@lobehub/chat 1.114.6 → 1.116.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (152) hide show
  1. package/.cursor/rules/add-provider-doc.mdc +183 -0
  2. package/.cursor/rules/project-introduce.mdc +1 -15
  3. package/.cursor/rules/project-structure.mdc +227 -0
  4. package/.cursor/rules/testing-guide/db-model-test.mdc +5 -3
  5. package/.cursor/rules/testing-guide/testing-guide.mdc +153 -168
  6. package/.env.example +8 -0
  7. package/.github/workflows/claude.yml +1 -1
  8. package/.github/workflows/release.yml +3 -3
  9. package/.github/workflows/test.yml +10 -5
  10. package/CHANGELOG.md +50 -0
  11. package/CLAUDE.md +17 -33
  12. package/Dockerfile +5 -1
  13. package/Dockerfile.database +5 -1
  14. package/Dockerfile.pglite +5 -1
  15. package/changelog/v1.json +14 -0
  16. package/docs/development/basic/feature-development.mdx +1 -1
  17. package/docs/development/basic/feature-development.zh-CN.mdx +1 -1
  18. package/docs/development/basic/setup-development.mdx +10 -13
  19. package/docs/development/basic/setup-development.zh-CN.mdx +9 -12
  20. package/docs/self-hosting/environment-variables/model-provider.mdx +27 -2
  21. package/docs/self-hosting/environment-variables/model-provider.zh-CN.mdx +27 -2
  22. package/docs/usage/providers/bfl.mdx +68 -0
  23. package/docs/usage/providers/bfl.zh-CN.mdx +67 -0
  24. package/locales/ar/components.json +11 -0
  25. package/locales/ar/error.json +11 -0
  26. package/locales/ar/models.json +64 -4
  27. package/locales/ar/providers.json +3 -0
  28. package/locales/bg-BG/components.json +11 -0
  29. package/locales/bg-BG/error.json +11 -0
  30. package/locales/bg-BG/models.json +64 -4
  31. package/locales/bg-BG/providers.json +3 -0
  32. package/locales/de-DE/components.json +11 -0
  33. package/locales/de-DE/error.json +11 -12
  34. package/locales/de-DE/models.json +64 -4
  35. package/locales/de-DE/providers.json +3 -0
  36. package/locales/en-US/components.json +6 -0
  37. package/locales/en-US/error.json +11 -12
  38. package/locales/en-US/models.json +64 -4
  39. package/locales/en-US/providers.json +3 -0
  40. package/locales/es-ES/components.json +11 -0
  41. package/locales/es-ES/error.json +11 -0
  42. package/locales/es-ES/models.json +64 -6
  43. package/locales/es-ES/providers.json +3 -0
  44. package/locales/fa-IR/components.json +11 -0
  45. package/locales/fa-IR/error.json +11 -0
  46. package/locales/fa-IR/models.json +64 -4
  47. package/locales/fa-IR/providers.json +3 -0
  48. package/locales/fr-FR/components.json +11 -0
  49. package/locales/fr-FR/error.json +11 -12
  50. package/locales/fr-FR/models.json +64 -4
  51. package/locales/fr-FR/providers.json +3 -0
  52. package/locales/it-IT/components.json +11 -0
  53. package/locales/it-IT/error.json +11 -0
  54. package/locales/it-IT/models.json +64 -4
  55. package/locales/it-IT/providers.json +3 -0
  56. package/locales/ja-JP/components.json +11 -0
  57. package/locales/ja-JP/error.json +11 -12
  58. package/locales/ja-JP/models.json +64 -4
  59. package/locales/ja-JP/providers.json +3 -0
  60. package/locales/ko-KR/components.json +11 -0
  61. package/locales/ko-KR/error.json +11 -12
  62. package/locales/ko-KR/models.json +64 -6
  63. package/locales/ko-KR/providers.json +3 -0
  64. package/locales/nl-NL/components.json +11 -0
  65. package/locales/nl-NL/error.json +11 -0
  66. package/locales/nl-NL/models.json +62 -4
  67. package/locales/nl-NL/providers.json +3 -0
  68. package/locales/pl-PL/components.json +11 -0
  69. package/locales/pl-PL/error.json +11 -0
  70. package/locales/pl-PL/models.json +64 -4
  71. package/locales/pl-PL/providers.json +3 -0
  72. package/locales/pt-BR/components.json +11 -0
  73. package/locales/pt-BR/error.json +11 -0
  74. package/locales/pt-BR/models.json +64 -4
  75. package/locales/pt-BR/providers.json +3 -0
  76. package/locales/ru-RU/components.json +11 -0
  77. package/locales/ru-RU/error.json +11 -0
  78. package/locales/ru-RU/models.json +64 -4
  79. package/locales/ru-RU/providers.json +3 -0
  80. package/locales/tr-TR/components.json +11 -0
  81. package/locales/tr-TR/error.json +11 -0
  82. package/locales/tr-TR/models.json +64 -4
  83. package/locales/tr-TR/providers.json +3 -0
  84. package/locales/vi-VN/components.json +11 -0
  85. package/locales/vi-VN/error.json +11 -0
  86. package/locales/vi-VN/models.json +64 -4
  87. package/locales/vi-VN/providers.json +3 -0
  88. package/locales/zh-CN/components.json +6 -0
  89. package/locales/zh-CN/error.json +11 -0
  90. package/locales/zh-CN/models.json +64 -4
  91. package/locales/zh-CN/providers.json +3 -0
  92. package/locales/zh-TW/components.json +11 -0
  93. package/locales/zh-TW/error.json +11 -12
  94. package/locales/zh-TW/models.json +64 -6
  95. package/locales/zh-TW/providers.json +3 -0
  96. package/package.json +4 -4
  97. package/packages/const/src/image.ts +28 -0
  98. package/packages/const/src/index.ts +1 -0
  99. package/packages/database/package.json +4 -2
  100. package/packages/database/src/repositories/aiInfra/index.ts +1 -1
  101. package/packages/database/tests/setup-db.ts +3 -0
  102. package/packages/database/vitest.config.mts +33 -0
  103. package/packages/model-runtime/src/google/index.ts +3 -0
  104. package/packages/model-runtime/src/qwen/createImage.test.ts +0 -19
  105. package/packages/model-runtime/src/qwen/createImage.ts +1 -27
  106. package/packages/model-runtime/src/utils/modelParse.ts +1 -1
  107. package/packages/model-runtime/src/utils/streams/google-ai.ts +26 -14
  108. package/packages/types/src/aiModel.ts +2 -1
  109. package/packages/utils/src/client/imageDimensions.test.ts +95 -0
  110. package/packages/utils/src/client/imageDimensions.ts +54 -0
  111. package/packages/utils/src/number.test.ts +3 -1
  112. package/packages/utils/src/number.ts +1 -2
  113. package/src/app/[variants]/(main)/image/@menu/components/SeedNumberInput/index.tsx +1 -1
  114. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/components/DimensionControlGroup.tsx +0 -1
  115. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/components/ImageUpload.tsx +16 -6
  116. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/components/ImageUrl.tsx +14 -2
  117. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/components/ImageUrlsUpload.tsx +27 -2
  118. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/components/MultiImagesUpload/index.tsx +23 -5
  119. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/hooks/useAutoDimensions.ts +56 -0
  120. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/index.tsx +82 -5
  121. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/utils/__tests__/dimensionConstraints.test.ts +235 -0
  122. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/utils/__tests__/imageValidation.test.ts +401 -0
  123. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/utils/dimensionConstraints.ts +54 -0
  124. package/src/app/[variants]/(main)/image/@topic/features/Topics/TopicItem.tsx +3 -1
  125. package/src/app/[variants]/(main)/image/@topic/features/Topics/TopicList.tsx +15 -2
  126. package/src/app/[variants]/(main)/image/features/GenerationFeed/GenerationItem/utils.ts +5 -4
  127. package/src/config/aiModels/google.ts +22 -1
  128. package/src/config/aiModels/qwen.ts +2 -2
  129. package/src/config/aiModels/vertexai.ts +22 -0
  130. package/src/libs/standard-parameters/index.ts +1 -1
  131. package/src/server/services/generation/index.ts +1 -1
  132. package/src/store/chat/slices/builtinTool/actions/dalle.test.ts +20 -13
  133. package/src/store/file/slices/upload/action.ts +18 -7
  134. package/src/store/image/slices/generationConfig/hooks.ts +1 -1
  135. package/tsconfig.json +1 -10
  136. package/.cursor/rules/debug.mdc +0 -193
  137. package/packages/const/src/imageGeneration.ts +0 -16
  138. package/src/app/(backend)/trpc/desktop/[trpc]/route.ts +0 -26
  139. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/components/AspectRatioSelect.tsx +0 -24
  140. package/src/app/[variants]/(main)/image/@menu/features/ConfigPanel/components/SizeSliderInput.tsx +0 -15
  141. package/src/app/[variants]/(main)/image/@topic/features/Topics/TopicItemContainer.tsx +0 -91
  142. package/src/app/desktop/devtools/page.tsx +0 -89
  143. package/src/app/desktop/layout.tsx +0 -31
  144. /package/apps/desktop/{vitest.config.ts → vitest.config.mts} +0 -0
  145. /package/packages/database/{vitest.config.ts → vitest.config.server.mts} +0 -0
  146. /package/packages/electron-server-ipc/{vitest.config.ts → vitest.config.mts} +0 -0
  147. /package/packages/file-loaders/{vitest.config.ts → vitest.config.mts} +0 -0
  148. /package/packages/model-runtime/{vitest.config.ts → vitest.config.mts} +0 -0
  149. /package/packages/prompts/{vitest.config.ts → vitest.config.mts} +0 -0
  150. /package/packages/utils/{vitest.config.ts → vitest.config.mts} +0 -0
  151. /package/packages/web-crawler/{vitest.config.ts → vitest.config.mts} +0 -0
  152. /package/{vitest.config.ts → vitest.config.mts} +0 -0
@@ -332,12 +332,21 @@
332
332
  "Qwen/Qwen3-30B-A3B-Instruct-2507": {
333
333
  "description": "Qwen3-30B-A3B-Instruct-2507 هو نسخة محدثة من Qwen3-30B-A3B في وضع عدم التفكير. هذا نموذج خبير مختلط (MoE) يحتوي على 30.5 مليار معلمة إجمالية و3.3 مليار معلمة تنشيط. تم تعزيز النموذج بشكل كبير في عدة جوانب، بما في ذلك تحسين كبير في الالتزام بالتعليمات، والتفكير المنطقي، وفهم النصوص، والرياضيات، والعلوم، والبرمجة، واستخدام الأدوات. كما حقق تقدمًا ملموسًا في تغطية المعرفة متعددة اللغات، ويستطيع التوافق بشكل أفضل مع تفضيلات المستخدم في المهام الذاتية والمفتوحة، مما يمكنه من توليد ردود أكثر فائدة ونصوص ذات جودة أعلى. بالإضافة إلى ذلك، تم تعزيز قدرة النموذج على فهم النصوص الطويلة إلى 256 ألف رمز. هذا النموذج يدعم فقط وضع عدم التفكير، ولن ينتج علامات `<think></think>` في مخرجاته."
