@js-draw/math 1.0.0 → 1.0.2
Sign up to get free protection for your applications and to get access to all the features.
- package/LICENSE +21 -0
- package/dist/cjs/Color4.test.d.ts +1 -0
- package/dist/cjs/Mat33.test.d.ts +1 -0
- package/dist/cjs/Vec2.test.d.ts +1 -0
- package/dist/cjs/Vec3.test.d.ts +1 -0
- package/dist/cjs/polynomial/solveQuadratic.test.d.ts +1 -0
- package/dist/cjs/rounding.test.d.ts +1 -0
- package/dist/cjs/shapes/LineSegment2.test.d.ts +1 -0
- package/dist/cjs/shapes/Path.fromString.test.d.ts +1 -0
- package/dist/cjs/shapes/Path.test.d.ts +1 -0
- package/dist/cjs/shapes/Path.toString.test.d.ts +1 -0
- package/dist/cjs/shapes/QuadraticBezier.test.d.ts +1 -0
- package/dist/cjs/shapes/Rect2.test.d.ts +1 -0
- package/dist/cjs/shapes/Triangle.test.d.ts +1 -0
- package/dist/mjs/Color4.test.d.ts +1 -0
- package/dist/mjs/Mat33.test.d.ts +1 -0
- package/dist/mjs/Vec2.test.d.ts +1 -0
- package/dist/mjs/Vec3.test.d.ts +1 -0
- package/dist/mjs/polynomial/solveQuadratic.test.d.ts +1 -0
- package/dist/mjs/rounding.test.d.ts +1 -0
- package/dist/mjs/shapes/LineSegment2.test.d.ts +1 -0
- package/dist/mjs/shapes/Path.fromString.test.d.ts +1 -0
- package/dist/mjs/shapes/Path.test.d.ts +1 -0
- package/dist/mjs/shapes/Path.toString.test.d.ts +1 -0
- package/dist/mjs/shapes/QuadraticBezier.test.d.ts +1 -0
- package/dist/mjs/shapes/Rect2.test.d.ts +1 -0
- package/dist/mjs/shapes/Triangle.test.d.ts +1 -0
- package/dist-test/test_imports/package-lock.json +13 -0
- package/dist-test/test_imports/package.json +12 -0
- package/dist-test/test_imports/test-imports.js +15 -0
- package/dist-test/test_imports/test-require.cjs +15 -0
- package/package.json +4 -3
- package/src/Color4.test.ts +52 -0
- package/src/Color4.ts +318 -0
- package/src/Mat33.test.ts +244 -0
- package/src/Mat33.ts +450 -0
- package/src/Vec2.test.ts +30 -0
- package/src/Vec2.ts +49 -0
- package/src/Vec3.test.ts +51 -0
- package/src/Vec3.ts +245 -0
- package/src/lib.ts +42 -0
- package/src/polynomial/solveQuadratic.test.ts +39 -0
- package/src/polynomial/solveQuadratic.ts +43 -0
- package/src/rounding.test.ts +65 -0
- package/src/rounding.ts +167 -0
- package/src/shapes/Abstract2DShape.ts +63 -0
- package/src/shapes/BezierJSWrapper.ts +93 -0
- package/src/shapes/CubicBezier.ts +35 -0
- package/src/shapes/LineSegment2.test.ts +99 -0
- package/src/shapes/LineSegment2.ts +232 -0
- package/src/shapes/Path.fromString.test.ts +223 -0
- package/src/shapes/Path.test.ts +309 -0
- package/src/shapes/Path.toString.test.ts +77 -0
- package/src/shapes/Path.ts +963 -0
- package/src/shapes/PointShape2D.ts +33 -0
- package/src/shapes/QuadraticBezier.test.ts +31 -0
- package/src/shapes/QuadraticBezier.ts +142 -0
- package/src/shapes/Rect2.test.ts +209 -0
- package/src/shapes/Rect2.ts +346 -0
- package/src/shapes/Triangle.test.ts +61 -0
- package/src/shapes/Triangle.ts +139 -0
@@ -0,0 +1,63 @@
|
|
1
|
+
import LineSegment2 from './LineSegment2';
|
2
|
+
import { Point2 } from '../Vec2';
|
3
|
+
import Rect2 from './Rect2';
|
4
|
+
|
5
|
+
abstract class Abstract2DShape {
|
6
|
+
protected static readonly smallValue = 1e-12;
|
7
|
+
|
8
|
+
/**
|
9
|
+
* @returns the distance from `point` to this shape. If `point` is within this shape,
|
10
|
+
* this returns the distance from `point` to the edge of this shape.
