@js-draw/math 1.0.0 → 1.0.2
Sign up to get free protection for your applications and to get access to all the features.
- package/LICENSE +21 -0
- package/dist/cjs/Color4.test.d.ts +1 -0
- package/dist/cjs/Mat33.test.d.ts +1 -0
- package/dist/cjs/Vec2.test.d.ts +1 -0
- package/dist/cjs/Vec3.test.d.ts +1 -0
- package/dist/cjs/polynomial/solveQuadratic.test.d.ts +1 -0
- package/dist/cjs/rounding.test.d.ts +1 -0
- package/dist/cjs/shapes/LineSegment2.test.d.ts +1 -0
- package/dist/cjs/shapes/Path.fromString.test.d.ts +1 -0
- package/dist/cjs/shapes/Path.test.d.ts +1 -0
- package/dist/cjs/shapes/Path.toString.test.d.ts +1 -0
- package/dist/cjs/shapes/QuadraticBezier.test.d.ts +1 -0
- package/dist/cjs/shapes/Rect2.test.d.ts +1 -0
- package/dist/cjs/shapes/Triangle.test.d.ts +1 -0
- package/dist/mjs/Color4.test.d.ts +1 -0
- package/dist/mjs/Mat33.test.d.ts +1 -0
- package/dist/mjs/Vec2.test.d.ts +1 -0
- package/dist/mjs/Vec3.test.d.ts +1 -0
- package/dist/mjs/polynomial/solveQuadratic.test.d.ts +1 -0
- package/dist/mjs/rounding.test.d.ts +1 -0
- package/dist/mjs/shapes/LineSegment2.test.d.ts +1 -0
- package/dist/mjs/shapes/Path.fromString.test.d.ts +1 -0
- package/dist/mjs/shapes/Path.test.d.ts +1 -0
- package/dist/mjs/shapes/Path.toString.test.d.ts +1 -0
- package/dist/mjs/shapes/QuadraticBezier.test.d.ts +1 -0
- package/dist/mjs/shapes/Rect2.test.d.ts +1 -0
- package/dist/mjs/shapes/Triangle.test.d.ts +1 -0
- package/dist-test/test_imports/package-lock.json +13 -0
- package/dist-test/test_imports/package.json +12 -0
- package/dist-test/test_imports/test-imports.js +15 -0
- package/dist-test/test_imports/test-require.cjs +15 -0
- package/package.json +4 -3
- package/src/Color4.test.ts +52 -0
- package/src/Color4.ts +318 -0
- package/src/Mat33.test.ts +244 -0
- package/src/Mat33.ts +450 -0
- package/src/Vec2.test.ts +30 -0
- package/src/Vec2.ts +49 -0
- package/src/Vec3.test.ts +51 -0
- package/src/Vec3.ts +245 -0
- package/src/lib.ts +42 -0
- package/src/polynomial/solveQuadratic.test.ts +39 -0
- package/src/polynomial/solveQuadratic.ts +43 -0
- package/src/rounding.test.ts +65 -0
- package/src/rounding.ts +167 -0
- package/src/shapes/Abstract2DShape.ts +63 -0
- package/src/shapes/BezierJSWrapper.ts +93 -0
- package/src/shapes/CubicBezier.ts +35 -0
- package/src/shapes/LineSegment2.test.ts +99 -0
- package/src/shapes/LineSegment2.ts +232 -0
- package/src/shapes/Path.fromString.test.ts +223 -0
- package/src/shapes/Path.test.ts +309 -0
- package/src/shapes/Path.toString.test.ts +77 -0
- package/src/shapes/Path.ts +963 -0
- package/src/shapes/PointShape2D.ts +33 -0
- package/src/shapes/QuadraticBezier.test.ts +31 -0
- package/src/shapes/QuadraticBezier.ts +142 -0
- package/src/shapes/Rect2.test.ts +209 -0
- package/src/shapes/Rect2.ts +346 -0
- package/src/shapes/Triangle.test.ts +61 -0
- package/src/shapes/Triangle.ts +139 -0
package/src/Vec2.ts
ADDED
@@ -0,0 +1,49 @@
|
|
1
|
+
import Vec3 from './Vec3';
|
2
|
+
|
3
|
+
/**
|
4
|
+
* Utility functions that facilitate treating `Vec3`s as 2D vectors.
|
5
|
+
*
|
6
|
+
* @example
|
7
|
+
* ```ts,runnable,console
|
8
|
+
* import { Vec2 } from '@js-draw/math';
|
9
|
+
* console.log(Vec2.of(1, 2));
|
10
|
+
* ```
|
11
|
+
*/
|
12
|
+
export namespace Vec2 {
|
13
|
+
/**
|
14
|
+
* Creates a `Vec2` from an x and y coordinate.
|
15
|
+
*
|
16
|
+
* For example,
|
17
|
+
* ```ts
|
18
|
+
* const v = Vec2.of(3, 4); // x=3, y=4.
|
19
|
+
* ```
|
20
|
+
*/
|
21
|
+
export const of = (x: number, y: number): Vec2 => {
|
22
|
+
return Vec3.of(x, y, 0);
|
23
|
+
};
|
24
|
+
|
25
|
+
/**
|
26
|
+
* Creates a `Vec2` from an object containing x and y coordinates.
