@lobehub/chat 1.114.6 → 1.116.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (152) hide show
  1. package/.cursor/rules/add-provider-doc.mdc +183 -0
  2. package/.cursor/rules/project-introduce.mdc +1 -15
  3. package/.cursor/rules/project-structure.mdc +227 -0
  4. package/.cursor/rules/testing-guide/db-model-test.mdc +5 -3
  5. package/.cursor/rules/testing-guide/testing-guide.mdc +153 -168
  6. package/.env.example +8 -0
  7. package/.github/workflows/claude.yml +1 -1
  8. package/.github/workflows/release.yml +3 -3
  9. package/.github/workflows/test.yml +10 -5
  10. package/CHANGELOG.md +50 -0
  11. package/CLAUDE.md +17 -33
  12. package/Dockerfile +5 -1
  13. package/Dockerfile.database +5 -1
  14. package/Dockerfile.pglite +5 -1
  15. package/changelog/v1.json +14 -0
  16. package/docs/development/basic/feature-development.mdx +1 -1
  17. package/docs/development/basic/feature-development.zh-CN.mdx +1 -1
  18. package/docs/development/basic/setup-development.mdx +10 -13
  19. package/docs/development/basic/setup-development.zh-CN.mdx +9 -12
  20. package/docs/self-hosting/environment-variables/model-provider.mdx +27 -2
  21. package/docs/self-hosting/environment-variables/model-provider.zh-CN.mdx +27 -2
  22. package/docs/usage/providers/bfl.mdx +68 -0
  23. package/docs/usage/providers/bfl.zh-CN.mdx +67 -0
  24. package/locales/ar/components.json +11 -0
  25. package/locales/ar/error.json +11 -0
  26. package/locales/ar/models.json +64 -4
  27. package/locales/ar/providers.json +3 -0
  28. package/locales/bg-BG/components.json +11 -0
  29. package/locales/bg-BG/error.json +11 -0
  30. package/locales/bg-BG/models.json +64 -4
  31. package/locales/bg-BG/providers.json +3 -0
  32. package/locales/de-DE/components.json +11 -0
  33. package/locales/de-DE/error.json +11 -12
  34. package/locales/de-DE/models.json +64 -4
  35. package/locales/de-DE/providers.json +3 -0
  36. package/locales/en-US/components.json +6 -0
  37. package/locales/en-US/error.json +11 -12
  38. package/locales/en-US/models.json +64 -4
  39. package/locales/en-US/providers.json +3 -0
  40. package/locales/es-ES/components.json +11 -0
  41. package/locales/es-ES/error.json +11 -0
  42. package/locales/es-ES/models.json +64 -6
  43. package/locales/es-ES/providers.json +3 -0
  44. package/locales/fa-IR/components.json +11 -0
  45. package/locales/fa-IR/error.json +11 -0
  46. package/locales/fa-IR/models.json +64 -4
  47. package/locales/fa-IR/providers.json +3 -0
  48. package/locales/fr-FR/components.json +11 -0
  49. package/locales/fr-FR/error.json +11 -12
  50. package/locales/fr-FR/models.json +64 -4
  51. package/locales/fr-FR/providers.json +3 -0
  52. package/locales/it-IT/components.json +11 -0
  53. package/locales/it-IT/error.json +11 -0
  54. package/locales/it-IT/models.json +64 -4
  55. package/locales/it-IT/providers.json +3 -0
  56. package/locales/ja-JP/components.json +11 -0
  57. package/locales/ja-JP/error.json +11 -12
  58. package/locales/ja-JP/models.json +64 -4
  59. package/locales/ja-JP/providers.json +3 -0
  60. package/locales/ko-KR/components.json +11 -0
  61. package/locales/ko-KR/error.json +11 -12
  62. package/locales/ko-KR/models.json +64 -6
  63. package/locales/ko-KR/providers.json +3 -0
  64. package/locales/nl-NL/components.json +11 -0
  65. package/locales/nl-NL/error.json +11 -0
  66. package/locales/nl-NL/models.json +62 -4
  67. package/locales/nl-NL/providers.json +3 -0
  68. package/locales/pl-PL/components.json +11 -0
  69. package/locales/pl-PL/error.json +11 -0
  70. package/locales/pl-PL/models.json +64 -4
  71. package/locales/pl-PL/providers.json +3 -0
  72. package/locales/pt-BR/components.json +11 -0
  73. package/locales/pt-BR/error.json +11 -0
  74. package/locales/pt-BR/models.json +64 -4
  75. package/locales/pt-BR/providers.json +3 -0
  76. package/locales/ru-RU/components.json +11 -0
  77. package/locales/ru-RU/error.json +11 -0
  78. package/locales/ru-RU/models.json +64 -4
  79. package/locales/ru-RU/providers.json +3 -0
  80. package/locales/tr-TR/components.json +11 -0
  81. package/locales/tr-TR/error.json +11 -0
  82. package/locales/tr-TR/models.json +64 -4
  83. package/locales/tr-TR/providers.json +3 -0
  84. package/locales/vi-VN/components.json +11 -0
  85. package/locales/vi-VN/error.json +11 -0
  86. package/locales/vi-VN/models.json +64 -4
  87. package/locales/vi-VN/providers.json +3 -0
  88. package/locales/zh-CN/components.json +6 -0
  89. package/locales/zh-CN/error.json +11 -0
  90. package/locales/zh-CN/models.json +64 -4
  91. package/locales/zh-CN/providers.json +3 -0
  92. package/locales/zh-TW/components.json +11 -0
  93. package/locales/zh-TW/error.json +11 -12
  94. package/locales/zh-TW/models.json +64 -6
  95. package/locales/zh-TW/providers.json +3 -0
  96. package/package.json +4 -4
  97. package/packages/const/src/image.ts +28 -0
  98. package/packages/const/src/index.ts +1 -0
  99. package/packages/database/package.json +4 -2
  100. package/packages/database/src/repositories/aiInfra/index.ts +1 -1
  101. package/packages/database/tests/setup-db.ts +3 -0
  102. package/packages/database/vitest.config.mts +33 -0
  103. package/packages/model-runtime/src/google/index.ts +3 -0
  104. package/packages/model-runtime/src/qwen/createImage.test.ts +0 -19
  105. package/packages/model-runtime/src/qwen/createImage.ts +1 -27
  106. package/packages/model-runtime/src/utils/modelParse.ts +1 -1
  107. package/packages/model-runtime/src/utils/streams/google-ai.ts +26 -14
  108. package/packages/types/src/aiModel.ts +2 -1
  109. package/packages/utils/src/client/imageDimensions.test.ts +95 -0
  110. package/packages/utils/src/client/imageDimensions.ts +54 -0
  111. package/packages/utils/src/number.test.ts +3 -1
  112. package/packages/utils/src/number.ts +1 -2
  113. package/src/app/[variants]/(main)/image/@menu/components/SeedNumberInput/index.tsx +1 -1
  114. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/components/DimensionControlGroup.tsx +0 -1
  115. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/components/ImageUpload.tsx +16 -6
  116. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/components/ImageUrl.tsx +14 -2
  117. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/components/ImageUrlsUpload.tsx +27 -2
  118. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/components/MultiImagesUpload/index.tsx +23 -5
  119. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/hooks/useAutoDimensions.ts +56 -0
  120. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/index.tsx +82 -5
  121. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/utils/__tests__/dimensionConstraints.test.ts +235 -0
  122. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/utils/__tests__/imageValidation.test.ts +401 -0
  123. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/utils/dimensionConstraints.ts +54 -0
  124. package/src/app/[variants]/(main)/image/@topic/features/Topics/TopicItem.tsx +3 -1
  125. package/src/app/[variants]/(main)/image/@topic/features/Topics/TopicList.tsx +15 -2
  126. package/src/app/[variants]/(main)/image/features/GenerationFeed/GenerationItem/utils.ts +5 -4
  127. package/src/config/aiModels/google.ts +22 -1
  128. package/src/config/aiModels/qwen.ts +2 -2
  129. package/src/config/aiModels/vertexai.ts +22 -0
  130. package/src/libs/standard-parameters/index.ts +1 -1
  131. package/src/server/services/generation/index.ts +1 -1
  132. package/src/store/chat/slices/builtinTool/actions/dalle.test.ts +20 -13
  133. package/src/store/file/slices/upload/action.ts +18 -7
  134. package/src/store/image/slices/generationConfig/hooks.ts +1 -1
  135. package/tsconfig.json +1 -10
  136. package/.cursor/rules/debug.mdc +0 -193
  137. package/packages/const/src/imageGeneration.ts +0 -16
  138. package/src/app/(backend)/trpc/desktop/[trpc]/route.ts +0 -26
  139. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/components/AspectRatioSelect.tsx +0 -24
  140. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/components/SizeSliderInput.tsx +0 -15
  141. package/src/app/[variants]/(main)/image/@topic/features/Topics/TopicItemContainer.tsx +0 -91
  142. package/src/app/desktop/devtools/page.tsx +0 -89
  143. package/src/app/desktop/layout.tsx +0 -31
  144. /package/apps/desktop/{vitest.config.ts → vitest.config.mts} +0 -0
  145. /package/packages/database/{vitest.config.ts → vitest.config.server.mts} +0 -0
  146. /package/packages/electron-server-ipc/{vitest.config.ts → vitest.config.mts} +0 -0
  147. /package/packages/file-loaders/{vitest.config.ts → vitest.config.mts} +0 -0
  148. /package/packages/model-runtime/{vitest.config.ts → vitest.config.mts} +0 -0
  149. /package/packages/prompts/{vitest.config.ts → vitest.config.mts} +0 -0
  150. /package/packages/utils/{vitest.config.ts → vitest.config.mts} +0 -0
  151. /package/packages/web-crawler/{vitest.config.ts → vitest.config.mts} +0 -0
  152. /package/{vitest.config.ts → vitest.config.mts} +0 -0
@@ -332,12 +332,21 @@
332
332
  "Qwen/Qwen3-30B-A3B-Instruct-2507": {
333
333
  "description": "Qwen3-30B-A3B-Instruct-2507 est une version mise à jour du modèle non réflexif Qwen3-30B-A3B. Il s'agit d'un modèle d'experts mixtes (MoE) avec un total de 30,5 milliards de paramètres et 3,3 milliards de paramètres activés. Ce modèle présente des améliorations clés dans plusieurs domaines, notamment une amélioration significative de la conformité aux instructions, du raisonnement logique, de la compréhension du texte, des mathématiques, des sciences, du codage et de l'utilisation des outils. Par ailleurs, il réalise des progrès substantiels dans la couverture des connaissances multilingues à longue traîne et s'aligne mieux avec les préférences des utilisateurs dans les tâches subjectives et ouvertes, ce qui lui permet de générer des réponses plus utiles et des textes de meilleure qualité. De plus, sa capacité de compréhension des textes longs a été étendue à 256K. Ce modèle ne prend en charge que le mode non réflexif et ne génère pas de balises `<think></think>` dans ses sorties."