334
334
  },
335
+ "Qwen/Qwen3-30B-A3B-Thinking-2507": {
336
+ "description": "Qwen3-30B-A3B-Thinking-2507 هو أحدث نموذج من سلسلة Qwen3 أصدره فريق Tongyi Qianwen في علي بابا. كنموذج خبير مختلط (MoE) يضم إجمالي 305 亿 (30.5 مليار) معلمة و33 亿 (3.3 مليار) معلمة تنشيط، يركز على تعزيز قدرة معالجة المهام المعقدة. أظهر هذا النموذج تحسناً ملحوظاً في الاستدلال المنطقي والرياضيات والعلوم والبرمجة والاختبارات المعيارية الأكاديمية التي تتطلب خبرة بشرية متخصصة. وفي الوقت نفسه، تحسنت قدراته العامة بشكل كبير في الالتزام بالتعليمات واستخدام الأدوات وتوليد النصوص ومحاذاة التفضيلات البشرية. يدعم النموذج أصلاً فهم سياق طويل بطول 256K وقابل للتوسع ليصل إلى مليون توكن. تم تصميم هذا الإصدار لوضع \"التفكير\"، ويهدف إلى حل المهام شديدة التعقيد من خلال استدلال تفصيلي خطوة بخطوة، كما برزت قدرات الوكلاء (Agent) فيه بشكل مميز."
337
+ },
335
338
  "Qwen/Qwen3-32B": {
336
339
  "description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الاستدلال، المهام العامة، الوكلاء، واللغات المتعددة، ويدعم تبديل وضع التفكير."
337
340
  },
338
341
  "Qwen/Qwen3-8B": {
339
342
  "description": "Qwen3 هو نموذج جديد من الجيل التالي مع تحسينات كبيرة في القدرات، حيث يصل إلى مستويات رائدة في الاستدلال، المهام العامة، الوكلاء، واللغات المتعددة، ويدعم تبديل وضع التفكير."
340
343
  },
344
+ "Qwen/Qwen3-Coder-30B-A3B-Instruct": {
345
+ "description": "Qwen3-Coder-30B-A3B-Instruct هو نموذج شيفرة من سلسلة Qwen3 طوّرته فريق Tongyi Qianwen التابع لشركة علي بابا. كنموذج مُبسّط ومُحسّن، يركز على تعزيز قدرات معالجة الشيفرة مع الحفاظ على أداء وكفاءة عاليتين. يُظهر هذا النموذج مزايا أداء بارزة بين النماذج مفتوحة المصدر في مهام معقدة مثل البرمجة الوكِيلية (Agentic Coding)، التشغيل الآلي لمتصفحات الويب واستدعاء الأدوات. يدعم النموذج بطبيعته سياقاً طويلاً يصل إلى 256K توكن، وقابلاً للتوسيع حتى 1M توكن، مما يتيح فهماً ومعالجة أفضل على مستوى مستودعات الشيفرة. بالإضافة إلى ذلك، يوفر النموذج دعماً قوياً للترميز الوكيل على منصات مثل Qwen Code وCLINE، وقد صُمّم بصيغة استدعاء دوال مخصّصة."
346
+ },
347
+ "Qwen/Qwen3-Coder-480B-A35B-Instruct": {
348
+ "description": "Qwen3-Coder-480B-A35B-Instruct هو نموذج برمجي أطلقته شركة علي بابا، ويعد حتى الآن الأكثر قدرةً على العمل كوكيل (Agentic). إنه نموذج مختلط الخبراء (Mixture-of-Experts, MoE) يضم 480 مليار معامل إجماليًا و35 مليار معامل نشط، محققًا توازنًا بين الكفاءة والأداء. يدعم النموذج بشكل أصلي طول سياق يصل إلى 256K (حوالي 260 ألف) توكن، ويمكن توسيعه عبر طرق استطراد مثل YaRN إلى مليون توكن، ممّا يمكّنه من التعامل مع مستودعات شفرة ضخمة ومهام برمجية معقّدة. صُمم Qwen3-Coder لسير عمل ترميز يعتمد على الوكلاء؛ فهو لا يولّد الشفرة فحسب، بل يتفاعل بشكلٍ مستقل مع أدوات وبيئات التطوير لحل مشكلات برمجية معقّدة. في اختبارات معيارية متعددة لمهام التكويد والوكالة، حقق النموذج مستوى متقدمًا بين النماذج مفتوحة المصدر، ويمكن أن ينافس نماذج رائدة مثل Claude Sonnet 4."
349
+ },
341
350
  "Qwen2-72B-Instruct": {
342
351
  "description": "Qwen2 هو أحدث سلسلة من نموذج Qwen، ويدعم سياقًا يصل إلى 128 ألف، مقارنةً بأفضل النماذج مفتوحة المصدر الحالية، يتفوق Qwen2-72B بشكل ملحوظ في فهم اللغة الطبيعية والمعرفة والترميز والرياضيات والقدرات متعددة اللغات."
343
352
  },
@@ -1103,12 +1112,27 @@
1103
1112
  "flux-dev": {
1104
1113
  "description": "FLUX.1 [dev] هو نموذج مفتوح المصدر للأوزان المكررة موجه للتطبيقات غير التجارية. يحافظ على جودة الصور وقدرة اتباع التعليمات مماثلة لإصدار FLUX الاحترافي، مع كفاءة تشغيل أعلى. مقارنة بالنماذج القياسية ذات الحجم المماثل، يستخدم الموارد بشكل أكثر فعالية."
1105
1114
  },
1115
+ "flux-kontext-max": {
1116
+ "description": "توليد وتحرير الصور السياقية بأحدث التقنيات — يجمع بين النص والصور لتحقيق نتائج دقيقة ومتسقة."
1117
+ },
1118
+ "flux-kontext-pro": {
1119
+ "description": "توليد وتحرير الصور السياقية بأحدث التقنيات — يجمع بين النص والصورة للحصول على نتائج دقيقة ومتسقة."
1120
+ },
1106
1121
  "flux-kontext/dev": {
1107
1122
  "description": "نموذج FLUX.1 مخصص لمهام تحرير الصور، يدعم إدخال النصوص والصور."
1108
1123
  },
1109
1124
  "flux-merged": {
1110
1125
  "description": "نموذج FLUX.1-merged يجمع بين ميزات العمق التي استكشفتها نسخة \"DEV\" أثناء التطوير ومزايا التنفيذ السريع التي تمثلها نسخة \"Schnell\". من خلال هذا الدمج، يعزز FLUX.1-merged حدود أداء النموذج ويوسع نطاق تطبيقاته."
1111
1126
  },
1127
+ "flux-pro": {
1128
+ "description": "نموذج توليد صور بالذكاء الاصطناعي من الطراز الأول للاستخدام التجاري — جودة صور لا تضاهى وقدرة عالية على إنتاج مخرجات متنوعة."
