストと画像を組み合わせ、精密かつ一貫した結果を実現します。"
|
1117
|
+
},
|
1118
|
+
"flux-kontext-pro": {
|
1119
|
+
"description": "最先端の文脈に基づく画像生成と編集 — テキストと画像を組み合わせ、高精度で一貫した結果を実現します。"
|
1120
|
+
},
|
1106
1121
|
"flux-kontext/dev": {
|
1107
1122
|
"description": "画像編集タスクに特化したFLUX.1モデルで、テキストと画像の入力に対応しています。"
|
1108
1123
|
},
|
1109
1124
|
"flux-merged": {
|
1110
1125
|
"description": "FLUX.1-mergedモデルは、開発段階で探索された「DEV」の深層特性と「Schnell」が示す高速実行の利点を組み合わせています。この取り組みにより、FLUX.1-mergedはモデルの性能限界を押し上げ、応用範囲を拡大しました。"
|
1111
1126
|
},
|
1127
|
+
"flux-pro": {
|
1128
|
+
"description": "トップクラスの商用AI画像生成モデル — 比類なき画像品質と多様な出力を実現。"
|
1129
|
+
},
|
1130
|
+
"flux-pro-1.1": {
|
1131
|
+
"description": "アップグレード版のプロフェッショナル向けAI画像生成モデル — 卓越した画像品質とプロンプトの指示に正確に従う能力を提供します。"
|
1132
|
+
},
|
1133
|
+
"flux-pro-1.1-ultra": {
|
1134
|
+
"description": "超高解像度のAI画像生成 — 最大4兆ピクセルの出力に対応し、10秒以内に超高精細な画像を生成します。"
|
1135
|
+
},
|
1112
1136
|
"flux-pro/kontext": {
|
1113
1137
|
"description": "FLUX.1 Kontext [pro] はテキストと参照画像を入力として処理し、目的に応じた局所編集や複雑な全体シーンの変換をシームレスに実現します。"
|
1114
1138
|
},
|
@@ -1193,6 +1217,9 @@
|
|
1193
1217
|
"gemini-2.5-flash": {
|
1194
1218
|
"description": "Gemini 2.5 FlashはGoogleのコストパフォーマンスに優れたモデルで、包括的な機能を提供します。"
|
1195
1219
|
},
|
1220
|
+
"gemini-2.5-flash-image-preview": {
|
1221
|
+
"description": "Gemini 2.5 Flash Image Preview は Google の最新かつ最速で最も効率的なネイティブなマルチモーダルモデルであり、対話を通じて画像を生成・編集することを可能にします。"
|
1222
|
+
},
|
1196
1223
|
"gemini-2.5-flash-lite": {
|
1197
1224
|
"description": "Gemini 2.5 Flash-Lite は、Google の中で最も小さく、コストパフォーマンスに優れたモデルであり、大規模な利用を目的に設計されています。"
|
1198
1225
|
},
|
@@ -1295,6 +1322,9 @@
|
|
1295
1322
|
"glm-4.5-x": {
|
1296
1323
|
"description": "GLM-4.5の高速版で、強力な性能を持ちながら、生成速度は100トークン/秒に達します。"
|
1297
1324
|
},
|
1325
|
+
"glm-4.5v": {
|
1326
|
+
"description": "智谱の次世代MOEアーキテクチャに基づく視覚推論モデルで、総パラメータ数106Bおよびアクティベーションパラメータ12Bを有し、各種ベンチマークにおいて同等クラスのオープンソース多モーダルモデルで世界的なSOTA(最先端)を達成しています。画像、動画、ドキュメント理解、GUIタスクなどの一般的なタスクを網羅します。"
|
1327
|
+
},
|
1298
1328
|
"glm-4v": {
|
1299
1329
|
"description": "GLM-4Vは強力な画像理解と推論能力を提供し、さまざまな視覚タスクをサポートします。"
|
1300
1330
|
},
|
@@ -1434,7 +1464,7 @@
|
|
1434
1464
|
"description": "GPT-4.1 miniは、知性、速度、コストのバランスを提供し、多くのユースケースにおいて魅力的なモデルとなっています。"
|
1435
1465
|
},
|
1436
1466
|
"gpt-4.5-preview": {
|
1437
|
-
"description": "GPT-4.5
|
1467
|
+
"description": "GPT-4.5-preview は最新の汎用モデルで、豊富な世界知識とユーザーの意図をより的確に理解する能力を備えており、創造的なタスクやエージェントの計画立案に優れています。このモデルの知識は2023年10月時点のものです。"
|
1438
1468
|
},
|
1439
1469
|
"gpt-4o": {
|
1440
1470
|
"description": "ChatGPT-4oは、リアルタイムで更新される動的モデルで、常に最新のバージョンを維持します。強力な言語理解と生成能力を組み合わせており、顧客サービス、教育、技術サポートなどの大規模なアプリケーションシナリオに適しています。"
|
@@ -1637,9 +1667,18 @@
|
|
1637
1667
|
"image-01-live": {
|
1638
1668
|
"description": "画像生成モデルで、繊細な画質を持ち、テキストから画像生成と画風設定をサポートします。"
|
1639
1669
|
},
|
1670
|
+
"imagen-4.0-fast-generate-001": {
|
1671
|
+
"description": "Imagen 第4世代のテキスト→画像生成モデル(Fast版)"
|
1672
|
+
},
|
1673
|
+
"imagen-4.0-generate-001": {
|
1674
|
+
"description": "Imagen 第4世代のテキストから画像への生成モデルシリーズ"
|
1675
|
+
},
|
1640
1676
|
"imagen-4.0-generate-preview-06-06": {
|
1641
1677
|
"description": "Imagen 第4世代テキストから画像へのモデルシリーズ"
|
1642
1678
|
},
|
1679
|
+
"imagen-4.0-ultra-generate-001": {
|
1680
|
+
"description": "Imagen 第4世代 テキスト→画像生成モデルシリーズ(Ultra版)"
|
1681
|
+
},
|
1643
1682
|
"imagen-4.0-ultra-generate-preview-06-06": {
|
1644
1683
|
"description": "Imagen 第4世代テキストから画像へのモデルシリーズ ウルトラバージョン"
|
1645
1684
|
},
|
@@ -1679,6 +1718,9 @@
|
|
1679
1718
|
"kimi-k2-0711-preview": {
|
1680
1719
|
"description": "kimi-k2は強力なコードおよびエージェント能力を備えたMoEアーキテクチャの基盤モデルで、総パラメータ数は1兆、活性化パラメータは320億です。一般知識推論、プログラミング、数学、エージェントなどの主要カテゴリのベンチマーク性能テストで、K2モデルは他の主流オープンソースモデルを上回る性能を示しています。"
|
1681
1720
|
},
|
1721
|
+
"kimi-k2-turbo-preview": {
|
1722
|
+