334
334
  },
335
+ "Qwen/Qwen3-30B-A3B-Thinking-2507": {
336
+ "description": "Qwen3-30B-A3B-Thinking-2507 est le dernier modèle de « réflexion » de la série Qwen3 publié par l'équipe Tongyi Qianwen d'Alibaba. En tant que modèle Mixture-of-Experts (MoE) comptant 30,5 milliards de paramètres au total et 3,3 milliards de paramètres d'activation, il est axé sur l'amélioration des capacités de traitement des tâches complexes. Le modèle présente des gains de performance significatifs sur des benchmarks académiques en raisonnement logique, mathématiques, sciences, programmation et autres tâches requérant une expertise humaine. Parallèlement, ses capacités générales — respect des instructions, utilisation d'outils, génération de texte et alignement sur les préférences humaines — ont été nettement renforcées. Il prend nativement en charge une compréhension de contextes longs de 256K tokens, extensible jusqu'à 1 million de tokens. Cette version, conçue pour le « mode réflexion », vise à résoudre des tâches hautement complexes via un raisonnement détaillé pas à pas ; ses capacités d'agent sont également remarquables."
337
+ },
335
338
  "Qwen/Qwen3-32B": {
336
339
  "description": "Qwen3 est un nouveau modèle de Tongyi Qianwen avec des capacités considérablement améliorées, atteignant des niveaux de pointe dans plusieurs compétences clés telles que le raisonnement, l'agent et le multilingue, et prenant en charge le changement de mode de pensée."
337
340
  },
338
341
  "Qwen/Qwen3-8B": {
339
342
  "description": "Qwen3 est un nouveau modèle de Tongyi Qianwen avec des capacités considérablement améliorées, atteignant des niveaux de pointe dans plusieurs compétences clés telles que le raisonnement, l'agent et le multilingue, et prenant en charge le changement de mode de pensée."
340
343
  },
344
+ "Qwen/Qwen3-Coder-30B-A3B-Instruct": {
345
+ "description": "Qwen3-Coder-30B-A3B-Instruct est un modèle de code de la série Qwen3 développé par l'équipe Tongyi Qianwen d'Alibaba. En tant que modèle épuré et optimisé, il se concentre sur l'amélioration des capacités de traitement du code tout en conservant des performances et une grande efficacité. Ce modèle affiche un avantage de performance notable parmi les modèles open source pour des tâches complexes telles que la programmation agentique (Agentic Coding), l'automatisation de navigateurs et l'appel d'outils. Il prend en charge nativement un contexte long de 256K tokens et peut être étendu jusqu'à 1M tokens, permettant une meilleure compréhension et gestion des bases de code à l'échelle du dépôt. De plus, ce modèle fournit un solide support d'encodage par agents pour des plateformes comme Qwen Code et CLINE, et intègre un format dédié d'appel de fonctions."
346
+ },
347
+ "Qwen/Qwen3-Coder-480B-A35B-Instruct": {
348
+ "description": "Qwen3-Coder-480B-A35B-Instruct est un modèle de code publié par Alibaba, et à ce jour le plus avancé en termes de capacités d'agent (agentic). Il s'agit d'un modèle MoE (Mixture-of-Experts) disposant de 480 milliards de paramètres au total et de 35 milliards de paramètres activés, offrant un équilibre entre efficacité et performance. Le modèle prend en charge nativement une longueur de contexte de 256K (environ 260 000) tokens et peut être étendu jusqu'à 1 million de tokens via des méthodes d'extrapolation telles que YaRN, ce qui lui permet de traiter de vastes bases de code et des tâches de programmation complexes. Qwen3-Coder a été conçu pour des flux de travail de codage pilotés par des agents : il ne se contente pas de générer du code, il peut aussi interagir de manière autonome avec les outils et environnements de développement pour résoudre des problèmes de programmation complexes. Sur plusieurs benchmarks de codage et de tâches agent, ce modèle atteint un niveau de premier plan parmi les modèles open source, ses performances rivalisant avec celles de modèles de pointe comme Claude Sonnet 4."
349
+ },
341
350
  "Qwen2-72B-Instruct": {
342
351
  "description": "Qwen2 est la dernière série du modèle Qwen, prenant en charge un contexte de 128k. Comparé aux meilleurs modèles open source actuels, Qwen2-72B surpasse de manière significative les modèles leaders dans des domaines tels que la compréhension du langage naturel, les connaissances, le code, les mathématiques et le multilinguisme."
343
352
  },
@@ -1103,12 +1112,27 @@
1103
1112
  "flux-dev": {
1104
1113
  "description": "FLUX.1 [dev] est un modèle open source affiné destiné à un usage non commercial. Il maintient une qualité d'image et une adhérence aux instructions proches de la version professionnelle FLUX, tout en offrant une efficacité d'exécution supérieure. Par rapport aux modèles standards de même taille, il est plus efficace en termes d'utilisation des ressources."
1105
1114
  },
1115
+ "flux-kontext-max": {
1116
+ "description": "Génération et édition d’images contextuelles de pointe — combinant texte et image pour des résultats précis et cohérents."
1117
+ },
1118
+ "flux-kontext-pro": {
1119
+ "description": "Génération et édition d'images contextuelles de pointe — alliant texte et image pour des résultats précis et cohérents."
1120
+ },
1106
1121
  "flux-kontext/dev": {
1107
1122
  "description": "Modèle FLUX.1 spécialisé dans les tâches d'édition d'images, prenant en charge les entrées texte et image."
1108
1123
  },
1109
1124
  "flux-merged": {
1110
1125
  "description": "Le modèle FLUX.1-merged combine les caractéristiques approfondies explorées durant la phase de développement « DEV » et les avantages d'exécution rapide représentés par « Schnell ». Cette fusion améliore non seulement les performances du modèle mais étend également son champ d'application."
1111
1126
  },
1127
+ "flux-pro": {
1128
+ "description": "Modèle d'IA commercial de génération d'images de premier ordre — qualité d'image inégalée et grande diversité de rendus."