1129
+ },
1130
+ "flux-pro-1.1": {
1131
+ "description": "نموذج متقدم احترافي لتوليد الصور بالذكاء الاصطناعي — يوفر جودة صور استثنائية وقدرة دقيقة على الالتزام بالمطالبات."
1132
+ },
1133
+ "flux-pro-1.1-ultra": {
1134
+ "description": "توليد صور بالذكاء الاصطناعي بدقة فائقة — يدعم إخراج يصل إلى 4 ميجابكسل ويولد صورًا فائقة الوضوح خلال 10 ثوانٍ."
1135
+ },
1112
1136
  "flux-pro/kontext": {
1113
1137
  "description": "FLUX.1 Kontext [pro] قادر على معالجة النصوص والصور المرجعية كمدخلات، مما يتيح تحريرًا محليًا مستهدفًا وتحولات معقدة للمشهد الكلي بسلاسة."
1114
1138
  },
@@ -1193,6 +1217,9 @@
1193
1217
  "gemini-2.5-flash": {
1194
1218
  "description": "Gemini 2.5 Flash هو نموذج Google الأكثر فعالية من حيث التكلفة، ويوفر وظائف شاملة."
1195
1219
  },
1220
+ "gemini-2.5-flash-image-preview": {
1221
+ "description": "Gemini 2.5 Flash Image Preview هو أحدث وأسرع وأكثر كفاءة نموذج متعدد الوسائط أصلي من Google، ويتيح لك إنشاء الصور وتحريرها من خلال المحادثة."
1222
+ },
1196
1223
  "gemini-2.5-flash-lite": {
1197
1224
  "description": "Gemini 2.5 Flash-Lite هو أصغر وأفضل نموذج من حيث التكلفة من Google، مصمم للاستخدام على نطاق واسع."
1198
1225
  },
@@ -1295,6 +1322,9 @@
1295
1322
  "glm-4.5-x": {
1296
1323
  "description": "نسخة فائقة السرعة من GLM-4.5، تجمع بين أداء قوي وسرعة توليد تصل إلى 100 رمز في الثانية."
1297
1324
  },
1325
+ "glm-4.5v": {
1326
+ "description": "نموذج استدلال بصري من الجيل الجديد لشركة Zhipu مبني على بنية MOE، بإجمالي 106 مليار معامل و12 مليار معامل نشط، وقد بلغ مستوى الأداء الأعلى (SOTA) بين نماذج التعدد الوسائط مفتوحة المصدر المماثلة على مستوى العالم في عدة اختبارات معيارية، ويغطي مهامًا شائعة مثل فهم الصور والفيديو والمستندات وواجهات المستخدم الرسومية (GUI)."
1327
+ },
1298
1328
  "glm-4v": {
1299
1329
  "description": "GLM-4V يوفر قدرات قوية في فهم الصور والاستدلال، ويدعم مجموعة متنوعة من المهام البصرية."
1300
1330
  },
@@ -1434,7 +1464,7 @@
1434
1464
  "description": "يوفر GPT-4.1 mini توازنًا بين الذكاء والسرعة والتكلفة، مما يجعله نموذجًا جذابًا للعديد من الاستخدامات."
1435
1465
  },
1436
1466
  "gpt-4.5-preview": {
1437
- "description": "نسخة المعاينة البحثية لـ GPT-4.5، وهي أكبر وأقوى نموذج GPT لدينا حتى الآن. تتمتع بمعرفة واسعة عن العالم وتفهم أفضل لنوايا المستخدم، مما يجعلها بارعة في المهام الإبداعية والتخطيط الذاتي. يمكن لـ GPT-4.5 قبول المدخلات النصية والصورية وتوليد مخرجات نصية (بما في ذلك المخرجات الهيكلية). تدعم ميزات المطورين الأساسية مثل استدعاء الدوال، وواجهة برمجة التطبيقات الجماعية، والمخرجات المتدفقة. تتألق GPT-4.5 بشكل خاص في المهام التي تتطلب التفكير الإبداعي، والتفكير المفتوح، والحوار (مثل الكتابة، والتعلم، أو استكشاف أفكار جديدة). تاريخ انتهاء المعرفة هو أكتوبر 2023."
1467
+ "description": "GPT-4.5-preview هو أحدث نموذج عام متعدد الأغراض، يتمتع بمعرفة عالمية عميقة وفهم محسن لنوايا المستخدم، ويتفوق في المهام الإبداعية وفي تخطيط الوكلاء. معارف هذا النموذج محدّثة حتى أكتوبر 2023."
1438
1468
  },
1439
1469
  "gpt-4o": {
1440
1470
  "description": "ChatGPT-4o هو نموذج ديناميكي يتم تحديثه في الوقت الحقيقي للحفاظ على أحدث إصدار. يجمع بين فهم اللغة القوي وقدرات التوليد، مما يجعله مناسبًا لمجموعة واسعة من التطبيقات، بما في ذلك خدمة العملاء والتعليم والدعم الفني."
@@ -1637,9 +1667,18 @@
1637
1667
  "image-01-live": {
1638
1668
  "description": "نموذج توليد صور يقدم تفاصيل دقيقة، يدعم توليد الصور من النصوص مع إمكانية ضبط الأسلوب الفني."
1639
1669
  },
1670
+ "imagen-4.0-fast-generate-001": {
1671
+ "description": "Imagen، سلسلة نماذج تحويل النص إلى صورة من الجيل الرابع، الإصدار السريع"
1672
+ },
1673
+ "imagen-4.0-generate-001": {
1674
+ "description": "سلسلة نماذج Imagen لتحويل النص إلى صورة من الجيل الرابع"
1675
+ },
1640
1676
  "imagen-4.0-generate-preview-06-06": {
1641
1677
  "description": "سلسلة نموذج Imagen للجيل الرابع لتحويل النص إلى صورة"
1642
1678
  },
1679
+ "imagen-4.0-ultra-generate-001": {
1680
+ "description": "سلسلة نماذج Imagen لتحويل النص إلى صورة من الجيل الرابع — إصدار Ultra"
1681
+ },
1643
1682
  "imagen-4.0-ultra-generate-preview-06-06": {
1644
1683
  "description": "نسخة ألترا من سلسلة نموذج Imagen للجيل الرابع لتحويل النص إلى صورة"
1645
1684
  },
@@ -1679,6 +1718,9 @@
1679
1718
  "kimi-k2-0711-preview": {
1680
1719
  "description": "kimi-k2 هو نموذج أساسي بمعمارية MoE يتمتع بقدرات فائقة في البرمجة والوكيل، مع إجمالي 1 تريليون معلمة و32 مليار معلمة مفعلة. في اختبارات الأداء الأساسية في مجالات المعرفة العامة، البرمجة، الرياضيات، والوكيل، يتفوق نموذج K2 على النماذج المفتوحة المصدر الرئيسية الأخرى."
1681
1720
  },
1721
+ "kimi-k2-turbo-preview": {
1722
+ "description": "kimi-k2 هو نموذج أساسي بمعمارية MoE يتمتع بقدرات قوية للغاية في البرمجة وقدرات الوكيل (Agent)، بإجمالي معلمات يبلغ 1 تريليون والمعلمات المُفعَّلة 32 مليار. في اختبارات الأداء المعيارية للفئات الرئيسية مثل الاستدلال المعرفي العام والبرمجة والرياضيات والوكلاء (Agent)، تفوق أداء نموذج K2 على النماذج المفتوحة المصدر السائدة الأخرى."
1723
+ },
1682
1724
  "kimi-latest": {
1683
1725
  "description": "يستخدم منتج كيمي المساعد الذكي أحدث نموذج كبير من كيمي، وقد يحتوي على ميزات لم تستقر بعد. يدعم فهم الصور، وسيختار تلقائيًا نموذج 8k/32k/128k كنموذج للتسعير بناءً على طول سياق الطلب."
1684
1726
  },
@@ -1763,6 +1805,9 @@
1763
1805
  "llava:34b": {
1764
1806
  "description": "LLaVA هو نموذج متعدد الوسائط يجمع بين مشفرات بصرية وVicuna، يستخدم لفهم بصري ولغوي قوي."
1765
1807
  },
1808
+ "magistral-medium-latest": {
1809
+ "description": "Magistral Medium 1.1 هو نموذج استدلال رائد أطلقته Mistral AI في يوليو 2025."
1810
+ },
1766
1811
  "mathstral": {
1767
1812
  "description": "MathΣtral مصمم للبحث العلمي والاستدلال الرياضي، يوفر قدرة حسابية فعالة وتفسير النتائج."
1768
1813
  },
@@ -2094,7 +2139,7 @@
2094
2139
  "description": "o1-mini هو نموذج استدلال سريع وفعال من حيث التكلفة مصمم لتطبيقات البرمجة والرياضيات والعلوم. يحتوي هذا النموذج على 128K من السياق وتاريخ انتهاء المعرفة في أكتوبر 2023."
2095
2140
  },
2096
2141
  "o1-preview": {
2097
- "description": "o1 هو نموذج استدلال جديد من OpenAI، مناسب للمهام المعقدة التي تتطلب معرفة عامة واسعة. يحتوي هذا النموذج على 128K من السياق وتاريخ انتهاء المعرفة في أكتوبر 2023."
