@intentsolutions/blueprint 2.0.0 → 2.2.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (57) hide show
  1. package/dist/cli.js +117 -75
  2. package/dist/cli.js.map +1 -1
  3. package/dist/core/index.d.ts +62 -0
  4. package/dist/core/index.d.ts.map +1 -0
  5. package/dist/core/index.js +137 -0
  6. package/dist/core/index.js.map +1 -0
  7. package/dist/index.d.ts +10 -0
  8. package/dist/index.d.ts.map +1 -0
  9. package/dist/index.js +13 -0
  10. package/dist/index.js.map +1 -0
  11. package/dist/interview/analyzer.d.ts +39 -0
  12. package/dist/interview/analyzer.d.ts.map +1 -0
  13. package/dist/interview/analyzer.js +353 -0
  14. package/dist/interview/analyzer.js.map +1 -0
  15. package/dist/interview/engine.d.ts +71 -0
  16. package/dist/interview/engine.d.ts.map +1 -0
  17. package/dist/interview/engine.js +194 -0
  18. package/dist/interview/engine.js.map +1 -0
  19. package/dist/interview/index.d.ts +9 -0
  20. package/dist/interview/index.d.ts.map +1 -0
  21. package/dist/interview/index.js +8 -0
  22. package/dist/interview/index.js.map +1 -0
  23. package/dist/interview/questions.d.ts +22 -0
  24. package/dist/interview/questions.d.ts.map +1 -0
  25. package/dist/interview/questions.js +353 -0
  26. package/dist/interview/questions.js.map +1 -0
  27. package/dist/interview/types.d.ts +84 -0
  28. package/dist/interview/types.d.ts.map +1 -0
  29. package/dist/interview/types.js +5 -0
  30. package/dist/interview/types.js.map +1 -0
  31. package/dist/mcp/index.d.ts +7 -0
  32. package/dist/mcp/index.d.ts.map +1 -0
  33. package/dist/mcp/index.js +241 -0
  34. package/dist/mcp/index.js.map +1 -0
  35. package/package.json +30 -10
  36. package/templates/core/01_prd.md +465 -0
  37. package/templates/core/02_adr.md +432 -0
  38. package/templates/core/03_generate_tasks.md +418 -0
  39. package/templates/core/04_process_task_list.md +430 -0
  40. package/templates/core/05_market_research.md +483 -0
  41. package/templates/core/06_architecture.md +561 -0
  42. package/templates/core/07_competitor_analysis.md +462 -0
  43. package/templates/core/08_personas.md +367 -0
  44. package/templates/core/09_user_journeys.md +385 -0
  45. package/templates/core/10_user_stories.md +582 -0
  46. package/templates/core/11_acceptance_criteria.md +687 -0
  47. package/templates/core/12_qa_gate.md +737 -0
  48. package/templates/core/13_risk_register.md +605 -0
  49. package/templates/core/14_project_brief.md +477 -0
  50. package/templates/core/15_brainstorming.md +653 -0
  51. package/templates/core/16_frontend_spec.md +1479 -0
  52. package/templates/core/17_test_plan.md +878 -0
  53. package/templates/core/18_release_plan.md +994 -0
  54. package/templates/core/19_operational_readiness.md +1100 -0
  55. package/templates/core/20_metrics_dashboard.md +1375 -0
  56. package/templates/core/21_postmortem.md +1122 -0
  57. package/templates/core/22_playtest_usability.md +1624 -0
@@ -0,0 +1,1375 @@
1
+ # 📊 Enterprise Metrics & Analytics Dashboard Framework
2
+
3
+ **Metadata**
4
+ - Last Updated: {{DATE}}
5
+ - Maintainer: AI-Dev Toolkit
6
+ - Related Docs: 01_prd.md, 19_operational_readiness.md, 18_release_plan.md, 17_test_plan.md
7
+
8
+ > **🎯 Executive Summary**
9
+ > A comprehensive enterprise metrics and analytics framework providing real-time business intelligence, operational insights, and predictive analytics. This dashboard system enables data-driven decision making across all organizational levels with automated alerting, trend analysis, and actionable insights for strategic planning and operational excellence.