1129
+ },
1130
+ "flux-pro-1.1": {
1131
+ "description": "Modèle professionnel amélioré de génération d'images par IA — offrant une qualité d'image exceptionnelle et une grande fidélité aux instructions de prompt."
1132
+ },
1133
+ "flux-pro-1.1-ultra": {
1134
+ "description": "Génération d'images IA en ultra haute résolution — prise en charge d'une sortie jusqu'à 4 mégapixels, création d'images ultra-nettes en moins de 10 secondes."
1135
+ },
1112
1136
  "flux-pro/kontext": {
1113
1137
  "description": "FLUX.1 Kontext [pro] peut traiter du texte et des images de référence en entrée, réalisant de manière fluide des modifications locales ciblées ainsi que des transformations complexes de scènes globales."
1114
1138
  },
@@ -1193,6 +1217,9 @@
1193
1217
  "gemini-2.5-flash": {
1194
1218
  "description": "Gemini 2.5 Flash est le modèle le plus rentable de Google, offrant des fonctionnalités complètes."
1195
1219
  },
1220
+ "gemini-2.5-flash-image-preview": {
1221
+ "description": "Gemini 2.5 Flash Image Preview est le modèle multimodal natif le plus récent, le plus rapide et le plus performant de Google. Il vous permet de générer et d’éditer des images via des échanges conversationnels."
1222
+ },
1196
1223
  "gemini-2.5-flash-lite": {
1197
1224
  "description": "Gemini 2.5 Flash-Lite est le modèle le plus petit et le plus rentable de Google, conçu pour une utilisation à grande échelle."
1198
1225
  },
@@ -1295,6 +1322,9 @@
1295
1322
  "glm-4.5-x": {
1296
1323
  "description": "Version ultra-rapide de GLM-4.5, combinant une forte performance avec une vitesse de génération atteignant 100 tokens par seconde."
1297
1324
  },
1325
+ "glm-4.5v": {
1326
+ "description": "La nouvelle génération de modèle d'inférence visuelle de Zhipu, basée sur l'architecture MOE (Mixture-of-Experts), avec un total de 106 milliards de paramètres et 12 milliards de paramètres d'activation, atteint l'état de l'art (SOTA) parmi les modèles multimodaux open source de même niveau au niveau mondial sur divers benchmarks, couvrant les tâches courantes telles que la compréhension d'images, de vidéos, de documents et d'interfaces graphiques (GUI)."
1327
+ },
1298
1328
  "glm-4v": {
1299
1329
  "description": "GLM-4V offre de puissantes capacités de compréhension et de raisonnement d'image, prenant en charge diverses tâches visuelles."
1300
1330
  },
@@ -1434,7 +1464,7 @@
1434
1464
  "description": "GPT-4.1 mini offre un équilibre entre intelligence, rapidité et coût, ce qui en fait un modèle attrayant pour de nombreux cas d'utilisation."
1435
1465
  },
1436
1466
  "gpt-4.5-preview": {
1437
- "description": "La version de recherche préliminaire de GPT-4.5, qui est notre modèle GPT le plus grand et le plus puissant à ce jour. Il possède une vaste connaissance du monde et comprend mieux les intentions des utilisateurs, ce qui le rend exceptionnel dans les tâches créatives et la planification autonome. GPT-4.5 accepte les entrées textuelles et visuelles et génère des sorties textuelles (y compris des sorties structurées). Il prend en charge des fonctionnalités clés pour les développeurs, telles que les appels de fonctions, l'API par lots et les sorties en continu. GPT-4.5 excelle particulièrement dans les tâches nécessitant créativité, pensée ouverte et dialogue (comme l'écriture, l'apprentissage ou l'exploration de nouvelles idées). La date limite des connaissances est fixée à octobre 2023."
1467
+ "description": "GPT-4.5-preview est le modèle général le plus récent, doté d'une vaste connaissance du monde et d'une meilleure compréhension des intentions des utilisateurs ; il excelle dans les tâches créatives et la planification d'agents. Les connaissances de ce modèle sont à jour jusqu'en octobre 2023."
1438
1468
  },
1439
1469
  "gpt-4o": {
1440
1470
  "description": "ChatGPT-4o est un modèle dynamique, mis à jour en temps réel pour rester à jour avec la dernière version. Il combine une compréhension et une génération de langage puissantes, adapté à des scénarios d'application à grande échelle, y compris le service client, l'éducation et le support technique."
@@ -1637,9 +1667,18 @@
1637
1667
  "image-01-live": {
1638
1668
  "description": "Modèle de génération d'images avec rendu détaillé, supportant la génération d'images à partir de texte avec réglage du style artistique."
1639
1669
  },
1670
+ "imagen-4.0-fast-generate-001": {
1671
+ "description": "Imagen, série de modèles de 4e génération pour la création d'images à partir de texte — version Fast"
1672
+ },
1673
+ "imagen-4.0-generate-001": {
1674
+ "description": "Série de modèles Imagen de 4ᵉ génération pour la génération d'images à partir de texte"
1675
+ },
1640
1676
  "imagen-4.0-generate-preview-06-06": {
1641
1677
  "description": "Série de modèles de génération d'images à partir de texte Imagen 4e génération"
1642
1678
  },
1679
+ "imagen-4.0-ultra-generate-001": {
1680
+ "description": "Série de modèles Imagen 4e génération pour la génération d'images à partir de texte — version Ultra"
1681
+ },
1643
1682
  "imagen-4.0-ultra-generate-preview-06-06": {
1644
1683
  "description": "Série de modèles de génération d'images à partir de texte Imagen 4e génération version Ultra"
1645
1684
  },
@@ -1679,6 +1718,9 @@
1679
1718
  "kimi-k2-0711-preview": {
1680
1719
  "description": "kimi-k2 est un modèle de base à architecture MoE doté de capacités exceptionnelles en code et Agent, avec un total de 1T de paramètres et 32B de paramètres activés. Dans les tests de performance sur les principales catégories telles que le raisonnement général, la programmation, les mathématiques et les Agents, le modèle K2 surpasse les autres modèles open source majeurs."
1681
1720
  },
1721
+ "kimi-k2-turbo-preview": {
1722
+ "description": "kimi-k2 est un modèle de base à architecture MoE doté de capacités remarquables en programmation et en agents autonomes, avec 1T de paramètres au total et 32B de paramètres activés. Dans les principaux tests de référence couvrant le raisonnement général, la programmation, les mathématiques et les agents, le modèle K2 surpasse les autres modèles open source majeurs."
1723
+ },
1682
1724
  "kimi-latest": {
1683
1725
  "description": "Le produit d'assistant intelligent Kimi utilise le dernier modèle Kimi, qui peut inclure des fonctionnalités encore instables. Il prend en charge la compréhension des images et choisit automatiquement le modèle de facturation 8k/32k/128k en fonction de la longueur du contexte de la demande."
1684
1726
  },
@@ -1763,6 +1805,9 @@
1763
1805
  "llava:34b": {
1764
1806
  "description": "LLaVA est un modèle multimodal combinant un encodeur visuel et Vicuna, utilisé pour une compréhension puissante du visuel et du langage."
1765
1807
  },
1808
+ "magistral-medium-latest": {
1809
+ "description": "Magistral Medium 1.1 est un modèle d'inférence de pointe publié par Mistral AI en juillet 2025."
1810
+ },
1766
1811
  "mathstral": {
1767
1812
  "description": "MathΣtral est conçu pour la recherche scientifique et le raisonnement mathématique, offrant des capacités de calcul efficaces et des interprétations de résultats."
1768
1813
  },
@@ -2094,7 +2139,7 @@
2094
2139
  "description": "o1-mini est un modèle de raisonnement rapide et économique conçu pour les applications de programmation, de mathématiques et de sciences. Ce modèle dispose d'un contexte de 128K et d'une date limite de connaissance en octobre 2023."
2095
2140
  },
2096
2141
  "o1-preview": {
2097
- "description": "o1 est le nouveau modèle de raisonnement d'OpenAI, adapté aux tâches complexes nécessitant une vaste connaissance générale. Ce modèle dispose d'un contexte de 128K et d'une date limite de connaissance en octobre 2023."
2142
+ "description": "Axé sur le raisonnement avancé et la résolution de problèmes complexes, y compris des tâches mathématiques et scientifiques. Particulièrement adapté aux applications nécessitant une compréhension approfondie du contexte et des flux de travail autonomes."
2098
2143
  },
2099
2144
  "o1-pro": {
2100
2145
  "description": "La série de modèles o1 est entraînée par apprentissage par renforcement, capable de réfléchir avant de répondre et d'exécuter des tâches de raisonnement complexes. Le modèle o1-pro utilise plus de ressources de calcul pour une réflexion plus approfondie, fournissant ainsi des réponses de qualité supérieure de manière continue."
