@js-draw/math 1.0.0 → 1.0.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/LICENSE +21 -0
- package/dist/cjs/Color4.test.d.ts +1 -0
- package/dist/cjs/Mat33.test.d.ts +1 -0
- package/dist/cjs/Vec2.test.d.ts +1 -0
- package/dist/cjs/Vec3.test.d.ts +1 -0
- package/dist/cjs/polynomial/solveQuadratic.test.d.ts +1 -0
- package/dist/cjs/rounding.test.d.ts +1 -0
- package/dist/cjs/shapes/LineSegment2.test.d.ts +1 -0
- package/dist/cjs/shapes/Path.fromString.test.d.ts +1 -0
- package/dist/cjs/shapes/Path.test.d.ts +1 -0
- package/dist/cjs/shapes/Path.toString.test.d.ts +1 -0
- package/dist/cjs/shapes/QuadraticBezier.test.d.ts +1 -0
- package/dist/cjs/shapes/Rect2.test.d.ts +1 -0
- package/dist/cjs/shapes/Triangle.test.d.ts +1 -0
- package/dist/mjs/Color4.test.d.ts +1 -0
- package/dist/mjs/Mat33.test.d.ts +1 -0
- package/dist/mjs/Vec2.test.d.ts +1 -0
- package/dist/mjs/Vec3.test.d.ts +1 -0
- package/dist/mjs/polynomial/solveQuadratic.test.d.ts +1 -0
- package/dist/mjs/rounding.test.d.ts +1 -0
- package/dist/mjs/shapes/LineSegment2.test.d.ts +1 -0
- package/dist/mjs/shapes/Path.fromString.test.d.ts +1 -0
- package/dist/mjs/shapes/Path.test.d.ts +1 -0
- package/dist/mjs/shapes/Path.toString.test.d.ts +1 -0
- package/dist/mjs/shapes/QuadraticBezier.test.d.ts +1 -0
- package/dist/mjs/shapes/Rect2.test.d.ts +1 -0
- package/dist/mjs/shapes/Triangle.test.d.ts +1 -0
- package/dist-test/test_imports/package-lock.json +13 -0
- package/dist-test/test_imports/package.json +12 -0
- package/dist-test/test_imports/test-imports.js +15 -0
- package/dist-test/test_imports/test-require.cjs +15 -0
- package/package.json +4 -3
- package/src/Color4.test.ts +52 -0
- package/src/Color4.ts +318 -0
- package/src/Mat33.test.ts +244 -0
- package/src/Mat33.ts +450 -0
- package/src/Vec2.test.ts +30 -0
- package/src/Vec2.ts +49 -0
- package/src/Vec3.test.ts +51 -0
- package/src/Vec3.ts +245 -0
- package/src/lib.ts +42 -0
- package/src/polynomial/solveQuadratic.test.ts +39 -0
- package/src/polynomial/solveQuadratic.ts +43 -0
- package/src/rounding.test.ts +65 -0
- package/src/rounding.ts +167 -0
- package/src/shapes/Abstract2DShape.ts +63 -0
- package/src/shapes/BezierJSWrapper.ts +93 -0
- package/src/shapes/CubicBezier.ts +35 -0
- package/src/shapes/LineSegment2.test.ts +99 -0
- package/src/shapes/LineSegment2.ts +232 -0
- package/src/shapes/Path.fromString.test.ts +223 -0
- package/src/shapes/Path.test.ts +309 -0
- package/src/shapes/Path.toString.test.ts +77 -0
- package/src/shapes/Path.ts +963 -0
- package/src/shapes/PointShape2D.ts +33 -0
- package/src/shapes/QuadraticBezier.test.ts +31 -0
- package/src/shapes/QuadraticBezier.ts +142 -0
- package/src/shapes/Rect2.test.ts +209 -0
- package/src/shapes/Rect2.ts +346 -0
- package/src/shapes/Triangle.test.ts +61 -0
- package/src/shapes/Triangle.ts +139 -0
@@ -0,0 +1,244 @@
|
|
1
|
+
import Mat33 from './Mat33';
|
2
|
+
import { Point2, Vec2 } from './Vec2';
|
3
|
+
import Vec3 from './Vec3';
|
4
|
+
|
5
|
+
|
6
|
+
describe('Mat33 tests', () => {
|
7
|
+
it('equality', () => {
|
8
|
+
expect(Mat33.identity).objEq(Mat33.identity);
|
9
|
+
expect(new Mat33(
|
10
|
+
0.1, 0.2, 0.3,
|
11
|
+
0.4, 0.5, 0.6,
|
12
|
+
0.7, 0.8, -0.9
|
13
|
+
)).objEq(new Mat33(
|
14
|
+
0.2, 0.1, 0.4,
|
15
|
+
0.5, 0.5, 0.7,
|
16
|
+
0.7, 0.8, -0.9
|
17
|
+
), 0.2);
|
18
|
+
});
|
19
|
+