"description": "kimi-k2 は高度なコード処理能力とエージェント機能を備えた MoE(Mixture of Experts)アーキテクチャの基盤モデルで、総パラメータ数は1T、アクティブパラメータは32Bです。一般的な知識推論、プログラミング、数学、エージェントなどの主要カテゴリにおけるベンチマークで、K2モデルは他の主要なオープンソースモデルを上回る性能を示しています。"
|
1723
|
+
},
|
1682
1724
|
"kimi-latest": {
|
1683
1725
|
"description": "Kimi スマートアシスタント製品は最新の Kimi 大モデルを使用しており、まだ安定していない機能が含まれている可能性があります。画像理解をサポートし、リクエストのコンテキストの長さに応じて 8k/32k/128k モデルを請求モデルとして自動的に選択します。"
|
1684
1726
|
},
|
@@ -1763,6 +1805,9 @@
|
|
1763
1805
|
"llava:34b": {
|
1764
1806
|
"description": "LLaVAは、視覚エンコーダーとVicunaを組み合わせたマルチモーダルモデルであり、強力な視覚と言語理解を提供します。"
|
1765
1807
|
},
|
1808
|
+
"magistral-medium-latest": {
|
1809
|
+
"description": "Magistral Medium 1.1 は Mistral AI が2025年7月に発表した最先端の推論モデルです。"
|
1810
|
+
},
|
1766
1811
|
"mathstral": {
|
1767
1812
|
"description": "MathΣtralは、科学研究と数学推論のために設計されており、効果的な計算能力と結果の解釈を提供します。"
|
1768
1813
|
},
|
@@ -2094,7 +2139,7 @@
|
|
2094
2139
|
"description": "o1-miniは、プログラミング、数学、科学のアプリケーションシーンに特化して設計された迅速で経済的な推論モデルです。このモデルは128Kのコンテキストを持ち、2023年10月の知識のカットオフがあります。"
|
2095
2140
|
},
|
2096
2141
|
"o1-preview": {
|
2097
|
-
"description": "
|
2142
|
+
"description": "高度な推論と複雑な問題の解決に注力しており、数学や科学の課題にも対応します。深い文脈理解と自律的なワークフローを必要とするアプリケーションに非常に適しています。"
|
2098
2143
|
},
|
2099
2144
|
"o1-pro": {
|
2100
2145
|
"description": "o1 シリーズモデルは強化学習により訓練されており、回答前に思考を行い、複雑な推論タスクを実行できます。o1-pro モデルはより多くの計算資源を使用してより深い思考を行い、継続的に高品質な回答を提供します。"
|
@@ -2213,8 +2258,14 @@
|
|
2213
2258
|
"qwen-coder-turbo-latest": {
|
2214
2259
|
"description": "通義千問のコードモデルです。"
|
2215
2260
|
},
|
2261
|
+
"qwen-flash": {
|
2262
|
+
"description": "通義千問シリーズの中で最も高速で、コストが極めて低いモデルで、簡単なタスクに適しています。"
|
2263
|
+
},
|
2216
2264
|
"qwen-image": {
|
2217
|
-
"description": "Qwen
|
2265
|
+
"description": "Qwen-Image は汎用の画像生成モデルで、さまざまなアートスタイルに対応します。とりわけ複雑なテキストのレンダリング、特に中国語と英語のテキストレンダリングに優れています。モデルは複数行レイアウトや段落レベルのテキスト生成、細かなディテール表現をサポートし、複雑な画像とテキストの混在したレイアウト設計を実現します。"
|
2266
|
+
},
|
2267
|
+
"qwen-image-edit": {
|
2268
|
+
"description": "Qwenチームが発表したプロフェッショナル向けの画像編集モデルで、セマンティック編集や外観編集に対応し、中国語や英語の文字を正確に編集でき、スタイル変換やオブジェクトの回転などの高品質な画像編集を実現します。"
|
2218
2269
|
},
|
2219
2270
|
"qwen-long": {
|
2220
2271
|
"description": "通義千問超大規模言語モデルで、長文コンテキストや長文書、複数文書に基づく対話機能をサポートしています。"
|
@@ -2241,7 +2292,7 @@
|
|
2241
2292
|
"description": "通義千問の超大規模言語モデルの強化版で、中国語、英語などさまざまな言語の入力をサポートしています。"
|
2242
2293
|
},
|
2243
2294
|
"qwen-turbo": {
|
2244
|
-
"description": "
|
2295
|
+
"description": "通义千问 Turbo は今後更新されません。通义千问 Flash への置き換えを推奨します。通义千问は超大規模な言語モデルで、中国語、英語などのさまざまな言語の入力に対応しています。"
|
2245
2296
|
},
|
2246
2297
|
"qwen-vl-chat-v1": {
|
2247
2298
|
"description": "通義千問VLは、複数の画像、多段階の質問応答、創作などの柔軟なインタラクション方式をサポートするモデルです。"
|
@@ -2558,9 +2609,15 @@
|
|
2558
2609
|
"step-2x-large": {
|
2559
2610
|
"description": "階躍星辰の新世代画像生成モデルで、画像生成タスクに特化し、ユーザーが提供したテキスト記述に基づき高品質な画像を生成します。新モデルは画像の質感がよりリアルで、中英両言語の文字生成能力が強化されています。"
|
2560
2611
|
},
|
2612
|
+
"step-3": {
|
2613
|
+
"description": "このモデルは強力な視覚認識と高度な推論能力を備えています。異分野にまたがる複雑な知識の理解や、数学的情報と視覚情報の相互解析、さらには日常生活におけるさまざまな視覚分析の課題を正確に遂行できます。"
|
2614
|
+
},
|
2561
2615
|
"step-r1-v-mini": {
|
2562
2616
|
"description": "このモデルは強力な画像理解能力を持つ推論大モデルで、画像とテキスト情報を処理し、深い思考の後にテキストを生成します。このモデルは視覚推論分野で優れたパフォーマンスを発揮し、数学、コード、テキスト推論能力も第一級です。コンテキスト長は100kです。"
|
2563
2617
|
},
|
2618
|
+
"stepfun-ai/step3": {
|
2619
|
+
"description": "Step3 は階跃星辰(StepFun)が公開した最先端のマルチモーダル推論モデルで、総パラメータ数321B、活性化パラメータ38Bを持つエキスパートミックス(MoE)アーキテクチャに基づいて構築されています。本モデルはエンドツーエンド設計を採用し、デコードコストの最小化を図りながら視覚言語推論においてトップクラスの性能を提供します。多行列分解注意(MFA)と注意-FFNのデカップリング(AFD)という協調設計により、Step3 はフラッグシップ級からローエンドのアクセラレータまで一貫して高い効率を維持します。事前学習段階では、Step3 は20Tを超えるテキストトークンと4Tの画像・テキスト混合トークンを処理し、十数言語をカバーしました。このモデルは数学、コード、多モーダルなど複数のベンチマークにおいてオープンソースモデルの中でトップレベルの成績を達成しています。"
|
2620
|
+
},
|
2564
2621
|
"taichu_llm": {
|
2565
2622
|