@@ -2213,8 +2258,14 @@
2213
2258
  "qwen-coder-turbo-latest": {
2214
2259
  "description": "Le modèle de code Tongyi Qwen."
2215
2260
  },
2261
+ "qwen-flash": {
2262
+ "description": "La série Tongyi Qianwen propose les modèles les plus rapides et les plus économiques, adaptés aux tâches simples."
2263
+ },
2216
2264
  "qwen-image": {
2217
- "description": "Modèle puissant de génération d'images brutes développé par l'équipe Qwen, avec une impressionnante capacité de génération de texte en chinois et une diversité de styles visuels d'images."
2265
+ "description": "Qwen-Image est un modèle polyvalent de génération d'images, prenant en charge de nombreux styles artistiques et excelling particulièrement dans le rendu de textes complexes, notamment en chinois et en anglais. Le modèle gère les mises en page multi‑lignes, la génération de texte au niveau des paragraphes et le rendu de détails fins, permettant de créer des compositions complexes mêlant texte et image."
2266
+ },
2267
+ "qwen-image-edit": {
2268
+ "description": "Un modèle professionnel d'édition d'images publié par l'équipe Qwen, prenant en charge l'édition sémantique et l'édition de l'apparence, capable d'éditer avec précision les textes en chinois et en anglais, et permettant la conversion de styles, la rotation d'objets et d'autres opérations d'édition d'images de haute qualité."
2218
2269
  },
2219
2270
  "qwen-long": {
2220
2271
  "description": "Qwen est un modèle de langage à grande échelle, prenant en charge un contexte de texte long, ainsi que des fonctionnalités de dialogue basées sur des documents longs et multiples."
@@ -2241,7 +2292,7 @@
2241
2292
  "description": "Version améliorée du modèle de langage à grande échelle Qwen, prenant en charge des entrées dans différentes langues telles que le chinois et l'anglais."
2242
2293
  },
2243
2294
  "qwen-turbo": {
2244
- "description": "Le modèle de langage à grande échelle Qwen, prenant en charge des entrées dans différentes langues telles que le chinois et l'anglais."
2295
+ "description": "Le modèle 通义千问 Turbo ne sera plus mis à jour ; il est recommandé de le remplacer par 通义千问 Flash. 通义千问 est un modèle de langage à très grande échelle, prenant en charge des entrées en chinois, en anglais et dans d'autres langues."
2245
2296
  },
2246
2297
  "qwen-vl-chat-v1": {
2247
2298
  "description": "Qwen VL prend en charge des modes d'interaction flexibles, y compris la capacité de poser des questions à plusieurs images, des dialogues multi-tours, et plus encore."
@@ -2558,9 +2609,15 @@
2558
2609
  "step-2x-large": {
2559
2610
  "description": "Modèle de nouvelle génération Step Star, spécialisé dans la génération d'images, capable de créer des images de haute qualité à partir de descriptions textuelles fournies par l'utilisateur. Le nouveau modèle produit des images avec une texture plus réaliste et une meilleure capacité de génération de texte en chinois et en anglais."
2560
2611
  },
2612
+ "step-3": {
2613
+ "description": "Ce modèle dispose d'une puissante perception visuelle et d'une capacité de raisonnement complexe. Il peut accomplir avec précision la compréhension de connaissances complexes inter-domaines, l'analyse croisée d'informations mathématiques et visuelles, ainsi que divers problèmes d'analyse visuelle rencontrés dans la vie quotidienne."
2614
+ },
2561
2615
  "step-r1-v-mini": {
2562
2616
  "description": "Ce modèle est un grand modèle de raisonnement avec de puissantes capacités de compréhension d'image, capable de traiter des informations visuelles et textuelles, produisant du texte après une réflexion approfondie. Ce modèle se distingue dans le domaine du raisonnement visuel, tout en possédant des capacités de raisonnement mathématique, de code et de texte de premier plan. La longueur du contexte est de 100k."
2563
2617
  },
2618
+ "stepfun-ai/step3": {
2619
+ "description": "Step3 est un modèle de raisonnement multimodal de pointe publié par StepFun (阶跃星辰). Il est construit sur une architecture Mixture-of-Experts (MoE) comportant 321 milliards de paramètres au total et 38 milliards de paramètres d'activation. Le modèle adopte une conception bout en bout visant à minimiser le coût de décodage tout en offrant des performances de premier plan en raisonnement visuel et linguistique. Grâce à la conception synergique de l'attention par décomposition multi-matrice (MFA) et du découplage attention‑FFN (AFD), Step3 conserve une grande efficacité aussi bien sur des accélérateurs haut de gamme que sur des accélérateurs d'entrée de gamme. Lors de la pré‑entraînement, Step3 a traité plus de 20 000 milliards de tokens textuels et 4 000 milliards de tokens mixtes image‑texte, couvrant une dizaine de langues. Le modèle atteint des niveaux de référence parmi les meilleurs des modèles open source sur plusieurs benchmarks, notamment en mathématiques, en code et en multimodalité."
2620
+ },
2564
2621
  "taichu_llm": {
2565
2622
  "description": "Le modèle de langage Taichu Zidong possède une forte capacité de compréhension linguistique ainsi que des compétences en création de texte, questions-réponses, programmation, calcul mathématique, raisonnement logique, analyse des sentiments, et résumé de texte. Il combine de manière innovante le pré-entraînement sur de grandes données avec des connaissances riches provenant de multiples sources, en perfectionnant continuellement la technologie algorithmique et en intégrant de nouvelles connaissances sur le vocabulaire, la structure, la grammaire et le sens à partir de vastes ensembles de données textuelles, offrant aux utilisateurs des informations et des services plus pratiques ainsi qu'une expérience plus intelligente."
2566
2623
  },
@@ -2707,5 +2764,8 @@
2707
2764
  },
2708
2765
  "zai-org/GLM-4.5-Air": {
2709
2766
  "description": "GLM-4.5-Air est un modèle de base conçu pour les applications d'agents intelligents, utilisant une architecture Mixture-of-Experts (MoE). Il est profondément optimisé pour l'appel d'outils, la navigation web, l'ingénierie logicielle et la programmation front-end, supportant une intégration transparente avec des agents de code tels que Claude Code et Roo Code. GLM-4.5 utilise un mode d'inférence hybride, adapté à des scénarios variés allant du raisonnement complexe à l'usage quotidien."
2767
+ },
2768
+ "zai-org/GLM-4.5V": {
2769
+ "description": "GLM-4.5V est la dernière génération de modèle langage-visuel (VLM) publiée par Zhipu AI. Ce modèle est construit sur le modèle texte phare GLM-4.5-Air, qui compte 106 milliards de paramètres au total et 12 milliards de paramètres d'activation, et adopte une architecture de mixture d'experts (MoE) afin d'obtenir des performances excellentes à un coût d'inférence réduit. Sur le plan technique, GLM-4.5V prolonge la lignée de GLM-4.1V-Thinking et introduit des innovations telles que l'encodage de position rotatif en 3D (3D-RoPE), renforçant de façon significative la perception et le raisonnement des relations spatiales tridimensionnelles. Grâce aux optimisations apportées lors des phases de pré-entraînement, d'affinage supervisé et d'apprentissage par renforcement, ce modèle est capable de traiter divers contenus visuels, notamment des images, des vidéos et des documents longs, et atteint un niveau de pointe parmi les modèles open source de la même catégorie sur 41 benchmarks multimodaux publics. De plus, le modèle intègre un interrupteur « mode réflexion » permettant aux utilisateurs de choisir de manière flexible entre réponses rapides et raisonnement approfondi, pour équilibrer efficacité et qualité."
2710
2770
  }
2711
2771
  }
@@ -26,6 +26,9 @@
26
26
  "bedrock": {
27
27
  "description": "Bedrock est un service proposé par Amazon AWS, axé sur la fourniture de modèles linguistiques et visuels avancés pour les entreprises. Sa famille de modèles comprend la série Claude d'Anthropic, la série Llama 3.1 de Meta, etc., offrant une variété d'options allant des modèles légers aux modèles haute performance, prenant en charge des tâches telles que la génération de texte, les dialogues et le traitement d'images, adaptées aux applications d'entreprise de différentes tailles et besoins."
28
28
  },
29
+ "bfl": {
30
+ "description": "Un laboratoire de recherche en intelligence artificielle à la pointe, construisant l'infrastructure visuelle de demain."