|
20
|
+
it('transposition', () => {
|
21
|
+
expect(Mat33.identity.transposed()).objEq(Mat33.identity);
|
22
|
+
expect(new Mat33(
|
23
|
+
1, 2, 0,
|
24
|
+
0, 0, 0,
|
25
|
+
0, 1, 0
|
26
|
+
).transposed()).objEq(new Mat33(
|
27
|
+
1, 0, 0,
|
28
|
+
2, 0, 1,
|
29
|
+
0, 0, 0
|
30
|
+
));
|
31
|
+
});
|
32
|
+
|
33
|
+
it('multiplication', () => {
|
34
|
+
const M = new Mat33(
|
35
|
+
1, 2, 3,
|
36
|
+
4, 5, 6,
|
37
|
+
7, 8, 9
|
38
|
+
);
|
39
|
+
|
40
|
+
expect(Mat33.identity.rightMul(Mat33.identity)).objEq(Mat33.identity);
|
41
|
+
expect(M.rightMul(Mat33.identity)).objEq(M);
|
42
|
+
expect(M.rightMul(new Mat33(
|
43
|
+
1, 0, 0,
|
44
|
+
0, 2, 0,
|
45
|
+
0, 0, 1
|
46
|
+
))).objEq(new Mat33(
|
47
|
+
1, 4, 3,
|
48
|
+
4, 10, 6,
|
49
|
+
7, 16, 9
|
50
|
+
));
|
51
|
+
expect(M.rightMul(new Mat33(
|
52
|
+
2, 0, 1,
|
53
|
+
0, 1, 0,
|
54
|
+
0, 0, 3
|
55
|
+
))).objEq(new Mat33(
|
56
|
+
2, 2, 10,
|
57
|
+
8, 5, 22,
|
58
|
+
14, 8, 34
|
59
|
+
));
|
60
|
+
});
|
61
|
+
|
62
|
+
it('the inverse of the identity matrix should be the identity matrix', () => {
|
63
|
+
const fuzz = 0.01;
|
64
|
+
expect(Mat33.identity.inverse()).objEq(Mat33.identity, fuzz);
|
65
|
+
|
66
|
+
const M = new Mat33(
|
67
|
+
1, 2, 3,
|
68
|
+
4, 1, 0,
|
69
|
+
2, 3, 0
|
70
|
+
);
|
71
|
+
expect(M.inverse().rightMul(M)).objEq(Mat33.identity, fuzz);
|
72
|
+
});
|
73
|
+
|
74
|
+
it('90 degree z-rotation matricies should rotate 90 degrees counter clockwise', () => {
|
75
|
+
const fuzz = 0.001;
|
76
|
+
|
77
|
+
const M = Mat33.zRotation(Math.PI / 2);
|
78
|
+
const rotated = M.transformVec2(Vec2.unitX);
|
79
|
+
expect(rotated).objEq(Vec2.unitY, fuzz);
|
80
|
+
expect(M.transformVec2(rotated)).objEq(Vec2.unitX.times(-1), fuzz);
|
81
|
+
});
|
82
|
+
|
83
|
+
it('z-rotation matricies should preserve the given origin', () => {
|
84
|
+
const testPairs: Array<[number, Vec2]> = [
|
85
|
+
[ Math.PI / 2, Vec2.zero ],
|
86
|
+
[ -Math.PI / 2, Vec2.zero ],
|
87
|
+
[ -Math.PI / 2, Vec2.of(10, 10) ],
|
88
|
+
];
|
89
|
+
|
90
|
+
for (const [ angle, center ] of testPairs) {
|
91
|
+
expect(Mat33.zRotation(angle, center).transformVec2(center)).objEq(center);
|
92
|
+
}
|
93
|
+
});
|
94
|
+
|
95
|
+
it('translation matricies should translate Vec2s', () => {
|
96
|
+
const fuzz = 0.01;
|
97
|
+
|
98
|
+
const M = Mat33.translation(Vec2.of(1, -4));
|
99
|
+
expect(M.transformVec2(Vec2.of(0, 0))).objEq(Vec2.of(1, -4), fuzz);
|
100
|
+
expect(M.transformVec2(Vec2.of(-1, 3))).objEq(Vec2.of(0, -1), fuzz);
|
101
|
+
});
|
102
|
+
|
103
|
+
it('scaling matricies should scale about the provided center', () => {
|
104
|
+
const fuzz = 0.01;
|
105
|
+
|
106
|
+
const center = Vec2.of(1, -4);
|
107
|
+
const M = Mat33.scaling2D(2, center);
|
108
|
+
expect(M.transformVec2(center)).objEq(center, fuzz);
|
109
|
+
expect(M.transformVec2(Vec2.of(0, 0))).objEq(Vec2.of(-1, 4), fuzz);
|
110
|
+
});
|
111
|
+
|
112
|
+
it('calling inverse on singular matricies should result in the identity matrix', () => {
|
113
|
+
const fuzz = 0.001;
|
114
|
+
const singularMat = Mat33.ofRows(
|
115
|
+
Vec3.of(0, 0, 1),
|
116
|
+
Vec3.of(0, 1, 0),
|
117
|
+
Vec3.of(0, 1, 1)
|
118
|
+
);
|
119
|
+
expect(singularMat.invertable()).toBe(false);
|
120
|
+
expect(singularMat.inverse()).objEq(Mat33.identity, fuzz);
|
121
|
+
});
|
122
|
+
|
123