2142
+ "description": "يركّز على الاستدلال المتقدّم وحل المشكلات المعقّدة، بما في ذلك المهام الرياضية والعلمية. مناسب للغاية للتطبيقات التي تتطلّب فهماً عميقاً للسياق وسير عمل مستقل."
2098
2143
  },
2099
2144
  "o1-pro": {
2100
2145
  "description": "نماذج سلسلة o1 مدربة بالتعلم المعزز، قادرة على التفكير قبل الإجابة وتنفيذ مهام استدلال معقدة. يستخدم نموذج o1-pro موارد حسابية أكبر للتفكير الأعمق، مما يضمن تقديم إجابات ذات جودة أعلى باستمرار."
@@ -2213,8 +2258,14 @@
2213
2258
  "qwen-coder-turbo-latest": {
2214
2259
  "description": "نموذج Qwen للبرمجة."
2215
2260
  },
2261
+ "qwen-flash": {
2262
+ "description": "سلسلة Qwen-Flash هي الأسرع والأقل تكلفة بشكل كبير، ومناسبة للمهام البسيطة."
2263
+ },
2216
2264
  "qwen-image": {
2217
- "description": "نموذج قوي من فريق Qwen لتوليد الصور الخام، يتميز بقدرة مميزة على توليد النصوص الصينية وأنماط بصرية متنوعة للصور."
2265
+ "description": "Qwen-Image هي نموذج عام لتوليد الصور يدعم أنماطًا فنية متعددة، ويتميز بقدرته على عرض النصوص المعقدة، خصوصًا النصوص بالصينية والإنجليزية. يدعم النموذج تخطيطات متعددة الأسطر، وتوليد نص على مستوى الفقرات، وتمثيل التفاصيل الدقيقة، مما يتيح إنشاء تصميمات معقدة تمزج بين النص والصورة."
2266
+ },
2267
+ "qwen-image-edit": {
2268
+ "description": "أصدر فريق Qwen نموذجًا احترافيًا لتحرير الصور يدعم التحرير الدلالي وتحرير المظهر، ويستطيع تحرير النصوص بالصينية والإنجليزية بدقة، وتحقيق تحويلات النمط وتدوير الكائنات، وغيرها من عمليات تحرير الصور عالية الجودة."
2218
2269
  },
2219
2270
  "qwen-long": {
2220
2271
  "description": "نموذج Qwen العملاق للغة، يدعم سياقات نصية طويلة، بالإضافة إلى وظائف الحوار المستندة إلى الوثائق الطويلة والعديد من الوثائق."
@@ -2241,7 +2292,7 @@
2241
2292
  "description": "نموذج لغة ضخم من توغي، نسخة معززة، يدعم إدخال لغات مختلفة مثل الصينية والإنجليزية."
2242
2293
  },
2243
2294
  "qwen-turbo": {
2244
- "description": "نموذج لغة ضخم من توغي، يدعم إدخال لغات مختلفة مثل الصينية والإنجليزية."
2295
+ "description": "لن يتم تحديث 通义千问 Turbo مستقبلًا؛ يُنصح باستبداله بـ 通义千问 Flash. 通义千问 هو نموذج لغوي ضخم جدًا ويدعم إدخال لغات مختلفة مثل الصينية والإنجليزية."
2245
2296
  },
2246
2297
  "qwen-vl-chat-v1": {
2247
2298
  "description": "نموذج Qwen العملاق للغة البصرية يدعم طرق تفاعل مرنة، بما في ذلك الصور المتعددة، والأسئلة والأجوبة المتعددة، والإبداع."
@@ -2558,9 +2609,15 @@
2558
2609
  "step-2x-large": {
2559
2610
  "description": "نموذج الجيل الجديد من Step Star، يركز على مهام توليد الصور، قادر على توليد صور عالية الجودة بناءً على الأوصاف النصية المقدمة من المستخدم. يتميز النموذج الجديد بجودة صور أكثر واقعية وقدرات أفضل في توليد النصوص الصينية والإنجليزية."
2560
2611
  },
2612
+ "step-3": {
2613
+ "description": "يمتلك هذا النموذج قدرة فائقة على الإدراك البصري وعلى الاستدلال المعقّد. يمكنه إنجاز فهم دقيق للمعارف المعقّدة عبر مجالات متعدّدة، وإجراء تحليلات تقاطعية بين المعلومات الرياضية والبصرية، وكذلك معالجة مختلف مسائل التحليل البصري في الحياة اليومية."
2614
+ },
2561
2615
  "step-r1-v-mini": {
2562
2616
  "description": "هذا النموذج هو نموذج استدلال كبير يتمتع بقدرة قوية على فهم الصور، يمكنه معالجة المعلومات النصية والصورية، ويخرج نصوصًا بعد تفكير عميق. يظهر هذا النموذج أداءً بارزًا في مجال الاستدلال البصري، كما يمتلك قدرات رياضية، برمجية، ونصية من الدرجة الأولى. طول السياق هو 100k."
2563
2617
  },
2618
+ "stepfun-ai/step3": {
2619
+ "description": "Step3 هو نموذج استدلال متعدد الوسائط متقدم أصدرته شركة 阶跃星辰 (StepFun). بُني على بنية مزيج الخبراء (MoE) التي تضم 321 مليار معلمة إجمالية و38 مليار معلمة تنشيط. صُمم النموذج بنهج من الطرف إلى الطرف ليقلل تكلفة فك الترميز، مع تقديم أداء رائد في الاستدلال البصري-اللغوي. من خلال التصميم التعاوني لآلية انتباه تفكيك متعدد المصفوفات (MFA) وفصل الانتباه عن شبكة التغذية الأمامية (AFD)، يحافظ Step3 على كفاءة ممتازة على كل من المسرعات الرائدة والمسرعات منخفضة التكلفة. في مرحلة ما قبل التدريب عالج Step3 أكثر من 20 تريليون توكن نصي و4 تريليون توكن مختلط نص-صورة، مغطياً أكثر من عشر لغات. حقق النموذج أداءً متقدماً بين نماذج المصدر المفتوح في عدة معايير قياسية تشمل الرياضيات والبرمجة والمهام متعددة الوسائط."
2620
+ },
2564
2621
  "taichu_llm": {
2565
2622
  "description": "نموذج اللغة الكبير TaiChu يتمتع بقدرات قوية في فهم اللغة، بالإضافة إلى إنشاء النصوص، والإجابة على الأسئلة، وبرمجة الأكواد، والحسابات الرياضية، والاستدلال المنطقي، وتحليل المشاعر، وتلخيص النصوص. يجمع بشكل مبتكر بين التدريب المسبق على البيانات الضخمة والمعرفة الغنية من مصادر متعددة، من خلال تحسين تقنيات الخوارزميات باستمرار واستيعاب المعرفة الجديدة من البيانات النصية الضخمة، مما يحقق تطورًا مستمرًا في أداء النموذج. يوفر للمستخدمين معلومات وخدمات أكثر سهولة وتجربة أكثر ذكاءً."
2566
2623
  },
@@ -2707,5 +2764,8 @@
2707
2764
  },
2708
2765
  "zai-org/GLM-4.5-Air": {
2709
2766
  "description": "GLM-4.5-Air هو نموذج أساسي مصمم لتطبيقات الوكلاء الذكية، يستخدم بنية Mixture-of-Experts (MoE). تم تحسينه بعمق في مجالات استدعاء الأدوات، تصفح الويب، هندسة البرمجيات، وبرمجة الواجهة الأمامية، ويدعم التكامل السلس مع وكلاء الكود مثل Claude Code وRoo Code. يستخدم وضع استدلال مختلط ليتكيف مع سيناريوهات الاستدلال المعقدة والاستخدام اليومي."
2767
+ },
2768
+ "zai-org/GLM-4.5V": {
2769
+ "description": "GLM-4.5V هو نموذج لغوي بصري (VLM) من الجيل الأحدث صدر عن Zhipu AI (智谱 AI). بُني النموذج على نموذج النص الرائد GLM-4.5-Air الذي يحتوي على 106B من المعاملات الإجمالية و12B من معاملات التنشيط، ويعتمد على بنية الخبراء المختلطين (MoE) بهدف تحقيق أداء متميز بتكلفة استدلال أقل. من الناحية التقنية، يواصل GLM-4.5V نهج GLM-4.1V-Thinking ويقدّم ابتكارات مثل ترميز المواقع الدوراني ثلاثي الأبعاد (3D-RoPE)، مما عزّز بشكل ملحوظ قدرته على إدراك واستنتاج العلاقات المكانية ثلاثية الأبعاد. وبفضل تحسينات في مراحل ما قبل التدريب، والتعديل بالإشراف، والتعلّم المعزّز، أصبح النموذج قادراً على معالجة محتوى بصري متنوّع مثل الصور والفيديوهات والمستندات الطويلة، وقد حقق مستوى متقدماً ضمن أفضل نماذج المصدر المفتوح في 41 معياراً متعدد الوسائط منشوراً. بالإضافة إلى ذلك، أضاف النموذج مفتاح \"وضع التفكير\" الذي يتيح للمستخدمين التبديل بين الاستجابة السريعة والاستدلال العميق بحرية لتوازن أفضل بين الكفاءة والفعالية."