31
+ },
29
32
  "cloudflare": {
30
33
  "description": "Exécutez des modèles d'apprentissage automatique alimentés par GPU sans serveur sur le réseau mondial de Cloudflare."
31
34
  },
@@ -1,4 +1,9 @@
1
1
  {
2
+ "ArgsInput": {
3
+ "addArgument": "Aggiungi parametro",
4
+ "argumentPlaceholder": "Parametro {{index}}",
5
+ "enterFirstArgument": "Inserisci il primo parametro..."
6
+ },
2
7
  "DragUpload": {
3
8
  "dragDesc": "Trascina i file qui, supporta il caricamento di più immagini.",
4
9
  "dragFileDesc": "Trascina immagini e file qui, supporta il caricamento di più immagini e file.",
@@ -125,6 +130,12 @@
125
130
  },
126
131
  "progress": {
127
132
  "uploadingWithCount": "{{completed}}/{{total}} caricati"
133
+ },
134
+ "validation": {
135
+ "fileSizeExceeded": "Dimensione del file superiore al limite consentito",
136
+ "fileSizeExceededDetail": "{{fileName}} ({{actualSize}}) supera la dimensione massima consentita di {{maxSize}}",
137
+ "fileSizeExceededMultiple": "{{count}} file superano la dimensione massima consentita di {{maxSize}}: {{fileList}}",
138
+ "imageCountExceeded": "Numero di immagini superiore al limite consentito"
128
139
  }
129
140
  },
130
141
  "OllamaSetupGuide": {
@@ -85,6 +85,17 @@
85
85
  "CreateMessageError": "Ci dispiace, il messaggio non è stato inviato correttamente. Si prega di copiare il contenuto e inviarlo nuovamente. Dopo aver aggiornato la pagina, questo messaggio non verrà conservato.",
86
86
  "ExceededContextWindow": "Il contenuto della richiesta attuale supera la lunghezza che il modello può gestire. Si prega di ridurre la quantità di contenuto e riprovare.",
87
87
  "FreePlanLimit": "Attualmente sei un utente gratuito e non puoi utilizzare questa funzione. Per favore, passa a un piano a pagamento per continuare.",
88
+ "GoogleAIBlockReason": {
89
+ "BLOCKLIST": "Il tuo contenuto contiene termini proibiti. Controlla e modifica l'input, quindi riprova.",
90
+ "IMAGE_SAFETY": "La generazione dell'immagine è stata bloccata per motivi di sicurezza. Prova a modificare la richiesta di generazione dell'immagine.",
91
+ "LANGUAGE": "La lingua utilizzata non è attualmente supportata. Prova a ripetere la richiesta in inglese o in un'altra lingua supportata.",
92
+ "OTHER": "Il contenuto è stato bloccato per un motivo non specificato. Prova a riformulare la tua richiesta.",
93
+ "PROHIBITED_CONTENT": "La tua richiesta potrebbe contenere contenuti vietati. Modifica la richiesta per assicurarti che rispetti le norme d'uso.",
94
+ "RECITATION": "Il contenuto è stato bloccato perché potrebbe coinvolgere questioni di copyright. Prova a utilizzare contenuti originali o a riformulare la richiesta.",
95
+ "SAFETY": "Il contenuto è stato bloccato per motivi di sicurezza. Modifica la richiesta evitando contenuti potenzialmente dannosi o inappropriati.",
96
+ "SPII": "Il tuo contenuto potrebbe contenere informazioni personali sensibili. Per proteggere la privacy, rimuovi tali informazioni e riprova.",
97
+ "default": "Contenuto bloccato: {{blockReason}}. Modifica la tua richiesta e riprova."
98
+ },
88
99
  "InsufficientQuota": "Ci dispiace, la quota per questa chiave ha raggiunto il limite. Si prega di controllare il saldo dell'account o di aumentare la quota della chiave e riprovare.",
89
100
  "InvalidAccessCode": "Password incorrect or empty, please enter the correct access password, or add a custom API Key",
90
101
  "InvalidBedrockCredentials": "Autenticazione Bedrock non riuscita, controlla AccessKeyId/SecretAccessKey e riprova",
@@ -332,12 +332,21 @@
332
332
  "Qwen/Qwen3-30B-A3B-Instruct-2507": {
333
333
  "description": "Qwen3-30B-A3B-Instruct-2507 è una versione aggiornata della modalità non pensante di Qwen3-30B-A3B. Si tratta di un modello esperto misto (MoE) con un totale di 30,5 miliardi di parametri e 3,3 miliardi di parametri attivi. Il modello presenta miglioramenti chiave in diversi ambiti, tra cui un significativo potenziamento nella capacità di seguire istruzioni, ragionamento logico, comprensione del testo, matematica, scienze, programmazione e utilizzo di strumenti. Inoltre, ha fatto progressi sostanziali nella copertura della conoscenza multilingue a coda lunga e si allinea meglio alle preferenze degli utenti in compiti soggettivi e aperti, permettendo di generare risposte più utili e testi di qualità superiore. La capacità di comprensione di testi lunghi è stata estesa fino a 256K. Questo modello supporta esclusivamente la modalità non pensante e non genera tag `<think></think>` nell'output."
334
334
  },
335
+ "Qwen/Qwen3-30B-A3B-Thinking-2507": {
336
+ "description": "Qwen3-30B-A3B-Thinking-2507 è l'ultimo modello dedicato al pensiero della serie Qwen3 pubblicato dal team Tongyi Qianwen di Alibaba. In qualità di modello Mixture-of-Experts (MoE) con 30,5 miliardi di parametri totali e 3,3 miliardi di parametri attivi, è progettato per migliorare la capacità di affrontare compiti complessi. Il modello mostra miglioramenti significativi in benchmark accademici che richiedono ragionamento logico, matematica, scienze, programmazione e competenze specialistiche umane. Allo stesso tempo, le capacità generali sono state sensibilmente potenziate in ambiti quali l'aderenza alle istruzioni, l'uso di strumenti, la generazione di testo e l'allineamento alle preferenze umane. Il modello supporta nativamente la comprensione di contesti lunghi fino a 256K e può essere esteso fino a 1.000.000 di token. Questa versione è progettata per la modalità di pensiero, mirata a risolvere compiti altamente complessi tramite un ragionamento passo dopo passo approfondito, e dimostra inoltre ottime capacità come agente."
337
+ },
335
338
  "Qwen/Qwen3-32B": {
336
339
  "description": "Qwen3 è un nuovo modello di Tongyi Qianwen con capacità notevolmente migliorate, raggiungendo livelli leader del settore in ragionamento, generico, agenti e multilingue, e supporta il passaggio della modalità di pensiero."
337
340
  },
338
341
  "Qwen/Qwen3-8B": {
339
342
  "description": "Qwen3 è un nuovo modello di Tongyi Qianwen con capacità notevolmente migliorate, raggiungendo livelli leader del settore in ragionamento, generico, agenti e multilingue, e supporta il passaggio della modalità di pensiero."
340
343
  },
344
+ "Qwen/Qwen3-Coder-30B-A3B-Instruct": {
345
+ "description": "Qwen3-Coder-30B-A3B-Instruct è un modello per codice della serie Qwen3 sviluppato dal team Tongyi Qianwen di Alibaba. Come modello snellito e ottimizzato, mantiene elevate prestazioni ed efficienza concentrandosi sul miglioramento delle capacità di elaborazione del codice. Questo modello mostra vantaggi prestazionali significativi rispetto ai modelli open source in compiti complessi quali programmazione agentica (Agentic Coding), automazione delle operazioni del browser e invocazione di strumenti. Supporta nativamente contesti lunghi fino a 256K token ed è estendibile fino a 1M token, consentendo una comprensione e una gestione migliori a livello di repository di codice. Inoltre, il modello offre un solido supporto per la codifica agentica su piattaforme come Qwen Code e CLINE ed è progettato con un formato dedicato per le chiamate di funzione."
346
+ },
347
+ "Qwen/Qwen3-Coder-480B-A35B-Instruct": {
348
+ "description": "Qwen3-Coder-480B-A35B-Instruct è un modello di codice rilasciato da Alibaba, finora il più dotato di capacità agentiche. Si tratta di un modello Mixture-of-Experts (MoE) con 480 miliardi di parametri totali e 35 miliardi di parametri attivi, che bilancia efficienza e prestazioni. Il modello supporta nativamente una lunghezza di contesto di 256K (circa 260.000) token e può essere esteso fino a 1 milione di token tramite metodi di estrapolazione come YaRN, permettendogli di gestire codebase di grandi dimensioni e compiti di programmazione complessi. Qwen3-Coder è progettato per flussi di lavoro di codifica basati su agenti: non solo genera codice, ma può anche interagire autonomamente con strumenti e ambienti di sviluppo per risolvere problemi di programmazione complessi. In diversi benchmark su compiti di codifica e agent, il modello si colloca ai vertici tra i modelli open source, con prestazioni comparabili a quelle di modelli di riferimento come Claude Sonnet 4."