|
+
it('z-rotation matricies should be invertable', () => {
|
124
|
+
const fuzz = 0.01;
|
125
|
+
const M = Mat33.zRotation(-0.2617993877991494, Vec2.of(481, 329.5));
|
126
|
+
expect(
|
127
|
+
M.inverse().transformVec2(M.transformVec2(Vec2.unitX))
|
128
|
+
).objEq(Vec2.unitX, fuzz);
|
129
|
+
expect(M.invertable());
|
130
|
+
|
131
|
+
const starterTransform = new Mat33(
|
132
|
+
-0.2588190451025205, -0.9659258262890688, 923.7645204565603,
|
133
|
+
0.9659258262890688, -0.2588190451025205, -49.829447083761465,
|
134
|
+
0, 0, 1
|
135
|
+
);
|
136
|
+
expect(starterTransform.invertable()).toBe(true);
|
137
|
+
|
138
|
+
const fullTransform = starterTransform.rightMul(M);
|
139
|
+
const fullTransformInverse = fullTransform.inverse();
|
140
|
+
expect(fullTransform.invertable()).toBe(true);
|
141
|
+
|
142
|
+
expect(
|
143
|
+
fullTransformInverse.rightMul(fullTransform)
|
144
|
+
).objEq(Mat33.identity, fuzz);
|
145
|
+
|
146
|
+
expect(
|
147
|
+
fullTransform.transformVec2(fullTransformInverse.transformVec2(Vec2.unitX))
|
148
|
+
).objEq(Vec2.unitX, fuzz);
|
149
|
+
|
150
|
+
expect(
|
151
|
+
fullTransformInverse.transformVec2(fullTransform.transformVec2(Vec2.unitX))
|
152
|
+
).objEq(Vec2.unitX, fuzz);
|
153
|
+
});
|
154
|
+
|
155
|
+
it('z-rotation matrix inverses should undo the z-rotation', () => {
|
156
|
+
const testCases: Array<[ number, Point2 ]> = [
|
157
|
+
[ Math.PI / 2, Vec2.zero ],
|
158
|
+
[ Math.PI, Vec2.of(1, 1) ],
|
159
|
+
[ -Math.PI, Vec2.of(1, 1) ],
|
160
|
+
[ -Math.PI * 2, Vec2.of(1, 1) ],
|
161
|
+
[ -Math.PI * 2, Vec2.of(123, 456) ],
|
162
|
+
[ -Math.PI / 4, Vec2.of(123, 456) ],
|
163
|
+
[ 0.1, Vec2.of(1, 2) ],
|
164
|
+
];
|
165
|
+
|
166
|
+
const fuzz = 0.00001;
|
167
|
+
for (const [ angle, center ] of testCases) {
|
168
|
+
const mat = Mat33.zRotation(angle, center);
|
169
|
+
expect(mat.inverse().rightMul(mat)).objEq(Mat33.identity, fuzz);
|
170
|
+
expect(mat.rightMul(mat.inverse())).objEq(Mat33.identity, fuzz);
|
171
|
+
}
|
172
|
+
});
|
173
|
+
|
174
|
+
it('z-rotation should preserve given origin', () => {
|
175
|
+
const testCases: Array<[ number, Point2 ]> = [
|
176
|
+
[ 6.205048847547065, Vec2.of(75.16363373235318, 104.29870408043762) ],
|
177
|
+
[ 1.234, Vec2.of(-56, 789) ],
|
178
|
+
[ -Math.PI, Vec2.of(-56, 789) ],
|
179
|
+
[ -Math.PI / 2, Vec2.of(-0.001, 1.0002) ],
|
180
|
+
];
|
181
|
+
|
182
|
+
for (const [angle, rotationOrigin] of testCases) {
|
183
|
+
expect(Mat33.zRotation(angle, rotationOrigin).transformVec2(rotationOrigin)).objEq(rotationOrigin);
|
184
|
+
}
|
185
|
+
});
|
186
|
+
|
187
|
+
it('should correctly apply a mapping to all components', () => {
|
188
|
+
expect(
|
189
|
+
new Mat33(
|
190
|
+
1, 2, 3,
|
191
|
+
4, 5, 6,
|
192
|
+
7, 8, 9,
|
193
|
+
).mapEntries(component => component - 1)
|
194
|
+
).toMatchObject(new Mat33(
|
195
|
+
0, 1, 2,
|
196
|
+
3, 4, 5,
|
197
|
+
6, 7, 8,
|
198
|
+
));
|
199
|
+
});
|
200
|
+
|
201
|
+
it('should convert CSS matrix(...) strings to matricies', () => {
|
202
|
+
// From MDN:
|
203
|
+
// ⎡ a c e ⎤
|
204
|
+
// ⎢ b d f ⎥ = matrix(a,b,c,d,e,f)
|
205
|
+
// ⎣ 0 0 1 ⎦
|
206
|
+
const identity = Mat33.fromCSSMatrix('matrix(1, 0, 0, 1, 0, 0)');
|
207
|
+
expect(identity).objEq(Mat33.identity);
|
208
|
+
expect(Mat33.fromCSSMatrix('matrix(1, 2, 3, 4, 5, 6)')).objEq(new Mat33(