2710
2770
  }
2711
2771
  }
@@ -26,6 +26,9 @@
26
26
  "bedrock": {
27
27
  "description": "Bedrock هي خدمة تقدمها أمازون AWS، تركز على توفير نماذج لغة ورؤية متقدمة للذكاء الاصطناعي للشركات. تشمل عائلة نماذجها سلسلة Claude من Anthropic وسلسلة Llama 3.1 من Meta، وتغطي مجموعة من الخيارات من النماذج الخفيفة إلى عالية الأداء، وتدعم مهام مثل توليد النصوص، والحوار، ومعالجة الصور، مما يجعلها مناسبة لتطبيقات الشركات بمختلف أحجامها واحتياجاتها."
28
28
  },
29
+ "bfl": {
30
+ "description": "مختبر أبحاث رائد في مقدمة الذكاء الاصطناعي، يبني البنية التحتية البصرية للمستقبل."
31
+ },
29
32
  "cloudflare": {
30
33
  "description": "تشغيل نماذج التعلم الآلي المدفوعة بوحدات معالجة الرسوميات بدون خادم على شبكة Cloudflare العالمية."
31
34
  },
@@ -1,4 +1,9 @@
1
1
  {
2
+ "ArgsInput": {
3
+ "addArgument": "Добави параметър",
4
+ "argumentPlaceholder": "Параметър {{index}}",
5
+ "enterFirstArgument": "Въведете първия параметър..."
6
+ },
2
7
  "DragUpload": {
3
8
  "dragDesc": "Плъзнете файлове тук, поддържа качване на множество изображения.",
4
9
  "dragFileDesc": "Плъзнете изображения и файлове тук, поддържа качване на множество изображения и файлове.",
@@ -125,6 +130,12 @@
125
130
  },
126
131
  "progress": {
127
132
  "uploadingWithCount": "{{completed}}/{{total}} качени"
133
+ },
134
+ "validation": {
135
+ "fileSizeExceeded": "Превишен допустим размер на файла",
136
+ "fileSizeExceededDetail": "{{fileName}} ({{actualSize}}) надвишава максимално допустимия размер {{maxSize}}",
137
+ "fileSizeExceededMultiple": "{{count}} файла надвишават максимално допустимия размер {{maxSize}}: {{fileList}}",
138
+ "imageCountExceeded": "Надвишен е допустимият брой изображения"
128
139
  }
129
140
  },
130
141
  "OllamaSetupGuide": {
@@ -85,6 +85,17 @@
85
85
  "CreateMessageError": "Съжалявам, съобщението не можа да бъде изпратено успешно. Моля, копирайте съдържанието и го изпратете отново. След опресняване на страницата, това съобщение няма да бъде запазено.",
86
86
  "ExceededContextWindow": "Текущото съдържание на заявката надвишава дължината, която моделът може да обработи. Моля, намалете обема на съдържанието и опитайте отново.",
87
87
  "FreePlanLimit": "В момента сте потребител на безплатен план и не можете да използвате тази функционалност. Моля, надстройте до платен план, за да продължите да я използвате.",
88
+ "GoogleAIBlockReason": {
89
+ "BLOCKLIST": "Вашето съдържание съдържа забранени думи. Моля, прегледайте и коригирайте входа си и опитайте отново。",
90
+ "IMAGE_SAFETY": "Генерираното изображение е блокирано поради съображения за сигурност. Моля, опитайте да модифицирате заявката за генериране на изображение。",
91
+ "LANGUAGE": "Езикът, който използвате, в момента не се поддържа. Моля, опитайте с английски или друг поддържан език。",
92
+ "OTHER": "Съдържанието е блокирано по неизвестна причина. Моля, опитайте да преформулирате заявката си。",
93
+ "PROHIBITED_CONTENT": "Вашата заявка може да съдържа забранено съдържание. Моля, коригирайте заявката, за да съответства на правилата за използване。",
94
+ "RECITATION": "Вашето съдържание е блокирано поради възможни нарушения на авторското право. Моля, опитайте с оригинално съдържание или преформулирайте заявката си。",
95
+ "SAFETY": "Вашето съдържание е блокирано поради политики за безопасност. Моля, коригирайте заявката си, като избягвате потенциално вредно или неподходящо съдържание。",
96
+ "SPII": "Вашето съдържание може да съдържа чувствителна лична информация. За защита на поверителността, моля премахнете съответната чувствителна информация и опитайте отново。",
97
+ "default": "Съдържанието е блокирано: {{blockReason}}。请调整您的请求内容后重试。"
98
+ },
88
99
  "InsufficientQuota": "Съжаляваме, квотата за този ключ е достигнала лимита. Моля, проверете баланса на акаунта си или увеличете квотата на ключа и опитайте отново.",
89
100
  "InvalidAccessCode": "Невалиден или празен код за достъп. Моля, въведете правилния код за достъп или добавете персонализиран API ключ.",
90
101
  "InvalidBedrockCredentials": "Удостоверяването на Bedrock е неуспешно. Моля, проверете AccessKeyId/SecretAccessKey и опитайте отново.",
@@ -332,12 +332,21 @@
332
332
  "Qwen/Qwen3-30B-A3B-Instruct-2507": {
333
333
  "description": "Qwen3-30B-A3B-Instruct-2507 е обновена версия на Qwen3-30B-A3B в режим без мислене. Това е хибриден експертен (MoE) модел с общо 30,5 милиарда параметри и 3,3 милиарда активни параметри. Моделът е получил ключови подобрения в множество аспекти, включително значително подобрена способност за следване на инструкции, логическо разсъждение, разбиране на текст, математика, наука, кодиране и използване на инструменти. Освен това, той постига съществен напредък в покритието на дългоопашатите знания на многоезично ниво и по-добре се съгласува с предпочитанията на потребителите при субективни и отворени задачи, което позволява генериране на по-полезни отговори и по-висококачествен текст. Освен това, способността му за разбиране на дълги текстове е увеличена до 256K. Този модел поддържа само режим без мислене и в изхода му не се генерират тагове `<think></think>`."
334
334
  },
335
+ "Qwen/Qwen3-30B-A3B-Thinking-2507": {
336
+ "description": "Qwen3-30B-A3B-Thinking-2507 е най-новият мисловен модел от серията Qwen3, публикуван от екипа Tongyi Qianwen на Alibaba. Като хибриден модел от типа Mixture of Experts (MoE) с общо 30,5 милиарда параметри и 3,3 милиарда активни параметри, той е насочен към повишаване на възможностите за справяне със сложни задачи. Моделът показва значително подобрение в логическото разсъждение, математиката, естествените науки, програмирането и академичните бенчмаркове, изискващи човешка експертиза. В същото време общите му способности — следване на инструкции, използване на инструменти, генериране на текст и съгласуване с човешките предпочитания — също са значително подсилени. Моделът поддържа нативно дълъг контекст до 256K и може да бъде разширен до 1 000 000 токена. Тази версия е специално проектирана за мисловен режим, с цел да решава изключително сложни задачи чрез подробни стъпкови разсъждения; агентните ѝ възможности също се представят отлично."
337
+ },
335
338
  "Qwen/Qwen3-32B": {
336
339
  "description": "Qwen3 е ново поколение модел на Tongyi Qianwen с значително подобрени способности, достигащи водещо ниво в индустрията в разсъждения, общи, агенти и многоезични основни способности, и поддържа превключване на режим на мислене."
337
340
  },
338
341
  "Qwen/Qwen3-8B": {
339
342
  "description": "Qwen3 е ново поколение модел на Tongyi Qianwen с значително подобрени способности, достигащи водещо ниво в индустрията в разсъждения, общи, агенти и многоезични основни способности, и поддържа превключване на режим на мислене."
340
343
  },
344
+ "Qwen/Qwen3-Coder-30B-A3B-Instruct": {
345
+ "description": "Qwen3-Coder-30B-A3B-Instruct е кодов модел от серията Qwen3, разработен от екипа Tongyi Qianwen на Alibaba. Като рационализиран и оптимизиран модел, той запазва висока производителност и ефективност, като същевременно е фокусиран върху подобряване на възможностите за обработка на код. Моделът показва значително предимство сред отворените модели при сложни задачи като агентно програмиране (Agentic Coding), автоматизирани браузърни операции и извикване на инструменти. Той предлага нативна поддръжка за дълги контексти до 256K токена и може да се разшири до 1M токена, което позволява по-добро разбиране и обработка на ниво кодова база. Освен това моделът предоставя силна поддръжка за агентно кодиране в платформи като Qwen Code и CLINE и е проектирал специален формат за извикване на функции."