|
11
|
+
*
|
12
|
+
* @see {@link signedDistance}
|
13
|
+
*/
|
14
|
+
public distance(point: Point2) {
|
15
|
+
return Math.abs(this.signedDistance(point));
|
16
|
+
}
|
17
|
+
|
18
|
+
/**
|
19
|
+
* Computes the [signed distance function](https://en.wikipedia.org/wiki/Signed_distance_function)
|
20
|
+
* for this shape.
|
21
|
+
*/
|
22
|
+
public abstract signedDistance(point: Point2): number;
|
23
|
+
|
24
|
+
/**
|
25
|
+
* @returns points at which this shape intersects the given `lineSegment`.
|
26
|
+
*
|
27
|
+
* If this is a closed shape, returns points where the given `lineSegment` intersects
|
28
|
+
* the **boundary** of this.
|
29
|
+
*/
|
30
|
+
public abstract intersectsLineSegment(lineSegment: LineSegment2): Point2[];
|
31
|
+
|
32
|
+
/**
|
33
|
+
* Returns `true` if and only if the given `point` is contained within this shape.
|
34
|
+
*
|
35
|
+
* `epsilon` is a small number used to counteract floating point error. Thus, if
|
36
|
+
* `point` is within `epsilon` of the inside of this shape, `containsPoint` may also
|
37
|
+
* return `true`.
|
38
|
+
*
|
39
|
+
* The default implementation relies on `signedDistance`.
|
40
|
+
* Subclasses may override this method to provide a more efficient implementation.
|
41
|
+
*/
|
42
|
+
public containsPoint(point: Point2, epsilon: number = Abstract2DShape.smallValue): boolean {
|
43
|
+
return this.signedDistance(point) < epsilon;
|
44
|
+
}
|
45
|
+
|
46
|
+
/**
|
47
|
+
* Returns a bounding box that precisely fits the content of this shape.
|
48
|
+
*/
|
49
|
+
public abstract getTightBoundingBox(): Rect2;
|
50
|
+
|
51
|
+
/**
|
52
|
+
* Returns a bounding box that **loosely** fits the content of this shape.
|
53
|
+
*
|
54
|
+
* The result of this call can be larger than the result of {@link getTightBoundingBox},
|
55
|
+
* **but should not be smaller**. Thus, a call to `getLooseBoundingBox` can be significantly
|
56
|
+
* faster than a call to {@link getTightBoundingBox} for some shapes.
|
57
|
+
*/
|
58
|
+
public getLooseBoundingBox(): Rect2 {
|
59
|
+
return this.getTightBoundingBox();
|
60
|
+
}
|
61
|
+
}
|
62
|
+
|
63
|
+
export default Abstract2DShape;
|
@@ -0,0 +1,93 @@
|
|
1
|
+
import { Bezier } from 'bezier-js';
|
2
|
+
import { Point2, Vec2 } from '../Vec2';
|
3
|
+
import Abstract2DShape from './Abstract2DShape';
|
4
|
+
import LineSegment2 from './LineSegment2';
|
5
|
+
import Rect2 from './Rect2';
|
6
|
+
|
7
|
+
/**
|
8
|
+
* A lazy-initializing wrapper around Bezier-js.
|
9
|
+
*
|
10
|
+
* Subclasses may override `at`, `derivativeAt`, and `normal` with functions
|
11
|
+
* that do not initialize a `bezier-js` `Bezier`.
|
12
|
+
*
|
13
|
+
* Do not use this class directly. It may be removed/replaced in a future release.