|
209
|
+
1, 3, 5,
|
210
|
+
2, 4, 6,
|
211
|
+
0, 0, 1,
|
212
|
+
));
|
213
|
+
expect(Mat33.fromCSSMatrix('matrix(1e2, 2, 3, 4, 5, 6)')).objEq(new Mat33(
|
214
|
+
1e2, 3, 5,
|
215
|
+
2, 4, 6,
|
216
|
+
0, 0, 1,
|
217
|
+
));
|
218
|
+
expect(Mat33.fromCSSMatrix('matrix(1.6, 2, .3, 4, 5, 6)')).objEq(new Mat33(
|
219
|
+
1.6, .3, 5,
|
220
|
+
2, 4, 6,
|
221
|
+
0, 0, 1,
|
222
|
+
));
|
223
|
+
expect(Mat33.fromCSSMatrix('matrix(-1, 2, 3.E-2, 4, -5.123, -6.5)')).objEq(new Mat33(
|
224
|
+
-1, 0.03, -5.123,
|
225
|
+
2, 4, -6.5,
|
226
|
+
0, 0, 1,
|
227
|
+
));
|
228
|
+
expect(Mat33.fromCSSMatrix('matrix(1.6,\n\t2, .3, 4, 5, 6)')).objEq(new Mat33(
|
229
|
+
1.6, .3, 5,
|
230
|
+
2, 4, 6,
|
231
|
+
0, 0, 1,
|
232
|
+
));
|
233
|
+
expect(Mat33.fromCSSMatrix('matrix(1.6,2, .3E-2, 4, 5, 6)')).objEq(new Mat33(
|
234
|
+
1.6, 3e-3, 5,
|
235
|
+
2, 4, 6,
|
236
|
+
0, 0, 1,
|
237
|
+
));
|
238
|
+
expect(Mat33.fromCSSMatrix('matrix(-1, 2e6, 3E-2,-5.123, -6.5e-1, 0.01)')).objEq(new Mat33(
|
239
|
+
-1, 3E-2, -6.5e-1,
|
240
|
+
2e6, -5.123, 0.01,
|
241
|
+
0, 0, 1,
|
242
|
+
));
|
243
|
+
});
|
244
|
+
});
|
package/src/Mat33.ts
ADDED
@@ -0,0 +1,450 @@
|
|
1
|
+
import { Point2, Vec2 } from './Vec2';
|
2
|
+
import Vec3 from './Vec3';
|
3
|
+
|
4
|
+
export type Mat33Array = [
|
5
|
+
number, number, number,
|
6
|
+
number, number, number,
|
7
|
+
number, number, number,
|
8
|
+
];
|
9
|
+
|
10
|
+
/**
|
11
|
+
* Represents a three dimensional linear transformation or
|
12
|
+
* a two-dimensional affine transformation. (An affine transformation scales/rotates/shears
|
13
|
+
* **and** translates while a linear transformation just scales/rotates/shears).
|
14
|
+
*/
|
15
|
+
export class Mat33 {
|
16
|
+
private readonly rows: Vec3[];
|
17
|
+
|
18
|
+
/**
|
19
|
+
* Creates a matrix from inputs in the form,
|
20
|
+
* $$
|
21
|
+
* \begin{bmatrix}
|
22
|
+
* a1 & a2 & a3 \\
|
23
|
+
* b1 & b2 & b3 \\
|
24
|
+
* c1 & c2 & c3
|
25
|
+
* \end{bmatrix}
|
26
|
+
* $$
|
27
|
+
*/
|
28
|
+
public constructor(
|
29
|
+
public readonly a1: number,
|
30
|
+
public readonly a2: number,
|
31
|
+
public readonly a3: number,
|
32
|
+
|
33
|
+
public readonly b1: number,
|
34
|
+
public readonly b2: number,
|
35
|
+
public readonly b3: number,
|
36
|
+
|
37
|
+
public readonly c1: number,
|
38
|
+
public readonly c2: number,
|
39
|
+
public readonly c3: number
|
40
|
+
) {
|
41
|
+
this.rows = [
|
42
|
+
Vec3.of(a1, a2, a3),
|
43
|
+
Vec3.of(b1, b2, b3),
|
44
|
+
Vec3.of(c1, c2, c3),
|
45
|
+
];
|
46
|
+
}
|
47
|
+
|
48
|
+
/**
|
49
|
+
* Creates a matrix from the given rows:
|
50
|
+
* $$
|
51
|
+
* \begin{bmatrix}
|
52
|
+
* \texttt{r1.x} & \texttt{r1.y} & \texttt{r1.z}\\
|
53
|
+
* \texttt{r2.x} & \texttt{r2.y} & \texttt{r2.z}\\
|
54
|
+
* \texttt{r3.x} & \texttt{r3.y} & \texttt{r3.z}\\
|
55
|
+
* \end{bmatrix}
|
56
|
+
* $$
|
57
|
+
*/
|
58
|
+
public static ofRows(r1: Vec3, r2: Vec3, r3: Vec3): Mat33 {
|
59
|
+
return new Mat33(
|
60
|
+
r1.x, r1.y, r1.z,
|
61
|
+
r2.x, r2.y, r2.z,
|
62
|
+
r3.x, r3.y, r3.z
|
63
|
+
);
|
64
|
+
}
|
65
|
+
|
66
|
+
public static identity = new Mat33(
|
67
|
+
1, 0, 0,
|
68
|
+
0, 1, 0,
|
69
|
+
0, 0, 1
|
70
|
+
);
|
71
|
+
|
72
|
+
/**
|
73
|
+
* Either returns the inverse of this, or, if this matrix is singular/uninvertable,
|
74
|
+
* returns Mat33.identity.