10
+
11
+ ---
12
+
13
+ ## 📈 1. Business Intelligence Dashboard Architecture
14
+
15
+ ### 1.1 Executive Dashboard (C-Level View)
16
+ #### Strategic KPIs & Business Health
17
+ ```yaml
18
+ # Executive Dashboard Configuration
19
+ Primary Business Metrics:
20
+ Revenue & Growth:
21
+ - [ ] Monthly Recurring Revenue (MRR) trend
22
+ - [ ] Annual Recurring Revenue (ARR) growth
23
+ - [ ] Revenue per customer (ARPU)
24
+ - [ ] Customer lifetime value (CLV)
25
+ - [ ] Gross revenue retention (GRR)
26
+ - [ ] Net revenue retention (NRR)
27
+ - [ ] Revenue forecast accuracy
28
+ - [ ] Market share percentage
29
+
30
+ Customer Metrics:
31
+ - [ ] Total customer count and growth rate
32
+ - [ ] Customer acquisition rate (new signups/month)
33
+ - [ ] Customer churn rate (monthly/annual)
34
+ - [ ] Net promoter score (NPS) trending
35
+ - [ ] Customer satisfaction score (CSAT)
36
+ - [ ] Customer effort score (CES)
37
+ - [ ] Product-market fit indicators
38
+ - [ ] Customer segment analysis
39
+
40
+ Operational Excellence:
41
+ - [ ] System uptime and availability (99.9%+ SLA)
42
+ - [ ] Critical incident count and resolution time
43
+ - [ ] Feature adoption rates
44
+ - [ ] Development velocity (story points/sprint)
45
+ - [ ] Time to market for new features
46
+ - [ ] Cost per acquisition (CAC) vs. CLV ratio
47
+ - [ ] Gross margin and operating efficiency
48
+ - [ ] Team productivity and utilization
49
+ ```
50
+
51
+ #### Real-time Business Health Score
52
+ ```javascript
53
+ // Business Health Score Calculation
54
+ const calculateBusinessHealthScore = (metrics) => {
55
+ const weights = {
56
+ revenue_growth: 0.25, // 25% weight
57
+ customer_satisfaction: 0.20, // 20% weight
58
+ system_reliability: 0.20, // 20% weight
59
+ customer_retention: 0.15, // 15% weight
60
+ operational_efficiency: 0.10, // 10% weight
61
+ feature_adoption: 0.10 // 10% weight
62
+ };
63
+
64
+ const scores = {
65
+ revenue_growth: calculateRevenueScore(metrics.mrr_growth),
66
+ customer_satisfaction: normalizeScore(metrics.nps, -100, 100),
67
+ system_reliability: normalizeScore(metrics.uptime, 99.0, 99.99),
68
+ customer_retention: normalizeScore(metrics.retention_rate, 80, 95),
69
+ operational_efficiency: calculateEfficiencyScore(metrics),
70
+ feature_adoption: normalizeScore(metrics.adoption_rate, 20, 80)
71
+ };
72
+
73
+ let totalScore = 0;
74
+ for (const [metric, weight] of Object.entries(weights)) {
75
+ totalScore += scores[metric] * weight;
76
+ }
77
+
78
+ return {
79
+ overall_score: Math.round(totalScore),
80
+ component_scores: scores,
81
+ trend: calculateTrend(metrics),
82
+ recommendations: generateRecommendations(scores)
83
+ };
84
+ };
85
+
86
+ // Health Score Thresholds
87
+ const HEALTH_THRESHOLDS = {
88
+ excellent: 90, // Green indicator
89
+ good: 75, // Yellow indicator
90
+ warning: 60, // Orange indicator
91
+ critical: 40 // Red indicator
92
+ };
93
+ ```
94
+
95
+ ### 1.2 Product Management Dashboard
96
+ #### Feature Performance & User Engagement
97
+ ```yaml
98
+ # Product Analytics Configuration
99
+ User Engagement Metrics:
100
+ Daily/Weekly/Monthly Active Users:
101
+ - [ ] DAU (Daily Active Users) trending
102
+ - [ ] WAU (Weekly Active Users) patterns
103
+ - [ ] MAU (Monthly Active Users) growth
104