|
14
|
+
* @internal
|
15
|
+
*/
|
16
|
+
abstract class BezierJSWrapper extends Abstract2DShape {
|
17
|
+
#bezierJs: Bezier|null = null;
|
18
|
+
|
19
|
+
/** Returns the start, control points, and end point of this Bézier. */
|
20
|
+
public abstract getPoints(): Point2[];
|
21
|
+
|
22
|
+
protected getBezier() {
|
23
|
+
if (!this.#bezierJs) {
|
24
|
+
this.#bezierJs = new Bezier(this.getPoints().map(p => p.xy));
|
25
|
+
}
|
26
|
+
return this.#bezierJs;
|
27
|
+
}
|
28
|
+
|
29
|
+
public override signedDistance(point: Point2): number {
|
30
|
+
// .d: Distance
|
31
|
+
return this.getBezier().project(point.xy).d!;
|
32
|
+
}
|
33
|
+
|
34
|
+
/**
|
35
|
+
* @returns the (more) exact distance from `point` to this.
|
36
|
+
*
|
37
|
+
* @see {@link approximateDistance}
|
38
|
+
*/
|
39
|
+
public override distance(point: Point2) {
|
40
|
+
// A Bézier curve has no interior, thus, signed distance is the same as distance.
|
41
|
+
return this.signedDistance(point);
|
42
|
+
}
|
43
|
+
|
44
|
+
/**
|
45
|
+
* @returns the curve evaluated at `t`.
|
46
|
+
*/
|
47
|
+
public at(t: number): Point2 {
|
48
|
+
return Vec2.ofXY(this.getBezier().get(t));
|
49
|
+
}
|
50
|
+
|
51
|
+
public derivativeAt(t: number): Point2 {
|
52
|
+
return Vec2.ofXY(this.getBezier().derivative(t));
|
53
|
+
}
|
54
|
+
|
55
|
+
public normal(t: number): Vec2 {
|
56
|
+
return Vec2.ofXY(this.getBezier().normal(t));
|
57
|
+
}
|
58
|
+
|
59
|
+
public override getTightBoundingBox(): Rect2 {
|
60
|
+
const bbox = this.getBezier().bbox();
|
61
|
+
const width = bbox.x.max - bbox.x.min;
|
62
|
+
const height = bbox.y.max - bbox.y.min;
|
63
|
+
|
64
|
+
return new Rect2(bbox.x.min, bbox.y.min, width, height);
|
65
|
+
}
|
66
|
+
|
67
|
+
public override intersectsLineSegment(line: LineSegment2): Point2[] {
|
68
|
+
const bezier = this.getBezier();
|
69
|
+
|
70
|
+
const intersectionPoints = bezier.intersects(line).map(t => {
|
71
|
+
// We're using the .intersects(line) function, which is documented
|
72
|
+
// to always return numbers. However, to satisfy the type checker (and
|
73
|
+
// possibly improperly-defined types),
|
74
|
+
if (typeof t === 'string') {
|
75
|
+
t = parseFloat(t);
|
76
|
+
}
|
77
|
+
|
78
|
+
const point = Vec2.ofXY(bezier.get(t));
|
79
|
+
|
80
|
+
// Ensure that the intersection is on the line segment
|
81
|
+
if (point.minus(line.p1).magnitude() > line.length
|
82
|
+
|| point.minus(line.p2).magnitude() > line.length) {
|
83
|
+
return null;
|
84
|
+
}
|
85
|
+
|
86
|
+
return point;
|
87
|
+
}).filter(entry => entry !== null) as Point2[];
|
88
|
+
|
89
|
+
return intersectionPoints;
|
90
|
+
}
|
91
|
+
}
|
92
|
+
|
93
|
+
export default BezierJSWrapper;
|
@@ -0,0 +1,35 @@
|
|
1
|
+
import { Point2 } from '../Vec2';
|
2
|
+
import BezierJSWrapper from './BezierJSWrapper';
|
3
|
+
import Rect2 from './Rect2';
|
4
|
+
|
5
|
+
/**
|
6
|
+
* A wrapper around [`bezier-js`](https://github.com/Pomax/bezierjs)'s cubic Bezier.