|
75
|
+
*
|
76
|
+
* This may cache the computed inverse and return the cached version instead of recomputing
|
77
|
+
* it.
|
78
|
+
*/
|
79
|
+
public inverse(): Mat33 {
|
80
|
+
return this.computeInverse() ?? Mat33.identity;
|
81
|
+
}
|
82
|
+
|
83
|
+
public invertable(): boolean {
|
84
|
+
return this.computeInverse() !== null;
|
85
|
+
}
|
86
|
+
|
87
|
+
private cachedInverse: Mat33|undefined|null = undefined;
|
88
|
+
private computeInverse(): Mat33|null {
|
89
|
+
if (this.cachedInverse !== undefined) {
|
90
|
+
return this.cachedInverse;
|
91
|
+
}
|
92
|
+
|
93
|
+
const toIdentity = [
|
94
|
+
this.rows[0],
|
95
|
+
this.rows[1],
|
96
|
+
this.rows[2],
|
97
|
+
];
|
98
|
+
|
99
|
+
const toResult = [
|
100
|
+
Vec3.unitX,
|
101
|
+
Vec3.unitY,
|
102
|
+
Vec3.unitZ,
|
103
|
+
];
|
104
|
+
|
105
|
+
// Convert toIdentity to the identity matrix and
|
106
|
+
// toResult to the inverse through elementary row operations
|
107
|
+
for (let cursor = 0; cursor < 3; cursor++) {
|
108
|
+
// Select the [cursor]th diagonal entry
|
109
|
+
let pivot = toIdentity[cursor].at(cursor);
|
110
|
+
|
111
|
+
// Don't divide by zero (treat very small numbers as zero).
|
112
|
+
const minDivideBy = 1e-10;
|
113
|
+
if (Math.abs(pivot) < minDivideBy) {
|
114
|
+
let swapIndex = -1;
|
115
|
+
// For all other rows,
|
116
|
+
for (let i = 1; i <= 2; i++) {
|
117
|
+
const otherRowIdx = (cursor + i) % 3;
|
118
|
+
|
119
|
+
if (Math.abs(toIdentity[otherRowIdx].at(cursor)) >= minDivideBy) {
|
120
|
+
swapIndex = otherRowIdx;
|
121
|
+
break;
|
122
|
+
}
|
123
|
+
}
|
124
|
+
|
125
|
+
// Can't swap with another row?
|
126
|
+
if (swapIndex === -1) {
|
127
|
+
this.cachedInverse = null;
|
128
|
+
return null;
|
129
|
+
}
|
130
|
+
|
131
|
+
const tmpIdentityRow = toIdentity[cursor];
|
132
|
+
const tmpResultRow = toResult[cursor];
|
133
|
+
|
134
|
+
// Swap!
|
135
|
+
toIdentity[cursor] = toIdentity[swapIndex];
|
136
|
+
toResult[cursor] = toResult[swapIndex];
|
137
|
+
toIdentity[swapIndex] = tmpIdentityRow;
|
138
|
+
toResult[swapIndex] = tmpResultRow;
|
139
|
+
|
140
|
+
pivot = toIdentity[cursor].at(cursor);
|
141
|
+
}
|
142
|
+
|
143
|
+
// Make toIdentity[k = cursor] = 1
|
144
|
+
let scale = 1.0 / pivot;
|
145
|
+
toIdentity[cursor] = toIdentity[cursor].times(scale);
|
146
|
+
toResult[cursor] = toResult[cursor].times(scale);
|
147
|
+
|
148
|
+
const cursorToIdentityRow = toIdentity[cursor];
|
149
|
+
const cursorToResultRow = toResult[cursor];
|
150
|
+
|
151
|
+
// Make toIdentity[k ≠ cursor] = 0
|
152
|
+
for (let i = 1; i <= 2; i++) {
|
153
|
+
const otherRowIdx = (cursor + i) % 3;
|
154
|
+
scale = -toIdentity[otherRowIdx].at(cursor);
|
155
|
+
toIdentity[otherRowIdx] = toIdentity[otherRowIdx].plus(
|
156
|
+
cursorToIdentityRow.times(scale)
|
157
|
+
);
|
158
|
+
toResult[otherRowIdx] = toResult[otherRowIdx].plus(
|
159
|
+
cursorToResultRow.times(scale)
|
160
|
+
);
|
161
|
+
}
|
162
|
+
}
|
163
|
+
|
164
|
+
const inverse = Mat33.ofRows(
|
165
|
+
toResult[0],
|
166
|
+
toResult[1],
|
167
|
+
toResult[2]
|
168
|
+
);
|
169
|
+
this.cachedInverse = inverse;
|
170
|
+
return inverse;
|
171
|
+
}
|
172
|
+
|
173
|
+
public transposed(): Mat33 {
|
174
|
+
return new Mat33(
|
175
|
+
this.a1, this.b1, this.c1,
|
176
|
+
this.a2, this.b2, this.c2,
|
177
|
+
this.a3, this.b3, this.c3
|
178
|
+
);
|
179
|
+
}
|
180
|
+
|
181
|
+
public rightMul(other: Mat33): Mat33 {
|
182
|
+
other = other.transposed();
|
183
|
+
|
184
|
+
const at = (row: number, col: number): number => {
|
185
|
+
return this.rows[row].dot(other.rows[col]);
|
186
|
+
};
|
187
|
+
|
188
|
+
return new Mat33(
|
189
|
+
at(0, 0), at(0, 1), at(0, 2),
|
190
|
+
at(1, 0), at(1, 1), at(1, 2),
|
191
|
+
at(2, 0), at(2, 1), at(2, 2)
|
192
|
+
);
|
193
|
+
}
|
194
|
+
|
195
|
+
/**
|
196
|
+
* Applies this as an **affine** transformation to the given vector.