"description": "紫東太初言語大モデルは、強力な言語理解能力とテキスト創作、知識問答、コードプログラミング、数学計算、論理推論、感情分析、テキスト要約などの能力を備えています。革新的に大データの事前学習と多源の豊富な知識を組み合わせ、アルゴリズム技術を継続的に磨き、膨大なテキストデータから語彙、構造、文法、意味などの新しい知識を吸収し、モデルの効果を進化させています。ユーザーにより便利な情報とサービス、よりインテリジェントな体験を提供します。"
|
2566
2623
|
},
|
@@ -2707,5 +2764,8 @@
|
|
2707
2764
|
},
|
2708
2765
|
"zai-org/GLM-4.5-Air": {
|
2709
2766
|
"description": "GLM-4.5-Airはエージェントアプリケーション向けに設計された基盤モデルで、混合専門家(Mixture-of-Experts)アーキテクチャを採用。ツール呼び出し、ウェブブラウジング、ソフトウェア工学、フロントエンドプログラミング分野で深く最適化され、Claude CodeやRoo Codeなどのコードエージェントへのシームレスな統合をサポートします。混合推論モードを採用し、複雑な推論や日常利用など多様なシナリオに適応可能です。"
|
2767
|
+
},
|
2768
|
+
"zai-org/GLM-4.5V": {
|
2769
|
+
"description": "GLM-4.5Vは智譜AI(Zhipu AI)が公開した最新世代の視覚言語モデル(VLM)です。本モデルは総パラメータ数106B、アクティベーションパラメータ12Bを有するフラッグシップのテキストモデルGLM-4.5-Airを基盤に構築され、混合エキスパート(MoE)アーキテクチャを採用することで、より低い推論コストで卓越した性能を実現することを目的としています。GLM-4.5Vは技術的にGLM-4.1V-Thinkingの路線を継承し、三次元回転位置エンコーディング(3D-RoPE)などの革新を導入することで三次元空間関係の認識と推論能力を大幅に強化しました。事前学習、教師あり微調整、強化学習の各段階での最適化により、本モデルは画像、動画、長文ドキュメントなど多様な視覚コンテンツを処理する能力を備え、41件の公開マルチモーダルベンチマークにおいて同クラスのオープンソースモデルのトップレベルに到達しています。さらに、モデルには「思考モード」スイッチが追加されており、迅速な応答と深い推論の間で柔軟に選択して効率と効果のバランスを取ることが可能です。"
|
2710
2770
|
}
|
2711
2771
|
}
|
@@ -26,6 +26,9 @@
|
|
26
26
|
"bedrock": {
|
27
27
|
"description": "Bedrockは、Amazon AWSが提供するサービスで、企業に先進的なAI言語モデルと視覚モデルを提供することに特化しています。そのモデルファミリーには、AnthropicのClaudeシリーズやMetaのLlama 3.1シリーズなどが含まれ、軽量から高性能までのさまざまな選択肢を提供し、テキスト生成、対話、画像処理などの多様なタスクをサポートし、異なる規模とニーズの企業アプリケーションに適しています。"
|
28
28
|
},
|
29
|
+
"bfl": {
|
30
|
+
"description": "最先端の人工知能研究ラボで、次世代の視覚インフラを構築します。"
|
31
|
+
},
|
29
32
|
"cloudflare": {
|
30
33
|
"description": "Cloudflareのグローバルネットワーク上で、サーバーレスGPUによって駆動される機械学習モデルを実行します。"
|
31
34
|
},
|
@@ -1,4 +1,9 @@
|
|
1
1
|
{
|
2
|
+
"ArgsInput": {
|
3
|
+
"addArgument": "매개변수 추가",
|
4
|
+
"argumentPlaceholder": "매개변수 {{index}}",
|
5
|
+
"enterFirstArgument": "첫 번째 매개변수를 입력하세요..."
|
6
|
+
},
|
2
7
|
"DragUpload": {
|
3
8
|
"dragDesc": "여기에 파일을 드래그하여 여러 이미지를 업로드할 수 있습니다.",
|
4
9
|
"dragFileDesc": "여기에 이미지와 파일을 드래그하여 여러 이미지와 파일을 업로드할 수 있습니다.",
|
@@ -125,6 +130,12 @@
|
|
125
130
|
},
|
126
131
|
"progress": {
|
127
132
|
"uploadingWithCount": "{{completed}}/{{total}} 업로드 완료"
|
133
|
+
},
|
134
|
+
"validation": {
|
135
|
+
"fileSizeExceeded": "파일 용량이 허용된 최대 크기를 초과했습니다",
|
136
|
+
"fileSizeExceededDetail": "{{fileName}} ({{actualSize}})이(가) 허용된 최대 크기 {{maxSize}}를 초과했습니다",
|
137
|
+
"fileSizeExceededMultiple": "{{count}}개의 파일이 허용된 최대 크기 {{maxSize}}를 초과합니다: {{fileList}}",
|
138
|
+
"imageCountExceeded": "이미지 수가 허용된 한도를 초과했습니다"
|
128
139
|
}
|
129
140
|
},
|
130
141
|
"OllamaSetupGuide": {
|
package/locales/ko-KR/error.json
CHANGED
@@ -85,6 +85,17 @@
|
|
85
85
|
"CreateMessageError": "죄송합니다. 메시지를 정상적으로 전송할 수 없습니다. 내용을 복사한 후 다시 전송해 주시고, 페이지를 새로 고치면 이 메시지는 보존되지 않습니다.",
|
86
86
|
"ExceededContextWindow": "현재 요청 내용이 모델이 처리할 수 있는 길이를 초과했습니다. 내용량을 줄인 후 다시 시도해 주십시오.",
|
87
87
|
"FreePlanLimit": "현재 무료 사용자이므로이 기능을 사용할 수 없습니다. 유료 요금제로 업그레이드 한 후 계속 사용하십시오.",
|
88
|
+
"GoogleAIBlockReason": {
|
89
|
+
"BLOCKLIST": "귀하의 콘텐츠에 금지된 단어가 포함되어 있습니다. 입력 내용을 확인하고 수정한 뒤 다시 시도해 주세요.",
|
90
|
+
"IMAGE_SAFETY": "생성된 이미지 내용이 안전상의 이유로 차단되었습니다. 이미지 생성 요청을 수정해 보세요.",
|
91
|
+
"LANGUAGE": "사용하신 언어는 현재 지원되지 않습니다. 영어 또는 지원되는 다른 언어로 다시 시도해 주세요.",
|
92
|
+
"OTHER": "내용이 알 수 없는 이유로 차단되었습니다. 요청을 다시 표현해 보세요.",
|
93
|
+
"PROHIBITED_CONTENT": "요청에 금지된 내용이 포함되어 있을 수 있습니다. 요청을 조정하여 사용 규정을 준수해 주세요.",
|
94
|
+
"RECITATION": "귀하의 내용은 저작권 문제와 관련될 수 있어 차단되었습니다. 원본 콘텐츠를 사용하거나 요청을 새로 표현해 보세요.",
|
95
|
+
"SAFETY": "귀하의 내용은 안전 정책에 따라 차단되었습니다. 요청 내용을 조정하여 유해하거나 부적절할 수 있는 요소를 피해 보세요.",
|
96
|
+
"SPII": "귀하의 내용에 민감한 개인 식별 정보가 포함되었을 수 있습니다. 개인정보 보호를 위해 해당 민감 정보를 제거한 뒤 다시 시도해 주세요.",
|
97
|
+
"default": "내용이 차단되었습니다: {{blockReason}}. 요청 내용을 조정한 뒤 다시 시도해 주세요."