346
+ },
347
+ "Qwen/Qwen3-Coder-480B-A35B-Instruct": {
348
+ "description": "Qwen3-Coder-480B-A35B-Instruct е публикуван от Alibaba и до момента е един от най-агентно ориентираните (agentic) кодови модели. Това е смесен експертен (MoE) модел с общо 480 милиарда параметри и 35 милиарда активни параметри, който постига баланс между ефективност и производителност. Моделът поддържа родно контекстна дължина от 256K (прибл. 260 000) токена и може да бъде екстраполиран чрез методи като YaRN до 1 милион токена, което му позволява да обработва големи кодови бази и сложни програмистки задачи. Qwen3-Coder е специално проектиран за агентно ориентирани (agentic) кодови работни потоци — той не само генерира код, но може и автономно да взаимодейства с инструменти и среди за разработка, за да решава сложни програмистки проблеми. В множество бенчмаркове за кодиране и агентни задачи моделът постига водещи резултати сред отворените модели и неговата производителност е сравнима с тази на водещи модели като Claude Sonnet 4."
349
+ },
341
350
  "Qwen2-72B-Instruct": {
342
351
  "description": "Qwen2 е най-новата серия на модела Qwen, поддържаща 128k контекст. В сравнение с текущите най-добри отворени модели, Qwen2-72B значително надминава водещите модели в области като разбиране на естествен език, знания, код, математика и многоезичност."
343
352
  },
@@ -1103,12 +1112,27 @@
1103
1112
  "flux-dev": {
1104
1113
  "description": "FLUX.1 [dev] е отворен и пречистен модел, предназначен за нетърговска употреба. Той запазва качество на изображенията и способността за следване на инструкции, близки до професионалната версия на FLUX, като същевременно предлага по-висока ефективност на работа и по-добро използване на ресурсите в сравнение със стандартни модели със същия размер."
1105
1114
  },
1115
+ "flux-kontext-max": {
1116
+ "description": "Най-съвременно генериране и редактиране на контекстуални изображения — комбиниране на текст и изображения за постигане на прецизни и кохерентни резултати."
1117
+ },
1118
+ "flux-kontext-pro": {
1119
+ "description": "Най-съвременни възможности за контекстно генериране и редактиране на изображения — комбиниране на текст и изображения за постигане на прецизни и последователни резултати."
1120
+ },
1106
1121
  "flux-kontext/dev": {
1107
1122
  "description": "FLUX.1 модел, фокусиран върху задачи за редактиране на изображения, поддържащ текстови и визуални входни данни."
1108
1123
  },
1109
1124
  "flux-merged": {
1110
1125
  "description": "FLUX.1-merged комбинира дълбоките характеристики, изследвани в разработката на \"DEV\" версията, с високоскоростните предимства на \"Schnell\". Тази комбинация не само разширява границите на производителността на модела, но и увеличава обхвата на неговото приложение."
1111
1126
  },
1127
+ "flux-pro": {
1128
+ "description": "Водещ комерсиален модел за генериране на изображения с изкуствен интелект — несравнимо качество на изображенията и богато разнообразие на генерираните резултати."
1129
+ },
1130
+ "flux-pro-1.1": {
1131
+ "description": "Усъвършенстван професионален модел за генериране на изображения с изкуствен интелект — предлага изключително качество на изображенията и прецизно изпълнение на подадените подсказки."
1132
+ },
1133
+ "flux-pro-1.1-ultra": {
1134
+ "description": "Генериране на изображения с изкуствен интелект с изключително висока резолюция — поддържа изход 4 мегапиксела, създава ултраясни изображения за по-малко от 10 секунди."
1135
+ },
1112
1136
  "flux-pro/kontext": {
1113
1137
  "description": "FLUX.1 Kontext [pro] може да обработва текст и референтни изображения като вход, осигурявайки безпроблемно целенасочено локално редактиране и сложни трансформации на цялостната сцена."
1114
1138
  },
@@ -1193,6 +1217,9 @@
1193
1217
  "gemini-2.5-flash": {
1194
1218
  "description": "Gemini 2.5 Flash е най-ефективният модел на Google, предлагащ пълна функционалност."
1195
1219
  },
1220
+ "gemini-2.5-flash-image-preview": {
1221
+ "description": "Gemini 2.5 Flash Image Preview е най-новият, най-бързият и най-ефективният роден мултимодален модел на Google; той ви позволява чрез диалог да създавате и редактирате изображения."
1222
+ },
1196
1223
  "gemini-2.5-flash-lite": {
1197
1224
  "description": "Gemini 2.5 Flash-Lite е най-малкият и най-ефективен модел на Google, създаден специално за масово използване."
1198
1225
  },
@@ -1295,6 +1322,9 @@
1295
1322
  "glm-4.5-x": {
1296
1323
  "description": "Експресната версия на GLM-4.5, която съчетава силна производителност с генериране на скорост до 100 токена в секунда."
1297
1324
  },
1325
+ "glm-4.5v": {
1326
+ "description": "Новото поколение визуален модел за разсъждение на Zhipu, базиран на MOE архитектура, с общо 106B параметри и 12B активни параметри, постига SOTA сред отворените мултимодални модели в своя клас в различни бенчмаркове, обхващайки често срещани задачи като обработка на изображения, видео, разбиране на документи и GUI задачи."
1327
+ },
1298
1328
  "glm-4v": {
1299
1329
  "description": "GLM-4V предлага мощни способности за разбиране и разсъждение на изображения, поддържаща множество визуални задачи."
1300
1330
  },
@@ -1434,7 +1464,7 @@
1434
1464
  "description": "GPT-4.1 mini предлага баланс между интелигентност, скорост и разходи, което го прави привлекателен модел за много случаи на употреба."
1435
1465
  },
1436
1466
  "gpt-4.5-preview": {
1437
- "description": "Изследователската предварителна версия на GPT-4.5, която е нашият най-голям и мощен GPT модел до момента. Тя притежава обширни знания за света и може по-добре да разбира намеренията на потребителите, което я прави изключително ефективна в креативни задачи и автономно планиране. GPT-4.5 приема текстови и изображен вход и генерира текстови изход (включително структурирани изходи). Поддържа ключови функции за разработчици, като извикване на функции, пакетно API и потоков изход. В задачи, изискващи креативно, открито мислене и диалог (като писане, учене или изследване на нови идеи), GPT-4.5 показва особени способности. Крайната дата на знанията е октомври 2023."
1467
+ "description": "GPT-4.5-preview е най-новият универсален модел, който притежава задълбочени световни познания и по-добро разбиране на намеренията на потребителите, отличава се в творчески задачи и при планирането на агенти. Знанията на модела са актуални до октомври 2023 г."
1438
1468
  },
1439
1469
  "gpt-4o": {
1440
1470
  "description": "ChatGPT-4o е динамичен модел, който се актуализира в реално време, за да поддържа най-новата версия. Той комбинира мощно разбиране на езика и генериране на текст, подходящ за мащабни приложения, включително обслужване на клиенти, образование и техническа поддръжка."
@@ -1637,9 +1667,18 @@
1637
1667
  "image-01-live": {
1638
1668
  "description": "Модел за генериране на изображения с фини детайли, поддържащ генериране от текст и настройка на стил."
1639
1669
  },
1670
+ "imagen-4.0-fast-generate-001": {
1671
+ "description": "Imagen — серия модели за преобразуване от текст към изображение от 4-то поколение, бърза версия"
1672
+ },
1673
+ "imagen-4.0-generate-001": {
1674
+ "description": "Imagen: серия от модели от 4-то поколение за генериране на изображения от текст"
1675
+ },
1640
1676
  "imagen-4.0-generate-preview-06-06": {
1641
1677
  "description": "Imagen 4-то поколение текст-към-изображение модел серия"
1642
1678
  },
1679
+ "imagen-4.0-ultra-generate-001": {
1680
+ "description": "Imagen, 4-то поколение модел за преобразуване на текст в изображение, серия Ultra"
1681
+ },
1643
1682
  "imagen-4.0-ultra-generate-preview-06-06": {
1644
1683
  "description": "Imagen 4-то поколение текст-към-изображение модел серия Ултра версия"
1645
1684
  },
@@ -1679,6 +1718,9 @@
1679
1718
  "kimi-k2-0711-preview": {
1680
1719
  "description": "kimi-k2 е базов модел с MoE архитектура с изключителни способности за кодиране и агентски функции, с общо 1 трилион параметри и 32 милиарда активни параметри. В тестове за общо знание, програмиране, математика и агентски задачи, моделът K2 превъзхожда други водещи отворени модели."
1681
1720
  },
1721
+ "kimi-k2-turbo-preview": {
1722
+ "description": "Kimi-k2 е базов модел с MoE архитектура, който притежава изключителни възможности за работа с код и агентни функции. Общият брой параметри е 1T, а активните параметри са 32B. В бенчмарковете за основни категории като общо знание и разсъждение, програмиране, математика и агентни задачи, моделът K2 превъзхожда другите водещи отворени модели."
1723
+ },
1682
1724
  "kimi-latest": {
1683
1725
  "description": "Kimi интелигентен асистент използва най-новия Kimi голям модел, който може да съдържа нестабилни функции. Поддържа разбиране на изображения и автоматично избира 8k/32k/128k модел за таксуване в зависимост от дължината на контекста на заявката."