|
27
|
+
*
|
28
|
+
* For example,
|
29
|
+
* ```ts
|
30
|
+
* const v1 = Vec2.ofXY({ x: 3, y: 4.5 });
|
31
|
+
* const v2 = Vec2.ofXY({ x: -123.4, y: 1 });
|
32
|
+
* ```
|
33
|
+
*/
|
34
|
+
export const ofXY = ({x, y}: { x: number, y: number }): Vec2 => {
|
35
|
+
return Vec3.of(x, y, 0);
|
36
|
+
};
|
37
|
+
|
38
|
+
/** A vector of length 1 in the X direction (→). */
|
39
|
+
export const unitX = Vec2.of(1, 0);
|
40
|
+
|
41
|
+
/** A vector of length 1 in the Y direction (↑). */
|
42
|
+
export const unitY = Vec2.of(0, 1);
|
43
|
+
|
44
|
+
/** The zero vector: A vector with x=0, y=0. */
|
45
|
+
export const zero = Vec2.of(0, 0);
|
46
|
+
}
|
47
|
+
|
48
|
+
export type Point2 = Vec3;
|
49
|
+
export type Vec2 = Vec3; // eslint-disable-line
|
package/src/Vec3.test.ts
ADDED
@@ -0,0 +1,51 @@
|
|
1
|
+
|
2
|
+
import Vec3 from './Vec3';
|
3
|
+
|
4
|
+
describe('Vec3', () => {
|
5
|
+
it('.xy should contain the x and y components', () => {
|
6
|
+
const vec = Vec3.of(1, 2, 3);
|
7
|
+
expect(vec.xy).toMatchObject({
|
8
|
+
x: 1,
|
9
|
+
y: 2,
|
10
|
+
});
|
11
|
+
});
|
12
|
+
|
13
|
+
it('should be combinable with other vectors via .zip', () => {
|
14
|
+
const vec1 = Vec3.unitX;
|
15
|
+
const vec2 = Vec3.unitY;
|
16
|
+
expect(vec1.zip(vec2, Math.min)).objEq(Vec3.zero);
|
17
|
+
expect(vec1.zip(vec2, Math.max)).objEq(Vec3.of(1, 1, 0));
|
18
|
+
});
|
19
|
+
|
20
|
+
it('.cross should obey the right hand rule', () => {
|
21
|
+
const vec1 = Vec3.unitX;
|
22
|
+
const vec2 = Vec3.unitY;
|
23
|
+
expect(vec1.cross(vec2)).objEq(Vec3.unitZ);
|
24
|
+
expect(vec2.cross(vec1)).objEq(Vec3.unitZ.times(-1));
|
25
|
+
});
|
26
|
+
|
27
|
+
it('.orthog should return an orthogonal vector', () => {
|
28
|
+
expect(Vec3.unitZ.orthog().dot(Vec3.unitZ)).toBe(0);
|
29
|
+
|
30
|
+
// Should return some orthogonal vector, even if given the zero vector
|
31
|
+
expect(Vec3.zero.orthog().dot(Vec3.zero)).toBe(0);
|
32
|
+
});
|
33
|
+
|
34
|
+
it('.minus should return the difference between two vectors', () => {
|
35
|
+
expect(Vec3.of(1, 2, 3).minus(Vec3.of(4, 5, 6))).objEq(Vec3.of(1 - 4, 2 - 5, 3 - 6));
|
36
|
+
});
|
37
|
+
|
38
|
+
it('.orthog should return a unit vector', () => {
|
39
|
+
expect(Vec3.zero.orthog().magnitude()).toBe(1);
|
40
|
+
expect(Vec3.unitZ.orthog().magnitude()).toBe(1);
|
41
|
+
expect(Vec3.unitX.orthog().magnitude()).toBe(1);
|
42
|
+
expect(Vec3.unitY.orthog().magnitude()).toBe(1);
|
43
|
+
});
|
44
|
+
|
45
|
+
it('.normalizedOrZero should normalize the given vector or return zero', () => {
|
46
|
+
expect(Vec3.zero.normalizedOrZero()).objEq(Vec3.zero);
|
47
|
+
expect(Vec3.unitX.normalizedOrZero()).objEq(Vec3.unitX);
|
48
|
+
expect(Vec3.unitX.times(22).normalizedOrZero()).objEq(Vec3.unitX);
|
49
|
+
expect(Vec3.of(1, 1, 1).times(22).normalizedOrZero().length()).toBeCloseTo(1);
|
50
|
+
});
|
51
|
+
});
|
package/src/Vec3.ts
ADDED
@@ -0,0 +1,245 @@
|
|
1
|
+
|
2
|
+
|
3
|
+
/**
|
4
|
+
* A vector with three components, $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$.
|
5
|
+
* Can also be used to represent a two-component vector.
|
6
|
+
*
|
7
|
+
* A `Vec3` is immutable.