349
+ },
341
350
  "Qwen2-72B-Instruct": {
342
351
  "description": "Qwen2 è l'ultima serie del modello Qwen, supporta un contesto di 128k, e rispetto ai modelli open source attualmente migliori, Qwen2-72B supera significativamente i modelli leader attuali in comprensione del linguaggio naturale, conoscenza, codice, matematica e capacità multilingue."
343
352
  },
@@ -1103,12 +1112,27 @@
1103
1112
  "flux-dev": {
1104
1113
  "description": "FLUX.1 [dev] è un modello open source raffinato e pesato per uso non commerciale. Mantiene qualità d'immagine e aderenza alle istruzioni simili alla versione professionale FLUX, ma con maggiore efficienza operativa. Rispetto a modelli standard di dimensioni simili, utilizza le risorse in modo più efficiente."
1105
1114
  },
1115
+ "flux-kontext-max": {
1116
+ "description": "All'avanguardia nella generazione e modifica di immagini contestuali — combina testo e immagini per risultati precisi e coerenti."
1117
+ },
1118
+ "flux-kontext-pro": {
1119
+ "description": "Generazione e modifica di immagini contestuali all'avanguardia — combina testo e immagini per ottenere risultati precisi e coerenti."
1120
+ },
1106
1121
  "flux-kontext/dev": {
1107
1122
  "description": "Modello FLUX.1 focalizzato su compiti di modifica delle immagini, supporta input di testo e immagini."
1108
1123
  },
1109
1124
  "flux-merged": {
1110
1125
  "description": "Il modello FLUX.1-merged combina le caratteristiche approfondite esplorate nella fase di sviluppo \"DEV\" con i vantaggi di esecuzione rapida rappresentati da \"Schnell\". Questa combinazione non solo estende i limiti di prestazione del modello, ma ne amplia anche l'ambito di applicazione."
1111
1126
  },
1127
+ "flux-pro": {
1128
+ "description": "Modello AI commerciale di generazione di immagini di prim'ordine — qualità delle immagini e varietà degli output senza eguali."
1129
+ },
1130
+ "flux-pro-1.1": {
1131
+ "description": "Versione avanzata del modello AI professionale per la generazione di immagini — offre qualità delle immagini superiore e una capacità precisa di attenersi ai prompt."
1132
+ },
1133
+ "flux-pro-1.1-ultra": {
1134
+ "description": "Generazione di immagini AI ad altissima risoluzione — supporta output fino a 4 megapixel, genera immagini in altissima definizione in meno di 10 secondi."
1135
+ },
1112
1136
  "flux-pro/kontext": {
1113
1137
  "description": "FLUX.1 Kontext [pro] è in grado di elaborare testo e immagini di riferimento come input, realizzando senza soluzione di continuità modifiche locali mirate e complesse trasformazioni dell'intera scena."
1114
1138
  },
@@ -1193,6 +1217,9 @@
1193
1217
  "gemini-2.5-flash": {
1194
1218
  "description": "Gemini 2.5 Flash è il modello Google con il miglior rapporto qualità-prezzo, offrendo funzionalità complete."
1195
1219
  },
1220
+ "gemini-2.5-flash-image-preview": {
1221
+ "description": "Gemini 2.5 Flash Image Preview è il modello multimodale nativo più recente, veloce ed efficiente di Google, che consente di generare e modificare immagini tramite conversazioni."
1222
+ },
1196
1223
  "gemini-2.5-flash-lite": {
1197
1224
  "description": "Gemini 2.5 Flash-Lite è il modello più piccolo e conveniente di Google, progettato per un utilizzo su larga scala."
1198
1225
  },
@@ -1295,6 +1322,9 @@
1295
1322
  "glm-4.5-x": {
1296
1323
  "description": "Versione ultra-veloce di GLM-4.5, con prestazioni potenti e velocità di generazione fino a 100 token al secondo."
1297
1324
  },
1325
+ "glm-4.5v": {
1326
+ "description": "Una nuova generazione di modello di ragionamento visivo basato sull'architettura MOE, con 106 miliardi di parametri totali e 12 miliardi di parametri di attivazione, che raggiunge lo SOTA tra i modelli multimodali open source della stessa fascia a livello globale in vari benchmark, coprendo attività comuni come la comprensione di immagini, video, documenti e compiti GUI."
1327
+ },
1298
1328
  "glm-4v": {
1299
1329
  "description": "GLM-4V offre potenti capacità di comprensione e ragionamento visivo, supportando vari compiti visivi."
1300
1330
  },
@@ -1434,7 +1464,7 @@
1434
1464
  "description": "GPT-4.1 mini offre un equilibrio tra intelligenza, velocità e costo, rendendolo un modello attraente per molti casi d'uso."
1435
1465
  },
1436
1466
  "gpt-4.5-preview": {
1437
- "description": "Anteprima di ricerca di GPT-4.5, il nostro modello GPT più grande e potente fino ad oggi. Possiede una vasta conoscenza del mondo e comprende meglio le intenzioni degli utenti, eccellendo in compiti creativi e nella pianificazione autonoma. GPT-4.5 accetta input testuali e visivi e genera output testuali (inclusi output strutturati). Supporta funzionalità chiave per gli sviluppatori, come chiamate di funzione, API in batch e output in streaming. GPT-4.5 si distingue particolarmente in compiti che richiedono pensiero creativo, aperto e dialogo (come scrittura, apprendimento o esplorazione di nuove idee). La data di scadenza delle conoscenze è ottobre 2023."
1467
+ "description": "GPT-4.5-preview è il modello più recente a uso generale, dotato di una solida conoscenza del mondo e di una migliore comprensione delle intenzioni degli utenti; è particolarmente abile nelle attività creative e nella pianificazione autonoma. Le conoscenze del modello sono aggiornate a ottobre 2023."
1438
1468
  },
1439
1469
  "gpt-4o": {
1440
1470
  "description": "ChatGPT-4o è un modello dinamico, aggiornato in tempo reale per mantenere la versione più recente. Combina una potente comprensione e generazione del linguaggio, adatta a scenari di applicazione su larga scala, inclusi servizi clienti, educazione e supporto tecnico."
@@ -1637,9 +1667,18 @@
1637
1667
  "image-01-live": {
1638
1668
  "description": "Modello di generazione immagini con resa dettagliata, supporta generazione da testo a immagine e impostazioni di stile."
1639
1669
  },
1670
+ "imagen-4.0-fast-generate-001": {
1671
+ "description": "Imagen, serie di modelli testo-immagine di quarta generazione — versione Fast"
1672
+ },
1673
+ "imagen-4.0-generate-001": {
1674
+ "description": "Serie di modelli Imagen di quarta generazione per la generazione di immagini da testo"
1675
+ },
1640
1676
  "imagen-4.0-generate-preview-06-06": {
1641
1677
  "description": "Serie di modelli di generazione di immagini da testo di quarta generazione Imagen"
1642
1678
  },
1679
+ "imagen-4.0-ultra-generate-001": {
1680
+ "description": "Imagen, serie di modelli testo-in-immagine di quarta generazione, versione Ultra"
1681
+ },
1643
1682
  "imagen-4.0-ultra-generate-preview-06-06": {
1644
1683
  "description": "Serie di modelli di generazione di immagini da testo di quarta generazione Imagen versione Ultra"
1645
1684
  },
@@ -1679,6 +1718,9 @@
1679
1718
  "kimi-k2-0711-preview": {
1680
1719
  "description": "kimi-k2 è un modello base con architettura MoE dotato di potenti capacità di codice e Agent, con un totale di 1T parametri e 32B parametri attivi. Nei test di benchmark per ragionamento generale, programmazione, matematica e Agent, il modello K2 supera altri modelli open source principali."
1681
1720
  },
1721
+ "kimi-k2-turbo-preview": {
1722
+ "description": "kimi-k2 è un modello di base con architettura MoE che offre potenti capacità di programmazione e di agent, con 1T di parametri totali e 32B di parametri attivi. Nei benchmark delle principali categorie — ragionamento su conoscenze generali, programmazione, matematica e agent — il modello K2 supera gli altri modelli open source più diffusi."