+ - [ ] User stickiness ratio (DAU/MAU)
105
+ - [ ] Session duration and frequency
106
+ - [ ] User journey completion rates
107
+ - [ ] Feature utilization heatmaps
108
+ - [ ] User cohort analysis and retention
109
+
110
+ Feature Adoption & Usage:
111
+ - [ ] Feature discovery rates
112
+ - [ ] Time to first value (TTFV)
113
+ - [ ] Feature adoption by user segment
114
+ - [ ] Feature usage depth and breadth
115
+ - [ ] A/B test results and statistical significance
116
+ - [ ] Conversion funnel analysis
117
+ - [ ] User flow optimization opportunities
118
+ - [ ] Feature deprecation impact analysis
119
+
120
+ Product-Market Fit Indicators:
121
+ - [ ] Organic growth rate
122
+ - [ ] User referral rates
123
+ - [ ] Product usage intensity
124
+ - [ ] Customer feedback sentiment
125
+ - [ ] Market penetration by segment
126
+ - [ ] Competitive feature comparison
127
+ - [ ] Innovation pipeline metrics
128
+ - [ ] User-generated content volume
129
+ ```
130
+
131
+ #### A/B Testing & Experimentation Framework
132
+ ```javascript
133
+ // A/B Testing Dashboard Configuration
134
+ const experimentDashboard = {
135
+ activeExperiments: [
136
+ {
137
+ id: "checkout_optimization_v2",
138
+ name: "Checkout Flow Optimization",
139
+ status: "running",
140
+ startDate: "2024-01-15",
141
+ endDate: "2024-02-15",
142
+ participants: 10000,
143
+ variants: {
144
+ control: { allocation: 50, conversions: 1240, conversion_rate: 12.4 },
145
+ variant_a: { allocation: 50, conversions: 1356, conversion_rate: 13.56 }
146
+ },
147
+ statistical_significance: 95.2,
148
+ expected_impact: "+9.3% conversion rate",
149
+ business_impact: "$45,000 additional monthly revenue"
150
+ }
151
+ ],
152
+
153
+ experimentMetrics: {
154
+ total_experiments_ytd: 24,
155
+ successful_experiments: 18,
156
+ success_rate: 75,
157
+ average_lift: 8.3,
158
+ total_revenue_impact: "$540,000",
159
+ experiments_in_pipeline: 6
160
+ },
161
+
162
+ experimentationVelocity: {
163
+ experiments_per_month: 4,
164
+ average_experiment_duration: 21, // days
165
+ time_to_results: 14, // days
166
+ implementation_time: 7 // days
167
+ }
168
+ };
169
+
170
+ // Statistical Significance Calculation
171
+ function calculateSignificance(controlRate, variantRate, sampleSize) {
172
+ const pooledRate = (controlRate + variantRate) / 2;
173
+ const standardError = Math.sqrt(2 * pooledRate * (1 - pooledRate) / sampleSize);
174
+ const zScore = Math.abs(variantRate - controlRate) / standardError;
175
+ const pValue = 2 * (1 - normalCDF(Math.abs(zScore)));
176
+
177
+ return {
178
+ z_score: zScore,
179
+ p_value: pValue,
180
+ confidence_level: (1 - pValue) * 100,
181
+ is_significant: pValue < 0.05
182
+ };
183
+ }
184
+ ```
185
+
186
+ ---
187
+
188
+ ## 🔧 2. Technical Operations Dashboard
189
+
190
+ ### 2.1 System Performance & Reliability
191
+ #### Infrastructure Health Monitoring
192
+ ```yaml
193
+ # Technical Operations Metrics
194
+ System Performance:
195
+ Application Performance:
196
+ - [ ] Response time percentiles (50th, 95th, 99th)
197
+ - [ ] Throughput (requests per second)
198
+ - [ ] Error rate by service and endpoint
199
+ - [ ] Apdex score (Application Performance Index)
200
+ - [ ] User experience metrics (Core Web Vitals)
201
+ - [ ] API rate limiting and throttling metrics
202