|
8
|
+
*
|
9
|
+
* @example
|
10
|
+
*
|
11
|
+
* ```ts,runnable,console
|
12
|
+
* import { Vec3 } from '@js-draw/math';
|
13
|
+
*
|
14
|
+
* console.log('Vector addition:', Vec3.of(1, 2, 3).plus(Vec3.of(0, 1, 0)));
|
15
|
+
* console.log('Scalar multiplication:', Vec3.of(1, 2, 3).times(2));
|
16
|
+
* console.log('Cross products:', Vec3.unitX.cross(Vec3.unitY));
|
17
|
+
* console.log('Magnitude:', Vec3.of(1, 2, 3).length(), 'or', Vec3.of(1, 2, 3).magnitude());
|
18
|
+
* console.log('Square Magnitude:', Vec3.of(1, 2, 3).magnitudeSquared());
|
19
|
+
* console.log('As an array:', Vec3.unitZ.asArray());
|
20
|
+
* ```
|
21
|
+
*/
|
22
|
+
export class Vec3 {
|
23
|
+
private constructor(
|
24
|
+
public readonly x: number,
|
25
|
+
public readonly y: number,
|
26
|
+
public readonly z: number
|
27
|
+
) {
|
28
|
+
}
|
29
|
+
|
30
|
+
/** Returns the x, y components of this. */
|
31
|
+
public get xy(): { x: number; y: number } {
|
32
|
+
// Useful for APIs that behave differently if .z is present.
|
33
|
+
return {
|
34
|
+
x: this.x,
|
35
|
+
y: this.y,
|
36
|
+
};
|
37
|
+
}
|
38
|
+
|
39
|
+
/** Construct a vector from three components. */
|
40
|
+
public static of(x: number, y: number, z: number): Vec3 {
|
41
|
+
return new Vec3(x, y, z);
|
42
|
+
}
|
43
|
+
|
44
|
+
/** Returns this' `idx`th component. For example, `Vec3.of(1, 2, 3).at(1) → 2`. */
|
45
|
+
public at(idx: number): number {
|
46
|
+
if (idx === 0) return this.x;
|
47
|
+
if (idx === 1) return this.y;
|
48
|
+
if (idx === 2) return this.z;
|
49
|
+
|
50
|
+
throw new Error(`${idx} out of bounds!`);
|
51
|
+
}
|
52
|
+
|
53
|
+
/** Alias for this.magnitude. */
|
54
|
+
public length(): number {
|
55
|
+
return this.magnitude();
|
56
|
+
}
|
57
|
+
|
58
|
+
public magnitude(): number {
|
59
|
+
return Math.sqrt(this.dot(this));
|
60
|
+
}
|
61
|
+
|
62
|
+
public magnitudeSquared(): number {
|
63
|
+
return this.dot(this);
|
64
|
+
}
|
65
|
+
|
66
|
+
/**
|
67
|
+
* Return this' angle in the XY plane (treats this as a Vec2).
|
68
|
+
*
|
69
|
+
* This is equivalent to `Math.atan2(vec.y, vec.x)`.
|
70
|
+
*/
|
71
|
+
public angle(): number {
|
72
|
+
return Math.atan2(this.y, this.x);
|
73
|
+
}
|
74
|
+
|
75
|
+
/**
|
76
|
+
* Returns a unit vector in the same direction as this.
|
77
|
+
*
|
78
|
+
* If `this` has zero length, the resultant vector has `NaN` components.
|
79
|
+
*/
|
80
|
+
public normalized(): Vec3 {
|
81
|
+
const norm = this.magnitude();
|
82
|
+
return Vec3.of(this.x / norm, this.y / norm, this.z / norm);
|
83
|
+
}
|
84
|
+
|
85
|
+
/**
|
86
|
+
* Like {@link normalized}, except returns zero if this has zero magnitude.
|
87
|
+
*/
|
88
|
+
public normalizedOrZero(): Vec3 {
|
89
|
+
if (this.eq(Vec3.zero)) {
|
90
|
+
return Vec3.zero;
|
91
|
+
}
|
92
|
+
|
93
|
+
return this.normalized();
|
94
|
+
}
|
95
|
+
|
96
|
+
/** @returns A copy of `this` multiplied by a scalar. */
|
97
|
+
public times(c: number): Vec3 {
|
98
|
+
return Vec3.of(this.x * c, this.y * c, this.z * c);
|
99
|
+
}
|
100
|
+
|
101
|
+
public plus(v: Vec3): Vec3 {
|
102
|
+
return Vec3.of(this.x + v.x, this.y + v.y, this.z + v.z);
|
103
|
+
}
|
104
|
+
|
105
|
+
public minus(v: Vec3): Vec3 {
|
106
|
+
return Vec3.of(this.x - v.x, this.y - v.y, this.z - v.z);
|
107
|
+
}
|
108
|
+
|
109
|
+
public dot(other: Vec3): number {
|
110
|
+
return this.x * other.x + this.y * other.y + this.z * other.z;
|
111
|
+
}
|
112
|
+
|
113
|
+
public cross(other: Vec3): Vec3 {
|
114
|
+
// | i j k |
|
115
|
+
// | x1 y1 z1| = (i)(y1z2 - y2z1) - (j)(x1z2 - x2z1) + (k)(x1y2 - x2y1)
|
116
|
+
// | x2 y2 z2|
|
117
|
+
return Vec3.of(
|
118
|
+
this.y * other.z - other.y * this.z,
|
119
|
+
other.x * this.z - this.x * other.z,
|
120
|
+
this.x * other.y - other.x * this.y
|
121
|
+
);
|
122
|
+
}
|
123
|
+
|
124
|
+
/**
|
125
|
+
* If `other` is a `Vec3`, multiplies `this` component-wise by `other`. Otherwise,
|
126
|
+
* if `other is a `number`, returns the result of scalar multiplication.