1723
+ },
1682
1724
  "kimi-latest": {
1683
1725
  "description": "Il prodotto Kimi Smart Assistant utilizza il più recente modello Kimi, che potrebbe includere funzionalità non ancora stabili. Supporta la comprensione delle immagini e selezionerà automaticamente il modello di fatturazione 8k/32k/128k in base alla lunghezza del contesto della richiesta."
1684
1726
  },
@@ -1763,6 +1805,9 @@
1763
1805
  "llava:34b": {
1764
1806
  "description": "LLaVA è un modello multimodale che combina un codificatore visivo e Vicuna, per una potente comprensione visiva e linguistica."
1765
1807
  },
1808
+ "magistral-medium-latest": {
1809
+ "description": "Magistral Medium 1.1 è un modello di inferenza all'avanguardia rilasciato da Mistral AI a luglio 2025."
1810
+ },
1766
1811
  "mathstral": {
1767
1812
  "description": "MathΣtral è progettato per la ricerca scientifica e il ragionamento matematico, offre capacità di calcolo efficaci e interpretazione dei risultati."
1768
1813
  },
@@ -2094,7 +2139,7 @@
2094
2139
  "description": "o1-mini è un modello di inferenza rapido ed economico progettato per applicazioni di programmazione, matematica e scienza. Questo modello ha un contesto di 128K e una data di cutoff della conoscenza di ottobre 2023."
2095
2140
  },
2096
2141
  "o1-preview": {
2097
- "description": "o1 è il nuovo modello di inferenza di OpenAI, adatto a compiti complessi che richiedono una vasta conoscenza generale. Questo modello ha un contesto di 128K e una data di cutoff della conoscenza di ottobre 2023."
2142
+ "description": "Si concentra sul ragionamento avanzato e sulla risoluzione di problemi complessi, inclusi compiti matematici e scientifici. È particolarmente adatto per applicazioni che richiedono una comprensione profonda del contesto e flussi di lavoro autonomi."
2098
2143
  },
2099
2144
  "o1-pro": {
2100
2145
  "description": "La serie di modelli o1 è stata addestrata con apprendimento rinforzato, in grado di riflettere prima di rispondere ed eseguire compiti di ragionamento complessi. Il modello o1-pro utilizza più risorse computazionali per un pensiero più approfondito, offrendo risposte di qualità superiore in modo continuo."
@@ -2213,8 +2258,14 @@
2213
2258
  "qwen-coder-turbo-latest": {
2214
2259
  "description": "Modello di codice Tongyi Qwen."
2215
2260
  },
2261
+ "qwen-flash": {
2262
+ "description": "I modelli della serie 通义千问 sono i più veloci e a costi estremamente ridotti, adatti a compiti semplici."
2263
+ },
2216
2264
  "qwen-image": {
2217
- "description": "Potente modello di immagini grezze del team Qwen, con impressionante capacità di generazione di testo in cinese e stili visivi di immagini diversificati."
2265
+ "description": "Qwen-Image è un modello universale per la generazione di immagini che supporta molteplici stili artistici ed è particolarmente efficace nel rendering di testi complessi, in particolare nella resa di testi in cinese e in inglese. Il modello supporta layout a più righe, generazione di testo a livello di paragrafo e rappresentazione di dettagli ad alta precisione, permettendo la realizzazione di layout misti e design complessi che integrano testo e immagini."
2266
+ },
2267
+ "qwen-image-edit": {
2268
+ "description": "Il team Qwen ha pubblicato un modello professionale per l'editing delle immagini, che supporta sia l'editing semantico sia quello dell'aspetto visivo; è in grado di modificare con precisione il testo in cinese e in inglese e di eseguire operazioni di alta qualità come la trasformazione di stile e la rotazione di oggetti."
2218
2269
  },
2219
2270
  "qwen-long": {
2220
2271
  "description": "Qwen è un modello di linguaggio su larga scala che supporta contesti di testo lunghi e funzionalità di dialogo basate su documenti lunghi e multipli."
@@ -2241,7 +2292,7 @@
2241
2292
  "description": "Qwen Plus è una versione potenziata del modello linguistico di grandi dimensioni, che supporta input in diverse lingue, tra cui cinese e inglese."
2242
2293
  },
2243
2294
  "qwen-turbo": {
2244
- "description": "Qwen è un modello linguistico di grandi dimensioni che supporta input in diverse lingue, tra cui cinese e inglese."
2295
+ "description": "La versione 通义千问 Turbo non sarà più aggiornata; si consiglia di passare a 通义千问 Flash. 通义千问 è un modello linguistico di grandissime dimensioni che supporta l'immissione di testi in cinese, inglese e altre lingue."
2245
2296
  },
2246
2297
  "qwen-vl-chat-v1": {
2247
2298
  "description": "Qwen VL supporta modalità di interazione flessibili, inclusi modelli di domande e risposte multipli e creativi."
@@ -2558,9 +2609,15 @@
2558
2609
  "step-2x-large": {
2559
2610
  "description": "Nuova generazione del modello Xingchen Step, focalizzato sulla generazione di immagini di alta qualità basate su descrizioni testuali fornite dall'utente. Il nuovo modello produce immagini con texture più realistiche e capacità migliorate nella generazione di testo in cinese e inglese."
2560
2611
  },
2612
+ "step-3": {
2613
+ "description": "Questo modello possiede potenti capacità di percezione visiva e di ragionamento complesso. È in grado di eseguire con accuratezza la comprensione di conoscenze complesse trasversali a più domini, l'analisi incrociata di informazioni matematiche e visive, e di affrontare varie tipologie di problemi di analisi visiva nella vita quotidiana."
2614
+ },
2561
2615
  "step-r1-v-mini": {
2562
2616
  "description": "Questo modello è un grande modello di inferenza con potenti capacità di comprensione delle immagini, in grado di gestire informazioni visive e testuali, producendo contenuti testuali dopo un profondo ragionamento. Questo modello si distingue nel campo del ragionamento visivo, mostrando anche capacità di ragionamento matematico, codice e testo di primo livello. La lunghezza del contesto è di 100k."
2563
2617
  },
2618
+ "stepfun-ai/step3": {
2619
+ "description": "Step3 è un modello di inferenza multimodale all'avanguardia rilasciato da StepFun (阶跃星辰). È costruito su un'architettura Mixture of Experts (MoE) con 321 miliardi di parametri totali e 38 miliardi di parametri di attivazione. Il modello adotta un design end-to-end, pensato per minimizzare i costi di decodifica e al contempo offrire prestazioni di primo livello nel ragionamento visivo-linguistico. Grazie al design sinergico che combina Multi-Matrix Factorized Attention (MFA) e il disaccoppiamento attenzione-FFN (AFD), Step3 mantiene un'elevata efficienza sia sui più potenti acceleratori flagship sia su quelli di fascia bassa. Durante la fase di pre-addestramento, Step3 ha elaborato oltre 20T di token testuali e 4T di token misti immagine-testo, coprendo più di dieci lingue. Il modello ha raggiunto livelli leader tra i modelli open source in numerosi benchmark, inclusi matematica, codice e scenari multimodali."
2620
+ },
2564
2621
  "taichu_llm": {
2565
2622
  "description": "Il modello linguistico Taichu di Zīdōng ha una straordinaria capacità di comprensione del linguaggio e abilità in creazione di testi, domande di conoscenza, programmazione, calcoli matematici, ragionamento logico, analisi del sentimento e sintesi di testi. Combina in modo innovativo il pre-addestramento su grandi dati con una ricca conoscenza multi-sorgente, affinando continuamente la tecnologia degli algoritmi e assorbendo costantemente nuove conoscenze da dati testuali massivi, migliorando continuamente le prestazioni del modello. Fornisce agli utenti informazioni e servizi più convenienti e un'esperienza più intelligente."
2566
2623
  },
@@ -2707,5 +2764,8 @@
2707
2764
  },
2708
2765
  "zai-org/GLM-4.5-Air": {
2709
2766
  "description": "GLM-4.5-Air è un modello base progettato per applicazioni agenti intelligenti, che utilizza un'architettura Mixture-of-Experts (MoE). Ottimizzato profondamente per chiamate a strumenti, navigazione web, ingegneria del software e programmazione frontend, supporta integrazioni fluide con agenti di codice come Claude Code e Roo Code. Adotta una modalità di inferenza ibrida per adattarsi a scenari di ragionamento complessi e uso quotidiano."