|
98
|
+
},
|
88
99
|
"InsufficientQuota": "죄송합니다. 해당 키의 할당량이 초과되었습니다. 계좌 잔액이 충분한지 확인하거나 키 할당량을 늘린 후 다시 시도해 주십시오.",
|
89
100
|
"InvalidAccessCode": "액세스 코드가 잘못되었거나 비어 있습니다. 올바른 액세스 코드를 입력하거나 사용자 지정 API 키를 추가하십시오.",
|
90
101
|
"InvalidBedrockCredentials": "Bedrock 인증에 실패했습니다. AccessKeyId/SecretAccessKey를 확인한 후 다시 시도하십시오.",
|
@@ -113,18 +124,6 @@
|
|
113
124
|
"PluginServerError": "플러그인 서버 요청이 오류로 반환되었습니다. 플러그인 설명 파일, 플러그인 구성 또는 서버 구현을 확인해주세요.",
|
114
125
|
"PluginSettingsInvalid": "플러그인을 사용하려면 올바른 구성이 필요합니다. 구성이 올바른지 확인해주세요.",
|
115
126
|
"ProviderBizError": "요청한 {{provider}} 서비스에서 오류가 발생했습니다. 아래 정보를 확인하고 다시 시도해주세요.",
|
116
|
-
|
117
|
-
"GoogleAIBlockReason": {
|
118
|
-
"BLOCKLIST": "콘텐츠에 금지된 용어가 포함되어 있습니다. 입력 내용을 확인하고 수정한 후 다시 시도해주세요.",
|
119
|
-
"IMAGE_SAFETY": "생성된 이미지 콘텐츠가 안전상의 이유로 차단되었습니다. 이미지 생성 요청을 수정하여 다시 시도해주세요.",
|
120
|
-
"LANGUAGE": "사용하신 언어는 지원되지 않습니다. 영어나 기타 지원되는 언어로 다시 질문해주세요.",
|
121
|
-
"OTHER": "알 수 없는 이유로 콘텐츠가 차단되었습니다. 요청을 다시 표현하거나 기술 지원에 문의해주세요.",
|
122
|
-
"PROHIBITED_CONTENT": "콘텐츠에 금지된 콘텐츠 유형이 포함되어 있을 수 있습니다. 사용 가이드라인에 맞도록 요청을 조정해주세요.",
|
123
|
-
"RECITATION": "저작권 문제 가능성으로 인해 콘텐츠가 차단되었습니다. 원본 콘텐츠를 사용하거나 요청을 다시 표현해보세요.",
|
124
|
-
"SAFETY": "안전 정책으로 인해 콘텐츠가 차단되었습니다. 유해하거나 부적절한 내용을 피하도록 요청을 조정해주세요.",
|
125
|
-
"SPII": "콘텐츠에 민감한 개인 식별 정보가 포함되어 있을 수 있습니다. 개인정보 보호를 위해 관련 민감 정보를 제거한 후 다시 시도해주세요.",
|
126
|
-
"default": "콘텐츠가 차단되었습니다: {{blockReason}}. 요청 내용을 조정한 후 다시 시도해주세요."
|
127
|
-
},
|
128
127
|
"QuotaLimitReached": "죄송합니다. 현재 토큰 사용량 또는 요청 횟수가 해당 키의 할당량 한도에 도달했습니다. 해당 키의 할당량을 늘리거나 나중에 다시 시도해 주십시오.",
|
129
128
|
"StreamChunkError": "스트리밍 요청의 메시지 블록 구문 분석 오류입니다. 현재 API 인터페이스가 표준 규격에 부합하는지 확인하거나 API 공급자에게 문의하십시오.",
|
130
129
|
"SubscriptionKeyMismatch": "죄송합니다. 시스템의 일시적인 오류로 인해 현재 구독 사용량이 일시적으로 비활성화되었습니다. 아래 버튼을 클릭하여 구독을 복구하시거나, 이메일로 저희에게 지원을 요청해 주시기 바랍니다.",
|
@@ -332,12 +332,21 @@
|
|
332
332
|
"Qwen/Qwen3-30B-A3B-Instruct-2507": {
|
333
333
|
"description": "Qwen3-30B-A3B-Instruct-2507은 Qwen3-30B-A3B 비사고 모드의 업데이트 버전입니다. 이 모델은 총 305억 개의 파라미터와 33억 개의 활성화 파라미터를 가진 혼합 전문가(MoE) 모델입니다. 이 모델은 지침 준수, 논리 추론, 텍스트 이해, 수학, 과학, 코딩 및 도구 사용 등 여러 측면에서 중요한 향상을 이루었습니다. 또한 다국어 장기 지식 커버리지에서 실질적인 진전을 이루었으며, 주관적이고 개방형 작업에서 사용자 선호도에 더 잘 맞춰져 더 유용한 응답과 높은 품질의 텍스트를 생성할 수 있습니다. 아울러 이 모델의 장문 이해 능력도 256K로 강화되었습니다. 이 모델은 비사고 모드만 지원하며 출력에 `<think></think>` 태그를 생성하지 않습니다."
|
334
334
|
},
|
335
|
+
"Qwen/Qwen3-30B-A3B-Thinking-2507": {
|
336
|
+
"description": "Qwen3-30B-A3B-Thinking-2507은 알리바바 통의천문 팀이 발표한 Qwen3 시리즈의 최신 사고 모델입니다. 총 305억 개의 파라미터와 33억 개의 활성 파라미터를 보유한 혼합 전문가(MoE) 모델로서, 복잡한 작업 처리 능력 향상에 주력합니다. 이 모델은 논리 추론, 수학, 과학, 프로그래밍 및 인간의 전문 지식이 요구되는 학술 벤치마크에서 현저한 성능 향상을 보였습니다. 동시에 지시 준수, 도구 사용, 텍스트 생성 및 인간 선호도 정렬 등 범용 능력도 크게 강화되었습니다. 모델은 기본적으로 256K의 장문맥 이해를 지원하며 최대 100만 토큰까지 확장될 수 있습니다. 본 버전은 '사고 모드'로 설계되어 상세한 단계별 추론을 통해 고도로 복잡한 과제를 해결하도록 최적화되었으며, 에이전트(Agent) 기능 또한 우수합니다."
|
337
|
+
},
|
335
338
|
"Qwen/Qwen3-32B": {
|
336
339
|
"description": "Qwen3는 능력이 크게 향상된 차세대 통의천문 대모델로, 추론, 일반, 에이전트 및 다국어 등 여러 핵심 능력에서 업계 선두 수준에 도달하며 사고 모드 전환을 지원합니다."
|
337
340
|
},
|
338
341
|
"Qwen/Qwen3-8B": {
|
339
342
|
"description": "Qwen3는 능력이 크게 향상된 차세대 통의천문 대모델로, 추론, 일반, 에이전트 및 다국어 등 여러 핵심 능력에서 업계 선두 수준에 도달하며 사고 모드 전환을 지원합니다."