|
7
|
+
*/
|
8
|
+
class CubicBezier extends BezierJSWrapper {
|
9
|
+
public constructor(
|
10
|
+
// Start point
|
11
|
+
public readonly p0: Point2,
|
12
|
+
|
13
|
+
// Control point 1
|
14
|
+
public readonly p1: Point2,
|
15
|
+
|
16
|
+
// Control point 2
|
17
|
+
public readonly p2: Point2,
|
18
|
+
|
19
|
+
// End point
|
20
|
+
public readonly p3: Point2,
|
21
|
+
) {
|
22
|
+
super();
|
23
|
+
}
|
24
|
+
|
25
|
+
public override getPoints() {
|
26
|
+
return [ this.p0, this.p1, this.p2, this.p3 ];
|
27
|
+
}
|
28
|
+
|
29
|
+
/** Returns an overestimate of this shape's bounding box. */
|
30
|
+
public override getLooseBoundingBox(): Rect2 {
|
31
|
+
return Rect2.bboxOf([ this.p0, this.p1, this.p2, this.p3 ]);
|
32
|
+
}
|
33
|
+
}
|
34
|
+
|
35
|
+
export default CubicBezier;
|
@@ -0,0 +1,99 @@
|
|
1
|
+
import LineSegment2 from './LineSegment2';
|
2
|
+
import { Vec2 } from '../Vec2';
|
3
|
+
import Mat33 from '../Mat33';
|
4
|
+
|
5
|
+
|
6
|
+
describe('Line2', () => {
|
7
|
+
it('x and y axes should intersect at (0, 0)', () => {
|
8
|
+
const xAxis = new LineSegment2(Vec2.of(-10, 0), Vec2.of(10, 0));
|
9
|
+
const yAxis = new LineSegment2(Vec2.of(0, -10), Vec2.of(0, 10));
|
10
|
+
expect(xAxis.intersection(yAxis)?.point).objEq(Vec2.zero);
|
11
|
+
expect(yAxis.intersection(xAxis)?.point).objEq(Vec2.zero);
|
12
|
+
});
|
13
|
+
|
14
|
+
it('y = -2x + 2 and y = 2x - 2 should intersect at (1,0)', () => {
|
15
|
+
// y = -4x + 2
|
16
|
+
const line1 = new LineSegment2(Vec2.of(0, 2), Vec2.of(1, -2));
|
17
|
+
// y = 4x - 2
|
18
|
+
const line2 = new LineSegment2(Vec2.of(0, -2), Vec2.of(1, 2));
|
19
|
+
|
20
|
+
expect(line1.intersection(line2)?.point).objEq(Vec2.of(0.5, 0));
|
21
|
+
expect(line2.intersection(line1)?.point).objEq(Vec2.of(0.5, 0));
|
22
|
+
});
|
23
|
+
|
24
|
+
it('line from (10, 10) to (-100, 10) should intersect with the y-axis at t = 10', () => {
|
25
|
+
const line1 = new LineSegment2(Vec2.of(10, 10), Vec2.of(-10, 10));
|
26
|
+
// y = 2x - 2
|
27
|
+
const line2 = new LineSegment2(Vec2.of(0, -2), Vec2.of(0, 200));
|
28
|
+
|
29
|
+
expect(line1.intersection(line2)?.point).objEq(Vec2.of(0, 10));
|
30
|
+
|
31
|
+
// t=10 implies 10 units along he line from (10, 10) to (-10, 10)
|
32
|
+
expect(line1.intersection(line2)?.t).toBe(10);
|
33
|
+
|
34
|
+
// Similarly, t = 12 implies 12 units above (0, -2) in the direction of (0, 200)
|
35
|
+
expect(line2.intersection(line1)?.t).toBe(12);
|
36
|
+
});
|
37
|
+
|
38
|
+
it('y=2 and y=0 should not intersect', () => {
|
39
|
+
const line1 = new LineSegment2(Vec2.of(-10, 2), Vec2.of(10, 2));
|
40
|
+
const line2 = new LineSegment2(Vec2.of(-10, 0), Vec2.of(10, 0));
|
41
|
+
expect(line1.intersection(line2)).toBeNull();
|
42
|
+
expect(line2.intersection(line1)).toBeNull();
|
43
|
+
});
|
44
|
+
|
45
|
+
it('x=2 and x=-1 should not intersect', () => {
|
46
|
+
const line1 = new LineSegment2(Vec2.of(2, -10), Vec2.of(2, 10));
|
47
|
+
const line2 = new LineSegment2(Vec2.of(-1, 10), Vec2.of(-1, -10));
|
48
|
+
expect(line1.intersection(line2)).toBeNull();