2767
+ },
2768
+ "zai-org/GLM-4.5V": {
2769
+ "description": "GLM-4.5V è l’ultima generazione di modelli visivo‑linguistici (VLM) rilasciata da Zhipu AI (智谱 AI). Il modello è costruito sul modello testuale di punta GLM-4.5‑Air, che dispone di 106 miliardi di parametri totali e 12 miliardi di parametri di attivazione, e adotta un’architettura mixture-of-experts (MoE) con l’obiettivo di offrire prestazioni eccellenti a un costo di inferenza ridotto. Dal punto di vista tecnico, GLM-4.5V prosegue la linea di GLM-4.1V‑Thinking e introduce innovazioni come il codificatore di posizione rotazionale tridimensionale (3D‑RoPE), migliorando in modo significativo la percezione e il ragionamento sulle relazioni spaziali 3D. Grazie all’ottimizzazione nelle fasi di pre‑addestramento, fine‑tuning supervisionato e apprendimento per rinforzo, il modello è in grado di gestire diversi tipi di contenuti visivi — immagini, video e documenti lunghi — e ha raggiunto livelli di eccellenza tra i modelli open source della stessa categoria in 41 benchmark multimodali pubblici. Inoltre, il modello introduce un interruttore per la “modalità pensiero” che consente all’utente di scegliere con flessibilità tra risposte rapide e ragionamenti approfonditi, bilanciando efficienza ed efficacia."
2710
2770
  }
2711
2771
  }
@@ -26,6 +26,9 @@
26
26
  "bedrock": {
27
27
  "description": "Bedrock è un servizio offerto da Amazon AWS, focalizzato sulla fornitura di modelli linguistici e visivi AI avanzati per le aziende. La sua famiglia di modelli include la serie Claude di Anthropic, la serie Llama 3.1 di Meta e altro, coprendo una varietà di opzioni da leggere a ad alte prestazioni, supportando generazione di testo, dialogo, elaborazione di immagini e altro, adatta a diverse applicazioni aziendali di varie dimensioni e necessità."
28
28
  },
29
+ "bfl": {
30
+ "description": "Laboratorio di ricerca all'avanguardia nell'intelligenza artificiale, che costruisce l'infrastruttura visiva del domani."
31
+ },
29
32
  "cloudflare": {
30
33
  "description": "Esegui modelli di machine learning alimentati da GPU serverless sulla rete globale di Cloudflare."
31
34
  },
@@ -1,4 +1,9 @@
1
1
  {
2
+ "ArgsInput": {
3
+ "addArgument": "引数を追加",
4
+ "argumentPlaceholder": "引数 {{index}}",
5
+ "enterFirstArgument": "最初の引数を入力してください..."
6
+ },
2
7
  "DragUpload": {
3
8
  "dragDesc": "ここにファイルをドラッグ&ドロップしてください。複数の画像のアップロードがサポートされています。",
4
9
  "dragFileDesc": "ここに画像やファイルをドラッグ&ドロップしてください。複数の画像やファイルのアップロードがサポートされています。",
@@ -125,6 +130,12 @@
125
130
  },
126
131
  "progress": {
127
132
  "uploadingWithCount": "{{completed}}/{{total}} アップロード済み"
133
+ },
134
+ "validation": {
135
+ "fileSizeExceeded": "ファイルサイズが上限を超えています",
136
+ "fileSizeExceededDetail": "{{fileName}}({{actualSize}})は最大サイズ {{maxSize}} を超えています",
137
+ "fileSizeExceededMultiple": "{{count}} 個のファイルが最大サイズ {{maxSize}} を超えています:{{fileList}}",
138
+ "imageCountExceeded": "画像の数が上限を超えています"
128
139
  }
129
140
  },
130
141
  "OllamaSetupGuide": {
@@ -85,6 +85,17 @@
85
85
  "CreateMessageError": "申し訳ありませんが、メッセージを正常に送信できませんでした。内容をコピーして再送信してください。このページを更新すると、このメッセージは保持されません。",
86
86
  "ExceededContextWindow": "現在のリクエスト内容がモデルが処理できる長さを超えています。内容量を減らして再試行してください。",
87
87
  "FreePlanLimit": "現在は無料ユーザーですので、この機能を使用することはできません。有料プランにアップグレードして継続してください。",
88
+ "GoogleAIBlockReason": {
89
+ "BLOCKLIST": "入力内容に禁止されている語句が含まれています。内容を確認して修正してから、もう一度お試しください。",
90
+ "IMAGE_SAFETY": "生成された画像の内容は安全上の理由によりブロックされました。画像生成のリクエストを修正してお試しください。",
91
+ "LANGUAGE": "ご使用の言語は現在サポートされていません。英語やサポートされている他の言語で再度お試しください。",
92
+ "OTHER": "不明な理由により内容がブロックされました。リクエストを言い換えてお試しください。",
93
+ "PROHIBITED_CONTENT": "リクエストに禁止されている可能性のある内容が含まれています。リクエストを調整し、利用規約に従っていることを確認してください。",
94
+ "RECITATION": "著作権に関わる可能性があるため、内容がブロックされました。オリジナルの内容を使用するか、リクエストを言い換えてください。",
95
+ "SAFETY": "安全ポリシーにより内容がブロックされました。潜在的に有害または不適切な内容を含まないようにリクエストを調整してお試しください。",
96
+ "SPII": "機微な個人情報が含まれている可能性があります。プライバシー保護のため、該当する機密情報を削除してから再度お試しください。",
97
+ "default": "コンテンツがブロックされました:{{blockReason}}。リクエスト内容を調整してからもう一度お試しください。"
98
+ },
88
99
  "InsufficientQuota": "申し訳ありませんが、そのキーのクォータが上限に達しました。アカウントの残高を確認するか、キーのクォータを増やしてから再試行してください。",
89
100
  "InvalidAccessCode": "パスワードが正しくないか空です。正しいアクセスパスワードを入力するか、カスタムAPIキーを追加してください",
90
101
  "InvalidBedrockCredentials": "Bedrockの認証に失敗しました。AccessKeyId/SecretAccessKeyを確認してから再試行してください。",
@@ -113,18 +124,6 @@
113
124
  "PluginServerError": "プラグインサーバーのリクエストエラーが発生しました。以下のエラーメッセージを参考に、プラグインのマニフェストファイル、設定、サーバー実装を確認してください",
114
125
  "PluginSettingsInvalid": "このプラグインを使用するには、正しい設定が必要です。設定が正しいかどうか確認してください",
115
126
  "ProviderBizError": "リクエスト {{provider}} サービスでエラーが発生しました。以下の情報を確認して再試行してください。",
116
-
117
- "GoogleAIBlockReason": {
118
- "BLOCKLIST": "コンテンツに禁止された用語が含まれています。入力内容を確認・修正してから再試行してください。",
119
- "IMAGE_SAFETY": "生成された画像コンテンツが安全上の理由でブロックされました。画像生成リクエストを修正して再試行してください。",
120
- "LANGUAGE": "使用された言語はサポートされていません。英語またはその他のサポートされている言語で再質問してください。",
121
- "OTHER": "不明な理由でコンテンツがブロックされました。リクエストを言い換えるか、テクニカルサポートにお問い合わせください。",
122
- "PROHIBITED_CONTENT": "コンテンツに禁止されたコンテンツタイプが含まれている可能性があります。使用ガイドラインに準拠するようリクエストを調整してください。",
123
- "RECITATION": "著作権問題の可能性によりコンテンツがブロックされました。オリジナルコンテンツの使用またはリクエストの言い換えを試してください。",
124
- "SAFETY": "安全ポリシーによりコンテンツがブロックされました。有害または不適切な内容を避けるようリクエストを調整してください。",
125
- "SPII": "コンテンツに機密個人識別情報が含まれている可能性があります。プライバシー保護のため、関連する機密情報を削除してから再試行してください。",
126
- "default": "コンテンツがブロックされました:{{blockReason}}。リクエスト内容を調整してから再試行してください。"
127
- },
128
127
  "QuotaLimitReached": "申し訳ありませんが、現在のトークン使用量またはリクエスト回数がこのキーのクォータ上限に達しました。キーのクォータを増やすか、後でもう一度お試しください。",
129
128
  "StreamChunkError": "ストリーミングリクエストのメッセージブロック解析エラーです。現在のAPIインターフェースが標準仕様に準拠しているか確認するか、APIプロバイダーにお問い合わせください。",
130
129
  "SubscriptionKeyMismatch": "申し訳ありませんが、システムの一時的な障害により、現在のサブスクリプションの使用量が一時的に無効になっています。下のボタンをクリックしてサブスクリプションを復元するか、サポートを受けるためにメールでお問い合わせください。",