+ - [ ] Background job processing times
203
+ - [ ] Cache hit ratios and performance
204
+
205
+ Infrastructure Metrics:
206
+ - [ ] CPU utilization across all services
207
+ - [ ] Memory usage and garbage collection
208
+ - [ ] Disk I/O and storage utilization
209
+ - [ ] Network latency and packet loss
210
+ - [ ] Container health and restart counts
211
+ - [ ] Auto-scaling events and triggers
212
+ - [ ] Load balancer distribution and health
213
+ - [ ] Database connection pool utilization
214
+
215
+ Reliability & Availability:
216
+ - [ ] Service uptime and availability (99.9%+ SLA)
217
+ - [ ] Mean Time To Recovery (MTTR)
218
+ - [ ] Mean Time Between Failures (MTBF)
219
+ - [ ] Service level objective (SLO) compliance
220
+ - [ ] Incident count and severity distribution
221
+ - [ ] Error budget consumption
222
+ - [ ] Disaster recovery readiness
223
+ - [ ] Business continuity metrics
224
+ ```
225
+
226
+ #### Real-time Performance Dashboard
227
+ ```javascript
228
+ // Performance Monitoring Configuration
229
+ const performanceDashboard = {
230
+ realTimeMetrics: {
231
+ currentRPS: 1247, // Requests per second
232
+ averageLatency: 145, // milliseconds
233
+ errorRate: 0.023, // 0.023%
234
+ activeConnections: 2846,
235
+ queueDepth: 12,
236
+ cacheHitRatio: 94.7, // percentage
237
+ uptime: 99.97 // percentage
238
+ },
239
+
240
+ slaCompliance: {
241
+ availability_target: 99.9,
242
+ availability_current: 99.97,
243
+ response_time_target: 200, // ms
244
+ response_time_current: 145, // ms
245
+ error_rate_target: 0.1, // percentage
246
+ error_rate_current: 0.023 // percentage
247
+ },
248
+
249
+ performanceTrends: {
250
+ last_24h: {
251
+ peak_rps: 2847,
252
+ peak_latency: 287,
253
+ incidents: 0,
254
+ error_budget_consumed: 2.1 // percentage
255
+ },
256
+ last_7d: {
257
+ average_uptime: 99.94,
258
+ total_incidents: 1,
259
+ mttr_minutes: 12,
260
+ performance_score: 94.2
261
+ }
262
+ }
263
+ };
264
+
265
+ // Alert Thresholds Configuration
266
+ const alertThresholds = {
267
+ critical: {
268
+ response_time: 1000, // ms
269
+ error_rate: 1.0, // percentage
270
+ cpu_usage: 90, // percentage
271
+ memory_usage: 95, // percentage
272
+ disk_usage: 90 // percentage
273
+ },
274
+ warning: {
275
+ response_time: 500, // ms
276
+ error_rate: 0.5, // percentage
277
+ cpu_usage: 75, // percentage
278
+ memory_usage: 85, // percentage
279
+ disk_usage: 80 // percentage
280
+ }
281
+ };
282
+ ```
283
+
284
+ ### 2.2 DevOps & Deployment Metrics
285
+ #### CI/CD Pipeline Performance
286
+ ```yaml
287
+ # DevOps Metrics Dashboard
288
+ Development Velocity:
289
+ Code Quality & Delivery:
290
+ - [ ] Deployment frequency (deployments per day/week)
291
+ - [ ] Lead time for changes (commit to production)
292
+ - [ ] Change failure rate (rollbacks/deployments)
293
+ - [ ] Mean time to recovery from incidents
294
+ - [ ] Code review completion time
295
+ - [ ] Automated test coverage percentage
296
+ - [ ] Build success rate and duration
297
+ - [ ] Static code analysis scores
298
+
299
+ Team Productivity:
300
+ - [ ] Story points completed per sprint
301
+ - [ ] Velocity trends and predictability
302
+ - [ ] Cycle time (story start to completion)
303
+ - [ ] Work in progress (WIP) limits compliance
304
+ - [ ] Technical debt ratio and trend