1684
1726
  },
@@ -1763,6 +1805,9 @@
1763
1805
  "llava:34b": {
1764
1806
  "description": "LLaVA е многомодален модел, комбиниращ визуален кодер и Vicuna, предназначен за мощно визуално и езиково разбиране."
1765
1807
  },
1808
+ "magistral-medium-latest": {
1809
+ "description": "Magistral Medium 1.1 е водещ модел за инференция, публикуван от Mistral AI през юли 2025 г."
1810
+ },
1766
1811
  "mathstral": {
1767
1812
  "description": "MathΣtral е проектиран за научни изследвания и математически разсъждения, предоставяйки ефективни изчислителни способности и интерпретация на резултати."
1768
1813
  },
@@ -2094,7 +2139,7 @@
2094
2139
  "description": "o1-mini е бърз и икономичен модел за изводи, проектиран за приложения в програмирането, математиката и науката. Моделът разполага с контекст от 128K и дата на знание до октомври 2023."
2095
2140
  },
2096
2141
  "o1-preview": {
2097
- "description": "o1 е новият модел за изводи на OpenAI, подходящ за сложни задачи, изискващи обширни общи знания. Моделът разполага с контекст от 128K и дата на знание до октомври 2023."
2142
+ "description": "Фокусиран върху усъвършенствано разсъждение и решаване на сложни проблеми, включително математически и научни задачи. Отлично подходящ за приложения, които изискват дълбоко разбиране на контекста и автономни работни процеси."
2098
2143
  },
2099
2144
  "o1-pro": {
2100
2145
  "description": "Моделите от серията o1 са обучени чрез подсилващо обучение, което им позволява да мислят преди да отговорят и да изпълняват сложни задачи за разсъждение. Моделът o1-pro използва повече изчислителни ресурси за по-задълбочено мислене, осигурявайки постоянно по-високо качество на отговорите."
@@ -2213,8 +2258,14 @@
2213
2258
  "qwen-coder-turbo-latest": {
2214
2259
  "description": "Моделът на кода Qwen."
2215
2260
  },
2261
+ "qwen-flash": {
2262
+ "description": "Серията \"Tongyi Qianwen\" включва най-бързите и с изключително ниски разходи модели, подходящи за прости задачи."
2263
+ },
2216
2264
  "qwen-image": {
2217
- "description": "Мощен модел за генериране на изображения от екипа на Qwen, с впечатляващи възможности за генериране на китайски текст и разнообразни визуални стилове на изображения."
2265
+ "description": "Qwen-Image е универсален модел за генериране на изображения, който поддържа множество художествени стилове и е особено добър в рендериране на сложни текстове, включително на китайски и английски. Моделът поддържа многоредови оформления, генериране на текст на ниво абзац и изобразяване на детайли с висока прецизност, позволявайки създаване на сложни комбинирани оформления от изображение и текст."
2266
+ },
2267
+ "qwen-image-edit": {
2268
+ "description": "Професионален модел за редактиране на изображения, публикуван от екипа на Qwen, който поддържа семантично редактиране и редактиране на външния вид и може прецизно да обработва текст на китайски и английски, извършвайки висококачествени редакции на изображения като трансформация на стил и въртене на обекти."
2218
2269
  },
2219
2270
  "qwen-long": {
2220
2271
  "description": "Qwen е мащабен езиков модел, който поддържа дълги текстови контексти и диалогови функции, базирани на дълги документи и множество документи."
@@ -2241,7 +2292,7 @@
2241
2292
  "description": "通义千问(Qwen) е подобрена версия на мащабен езиков модел, който поддържа вход на различни езици, включително китайски и английски."
2242
2293
  },
2243
2294
  "qwen-turbo": {
2244
- "description": "通义千问(Qwen) е мащабен езиков модел, който поддържа вход на различни езици, включително китайски и английски."
2295
+ "description": "Версията „Tongyi Qianwen Turbo“ няма да получава повече актуализации; препоръчваме да я замените с „Tongyi Qianwen Flash“. Tongyi Qianwen е много голям езиков модел, който поддържа въвеждане на китайски, английски и други езици."
2245
2296
  },
2246
2297
  "qwen-vl-chat-v1": {
2247
2298
  "description": "Qwen VL поддържа гъвкави интерактивни методи, включително множество изображения, многократни въпроси и отговори, творчество и др."
@@ -2558,9 +2609,15 @@
2558
2609
  "step-2x-large": {
2559
2610
  "description": "Новото поколение модел за генериране на изображения Step Star, специализиран в генериране на висококачествени изображения според текстови описания от потребителя. Новият модел създава по-реалистични текстури и има по-силни способности за генериране на китайски и английски текст."
2560
2611
  },
2612
+ "step-3": {
2613
+ "description": "Този модел притежава мощни способности за визуално възприятие и сложни разсъждения. Той може точно да извършва междудисциплинарно разбиране на сложни знания, съвместен анализ на математическа и визуална информация, както и да решава различни визуални аналитични задачи от ежедневието."
2614
+ },
2561
2615
  "step-r1-v-mini": {
2562
2616
  "description": "Този модел е мощен модел за разсъждение с отлични способности за разбиране на изображения, способен да обработва информация от изображения и текст, и след дълбочинно разсъждение да генерира текстово съдържание. Моделът показва изключителни резултати в областта на визуалните разсъждения, като същевременно притежава първокласни способности в математиката, кода и текстовите разсъждения. Дължината на контекста е 100k."
2563
2617
  },
2618
+ "stepfun-ai/step3": {
2619
+ "description": "Step3 е авангарден мултимодален модел за разсъждение, публикуван от StepFun (阶跃星辰). Той е изграден върху архитектура на смес от експерти (MoE) с общо 321 милиарда параметъра и 38 милиарда активни параметъра. Моделът е с енд-ту-енд дизайн, целящ минимизиране на разходите за декодиране, като същевременно предоставя водещи резултати във визуално-лингвистичното разсъждение. Чрез кооперативния дизайн на многоматрично факторизирано внимание (MFA) и декуплиране на внимание и FFN (AFD), Step3 поддържа отлична ефективност както на флагмански, така и на по-бюджетни ускорители. По време на предварителното обучение Step3 е обработил над 20 трилиона текстови токена и 4 трилиона смесени текстово-изображенчески токена, обхващайки повече от десет езика. Моделът постига водещи резултати сред отворените модели в множество бенчмаркове, включително математика, код и мултимодални задачи."
2620
+ },
2564
2621
  "taichu_llm": {
2565
2622
  "description": "Моделът на езика TaiChu е с изключителни способности за разбиране на езика, текстово генериране, отговори на знания, програмиране, математически изчисления, логическо разсъждение, анализ на емоции, резюмиране на текст и др. Иновативно комбинира предварително обучение с големи данни и разнообразни източници на знания, чрез непрекъснато усъвършенстване на алгоритмичните технологии и усвояване на нови знания от масивни текстови данни, за да осигури на потребителите по-удобна информация и услуги, както и по-интелигентно изживяване."
2566
2623
  },
@@ -2707,5 +2764,8 @@
2707
2764
  },
2708
2765
  "zai-org/GLM-4.5-Air": {
2709
2766
  "description": "GLM-4.5-Air е базов модел, специално създаден за интелигентни агенти, използващ архитектура с микс от експерти (Mixture-of-Experts). Той е дълбоко оптимизиран за използване на инструменти, уеб браузване, софтуерно инженерство и фронтенд програмиране, и поддържа безпроблемна интеграция с кодови агенти като Claude Code и Roo Code. GLM-4.5 използва смесен режим на разсъждение, подходящ за сложни и ежедневни приложения."
2767
+ },
2768
+ "zai-org/GLM-4.5V": {
2769
+ "description": "GLM-4.5V е най-новото поколение визуално-езиков модел (VLM), публикуван от Zhipu AI (智谱 AI). Моделът е изграден върху водещия текстов модел GLM-4.5-Air, който разполага с общо 106 милиарда параметри и 12 милиарда активационни параметри, и използва архитектура с разбъркани експерти (Mixture of Experts, MoE), целяща постигане на висока производителност при по-ниски разходи за инференция. Технически GLM-4.5V продължава линията на GLM-4.1V-Thinking и въвежда иновации като триизмерно ротационно позиционно кодиране (3D-RoPE), което значително засилва възприемането и разсъжденията относно триизмерните пространствени взаимовръзки. Чрез оптимизации в етапите на предварително обучение, супервизирано фино настройване и подсилено обучение, моделът може да обработва различни визуални формати — изображения, видео и дълги документи — и в 41 публични мултимодални бенчмарка достига водещи резултати сред отворените модели от същия клас. Освен това моделът добавя превключвател за 'режим на мислене', който позволява на потребителите гъвкаво да избират между бърз отговор и дълбоко разсъждение, за да балансират ефективността и качеството."
2710
2770
  }
2711
2771
  }
@@ -26,6 +26,9 @@
26
26
  "bedrock": {
27
27
  "description": "Bedrock е услуга, предоставяна от Amazon AWS, фокусирана върху предоставянето на напреднали AI езикови и визуални модели за предприятия. Семейството на моделите включва серията Claude на Anthropic, серията Llama 3.1 на Meta и други, обхващащи разнообразие от опции от леки до високо производителни, поддържащи текстово генериране, диалог, обработка на изображения и много други задачи, подходящи за различни мащаби и нужди на бизнес приложения."