|
197
|
+
* Returns a transformed version of `other`.
|
198
|
+
*
|
199
|
+
* Unlike {@link transformVec3}, this **does** translate the given vector.
|
200
|
+
*/
|
201
|
+
public transformVec2(other: Vec2): Vec2 {
|
202
|
+
// When transforming a Vec2, we want to use the z transformation
|
203
|
+
// components of this for translation:
|
204
|
+
// ⎡ . . tX ⎤
|
205
|
+
// ⎢ . . tY ⎥
|
206
|
+
// ⎣ 0 0 1 ⎦
|
207
|
+
// For this, we need other's z component to be 1 (so that tX and tY
|
208
|
+
// are scaled by 1):
|
209
|
+
let intermediate = Vec3.of(other.x, other.y, 1);
|
210
|
+
intermediate = this.transformVec3(intermediate);
|
211
|
+
|
212
|
+
// Drop the z=1 to allow magnitude to work as expected
|
213
|
+
return Vec2.of(intermediate.x, intermediate.y);
|
214
|
+
}
|
215
|
+
|
216
|
+
/**
|
217
|
+
* Applies this as a linear transformation to the given vector (doesn't translate).
|
218
|
+
* This is the standard way of transforming vectors in ℝ³.
|
219
|
+
*/
|
220
|
+
public transformVec3(other: Vec3): Vec3 {
|
221
|
+
return Vec3.of(
|
222
|
+
this.rows[0].dot(other),
|
223
|
+
this.rows[1].dot(other),
|
224
|
+
this.rows[2].dot(other)
|
225
|
+
);
|
226
|
+
}
|
227
|
+
|
228
|
+
/** @returns true iff this is the identity matrix. */
|
229
|
+
public isIdentity(): boolean {
|
230
|
+
if (this === Mat33.identity) {
|
231
|
+
return true;
|
232
|
+
}
|
233
|
+
|
234
|
+
return this.eq(Mat33.identity);
|
235
|
+
}
|
236
|
+
|
237
|
+
/** Returns true iff this = other ± fuzz */
|
238
|
+
public eq(other: Mat33, fuzz: number = 0): boolean {
|
239
|
+
for (let i = 0; i < 3; i++) {
|
240
|
+
if (!this.rows[i].eq(other.rows[i], fuzz)) {
|
241
|
+
return false;
|
242
|
+
}
|
243
|
+
}
|
244
|
+
|
245
|
+
return true;
|
246
|
+
}
|
247
|
+
|
248
|
+
public toString(): string {
|
249
|
+
let result = '';
|
250
|
+
const maxColumnLens = [ 0, 0, 0 ];
|
251
|
+
|
252
|
+
// Determine the longest item in each column so we can pad the others to that
|
253
|
+
// length.
|
254
|
+
for (const row of this.rows) {
|
255
|
+
for (let i = 0; i < 3; i++) {
|
256
|
+
maxColumnLens[i] = Math.max(maxColumnLens[0], `${row.at(i)}`.length);
|
257
|
+
}
|
258
|
+
}
|
259
|
+
|
260
|
+
for (let i = 0; i < 3; i++) {
|
261
|
+
if (i === 0) {
|
262
|
+
result += '⎡ ';
|
263
|
+
} else if (i === 1) {
|
264
|
+
result += '⎢ ';
|
265
|
+
} else {
|
266
|
+
result += '⎣ ';
|
267
|
+
}
|
268
|
+
|
269
|
+
// Add each component of the ith row (after padding it)
|
270
|
+
for (let j = 0; j < 3; j++) {
|
271
|
+
const val = this.rows[i].at(j).toString();
|
272
|
+
|
273
|
+
let padding = '';
|
274
|
+
for (let i = val.length; i < maxColumnLens[j]; i++) {
|
275
|
+
padding += ' ';
|
276
|
+
}
|
277
|
+
|
278
|
+
result += val + ', ' + padding;
|
279
|
+
}
|
280
|
+
|
281
|
+
if (i === 0) {
|
282
|
+
result += ' ⎤';
|
283
|
+
} else if (i === 1) {
|
284
|
+
result += ' ⎥';
|
285
|
+
} else {
|
286
|
+
result += ' ⎦';
|
287
|
+
}
|
288
|
+
result += '\n';
|
289
|
+
}
|
290
|
+
|
291
|
+
return result.trimEnd();
|
292
|
+
}
|
293
|
+
|
294
|
+
/**
|
295
|
+
* ```
|
296
|
+
* result[0] = top left element
|
297
|
+
* result[1] = element at row zero, column 1
|
298
|
+
* ...