|
340
343
|
},
|
344
|
+
"Qwen/Qwen3-Coder-30B-A3B-Instruct": {
|
345
|
+
"description": "Qwen3-Coder-30B-A3B-Instruct는 알리바바 통의천문(通义千问) 팀이 개발한 Qwen3 시리즈의 코드 모델입니다. 정제되어 최적화된 본 모델은 높은 성능과 효율을 유지하면서 코드 처리 능력 향상에 중점을 두고 있습니다. 에이전트형 코딩(Agentic Coding), 자동화된 브라우저 조작, 도구 호출 등 복잡한 작업에서 오픈소스 모델들 대비 뚜렷한 성능 우위를 보입니다. 기본적으로 256K 토큰의 장기 문맥을 지원하며 최대 1M 토큰까지 확장 가능해 코드베이스 수준의 이해와 처리를 보다 효과적으로 수행할 수 있습니다. 또한 Qwen Code, CLINE 등 플랫폼에 강력한 에이전트 코딩 지원을 제공하고, 전용 함수 호출 포맷을 설계했습니다."
|
346
|
+
},
|
347
|
+
"Qwen/Qwen3-Coder-480B-A35B-Instruct": {
|
348
|
+
"description": "Qwen3-Coder-480B-A35B-Instruct는 알리바바가 발표한, 현재까지 에이전트(Agentic) 역량이 가장 뛰어난 코드 모델입니다. 이 모델은 총 4,800억 개의 파라미터와 350억 개의 활성 파라미터를 갖춘 혼합 전문가(MoE) 모델로서 효율성과 성능 사이의 균형을 이루고 있습니다. 기본적으로 256K(약 26만) 토큰의 컨텍스트 길이를 지원하며 YaRN 등의 외삽 기법을 통해 최대 100만 토큰까지 확장할 수 있어 대규모 코드베이스와 복잡한 프로그래밍 과제를 처리할 수 있습니다. Qwen3-Coder는 에이전트형 코딩 워크플로우를 위해 설계되어 코드 생성뿐만 아니라 개발 도구 및 환경과 스스로 상호작용하여 복잡한 문제를 해결할 수 있습니다. 여러 코딩 및 에이전트 과제의 벤치마크에서 이 모델은 오픈소스 모델 중 최상위권 성능을 보였으며, 그 성능은 Claude Sonnet 4 등 선도 모델과 견줄 만합니다."
|
349
|
+
},
|
341
350
|
"Qwen2-72B-Instruct": {
|
342
351
|
"description": "Qwen2는 Qwen 모델의 최신 시리즈로, 128k 컨텍스트를 지원합니다. 현재 최상의 오픈 소스 모델과 비교할 때, Qwen2-72B는 자연어 이해, 지식, 코드, 수학 및 다국어 등 여러 능력에서 현재 선도하는 모델을 현저히 초월합니다."
|
343
352
|
},
|
@@ -1103,12 +1112,27 @@
|
|
1103
1112
|
"flux-dev": {
|
1104
1113
|
"description": "FLUX.1 [dev]는 비상업적 용도를 위한 오픈 소스 가중치 및 정제 모델입니다. FLUX.1 [dev]는 FLUX 전문판과 유사한 이미지 품질과 명령 준수 능력을 유지하면서도 더 높은 실행 효율성을 갖추고 있습니다. 동일 크기 표준 모델 대비 자원 활용이 더 효율적입니다."
|
1105
1114
|
},
|
1115
|
+
"flux-kontext-max": {
|
1116
|
+
"description": "최첨단 컨텍스트 이미지 생성 및 편집 — 텍스트와 이미지를 결합하여 정밀하고 일관된 결과를 제공합니다."
|
1117
|
+
},
|
1118
|
+
"flux-kontext-pro": {
|
1119
|
+
"description": "최첨단 맥락 기반 이미지 생성 및 편집 — 텍스트와 이미지를 결합하여 정확하고 일관된 결과를 제공합니다."
|
1120
|
+
},
|
1106
1121
|
"flux-kontext/dev": {
|
1107
1122
|
"description": "이미지 편집 작업에 특화된 FLUX.1 모델로, 텍스트와 이미지 입력을 지원합니다."
|
1108
1123
|
},
|
1109
1124
|
"flux-merged": {
|
1110
1125
|
"description": "FLUX.1-merged 모델은 개발 단계에서 탐색된 \"DEV\"의 심층 특성과 \"Schnell\"이 대표하는 고속 실행 장점을 결합했습니다. 이를 통해 FLUX.1-merged는 모델 성능 한계를 높이고 적용 범위를 확장했습니다."
|
1111
1126
|
},
|
1127
|
+
"flux-pro": {
|
1128
|
+
"description": "최첨단 상업용 AI 이미지 생성 모델 — 비할 데 없는 이미지 품질과 다양한 출력 성능을 제공합니다."
|
1129
|
+
},
|
1130
|
+
"flux-pro-1.1": {
|
1131
|
+
"description": "업그레이드된 프로페셔널급 AI 이미지 생성 모델 — 탁월한 이미지 품질과 정교한 프롬프트 준수 능력을 제공합니다."
|
1132
|
+
},
|
1133
|
+
"flux-pro-1.1-ultra": {
|
1134
|
+
"description": "초고해상도 AI 이미지 생성 — 최대 4메가픽셀 출력 지원, 10초 이내에 초고화질 이미지를 생성합니다."
|
1135
|
+
},
|
1112
1136
|
"flux-pro/kontext": {
|
1113
1137
|
"description": "FLUX.1 Kontext [pro]는 텍스트와 참조 이미지를 입력으로 처리하여 목표 지향적인 부분 편집과 복잡한 전체 장면 변환을 원활하게 수행할 수 있습니다."
|
1114
1138
|
},
|
@@ -1193,6 +1217,9 @@
|
|
1193
1217
|
"gemini-2.5-flash": {
|
1194
1218
|
"description": "Gemini 2.5 Flash는 구글에서 가장 가성비가 뛰어난 모델로, 포괄적인 기능을 제공합니다."
|
1195
1219
|
},
|
1220
|
+
"gemini-2.5-flash-image-preview": {
|
1221
|
+
"description": "Gemini 2.5 Flash Image Preview는 Google의 최신이자 가장 빠르고 효율적인 네이티브 멀티모달 모델로, 대화를 통해 이미지를 생성하고 편집할 수 있게 해줍니다."
|
1222
|
+
},
|
1196
1223
|
"gemini-2.5-flash-lite": {
|
1197
1224
|
"description": "Gemini 2.5 Flash-Lite는 Google의 가장 작고 가성비가 뛰어난 모델로, 대규모 사용을 위해 설계되었습니다."
|
1198
1225
|
},
|
@@ -1295,6 +1322,9 @@
|
|
1295
1322
|
"glm-4.5-x": {
|
1296
1323
|
"description": "GLM-4.5의 초고속 버전으로, 강력한 성능과 함께 최대 100 tokens/초의 생성 속도를 자랑합니다."
|
1297
1324
|
},
|
1325
|
+
"glm-4.5v": {
|
1326
|
+
"description": "智谱(Zhipu)의 차세대 MOE 아키텍처 기반 시각 추론 모델로, 총 파라미터 수 106B 및 활성화 파라미터 12B를 갖추어 각종 벤치마크에서 동급의 전 세계 오픈소스 멀티모달 모델들 가운데 SOTA를 달성하며, 이미지·비디오·문서 이해 및 GUI 작업 등 다양한 일반 과제를 포괄합니다."