|
127
|
+
*
|
128
|
+
* @example
|
129
|
+
* ```
|
130
|
+
* Vec3.of(1, 2, 3).scale(Vec3.of(2, 4, 6)); // → Vec3(2, 8, 18)
|
131
|
+
* ```
|
132
|
+
*/
|
133
|
+
public scale(other: Vec3|number): Vec3 {
|
134
|
+
if (typeof other === 'number') {
|
135
|
+
return this.times(other);
|
136
|
+
}
|
137
|
+
|
138
|
+
return Vec3.of(
|
139
|
+
this.x * other.x,
|
140
|
+
this.y * other.y,
|
141
|
+
this.z * other.z,
|
142
|
+
);
|
143
|
+
}
|
144
|
+
|
145
|
+
/**
|
146
|
+
* Returns a vector orthogonal to this. If this is a Vec2, returns `this` rotated
|
147
|
+
* 90 degrees counter-clockwise.
|
148
|
+
*/
|
149
|
+
public orthog(): Vec3 {
|
150
|
+
// If parallel to the z-axis
|
151
|
+
if (this.dot(Vec3.unitX) === 0 && this.dot(Vec3.unitY) === 0) {
|
152
|
+
return this.dot(Vec3.unitX) === 0 ? Vec3.unitX : this.cross(Vec3.unitX).normalized();
|
153
|
+
}
|
154
|
+
|
155
|
+
return this.cross(Vec3.unitZ.times(-1)).normalized();
|
156
|
+
}
|
157
|
+
|
158
|
+
/** Returns this plus a vector of length `distance` in `direction`. */
|
159
|
+
public extend(distance: number, direction: Vec3): Vec3 {
|
160
|
+
return this.plus(direction.normalized().times(distance));
|
161
|
+
}
|
162
|
+
|
163
|
+
/** Returns a vector `fractionTo` of the way to target from this. */
|
164
|
+
public lerp(target: Vec3, fractionTo: number): Vec3 {
|
165
|
+
return this.times(1 - fractionTo).plus(target.times(fractionTo));
|
166
|
+
}
|
167
|
+
|
168
|
+
/**
|
169
|
+
* `zip` Maps a component of this and a corresponding component of
|
170
|
+
* `other` to a component of the output vector.
|
171
|
+
*
|
172
|
+
* @example
|
173
|
+
* ```
|
174
|
+
* const a = Vec3.of(1, 2, 3);
|
175
|
+
* const b = Vec3.of(0.5, 2.1, 2.9);
|
176
|
+
*
|
177
|
+
* const zipped = a.zip(b, (aComponent, bComponent) => {
|
178
|
+
* return Math.min(aComponent, bComponent);
|
179
|
+
* });
|
180
|
+
*
|
181
|
+
* console.log(zipped.toString()); // → Vec(0.5, 2, 2.9)
|
182
|
+
* ```
|
183
|
+
*/
|
184
|
+
public zip(
|
185
|
+
other: Vec3, zip: (componentInThis: number, componentInOther: number)=> number
|
186
|
+
): Vec3 {
|
187
|
+
return Vec3.of(
|
188
|
+
zip(other.x, this.x),
|
189
|
+
zip(other.y, this.y),
|
190
|
+
zip(other.z, this.z)
|
191
|
+
);
|
192
|
+
}
|
193
|
+
|
194
|
+
/**
|
195
|
+
* Returns a vector with each component acted on by `fn`.
|
196
|
+
*
|
197
|
+
* @example
|
198
|
+
* ```
|
199
|
+
* console.log(Vec3.of(1, 2, 3).map(val => val + 1)); // → Vec(2, 3, 4)
|
200
|
+
* ```
|
201
|
+
*/
|
202
|
+
public map(fn: (component: number, index: number)=> number): Vec3 {
|
203
|
+
return Vec3.of(
|
204
|
+
fn(this.x, 0), fn(this.y, 1), fn(this.z, 2)
|
205
|
+
);
|
206
|
+
}
|
207
|
+
|
208
|
+
public asArray(): [ number, number, number ] {
|
209
|
+
return [this.x, this.y, this.z];
|
210
|
+
}
|
211
|
+
|
212
|
+
/**
|
213
|
+
* [fuzz] The maximum difference between two components for this and [other]
|
214
|
+
* to be considered equal.