|
49
|
+
expect(line2.intersection(line1)).toBeNull();
|
50
|
+
});
|
51
|
+
|
52
|
+
it('Line from (0, 0) to (1, 0) should not intersect line from (1.1, 0) to (2, 0)', () => {
|
53
|
+
const line1 = new LineSegment2(Vec2.of(0, 0), Vec2.of(1, 0));
|
54
|
+
const line2 = new LineSegment2(Vec2.of(1.1, 0), Vec2.of(2, 0));
|
55
|
+
expect(line1.intersection(line2)).toBeNull();
|
56
|
+
expect(line2.intersection(line1)).toBeNull();
|
57
|
+
});
|
58
|
+
|
59
|
+
it('Line segment from (1, 1) to (3, 1) should have length 2', () => {
|
60
|
+
const segment = new LineSegment2(Vec2.of(1, 1), Vec2.of(3, 1));
|
61
|
+
expect(segment.length).toBe(2);
|
62
|
+
});
|
63
|
+
|
64
|
+
it('(769.612,221.037)->(770.387,224.962) should not intersect (763.359,223.667)->(763.5493, 223.667)', () => {
|
65
|
+
// Points taken from issue observed directly in editor
|
66
|
+
const p1 = Vec2.of(769.6126045442547, 221.037877485765);
|
67
|
+
const p2 = Vec2.of(770.3873954557453, 224.962122514235);
|
68
|
+
const p3 = Vec2.of( 763.3590010920082, 223.66723995850086);
|
69
|
+
const p4 = Vec2.of(763.5494167642871, 223.66723995850086);
|
70
|
+
|
71
|
+
const line1 = new LineSegment2(p1, p2);
|
72
|
+
const line2 = new LineSegment2(p3, p4);
|
73
|
+
expect(line1.intersection(line2)).toBeNull();
|
74
|
+
expect(line2.intersection(line1)).toBeNull();
|
75
|
+
});
|
76
|
+
|
77
|
+
it('Closest point to (0,0) on the line x = 1 should be (1,0)', () => {
|
78
|
+
const line = new LineSegment2(Vec2.of(1, 100), Vec2.of(1, -100));
|
79
|
+
expect(line.closestPointTo(Vec2.zero)).objEq(Vec2.of(1, 0));
|
80
|
+
});
|
81
|
+
|
82
|
+
it('Closest point from (-1,-2) to segment((1,1) -> (2,4)) should be (1,1)', () => {
|
83
|
+
const line = new LineSegment2(Vec2.of(1, 1), Vec2.of(2, 4));
|
84
|
+
expect(line.closestPointTo(Vec2.of(-1, -2))).objEq(Vec2.of(1, 1));
|
85
|
+
});
|
86
|
+
|
87
|
+
it('Closest point from (5,8) to segment((1,1) -> (2,4)) should be (2,4)', () => {
|
88
|
+
const line = new LineSegment2(Vec2.of(1, 1), Vec2.of(2, 4));
|
89
|
+
expect(line.closestPointTo(Vec2.of(5, 8))).objEq(Vec2.of(2, 4));
|
90
|
+
});
|
91
|
+
|
92
|
+
it('Should translate when translated by a translation matrix', () => {
|
93
|
+
const line = new LineSegment2(Vec2.of(-1, 1), Vec2.of(2, 100));
|
94
|
+
expect(line.transformedBy(Mat33.translation(Vec2.of(1, -2)))).toMatchObject({
|
95
|
+
p1: Vec2.of(0, -1),
|
96
|
+
p2: Vec2.of(3, 98),
|
97
|
+
});
|
98
|
+
});
|
99
|
+
});
|
@@ -0,0 +1,232 @@
|
|
1
|
+
import Mat33 from '../Mat33';
|
2
|
+
import Rect2 from './Rect2';
|
3
|
+
import { Vec2, Point2 } from '../Vec2';
|
4
|
+
import Abstract2DShape from './Abstract2DShape';
|
5
|
+
|
6
|
+
interface IntersectionResult {
|
7
|
+
point: Point2;
|
8
|
+
t: number;
|
9
|
+
}
|
10
|
+
|
11
|
+
/** Represents a line segment. A `LineSegment2` is immutable. */
|
12
|
+
export class LineSegment2 extends Abstract2DShape {
|
13
|
+
// invariant: ||direction|| = 1
|
14
|
+
|
15
|
+
/**
|
16
|
+
* The **unit** direction vector of this line segment, from
|
17
|
+
* `point1` to `point2`.