|
1327
|
+
},
|
1298
1328
|
"glm-4v": {
|
1299
1329
|
"description": "GLM-4V는 강력한 이미지 이해 및 추론 능력을 제공하며, 다양한 시각적 작업을 지원합니다."
|
1300
1330
|
},
|
@@ -1433,9 +1463,7 @@
|
|
1433
1463
|
"gpt-4.1-nano": {
|
1434
1464
|
"description": "GPT-4.1 mini는 지능, 속도 및 비용 간의 균형을 제공하여 많은 사용 사례에서 매력적인 모델이 됩니다."
|
1435
1465
|
},
|
1436
|
-
"gpt-4.5-preview":
|
1437
|
-
"description": "GPT-4.5 연구 미리보기 버전으로, 지금까지 우리가 만든 가장 크고 강력한 GPT 모델입니다. 광범위한 세계 지식을 보유하고 있으며 사용자 의도를 더 잘 이해하여 창의적인 작업과 자율 계획에서 뛰어난 성능을 발휘합니다. GPT-4.5는 텍스트와 이미지 입력을 수용하고 텍스트 출력을 생성합니다(구조화된 출력 포함). 함수 호출, 배치 API 및 스트리밍 출력을 포함한 주요 개발자 기능을 지원합니다. 창의적이고 개방적인 사고 및 대화가 필요한 작업(예: 글쓰기, 학습 또는 새로운 아이디어 탐색)에서 특히 뛰어난 성능을 보입니다. 지식 기준일은 2023년 10월입니다."
|
1438
|
-
},
|
1466
|
+
"gpt-4.5-preview": "GPT-4.5-preview는 최신 범용 모델로, 폭넓은 세계 지식과 사용자 의도에 대한 향상된 이해를 갖추고 있어 창의적 과제와 에이전트 계획에 능숙합니다. 이 모델의 지식은 2023년 10월까지입니다.",
|
1439
1467
|
"gpt-4o": {
|
1440
1468
|
"description": "ChatGPT-4o는 동적 모델로, 최신 버전을 유지하기 위해 실시간으로 업데이트됩니다. 강력한 언어 이해 및 생성 능력을 결합하여 고객 서비스, 교육 및 기술 지원을 포함한 대규모 응용 프로그램에 적합합니다."
|
1441
1469
|
},
|
@@ -1637,9 +1665,18 @@
|
|
1637
1665
|
"image-01-live": {
|
1638
1666
|
"description": "이미지 생성 모델로, 섬세한 화질을 제공하며 텍스트-이미지 생성과 화풍 설정을 지원합니다."
|
1639
1667
|
},
|
1668
|
+
"imagen-4.0-fast-generate-001": {
|
1669
|
+
"description": "Imagen 4세대 텍스트-투-이미지 모델 시리즈 Fast 버전"
|
1670
|
+
},
|
1671
|
+
"imagen-4.0-generate-001": {
|
1672
|
+
"description": "Imagen 4세대 텍스트-이미지 모델 시리즈"
|
1673
|
+
},
|
1640
1674
|
"imagen-4.0-generate-preview-06-06": {
|
1641
1675
|
"description": "Imagen 4세대 텍스트-이미지 모델 시리즈"
|
1642
1676
|
},
|
1677
|
+
"imagen-4.0-ultra-generate-001": {
|
1678
|
+
"description": "Imagen 4세대 텍스트 기반 이미지 생성 모델 시리즈 Ultra 버전"
|
1679
|
+
},
|
1643
1680
|
"imagen-4.0-ultra-generate-preview-06-06": {
|
1644
1681
|
"description": "Imagen 4세대 텍스트-이미지 모델 시리즈 울트라 버전"
|
1645
1682
|
},
|
@@ -1679,6 +1716,9 @@
|
|
1679
1716
|
"kimi-k2-0711-preview": {
|
1680
1717
|
"description": "kimi-k2는 강력한 코드 및 에이전트 기능을 갖춘 MoE 아키텍처 기반 모델로, 총 파라미터 1조, 활성화 파라미터 320억을 보유하고 있습니다. 일반 지식 추론, 프로그래밍, 수학, 에이전트 등 주요 분야 벤치마크 성능 테스트에서 K2 모델은 다른 주요 오픈소스 모델을 능가하는 성능을 보여줍니다."
|
1681
1718
|
},
|
1719
|
+
"kimi-k2-turbo-preview": {
|
1720
|
+
"description": "kimi-k2는 강력한 코드 처리 및 에이전트(Agent) 기능을 갖춘 MoE(혼합 전문가) 아키텍처 기반 모델로, 총 파라미터 수는 1T(1조), 활성화 파라미터는 32B(320억)입니다. 일반 지식 추론, 프로그래밍, 수학, 에이전트 등 주요 분야의 벤치마크 성능 테스트에서 K2 모델은 다른 주요 오픈 소스 모델들을 능가합니다."
|
1721
|
+
},
|
1682
1722
|
"kimi-latest": {
|
1683
1723
|
"description": "Kimi 스마트 어시스턴트 제품은 최신 Kimi 대형 모델을 사용하며, 아직 안정되지 않은 기능이 포함될 수 있습니다. 이미지 이해를 지원하며, 요청의 맥락 길이에 따라 8k/32k/128k 모델을 청구 모델로 자동 선택합니다."
|
1684
1724
|
},
|
@@ -1763,6 +1803,9 @@
|
|
1763
1803
|
"llava:34b": {
|
1764
1804
|
"description": "LLaVA는 시각 인코더와 Vicuna를 결합한 다중 모달 모델로, 강력한 시각 및 언어 이해를 제공합니다."
|
1765
1805
|
},
|
1806
|
+
"magistral-medium-latest": {
|
1807
|
+
"description": "Magistral Medium 1.1은 Mistral AI가 2025년 7월에 공개한 최첨단 추론 모델입니다."
|
1808
|
+
},
|
1766
1809
|
"mathstral": {
|
1767
1810
|
"description": "MathΣtral은 과학 연구 및 수학 추론을 위해 설계되었으며, 효과적인 계산 능력과 결과 해석을 제공합니다."
|
1768
1811
|
},
|
@@ -2094,7 +2137,7 @@
|
|
2094
2137
|
"description": "o1-mini는 프로그래밍, 수학 및 과학 응용 프로그램을 위해 설계된 빠르고 경제적인 추론 모델입니다. 이 모델은 128K의 컨텍스트와 2023년 10월의 지식 기준일을 가지고 있습니다."
|
2095
2138
|
},
|
2096
2139
|
"o1-preview": {
|
2097
|
-
"description": "
|
2140
|
+
"description": "고급 추론과 복잡한 문제 해결(수학 및 과학 과제 포함)에 중점을 둡니다. 깊은 맥락 이해와 자율적 워크플로를 필요로 하는 애플리케이션에 매우 적합합니다."