|
215
|
+
*
|
216
|
+
* @example
|
217
|
+
* ```
|
218
|
+
* Vec3.of(1, 2, 3).eq(Vec3.of(4, 5, 6), 100); // → true
|
219
|
+
* Vec3.of(1, 2, 3).eq(Vec3.of(4, 5, 6), 0.1); // → false
|
220
|
+
* Vec3.of(1, 2, 3).eq(Vec3.of(4, 5, 6), 3); // → true
|
221
|
+
* Vec3.of(1, 2, 3).eq(Vec3.of(4, 5, 6), 3.01); // → true
|
222
|
+
* Vec3.of(1, 2, 3).eq(Vec3.of(4, 5, 6), 2.99); // → false
|
223
|
+
* ```
|
224
|
+
*/
|
225
|
+
public eq(other: Vec3, fuzz: number = 1e-10): boolean {
|
226
|
+
for (let i = 0; i < 3; i++) {
|
227
|
+
if (Math.abs(other.at(i) - this.at(i)) > fuzz) {
|
228
|
+
return false;
|
229
|
+
}
|
230
|
+
}
|
231
|
+
|
232
|
+
return true;
|
233
|
+
}
|
234
|
+
|
235
|
+
public toString(): string {
|
236
|
+
return `Vec(${this.x}, ${this.y}, ${this.z})`;
|
237
|
+
}
|
238
|
+
|
239
|
+
|
240
|
+
public static unitX = Vec3.of(1, 0, 0);
|
241
|
+
public static unitY = Vec3.of(0, 1, 0);
|
242
|
+
public static unitZ = Vec3.of(0, 0, 1);
|
243
|
+
public static zero = Vec3.of(0, 0, 0);
|
244
|
+
}
|
245
|
+
export default Vec3;
|
package/src/lib.ts
ADDED
@@ -0,0 +1,42 @@
|
|
1
|
+
/**
|
2
|
+
* ```ts,runnable,console
|
3
|
+
* import { Vec2, Mat33, Rect2 } from '@js-draw/math';
|
4
|
+
*
|
5
|
+
* // Example: Rotate a vector 90 degrees about the z-axis
|
6
|
+
* const rotate90Degrees = Mat33.zRotation(Math.PI/2); // π/2 radians = 90 deg
|
7
|
+
* const moveUp = Mat33.translation(Vec2.of(1, 0));
|
8
|
+
* const moveUpThenRotate = rotate90Degrees.rightMul(moveUp);
|
9
|
+
* console.log(moveUpThenRotate.transformVec2(Vec2.of(1, 2)));
|
10
|
+
*
|
11
|
+
* // Example: Bounding box of some points
|
12
|
+
* console.log(Rect2.bboxOf([
|
13
|
+
* Vec2.of(1, 2), Vec2.of(3, 4), Vec2.of(-100, 1000),
|
14
|
+
* ]));
|
15
|
+
* ```
|
16
|
+
*
|
17
|
+
* @packageDocumentation
|
18
|
+
*/
|
19
|
+
|
20
|
+
export { LineSegment2 } from './shapes/LineSegment2';
|
21
|
+
export {
|
22
|
+
Path,
|
23
|
+
|
24
|
+
PathCommandType,
|
25
|
+
PathCommand,
|
26
|
+
LinePathCommand,
|
27
|
+
MoveToPathCommand,
|
28
|
+
QuadraticBezierPathCommand,
|
29
|
+
CubicBezierPathCommand,
|
30
|
+
} from './shapes/Path';
|
31
|
+
export { Rect2 } from './shapes/Rect2';
|
32
|
+
export { QuadraticBezier } from './shapes/QuadraticBezier';
|
33
|
+
|
34
|
+
export { Mat33, Mat33Array } from './Mat33';
|
35
|
+
export { Point2, Vec2 } from './Vec2';
|
36
|
+
export { Vec3 } from './Vec3';
|
37
|
+
export { Color4 } from './Color4';
|
38
|
+
export { toRoundedString } from './rounding';
|
39
|
+
|
40
|
+
|
41
|
+
// Note: All above exports cannot use `export { default as ... } from "..."` because this
|
42
|
+
// breaks TypeDoc -- TypeDoc otherwise labels any imports of these classes as `default`.
|
@@ -0,0 +1,39 @@
|
|
1
|
+
|
2
|
+
import solveQuadratic from './solveQuadratic';
|
3
|
+
|
4
|
+
describe('solveQuadratic', () => {
|
5
|
+
it('should solve linear equations', () => {
|
6
|
+
expect(solveQuadratic(0, 1, 2)).toMatchObject([ -2, -2 ]);
|
7
|
+
expect(solveQuadratic(0, 0, 2)[0]).toBeNaN();
|
8
|
+
});
|
9
|
+
|
10
|
+
it('should return both solutions to quadratic equations', () => {
|
11
|
+
type TestCase = [[number, number, number], [number, number]];
|
12
|
+
|
13
|
+
const testCases: TestCase[] = [
|
14
|
+
[ [ 1, 0, 0 ], [ 0, 0 ] ],
|
15
|
+
[ [ 2, 0, 0 ], [ 0, 0 ] ],
|
16
|
+
|
17
|
+
[ [ 1, 0, -1 ], [ 1, -1 ] ],
|
18
|
+
[ [ 1, 0, -4 ], [ 2, -2 ] ],
|
19
|
+
[ [ 1, 0, 4 ], [ NaN, NaN ] ],
|
20
|
+
|
21
|
+
[ [ 1, 1, 0 ], [ 0, -1 ] ],
|
22
|
+
[ [ 1, 2, 0 ], [ 0, -2 ] ],
|
23
|
+
|
24
|
+
[ [ 1, 2, 1 ], [ -1, -1 ] ],
|
25
|
+
[ [ -9, 2, 1/3 ], [ 1/3, -1/9 ] ],
|
26
|
+
];
|
27
|
+
|
28
|
+
for (const [ testCase, solution ] of testCases) {
|
29
|
+
const foundSolutions = solveQuadratic(...testCase);
|
30
|
+
for (let i = 0; i < 2; i++) {
|
31
|
+
if (isNaN(solution[i]) && isNaN(foundSolutions[i])) {
|
32
|
+
expect(foundSolutions[i]).toBeNaN();
|
33
|
+
} else {
|
34
|
+
expect(foundSolutions[i]).toBeCloseTo(solution[i]);
|
35
|
+
}
|
36
|
+
}
|
37
|
+
}
|
38
|
+
});
|
39
|
+
});
|
@@ -0,0 +1,43 @@
|
|
1
|
+
|
2
|
+
/**
|
3
|
+
* Solves an equation of the form ax² + bx + c = 0.