28
28
  },
29
+ "bfl": {
30
+ "description": "Водеща изследователска лаборатория за авангарден изкуствен интелект, която изгражда визуалната инфраструктура на утрешния ден."
31
+ },
29
32
  "cloudflare": {
30
33
  "description": "Работа с модели на машинно обучение, задвижвани от безсървърни GPU, в глобалната мрежа на Cloudflare."
31
34
  },
@@ -1,4 +1,9 @@
1
1
  {
2
+ "ArgsInput": {
3
+ "addArgument": "Parameter hinzufügen",
4
+ "argumentPlaceholder": "Parameter {{index}}",
5
+ "enterFirstArgument": "Geben Sie den ersten Parameter ein..."
6
+ },
2
7
  "DragUpload": {
3
8
  "dragDesc": "Ziehen Sie Dateien hierher, um mehrere Bilder hochzuladen.",
4
9
  "dragFileDesc": "Ziehen Sie Bilder und Dateien hierher, um mehrere Bilder und Dateien hochzuladen.",
@@ -125,6 +130,12 @@
125
130
  },
126
131
  "progress": {
127
132
  "uploadingWithCount": "{{completed}}/{{total}} hochgeladen"
133
+ },
134
+ "validation": {
135
+ "fileSizeExceeded": "Maximale Dateigröße überschritten",
136
+ "fileSizeExceededDetail": "{{fileName}} ({{actualSize}}) überschreitet die maximal zulässige Größe von {{maxSize}}",
137
+ "fileSizeExceededMultiple": "{{count}} Dateien überschreiten die maximal zulässige Größe von {{maxSize}}: {{fileList}}",
138
+ "imageCountExceeded": "Maximale Anzahl an Bildern überschritten"
128
139
  }
129
140
  },
130
141
  "OllamaSetupGuide": {
@@ -85,6 +85,17 @@
85
85
  "CreateMessageError": "Es tut uns leid, die Nachricht konnte nicht erfolgreich gesendet werden. Bitte kopieren Sie den Inhalt und senden Sie ihn erneut. Nach dem Aktualisieren der Seite wird diese Nachricht nicht gespeichert.",
86
86
  "ExceededContextWindow": "Der aktuelle Anfrageinhalt überschreitet die von dem Modell verarbeitbare Länge. Bitte reduzieren Sie die Menge des Inhalts und versuchen Sie es erneut.",
87
87
  "FreePlanLimit": "Sie sind derzeit ein kostenloser Benutzer und können diese Funktion nicht nutzen. Bitte aktualisieren Sie auf ein kostenpflichtiges Abonnement, um fortzufahren.",
88
+ "GoogleAIBlockReason": {
89
+ "BLOCKLIST": "Ihr Inhalt enthält verbotene Begriffe. Bitte überprüfen und ändern Sie Ihre Eingabe und versuchen Sie es erneut.",
90
+ "IMAGE_SAFETY": "Die erzeugten Bildinhalte wurden aus Sicherheitsgründen blockiert. Bitte versuchen Sie, Ihre Bildgenerierungsanfrage zu ändern.",
91
+ "LANGUAGE": "Die von Ihnen verwendete Sprache wird derzeit nicht unterstützt. Bitte versuchen Sie es erneut auf Englisch oder in einer anderen unterstützten Sprache.",
92
+ "OTHER": "Der Inhalt wurde aus einem unbekannten Grund blockiert. Bitte formulieren Sie Ihre Anfrage neu und versuchen Sie es erneut.",
93
+ "PROHIBITED_CONTENT": "Ihre Anfrage könnte verbotene Inhalte enthalten. Bitte passen Sie Ihre Anfrage an und stellen Sie sicher, dass sie den Nutzungsrichtlinien entspricht.",
94
+ "RECITATION": "Ihr Inhalt wurde möglicherweise wegen möglicher Urheberrechtsverletzungen blockiert. Bitte verwenden Sie eigene Inhalte oder formulieren Sie Ihre Anfrage um.",
95
+ "SAFETY": "Ihr Inhalt wurde aufgrund der Sicherheitsrichtlinien blockiert. Bitte passen Sie Ihre Anfrage an und vermeiden Sie potenziell schädliche oder unangemessene Inhalte.",
96
+ "SPII": "Ihr Inhalt könnte sensible personenbezogene Daten enthalten. Zum Schutz der Privatsphäre entfernen Sie bitte die betreffenden Informationen und versuchen Sie es erneut.",
97
+ "default": "Inhalt blockiert: {{blockReason}}。请调整您的请求内容后重试。"
98
+ },
88
99
  "InsufficientQuota": "Es tut uns leid, das Kontingent (Quota) für diesen Schlüssel ist erreicht. Bitte überprüfen Sie Ihr Kontoguthaben oder erhöhen Sie das Kontingent des Schlüssels und versuchen Sie es erneut.",
89
100
  "InvalidAccessCode": "Das Passwort ist ungültig oder leer. Bitte geben Sie das richtige Zugangspasswort ein oder fügen Sie einen benutzerdefinierten API-Schlüssel hinzu.",
90
101
  "InvalidBedrockCredentials": "Die Bedrock-Authentifizierung ist fehlgeschlagen. Bitte überprüfen Sie AccessKeyId/SecretAccessKey und versuchen Sie es erneut.",
@@ -113,18 +124,6 @@
113
124
  "PluginServerError": "Fehler bei der Serveranfrage des Plugins. Bitte überprüfen Sie die Fehlerinformationen unten in Ihrer Plugin-Beschreibungsdatei, Plugin-Konfiguration oder Serverimplementierung",
114
125
  "PluginSettingsInvalid": "Das Plugin muss korrekt konfiguriert werden, um verwendet werden zu können. Bitte überprüfen Sie Ihre Konfiguration auf Richtigkeit",
115
126
  "ProviderBizError": "Fehler bei der Anforderung des {{provider}}-Dienstes. Bitte überprüfen Sie die folgenden Informationen oder versuchen Sie es erneut.",
116
-
117
- "GoogleAIBlockReason": {
118
- "BLOCKLIST": "Ihr Inhalt enthält verbotene Begriffe. Bitte überprüfen und ändern Sie Ihre Eingabe, bevor Sie es erneut versuchen.",
119
- "IMAGE_SAFETY": "Der generierte Bildinhalt wurde aus Sicherheitsgründen blockiert. Bitte versuchen Sie, Ihre Bildgenerierungsanfrage zu ändern.",
120
- "LANGUAGE": "Die von Ihnen verwendete Sprache wird nicht unterstützt. Bitte versuchen Sie es mit Englisch oder anderen unterstützten Sprachen.",
121
- "OTHER": "Inhalt wurde aus unbekannten Gründen blockiert. Bitte versuchen Sie, Ihre Anfrage umzuformulieren oder wenden Sie sich an den technischen Support.",
122
- "PROHIBITED_CONTENT": "Ihr Inhalt könnte verbotene Inhaltstypen enthalten. Bitte passen Sie Ihre Anfrage an, um sicherzustellen, dass sie den Nutzungsrichtlinien entspricht.",
123
- "RECITATION": "Ihr Inhalt wurde aufgrund möglicher Urheberrechtsprobleme blockiert. Bitte versuchen Sie, originalen Inhalt zu verwenden oder Ihre Anfrage umzuformulieren.",
124
- "SAFETY": "Ihr Inhalt wurde aufgrund von Sicherheitsrichtlinien blockiert. Bitte versuchen Sie, Ihre Anfrage anzupassen, um potenziell schädliche oder unangemessene Inhalte zu vermeiden.",
125
- "SPII": "Ihr Inhalt könnte sensible persönlich identifizierbare Informationen enthalten. Zum Schutz der Privatsphäre entfernen Sie bitte relevante sensible Informationen, bevor Sie es erneut versuchen.",
126
- "default": "Inhalt wurde blockiert: {{blockReason}}. Bitte passen Sie Ihren Anfrageinhalt an und versuchen Sie es erneut."
127
- },
128
127
  "QuotaLimitReached": "Es tut uns leid, die aktuelle Token-Nutzung oder die Anzahl der Anfragen hat das Kontingent (Quota) für diesen Schlüssel erreicht. Bitte erhöhen Sie das Kontingent für diesen Schlüssel oder versuchen Sie es später erneut.",
129
128
  "StreamChunkError": "Fehler beim Parsen des Nachrichtenchunks der Streaming-Anfrage. Bitte überprüfen Sie, ob die aktuelle API-Schnittstelle den Standards entspricht, oder wenden Sie sich an Ihren API-Anbieter.",
130
129
  "SubscriptionKeyMismatch": "Es tut uns leid, aufgrund eines vorübergehenden Systemfehlers ist das aktuelle Abonnement vorübergehend ungültig. Bitte klicken Sie auf die Schaltfläche unten, um das Abonnement wiederherzustellen, oder kontaktieren Sie uns per E-Mail für Unterstützung.",