|
299
|
+
* ```
|
300
|
+
*/
|
301
|
+
public toArray(): Mat33Array {
|
302
|
+
return [
|
303
|
+
this.a1, this.a2, this.a3,
|
304
|
+
this.b1, this.b2, this.b3,
|
305
|
+
this.c1, this.c2, this.c3,
|
306
|
+
];
|
307
|
+
}
|
308
|
+
|
309
|
+
/**
|
310
|
+
* Returns a new `Mat33` where each entry is the output of the function
|
311
|
+
* `mapping`.
|
312
|
+
*
|
313
|
+
* @example
|
314
|
+
* ```
|
315
|
+
* new Mat33(
|
316
|
+
* 1, 2, 3,
|
317
|
+
* 4, 5, 6,
|
318
|
+
* 7, 8, 9,
|
319
|
+
* ).mapEntries(component => component - 1);
|
320
|
+
* // → ⎡ 0, 1, 2 ⎤
|
321
|
+
* // ⎢ 3, 4, 5 ⎥
|
322
|
+
* // ⎣ 6, 7, 8 ⎦
|
323
|
+
* ```
|
324
|
+
*/
|
325
|
+
public mapEntries(mapping: (component: number, rowcol: [number, number])=>number): Mat33 {
|
326
|
+
return new Mat33(
|
327
|
+
mapping(this.a1, [0, 0]), mapping(this.a2, [0, 1]), mapping(this.a3, [0, 2]),
|
328
|
+
mapping(this.b1, [1, 0]), mapping(this.b2, [1, 1]), mapping(this.b3, [1, 2]),
|
329
|
+
mapping(this.c1, [2, 0]), mapping(this.c2, [2, 1]), mapping(this.c3, [2, 2]),
|
330
|
+
);
|
331
|
+
}
|
332
|
+
|
333
|
+
/** Estimate the scale factor of this matrix (based on the first row). */
|
334
|
+
public getScaleFactor() {
|
335
|
+
return Math.hypot(this.a1, this.a2);
|
336
|
+
}
|
337
|
+
|
338
|
+
/**
|
339
|
+
* Constructs a 3x3 translation matrix (for translating `Vec2`s) using
|
340
|
+
* **transformVec2**.
|
341
|
+
*/
|
342
|
+
public static translation(amount: Vec2): Mat33 {
|
343
|
+
// When transforming Vec2s by a 3x3 matrix, we give the input
|
344
|
+
// Vec2s z = 1. As such,
|
345
|
+
// outVec2.x = inVec2.x * 1 + inVec2.y * 0 + 1 * amount.x
|
346
|
+
// ...
|
347
|
+
return new Mat33(
|
348
|
+
1, 0, amount.x,
|
349
|
+
0, 1, amount.y,
|
350
|
+
0, 0, 1
|
351
|
+
);
|
352
|
+
}
|
353
|
+
|
354
|
+
public static zRotation(radians: number, center: Point2 = Vec2.zero): Mat33 {
|
355
|
+
if (radians === 0) {
|
356
|
+
return Mat33.identity;
|
357
|
+
}
|
358
|
+
|
359
|
+
const cos = Math.cos(radians);
|
360
|
+
const sin = Math.sin(radians);
|
361
|
+
|
362
|
+
// Translate everything so that rotation is about the origin
|
363
|
+
let result = Mat33.translation(center);
|
364
|
+
|
365
|
+
result = result.rightMul(new Mat33(
|
366
|
+
cos, -sin, 0,
|
367
|
+
sin, cos, 0,
|
368
|
+
0, 0, 1
|
369
|
+
));
|
370
|
+
return result.rightMul(Mat33.translation(center.times(-1)));
|
371
|
+
}
|
372
|
+
|
373
|
+
public static scaling2D(amount: number|Vec2, center: Point2 = Vec2.zero): Mat33 {
|
374
|
+
let result = Mat33.translation(center);
|
375
|
+
let xAmount, yAmount;
|
376
|
+
|
377
|
+
if (typeof amount === 'number') {
|
378
|
+
xAmount = amount;
|
379
|
+
yAmount = amount;
|
380
|
+
} else {
|
381
|
+
xAmount = amount.x;
|
382
|
+
yAmount = amount.y;
|
383
|
+
}
|
384
|
+
|
385
|
+
result = result.rightMul(new Mat33(
|
386
|
+
xAmount, 0, 0,
|
387
|
+
0, yAmount, 0,
|
388
|
+
0, 0, 1
|
389
|
+
));
|
390
|
+
|
391
|
+
// Translate such that [center] goes to (0, 0)
|
392
|
+
return result.rightMul(Mat33.translation(center.times(-1)));
|
393
|
+
}
|
394
|
+
|
395
|
+
/** @see {@link fromCSSMatrix} */
|
396
|
+
public toCSSMatrix(): string {
|
397
|
+
return `matrix(${this.a1},${this.b1},${this.a2},${this.b2},${this.a3},${this.b3})`;
|
398
|
+
}
|
399
|
+
|
400
|
+
/**
|
401
|
+
* Converts a CSS-form `matrix(a, b, c, d, e, f)` to a Mat33.