|
18
|
+
*
|
19
|
+
* In other words, `direction` is `point2.minus(point1).normalized()`
|
20
|
+
* (perhaps except when `point1` is equal to `point2`).
|
21
|
+
*/
|
22
|
+
public readonly direction: Vec2;
|
23
|
+
|
24
|
+
/** The distance between `point1` and `point2`. */
|
25
|
+
public readonly length: number;
|
26
|
+
|
27
|
+
/** The bounding box of this line segment. */
|
28
|
+
public readonly bbox;
|
29
|
+
|
30
|
+
/** Creates a new `LineSegment2` from its endpoints. */
|
31
|
+
public constructor(
|
32
|
+
private readonly point1: Point2,
|
33
|
+
private readonly point2: Point2
|
34
|
+
) {
|
35
|
+
super();
|
36
|
+
|
37
|
+
this.bbox = Rect2.bboxOf([point1, point2]);
|
38
|
+
|
39
|
+
this.direction = point2.minus(point1);
|
40
|
+
this.length = this.direction.magnitude();
|
41
|
+
|
42
|
+
// Normalize
|
43
|
+
if (this.length > 0) {
|
44
|
+
this.direction = this.direction.times(1 / this.length);
|
45
|
+
}
|
46
|
+
}
|
47
|
+
|
48
|
+
// Accessors to make LineSegment2 compatible with bezier-js's
|
49
|
+
// interface
|
50
|
+
|
51
|
+
/** Alias for `point1`. */
|
52
|
+
public get p1(): Point2 {
|
53
|
+
return this.point1;
|
54
|
+
}
|
55
|
+
|
56
|
+
/** Alias for `point2`. */
|
57
|
+
public get p2(): Point2 {
|
58
|
+
return this.point2;
|
59
|
+
}
|
60
|
+
|
61
|
+
/**
|
62
|
+
* Gets a point a distance `t` along this line.
|
63
|
+
*
|
64
|
+
* @deprecated
|
65
|
+
*/
|
66
|
+
public get(t: number): Point2 {
|
67
|
+
return this.point1.plus(this.direction.times(t));
|
68
|
+
}
|
69
|
+
|
70
|
+
/**
|
71
|
+
* Returns a point a fraction, `t`, along this line segment.
|
72
|
+
* Thus, `segment.at(0)` returns `segment.p1` and `segment.at(1)` returns
|
73
|
+
* `segment.p2`.
|
74
|
+
*
|
75
|
+
* `t` should be in `[0, 1]`.
|
76
|
+
*/
|
77
|
+
public at(t: number): Point2 {
|
78
|
+
return this.get(t * this.length);
|
79
|
+
}
|
80
|
+
|
81
|
+
public intersection(other: LineSegment2): IntersectionResult|null {
|
82
|
+
// We want x₁(t) = x₂(t) and y₁(t) = y₂(t)
|
83
|
+
// Observe that
|
84
|
+
// x = this.point1.x + this.direction.x · t₁
|
85
|
+
// = other.point1.x + other.direction.x · t₂
|
86
|
+
// Thus,
|
87
|
+
// t₁ = (x - this.point1.x) / this.direction.x
|
88
|
+
// = (y - this.point1.y) / this.direction.y
|
89
|
+
// and
|
90
|
+
// t₂ = (x - other.point1.x) / other.direction.x
|
91
|
+
// (and similarly for y)
|
92
|
+
//
|
93
|
+
// Letting o₁ₓ = this.point1.x, o₂ₓ = other.point1.x,
|
94
|
+
// d₁ᵧ = this.direction.y, ...