|
4
|
+
* The larger solution is returned first.
|
5
|
+
*
|
6
|
+
* If there are no solutions, returns `[NaN, NaN]`. If there is one solution,
|
7
|
+
* repeats the solution twice in the result.
|
8
|
+
*/
|
9
|
+
const solveQuadratic = (a: number, b: number, c: number): [number, number] => {
|
10
|
+
// See also https://en.wikipedia.org/wiki/Quadratic_formula
|
11
|
+
|
12
|
+
if (a === 0) {
|
13
|
+
let solution;
|
14
|
+
|
15
|
+
if (b === 0) {
|
16
|
+
solution = c === 0 ? 0 : NaN;
|
17
|
+
} else {
|
18
|
+
// Then we have bx + c = 0
|
19
|
+
// which implies bx = -c.
|
20
|
+
// Thus, x = -c/b
|
21
|
+
solution = -c / b;
|
22
|
+
}
|
23
|
+
|
24
|
+
return [ solution, solution ];
|
25
|
+
}
|
26
|
+
|
27
|
+
const discriminant = b * b - 4 * a * c;
|
28
|
+
|
29
|
+
if (discriminant < 0) {
|
30
|
+
return [ NaN, NaN ];
|
31
|
+
}
|
32
|
+
|
33
|
+
const rootDiscriminant = Math.sqrt(discriminant);
|
34
|
+
const solution1 = (-b + rootDiscriminant) / (2 * a);
|
35
|
+
const solution2 = (-b - rootDiscriminant) / (2 * a);
|
36
|
+
|
37
|
+
if (solution1 > solution2) {
|
38
|
+
return [ solution1, solution2 ];
|
39
|
+
} else {
|
40
|
+
return [ solution2, solution1 ];
|
41
|
+
}
|
42
|
+
};
|
43
|
+
export default solveQuadratic;
|
@@ -0,0 +1,65 @@
|
|
1
|
+
import { cleanUpNumber, toRoundedString, toStringOfSamePrecision } from './rounding';
|
2
|
+
|
3
|
+
describe('toRoundedString', () => {
|
4
|
+
it('should round up numbers endings similar to .999999999999999', () => {
|
5
|
+
expect(toRoundedString(0.999999999)).toBe('1');
|
6
|
+
expect(toRoundedString(0.899999999)).toBe('.9');
|
7
|
+
expect(toRoundedString(9.999999999)).toBe('10');
|
8
|
+
expect(toRoundedString(-10.999999999)).toBe('-11');
|
9
|
+
});
|
10
|
+
|
11
|
+
it('should round up numbers similar to 10.999999998', () => {
|
12
|
+
expect(toRoundedString(10.999999998)).toBe('11');
|
13
|
+
});
|
14
|
+
|
15
|
+
it('should round strings with multiple digits after the ending decimal points', () => {
|
16
|
+
expect(toRoundedString(292.2 - 292.8)).toBe('-.6');
|
17
|
+
expect(toRoundedString(4.06425600000023)).toBe('4.064256');
|
18
|
+
});
|
19
|
+
|
20
|
+
it('should round down strings ending endings similar to .00000001', () => {
|
21
|
+
expect(toRoundedString(10.00000001)).toBe('10');
|
22
|
+
expect(toRoundedString(-30.00000001)).toBe('-30');
|
23
|
+
expect(toRoundedString(-14.20000000000002)).toBe('-14.2');
|
24
|
+
});
|
25
|
+
|
26
|
+
it('should not round numbers insufficiently close to the next', () => {
|
27
|
+
expect(toRoundedString(-10.9999)).toBe('-10.9999');
|
28
|
+
expect(toRoundedString(-10.0001)).toBe('-10.0001');
|
29
|
+
expect(toRoundedString(-10.123499)).toBe('-10.123499');
|
30
|
+
expect(toRoundedString(0.00123499)).toBe('.00123499');
|
31
|
+
});
|
32
|
+
});
|
33
|
+
|
34
|
+
it('toStringOfSamePrecision', () => {
|
35
|
+
expect(toStringOfSamePrecision(1.23456, '1.12')).toBe('1.23');
|
36
|
+
expect(toStringOfSamePrecision(1.23456, '1.120')).toBe('1.235');
|
37
|
+
expect(toStringOfSamePrecision(1.23456, '1.1')).toBe('1.2');
|
38
|
+
expect(toStringOfSamePrecision(1.23456, '1.1', '5.32')).toBe('1.23');
|
39
|
+
expect(toStringOfSamePrecision(-1.23456, '1.1', '5.32')).toBe('-1.23');
|
40
|
+
expect(toStringOfSamePrecision(-1.99999, '1.1', '5.32')).toBe('-2');
|
41
|
+
expect(toStringOfSamePrecision(1.99999, '1.1', '5.32')).toBe('2');
|
42
|
+
expect(toStringOfSamePrecision(1.89999, '1.1', '5.32')).toBe('1.9');
|
43
|
+
expect(toStringOfSamePrecision(9.99999999, '-1.1234')).toBe('10');
|
44
|
+
expect(toStringOfSamePrecision(9.999999998999996, '100')).toBe('10');
|
45
|
+
expect(toStringOfSamePrecision(0.000012345, '0.000012')).toBe('.000012');
|
46
|
+
expect(toStringOfSamePrecision(0.000012645, '.000012')).toBe('.000013');
|
47
|
+
expect(toStringOfSamePrecision(-0.09999999999999432, '291.3')).toBe('-.1');
|
48
|
+
expect(toStringOfSamePrecision(-0.9999999999999432, '291.3')).toBe('-1');