|
402
|
+
*
|
403
|
+
* Note that such a matrix has the form,
|
404
|
+
* ```
|
405
|
+
* ⎡ a c e ⎤
|
406
|
+
* ⎢ b d f ⎥
|
407
|
+
* ⎣ 0 0 1 ⎦
|
408
|
+
* ```
|
409
|
+
*/
|
410
|
+
public static fromCSSMatrix(cssString: string): Mat33 {
|
411
|
+
if (cssString === '' || cssString === 'none') {
|
412
|
+
return Mat33.identity;
|
413
|
+
}
|
414
|
+
|
415
|
+
const numberExp = '([-]?\\d*(?:\\.\\d*)?(?:[eE][-]?\\d+)?)';
|
416
|
+
const numberSepExp = '[, \\t\\n]';
|
417
|
+
const regExpSource = `^\\s*matrix\\s*\\(${
|
418
|
+
[
|
419
|
+
// According to MDN, matrix(a,b,c,d,e,f) has form:
|
420
|
+
// ⎡ a c e ⎤
|
421
|
+
// ⎢ b d f ⎥
|
422
|
+
// ⎣ 0 0 1 ⎦
|
423
|
+
numberExp, numberExp, numberExp, // a, c, e
|
424
|
+
numberExp, numberExp, numberExp, // b, d, f
|
425
|
+
].join(`${numberSepExp}+`)
|
426
|
+
}${numberSepExp}*\\)\\s*$`;
|
427
|
+
const matrixExp = new RegExp(regExpSource, 'i');
|
428
|
+
const match = matrixExp.exec(cssString);
|
429
|
+
|
430
|
+
if (!match) {
|
431
|
+
throw new Error(`Unsupported transformation: ${cssString}`);
|
432
|
+
}
|
433
|
+
|
434
|
+
const matrixData = match.slice(1).map(entry => parseFloat(entry));
|
435
|
+
const a = matrixData[0];
|
436
|
+
const b = matrixData[1];
|
437
|
+
const c = matrixData[2];
|
438
|
+
const d = matrixData[3];
|
439
|
+
const e = matrixData[4];
|
440
|
+
const f = matrixData[5];
|
441
|
+
|
442
|
+
const transform = new Mat33(
|
443
|
+
a, c, e,
|
444
|
+
b, d, f,
|
445
|
+
0, 0, 1
|
446
|
+
);
|
447
|
+
return transform;
|
448
|
+
}
|
449
|
+
}
|
450
|
+
export default Mat33;
|
package/src/Vec2.test.ts
ADDED
@@ -0,0 +1,30 @@
|
|
1
|
+
import { Vec2 } from './Vec2';
|
2
|
+
import Vec3 from './Vec3';
|
3
|
+
|
4
|
+
describe('Vec2', () => {
|
5
|
+
it('Magnitude', () => {
|
6
|
+
expect(Vec2.of(3, 4).magnitude()).toBe(5);
|
7
|
+
});
|
8
|
+
|
9
|
+
it('Addition', () => {
|
10
|
+
expect(Vec2.of(1, 2).plus(Vec2.of(3, 4))).objEq(Vec2.of(4, 6));
|
11
|
+
});
|
12
|
+
|
13
|
+
it('Multiplication', () => {
|
14
|
+
expect(Vec2.of(1, -1).times(22)).objEq(Vec2.of(22, -22));
|
15
|
+
});
|
16
|
+
|
17
|
+
it('More complicated expressions', () => {
|
18
|
+
expect((Vec2.of(1, 2).plus(Vec2.of(3, 4))).times(2)).objEq(Vec2.of(8, 12));
|
19
|
+
});
|
20
|
+
|
21
|
+
it('Angle', () => {
|
22
|
+
expect(Vec2.of(-1, 1).angle()).toBeCloseTo(3 * Math.PI / 4);
|
23
|
+
});
|
24
|
+
|
25
|
+
it('Perpindicular', () => {
|
26
|
+
const fuzz = 0.001;
|
27
|
+
expect(Vec2.unitX.cross(Vec3.unitZ)).objEq(Vec2.unitY.times(-1), fuzz);
|
28
|
+
expect(Vec2.unitX.orthog()).objEq(Vec2.unitY, fuzz);
|
29
|
+
});
|
30
|
+
});
|