|
95
|
+
//
|
96
|
+
// We can substitute these into the equations for y:
|
97
|
+
// y = o₁ᵧ + d₁ᵧ · (x - o₁ₓ) / d₁ₓ
|
98
|
+
// = o₂ᵧ + d₂ᵧ · (x - o₂ₓ) / d₂ₓ
|
99
|
+
// ⇒ o₁ᵧ - o₂ᵧ = d₂ᵧ · (x - o₂ₓ) / d₂ₓ - d₁ᵧ · (x - o₁ₓ) / d₁ₓ
|
100
|
+
// = (d₂ᵧ/d₂ₓ)(x) - (d₂ᵧ/d₂ₓ)(o₂ₓ) - (d₁ᵧ/d₁ₓ)(x) + (d₁ᵧ/d₁ₓ)(o₁ₓ)
|
101
|
+
// = (x)(d₂ᵧ/d₂ₓ - d₁ᵧ/d₁ₓ) - (d₂ᵧ/d₂ₓ)(o₂ₓ) + (d₁ᵧ/d₁ₓ)(o₁ₓ)
|
102
|
+
// ⇒ (x)(d₂ᵧ/d₂ₓ - d₁ᵧ/d₁ₓ) = o₁ᵧ - o₂ᵧ + (d₂ᵧ/d₂ₓ)(o₂ₓ) - (d₁ᵧ/d₁ₓ)(o₁ₓ)
|
103
|
+
// ⇒ x = (o₁ᵧ - o₂ᵧ + (d₂ᵧ/d₂ₓ)(o₂ₓ) - (d₁ᵧ/d₁ₓ)(o₁ₓ))/(d₂ᵧ/d₂ₓ - d₁ᵧ/d₁ₓ)
|
104
|
+
// = (d₁ₓd₂ₓ)(o₁ᵧ - o₂ᵧ + (d₂ᵧ/d₂ₓ)(o₂ₓ) - (d₁ᵧ/d₁ₓ)(o₁ₓ))/(d₂ᵧd₁ₓ - d₁ᵧd₂ₓ)
|
105
|
+
// = ((o₁ᵧ - o₂ᵧ)((d₁ₓd₂ₓ)) + (d₂ᵧd₁ₓ)(o₂ₓ) - (d₁ᵧd₂ₓ)(o₁ₓ))/(d₂ᵧd₁ₓ - d₁ᵧd₂ₓ)
|
106
|
+
// ⇒ y = o₁ᵧ + d₁ᵧ · (x - o₁ₓ) / d₁ₓ = ...
|
107
|
+
let resultPoint, resultT;
|
108
|
+
if (this.direction.x === 0) {
|
109
|
+
// Vertical line: Where does the other have x = this.point1.x?
|
110
|
+
// x = o₁ₓ = o₂ₓ + d₂ₓ · (y - o₂ᵧ) / d₂ᵧ
|
111
|
+
// ⇒ (o₁ₓ - o₂ₓ)(d₂ᵧ/d₂ₓ) + o₂ᵧ = y
|
112
|
+
|
113
|
+
// Avoid division by zero
|
114
|
+
if (other.direction.x === 0 || this.direction.y === 0) {
|
115
|
+
return null;
|
116
|
+
}
|
117
|
+
|
118
|
+
const xIntersect = this.point1.x;
|
119
|
+
const yIntersect =
|
120
|
+
(this.point1.x - other.point1.x) * other.direction.y / other.direction.x + other.point1.y;
|
121
|
+
resultPoint = Vec2.of(xIntersect, yIntersect);
|
122
|
+
resultT = (yIntersect - this.point1.y) / this.direction.y;
|
123
|
+
} else {
|
124
|
+
// From above,
|
125
|
+
// x = ((o₁ᵧ - o₂ᵧ)(d₁ₓd₂ₓ) + (d₂ᵧd₁ₓ)(o₂ₓ) - (d₁ᵧd₂ₓ)(o₁ₓ))/(d₂ᵧd₁ₓ - d₁ᵧd₂ₓ)
|
126
|
+
const numerator = (
|
127
|
+
(this.point1.y - other.point1.y) * this.direction.x * other.direction.x
|
128
|
+
+ this.direction.x * other.direction.y * other.point1.x
|
129
|
+
- this.direction.y * other.direction.x * this.point1.x
|
130
|
+
);
|
131
|
+
const denominator = (
|
132
|
+
other.direction.y * this.direction.x
|
133
|
+
- this.direction.y * other.direction.x
|
134
|
+
);
|
135
|
+
|
136
|
+
// Avoid dividing by zero. It means there is no intersection
|
137
|
+
if (denominator === 0) {
|
138
|
+
return null;
|
139
|
+
}
|
140
|
+
|
141
|
+
const xIntersect = numerator / denominator;
|
142
|
+
const t1 = (xIntersect - this.point1.x) / this.direction.x;
|
143
|
+
const yIntersect = this.point1.y + this.direction.y * t1;
|
144
|
+
resultPoint = Vec2.of(xIntersect, yIntersect);
|
145
|
+
resultT = (xIntersect - this.point1.x) / this.direction.x;
|
146
|
+
}
|
147
|
+
|
148
|
+
// Ensure the result is in this/the other segment.