|
49
|
+
expect(toStringOfSamePrecision(9998.9, '.1', '-11')).toBe('9998.9');
|
50
|
+
expect(toStringOfSamePrecision(-14.20000000000002, '.000001', '-11')).toBe('-14.2');
|
51
|
+
});
|
52
|
+
|
53
|
+
it('cleanUpNumber', () => {
|
54
|
+
expect(cleanUpNumber('000.0000')).toBe('0');
|
55
|
+
expect(cleanUpNumber('-000.0000')).toBe('0');
|
56
|
+
expect(cleanUpNumber('0.0000')).toBe('0');
|
57
|
+
expect(cleanUpNumber('0.001')).toBe('.001');
|
58
|
+
expect(cleanUpNumber('-0.001')).toBe('-.001');
|
59
|
+
expect(cleanUpNumber('-0.000000001')).toBe('-.000000001');
|
60
|
+
expect(cleanUpNumber('-0.00000000100')).toBe('-.000000001');
|
61
|
+
expect(cleanUpNumber('1234')).toBe('1234');
|
62
|
+
expect(cleanUpNumber('1234.5')).toBe('1234.5');
|
63
|
+
expect(cleanUpNumber('1234.500')).toBe('1234.5');
|
64
|
+
expect(cleanUpNumber('1.1368683772161603e-13')).toBe('0');
|
65
|
+
});
|
package/src/rounding.ts
ADDED
@@ -0,0 +1,167 @@
|
|
1
|
+
// @packageDocumentation @internal
|
2
|
+
|
3
|
+
// Clean up stringified numbers
|
4
|
+
export const cleanUpNumber = (text: string) => {
|
5
|
+
// Regular expression substitions can be somewhat expensive. Only do them
|
6
|
+
// if necessary.
|
7
|
+
|
8
|
+
if (text.indexOf('e') > 0) {
|
9
|
+
// Round to zero.
|
10
|
+
if (text.match(/[eE][-]\d{2,}$/)) {
|
11
|
+
return '0';
|
12
|
+
}
|
13
|
+
}
|
14
|
+
|
15
|
+
const lastChar = text.charAt(text.length - 1);
|
16
|
+
if (lastChar === '0' || lastChar === '.') {
|
17
|
+
// Remove trailing zeroes
|
18
|
+
text = text.replace(/([.]\d*[^0]+)0+$/, '$1');
|
19
|
+
text = text.replace(/[.]0+$/, '.');
|
20
|
+
|
21
|
+
// Remove trailing period
|
22
|
+
text = text.replace(/[.]$/, '');
|
23
|
+
}
|
24
|
+
|
25
|
+
const firstChar = text.charAt(0);
|
26
|
+
if (firstChar === '0' || firstChar === '-') {
|
27
|
+
// Remove unnecessary leading zeroes.
|
28
|
+
text = text.replace(/^(0+)[.]/, '.');
|
29
|
+
text = text.replace(/^-(0+)[.]/, '-.');
|
30
|
+
text = text.replace(/^(-?)0+$/, '$10');
|
31
|
+
}
|
32
|
+
|
33
|
+
if (text === '-0') {
|
34
|
+
return '0';
|
35
|
+
}
|
36
|
+
|
37
|
+
return text;
|
38
|
+
};
|
39
|
+
|
40
|
+
/**
|
41
|
+
* Converts `num` to a string, removing trailing digits that were likely caused by
|
42
|
+
* precision errors.
|
43
|
+
*
|
44
|
+
* @example
|
45
|
+
* ```ts,runnable,console
|
46
|
+
* import { toRoundedString } from '@js-draw/math';
|
47
|
+
*
|
48
|
+
* console.log('Rounded: ', toRoundedString(1.000000011));
|
49
|
+
* ```
|
50
|
+
*/
|
51
|
+
export const toRoundedString = (num: number): string => {
|
52
|
+
// Try to remove rounding errors. If the number ends in at least three/four zeroes
|
53
|
+
// (or nines) just one or two digits, it's probably a rounding error.
|
54
|
+
const fixRoundingUpExp = /^([-]?\d*\.\d{3,})0{4,}\d{1,4}$/;
|
55
|
+
const hasRoundingDownExp = /^([-]?)(\d*)\.(\d{3,}9{4,})\d{1,4}$/;
|
56
|
+
|
57
|
+
let text = num.toString(10);
|
58
|
+
if (text.indexOf('.') === -1) {
|
59
|
+
return text;
|
60
|
+
}
|
61
|
+
|
62
|
+
const roundingDownMatch = hasRoundingDownExp.exec(text);
|
63
|
+
if (roundingDownMatch) {
|
64
|
+
const negativeSign = roundingDownMatch[1];
|
65
|
+
const postDecimalString = roundingDownMatch[3];
|
66
|
+
const lastDigit = parseInt(postDecimalString.charAt(postDecimalString.length - 1), 10);
|
67
|
+
const postDecimal = parseInt(postDecimalString, 10);
|
68
|
+
const preDecimal = parseInt(roundingDownMatch[2], 10);
|
69
|
+
|
70
|
+
const origPostDecimalString = roundingDownMatch[3];
|
71
|
+
|
72
|
+
let newPostDecimal = (postDecimal + 10 - lastDigit).toString();
|
73
|
+
let carry = 0;
|
74
|
+
if (newPostDecimal.length > postDecimal.toString().length) {
|
75
|
+
// Left-shift
|
76
|
+
newPostDecimal = newPostDecimal.substring(1);
|
77
|
+
carry = 1;
|
78
|
+
}
|
79
|
+
|
80
|
+
// parseInt(...).toString() removes leading zeroes. Add them back.