|
2098
2141
|
},
|
2099
2142
|
"o1-pro": {
|
2100
2143
|
"description": "o1 시리즈 모델은 강화 학습을 통해 훈련되어 답변 전에 사고를 진행하고 복잡한 추론 작업을 수행할 수 있습니다. o1-pro 모델은 더 많은 계산 자원을 사용하여 더 깊이 사고함으로써 지속적으로 더 우수한 답변을 제공합니다."
|
@@ -2213,8 +2256,14 @@
|
|
2213
2256
|
"qwen-coder-turbo-latest": {
|
2214
2257
|
"description": "통의 천문 코드 모델입니다."
|
2215
2258
|
},
|
2259
|
+
"qwen-flash": {
|
2260
|
+
"description": "Tongyi Qianwen(通义千问) 시리즈는 속도가 가장 빠르고 비용이 매우 낮은 모델로 간단한 작업에 적합합니다."
|
2261
|
+
},
|
2216
2262
|
"qwen-image": {
|
2217
|
-
"description": "Qwen
|
2263
|
+
"description": "Qwen-Image는 범용 이미지 생성 모델로, 다양한 예술적 스타일을 지원하며 특히 복잡한 텍스트 렌더링, 그중에서도 중국어와 영어 텍스트 렌더링에 뛰어납니다. 모델은 다중 행 레이아웃, 문단 단위 텍스트 생성 및 세밀한 디테일 묘사를 지원하여 복잡한 이미지-텍스트 혼합 레이아웃 디자인을 구현할 수 있습니다."
|
2264
|
+
},
|
2265
|
+
"qwen-image-edit": {
|
2266
|
+
"description": "Qwen 팀이 발표한 전문 이미지 편집 모델로, 의미 편집과 외관 편집을 지원하며 중국어 및 영어 텍스트를 정밀하게 편집하고 스타일 변환, 객체 회전 등 고품질 이미지 편집을 구현합니다."
|
2218
2267
|
},
|
2219
2268
|
"qwen-long": {
|
2220
2269
|
"description": "통의천문 초대규모 언어 모델로, 긴 텍스트 컨텍스트를 지원하며, 긴 문서 및 다수의 문서에 기반한 대화 기능을 제공합니다."
|
@@ -2241,7 +2290,7 @@
|
|
2241
2290
|
"description": "통의천문 초대형 언어 모델의 강화 버전으로, 중국어, 영어 등 다양한 언어 입력을 지원합니다."
|
2242
2291
|
},
|
2243
2292
|
"qwen-turbo": {
|
2244
|
-
"description": "
|
2293
|
+
"description": "通义千问 Turbo는 더 이상 업데이트되지 않으므로 通义千问 Flash로 교체할 것을 권장합니다. 通义千问은 초대규모 언어 모델로 중국어, 영어 등 다양한 언어의 입력을 지원합니다."
|
2245
2294
|
},
|
2246
2295
|
"qwen-vl-chat-v1": {
|
2247
2296
|
"description": "통의천문 VL은 다중 이미지, 다중 회차 질문 응답, 창작 등 유연한 상호작용 방식을 지원하는 모델입니다."
|
@@ -2558,9 +2607,15 @@
|
|
2558
2607
|
"step-2x-large": {
|
2559
2608
|
"description": "계단별 신성(阶跃星辰) 차세대 이미지 생성 모델로, 텍스트 설명에 따라 고품질 이미지를 생성하는 데 특화되어 있습니다. 새 모델은 이미지 질감이 더욱 사실적이며, 중영문 텍스트 생성 능력이 강화되었습니다."
|
2560
2609
|
},
|
2610
|
+
"step-3": {
|
2611
|
+
"description": "이 모델은 강력한 시각 인식 능력과 복잡한 추론 능력을 갖추고 있습니다. 분야를 넘나드는 복잡한 지식 이해, 수학과 시각 정보의 교차 분석, 그리고 일상 생활에서의 다양한 시각 분석 문제를 정확하게 수행할 수 있습니다."
|
2612
|
+
},
|
2561
2613
|
"step-r1-v-mini": {
|
2562
2614
|
"description": "이 모델은 강력한 이미지 이해 능력을 갖춘 추론 대모델로, 이미지와 텍스트 정보를 처리하며, 깊은 사고 후 텍스트를 생성합니다. 이 모델은 시각적 추론 분야에서 두드러진 성능을 보이며, 1차 대열의 수학, 코드, 텍스트 추론 능력을 갖추고 있습니다. 문맥 길이는 100k입니다."
|
2563
2615
|
},
|
2616
|
+
"stepfun-ai/step3": {
|
2617
|
+
"description": "Step3은 StepFun(중국명: 阶跃星辰)이 발표한 최첨단 멀티모달 추론 모델로, 총 321B의 파라미터와 38B의 활성화 파라미터를 가진 전문가 혼합(MoE) 아키텍처를 기반으로 합니다. 이 모델은 엔드투엔드 설계를 채택해 디코딩 비용을 최소화하는 동시에 시각-언어 추론에서 최상급 성능을 제공합니다. 다중 행렬 분해 어텐션(MFA)과 어텐션-FFN 디커플링(AFD)의 결합 설계를 통해 Step3은 플래그십급 및 저사양 가속기 모두에서 탁월한 효율을 유지합니다. 사전학습 단계에서 Step3은 20조개 이상의 텍스트 토큰(20T)과 4조개 이상의 이미지-텍스트 혼합 토큰(4T)을 처리했으며, 10여 개 언어를 포괄합니다. 이 모델은 수학, 코드 및 멀티모달을 포함한 여러 벤치마크에서 오픈소스 모델 중 선도적인 수준의 성능을 달성했습니다."
|
2618
|
+
},
|
2564
2619
|
"taichu_llm": {
|
2565
2620
|
"description": "자이동 태초 언어 대모델은 뛰어난 언어 이해 능력과 텍스트 창작, 지식 질문 응답, 코드 프로그래밍, 수학 계산, 논리 추론, 감정 분석, 텍스트 요약 등의 능력을 갖추고 있습니다. 혁신적으로 대규모 데이터 사전 훈련과 다원적 풍부한 지식을 결합하여 알고리즘 기술을 지속적으로 다듬고, 방대한 텍스트 데이터에서 어휘, 구조, 문법, 의미 등의 새로운 지식을 지속적으로 흡수하여 모델 성능을 지속적으로 진화시킵니다. 사용자에게 보다 편리한 정보와 서비스, 그리고 더 지능적인 경험을 제공합니다."
|
2566
2621
|
},
|
@@ -2707,5 +2762,8 @@
|
|
2707
2762
|
},
|
2708
2763
|
"zai-org/GLM-4.5-Air": {
|
2709
2764
|
"description": "GLM-4.5-Air는 에이전트 애플리케이션을 위해 설계된 기본 모델로, 혼합 전문가(Mixture-of-Experts) 아키텍처를 사용합니다. 도구 호출, 웹 브라우징, 소프트웨어 엔지니어링, 프론트엔드 프로그래밍 분야에서 깊이 최적화되었으며, Claude Code, Roo Code 등 코드 에이전트에 원활히 통합될 수 있습니다. GLM-4.5는 혼합 추론 모드를 채택하여 복잡한 추론과 일상 사용 등 다양한 응용 시나리오에 적응할 수 있습니다."