|
149
|
+
const resultToP1 = resultPoint.minus(this.point1).magnitude();
|
150
|
+
const resultToP2 = resultPoint.minus(this.point2).magnitude();
|
151
|
+
const resultToP3 = resultPoint.minus(other.point1).magnitude();
|
152
|
+
const resultToP4 = resultPoint.minus(other.point2).magnitude();
|
153
|
+
if (resultToP1 > this.length
|
154
|
+
|| resultToP2 > this.length
|
155
|
+
|| resultToP3 > other.length
|
156
|
+
|| resultToP4 > other.length) {
|
157
|
+
return null;
|
158
|
+
}
|
159
|
+
|
160
|
+
return {
|
161
|
+
point: resultPoint,
|
162
|
+
t: resultT,
|
163
|
+
};
|
164
|
+
}
|
165
|
+
|
166
|
+
public intersects(other: LineSegment2) {
|
167
|
+
return this.intersection(other) !== null;
|
168
|
+
}
|
169
|
+
|
170
|
+
/**
|
171
|
+
* Returns the points at which this line segment intersects the
|
172
|
+
* given line segment.
|
173
|
+
*
|
174
|
+
* Note that {@link intersects} returns *whether* this line segment intersects another
|
175
|
+
* line segment. This method, by contrast, returns **the point** at which the intersection
|
176
|
+
* occurs, if such a point exists.
|
177
|
+
*/
|
178
|
+
public override intersectsLineSegment(lineSegment: LineSegment2) {
|
179
|
+
const intersection = this.intersection(lineSegment);
|
180
|
+
|
181
|
+
if (intersection) {
|
182
|
+
return [ intersection.point ];
|
183
|
+
}
|
184
|
+
return [];
|
185
|
+
}
|
186
|
+
|
187
|
+
// Returns the closest point on this to [target]
|
188
|
+
public closestPointTo(target: Point2) {
|
189
|
+
// Distance from P1 along this' direction.
|
190
|
+
const projectedDistFromP1 = target.minus(this.p1).dot(this.direction);
|
191
|
+
const projectedDistFromP2 = this.length - projectedDistFromP1;
|
192
|
+
|
193
|
+
const projection = this.p1.plus(this.direction.times(projectedDistFromP1));
|
194
|
+
|
195
|
+
if (projectedDistFromP1 > 0 && projectedDistFromP1 < this.length) {
|
196
|
+
return projection;
|
197
|
+
}
|
198
|
+
|
199
|
+
if (Math.abs(projectedDistFromP2) < Math.abs(projectedDistFromP1)) {
|
200
|
+
return this.p2;
|
201
|
+
} else {
|
202
|
+
return this.p1;
|
203
|
+
}
|
204
|
+
}
|
205
|
+
|
206
|
+
/**
|
207
|
+
* Returns the distance from this line segment to `target`.
|
208
|
+
*
|
209
|
+
* Because a line segment has no interior, this signed distance is equivalent to
|
210
|
+
* the full distance between `target` and this line segment.
|
211
|
+
*/
|
212
|
+
public signedDistance(target: Point2) {
|
213
|
+
return this.closestPointTo(target).minus(target).magnitude();
|
214
|
+
}
|
215
|
+
|
216
|
+
/** Returns a copy of this line segment transformed by the given `affineTransfm`. */
|
217
|
+
public transformedBy(affineTransfm: Mat33): LineSegment2 {
|
218
|
+
return new LineSegment2(
|
219
|
+
affineTransfm.transformVec2(this.p1), affineTransfm.transformVec2(this.p2)
|
220
|
+
);
|
221
|
+
}
|
222
|
+
|
223
|
+
/** @inheritdoc */
|
224
|
+
public override getTightBoundingBox(): Rect2 {
|
225
|
+
return this.bbox;
|
226
|
+
}
|
227
|
+
|
228
|
+
public override toString() {
|
229
|
+
return `LineSegment(${this.p1.toString()}, ${this.p2.toString()})`;
|
230
|
+
}
|
231
|
+
}
|
232
|
+
export default LineSegment2;
|