|
81
|
+
while (newPostDecimal.length < origPostDecimalString.length) {
|
82
|
+
newPostDecimal = carry.toString(10) + newPostDecimal;
|
83
|
+
carry = 0;
|
84
|
+
}
|
85
|
+
|
86
|
+
text = `${negativeSign + (preDecimal + carry).toString()}.${newPostDecimal}`;
|
87
|
+
}
|
88
|
+
|
89
|
+
text = text.replace(fixRoundingUpExp, '$1');
|
90
|
+
|
91
|
+
return cleanUpNumber(text);
|
92
|
+
};
|
93
|
+
|
94
|
+
const numberExp = /^([-]?)(\d*)[.](\d+)$/;
|
95
|
+
export const getLenAfterDecimal = (numberAsString: string) => {
|
96
|
+
const numberMatch = numberExp.exec(numberAsString);
|
97
|
+
if (!numberMatch) {
|
98
|
+
// If not a match, either the number is exponential notation (or is something
|
99
|
+
// like NaN or Infinity)
|
100
|
+
if (numberAsString.search(/[eE]/) !== -1 || /^[a-zA-Z]+$/.exec(numberAsString)) {
|
101
|
+
return -1;
|
102
|
+
// Or it has no decimal point
|
103
|
+
} else {
|
104
|
+
return 0;
|
105
|
+
}
|
106
|
+
}
|
107
|
+
|
108
|
+
const afterDecimalLen = numberMatch[3].length;
|
109
|
+
return afterDecimalLen;
|
110
|
+
};
|
111
|
+
|
112
|
+
// [reference] should be a string representation of a base-10 number (no exponential (e.g. 10e10))
|
113
|
+
export const toStringOfSamePrecision = (num: number, ...references: string[]): string => {
|
114
|
+
const text = num.toString(10);
|
115
|
+
const textMatch = numberExp.exec(text);
|
116
|
+
if (!textMatch) {
|
117
|
+
return text;
|
118
|
+
}
|
119
|
+
|
120
|
+
let decimalPlaces = -1;
|
121
|
+
for (const reference of references) {
|
122
|
+
decimalPlaces = Math.max(getLenAfterDecimal(reference), decimalPlaces);
|
123
|
+
}
|
124
|
+
|
125
|
+
if (decimalPlaces === -1) {
|
126
|
+
return toRoundedString(num);
|
127
|
+
}
|
128
|
+
|
129
|
+
// Make text's after decimal length match [afterDecimalLen].
|
130
|
+
let postDecimal = textMatch[3].substring(0, decimalPlaces);
|
131
|
+
let preDecimal = textMatch[2];
|
132
|
+
const nextDigit = textMatch[3].charAt(decimalPlaces);
|
133
|
+
|
134
|
+
if (nextDigit !== '') {
|
135
|
+
const asNumber = parseInt(nextDigit, 10);
|
136
|
+
if (asNumber >= 5) {
|
137
|
+
// Don't attempt to parseInt() an empty string.
|
138
|
+
if (postDecimal.length > 0) {
|
139
|
+
const leadingZeroMatch = /^(0+)(\d*)$/.exec(postDecimal);
|
140
|
+
|
141
|
+
let leadingZeroes = '';
|
142
|
+
let postLeading = postDecimal;
|
143
|
+
if (leadingZeroMatch) {
|
144
|
+
leadingZeroes = leadingZeroMatch[1];
|
145
|
+
postLeading = leadingZeroMatch[2];
|
146
|
+
}
|
147
|
+
|
148
|
+
postDecimal = (parseInt(postDecimal) + 1).toString();
|
149
|
+
|
150
|
+
// If postDecimal got longer, remove leading zeroes if possible
|
151
|
+
if (postDecimal.length > postLeading.length && leadingZeroes.length > 0) {
|
152
|
+
leadingZeroes = leadingZeroes.substring(1);
|
153
|
+
}
|
154
|
+
|
155
|
+
postDecimal = leadingZeroes + postDecimal;
|
156
|
+
}
|
157
|
+
|
158
|
+
if (postDecimal.length === 0 || postDecimal.length > decimalPlaces) {
|
159
|
+
preDecimal = (parseInt(preDecimal) + 1).toString();
|
160
|
+
postDecimal = postDecimal.substring(1);
|
161
|
+
}
|
162
|
+
}
|
163
|
+
}
|
164
|
+
|
165
|
+
const negativeSign = textMatch[1];
|
166
|
+
return cleanUpNumber(`${negativeSign}${preDecimal}.${postDecimal}`);
|
167
|
+
};
|