|
2765
|
+
},
|
2766
|
+
"zai-org/GLM-4.5V": {
|
2767
|
+
"description": "GLM-4.5V는 Zhipu AI(智谱 AI)가 발표한 최신 세대의 비전-언어 모델(VLM)입니다. 이 모델은 총 106B 파라미터와 12B 활성 파라미터를 보유한 플래그십 텍스트 모델 GLM-4.5-Air를 기반으로 구축되었으며, 혼합 전문가(MoE) 아키텍처를 채택해 더 낮은 추론 비용으로 우수한 성능을 달성하는 것을 목표로 합니다. GLM-4.5V는 기술적으로 GLM-4.1V-Thinking의 노선을 계승하면서 3차원 회전 위치 인코딩(3D-RoPE) 등 혁신을 도입하여 3차원 공간 관계에 대한 인식 및 추론 능력을 크게 향상시켰습니다. 사전 학습, 감독 미세조정, 강화학습 단계에서의 최적화를 통해 이 모델은 이미지, 비디오, 장문 문서 등 다양한 시각 콘텐츠를 처리할 수 있으며, 41개의 공개 멀티모달 벤치마크에서 동급 오픈소스 모델 중 최상위 수준의 성능을 기록했습니다. 또한 모델에는 '사고 모드' 스위치가 추가되어 사용자가 빠른 응답과 심층 추론 사이에서 유연하게 선택해 효율성과 효과를 균형 있게 조절할 수 있습니다."
|
2710
2768
|
}
|
2711
2769
|
}
|
@@ -26,6 +26,9 @@
|
|
26
26
|
"bedrock": {
|
27
27
|
"description": "Bedrock은 아마존 AWS가 제공하는 서비스로, 기업에 고급 AI 언어 모델과 비주얼 모델을 제공합니다. 그 모델 가족에는 Anthropic의 Claude 시리즈, Meta의 Llama 3.1 시리즈 등이 포함되어 있으며, 경량형부터 고성능까지 다양한 선택지를 제공하고 텍스트 생성, 대화, 이미지 처리 등 여러 작업을 지원하여 다양한 규모와 요구의 기업 응용 프로그램에 적합합니다."
|
28
28
|
},
|
29
|
+
"bfl": {
|
30
|
+
"description": "선도적인 최첨단 인공지능 연구소로서 미래의 시각 인프라를 구축합니다."
|
31
|
+
},
|
29
32
|
"cloudflare": {
|
30
33
|
"description": "Cloudflare의 글로벌 네트워크에서 서버리스 GPU로 구동되는 머신러닝 모델을 실행합니다."
|
31
34
|
},
|
@@ -1,4 +1,9 @@
|
|
1
1
|
{
|
2
|
+
"ArgsInput": {
|
3
|
+
"addArgument": "Argument toevoegen",
|
4
|
+
"argumentPlaceholder": "Argument {{index}}",
|
5
|
+
"enterFirstArgument": "Voer het eerste argument in..."
|
6
|
+
},
|
2
7
|
"DragUpload": {
|
3
8
|
"dragDesc": "Sleep bestanden hierheen om meerdere afbeeldingen te uploaden.",
|
4
9
|
"dragFileDesc": "Sleep afbeeldingen en bestanden hierheen om meerdere afbeeldingen en bestanden te uploaden.",
|
@@ -125,6 +130,12 @@
|
|
125
130
|
},
|
126
131
|
"progress": {
|
127
132
|
"uploadingWithCount": "{{completed}}/{{total}} geüpload"
|
133
|
+
},
|
134
|
+
"validation": {
|
135
|
+
"fileSizeExceeded": "Bestandsgrootte overschrijdt de limiet",
|
136
|
+
"fileSizeExceededDetail": "{{fileName}} ({{actualSize}}) overschrijdt de maximale grootte van {{maxSize}}",
|
137
|
+
"fileSizeExceededMultiple": "{{count}} bestanden overschrijden de maximale grootte van {{maxSize}}: {{fileList}}",
|
138
|
+
"imageCountExceeded": "Het aantal afbeeldingen overschrijdt de limiet"
|
128
139
|
}
|
129
140
|
},
|
130
141
|
"OllamaSetupGuide": {
|
package/locales/nl-NL/error.json
CHANGED
@@ -85,6 +85,17 @@
|
|
85
85
|
"CreateMessageError": "Het spijt ons, het bericht kon niet correct worden verzonden. Kopieer de inhoud en probeer het opnieuw. Na het vernieuwen van de pagina gaat dit bericht verloren.",
|
86
86
|
"ExceededContextWindow": "De inhoud van de huidige aanvraag overschrijdt de lengte die het model kan verwerken. Verminder de hoeveelheid inhoud en probeer het opnieuw.",
|
87
87
|
"FreePlanLimit": "U bent momenteel een gratis gebruiker en kunt deze functie niet gebruiken. Upgrade naar een betaald plan om door te gaan met gebruiken.",
|
88
|
+
"GoogleAIBlockReason": {
|
89
|
+
"BLOCKLIST": "Uw inhoud bevat verboden woorden. Controleer en pas uw invoer aan en probeer het opnieuw.",
|
90
|
+
"IMAGE_SAFETY": "De gegenereerde afbeelding is om veiligheidsredenen geblokkeerd. Probeer uw aanvraag voor afbeeldingsgeneratie aan te passen.",
|
91
|
+
"LANGUAGE": "De door u gebruikte taal wordt momenteel niet ondersteund. Probeer het opnieuw in het Engels of een andere ondersteunde taal.",
|
92
|
+
"OTHER": "De inhoud is om onbekende redenen geblokkeerd. Probeer uw verzoek anders te formuleren.",
|
93
|
+
"PROHIBITED_CONTENT": "Uw verzoek kan verboden inhoud bevatten. Pas uw verzoek aan zodat het voldoet aan de gebruiksregels.",
|
94
|
+
"RECITATION": "Uw inhoud is mogelijk geblokkeerd vanwege auteursrechtelijke kwesties. Gebruik originele inhoud of formuleer uw verzoek opnieuw.",
|
95
|
+
"SAFETY": "Uw inhoud is geblokkeerd door het veiligheidsbeleid. Pas uw verzoek aan en vermijd mogelijk schadelijke of ongepaste inhoud.",
|
96
|
+
"SPII": "Uw inhoud kan gevoelige persoonsgegevens bevatten. Verwijder de betreffende informatie ter bescherming van de privacy en probeer het opnieuw.",
|
97
|
+
"default": "Inhoud geblokkeerd: {{blockReason}}。请调整您的请求内容后重试。"
|
98
|
+
},
|
88
99
|
"InsufficientQuota": "Het spijt ons, de quotum van deze sleutel is bereikt. Controleer of uw account voldoende saldo heeft of vergroot het sleutelquotum en probeer het opnieuw.",
|
89
100
|
"InvalidAccessCode": "Ongeldige toegangscode: het wachtwoord is onjuist of leeg. Voer de juiste toegangscode in of voeg een aangepaste API-sleutel toe.",
|
90
101
|
"InvalidBedrockCredentials": "Bedrock authentication failed, please check AccessKeyId/SecretAccessKey and retry",
|