305
+ - [ ] Developer satisfaction scores
306
+ - [ ] Knowledge sharing metrics
307
+ - [ ] Innovation time allocation
308
+
309
+ Security & Compliance:
310
+ Security Metrics:
311
+ - [ ] Vulnerability scan results and trends
312
+ - [ ] Security incident count and severity
313
+ - [ ] Patch management compliance
314
+ - [ ] Access review completion rates
315
+ - [ ] Security training completion
316
+ - [ ] Penetration test findings
317
+ - [ ] Compliance audit scores
318
+ - [ ] Third-party risk assessments
319
+ ```
320
+
321
+ #### Deployment Success Dashboard
322
+ ```javascript
323
+ // DevOps Dashboard Configuration
324
+ const devOpsDashboard = {
325
+ deploymentMetrics: {
326
+ frequency: {
327
+ daily_average: 3.2,
328
+ weekly_total: 22,
329
+ monthly_total: 94,
330
+ year_over_year_growth: 145 // percentage
331
+ },
332
+
333
+ success_rates: {
334
+ deployment_success: 97.8, // percentage
335
+ automated_test_pass: 94.3, // percentage
336
+ security_scan_pass: 98.1, // percentage
337
+ performance_test_pass: 89.7 // percentage
338
+ },
339
+
340
+ timing_metrics: {
341
+ average_build_time: 8.3, // minutes
342
+ average_deployment_time: 4.7, // minutes
343
+ lead_time_hours: 16.2, // hours
344
+ cycle_time_days: 3.4 // days
345
+ }
346
+ },
347
+
348
+ qualityMetrics: {
349
+ test_coverage: 87.3, // percentage
350
+ code_complexity_score: 7.2, // out of 10
351
+ technical_debt_hours: 124, // estimated hours
352
+ security_score: 94.1, // percentage
353
+ documentation_coverage: 78.9 // percentage
354
+ },
355
+
356
+ teamMetrics: {
357
+ velocity_points: 42, // story points per sprint
358
+ predictability: 91.2, // percentage
359
+ developer_satisfaction: 8.1, // out of 10
360
+ innovation_time: 15.3, // percentage of total time
361
+ knowledge_sharing_events: 8 // per month
362
+ }
363
+ };
364
+ ```
365
+
366
+ ---
367
+
368
+ ## 💰 3. Financial & Revenue Analytics
369
+
370
+ ### 3.1 Revenue Operations Dashboard
371
+ #### Financial Performance Tracking
372
+ ```yaml
373
+ # Financial Analytics Configuration
374
+ Revenue Metrics:
375
+ Subscription Business (SaaS):
376
+ - [ ] Monthly Recurring Revenue (MRR) growth
377
+ - [ ] Annual Recurring Revenue (ARR) tracking
378
+ - [ ] Average Revenue Per User (ARPU)
379
+ - [ ] Customer Lifetime Value (CLV)
380
+ - [ ] Churn rate impact on revenue
381
+ - [ ] Expansion revenue from existing customers
382
+ - [ ] Contraction and downgrade revenue
383
+ - [ ] Revenue concentration by customer segment
384
+
385
+ Transactional Business (E-commerce):
386
+ - [ ] Gross Merchandise Value (GMV)
387
+ - [ ] Average Order Value (AOV)
388
+ - [ ] Conversion rate by traffic source
389
+ - [ ] Revenue per visitor (RPV)
390
+ - [ ] Cart abandonment rate and recovery
391
+ - [ ] Repeat purchase rate
392
+ - [ ] Seasonal revenue patterns
393
+ - [ ] Product category performance
394
+
395
+ Profitability Analysis:
396
+ - [ ] Gross margin by product/service
397
+ - [ ] Customer Acquisition Cost (CAC)
398
+ - [ ] CAC payback period
399
+ - [ ] Unit economics and contribution margin
400
+ - [ ] Operating expense ratio
401
+ - [ ] EBITDA and net profit margins
402
+ - [ ] Cash flow and burn rate
403
+ - [ ] Revenue per employee
404
+ ```
405
+
406
+ #### Financial Forecasting Dashboard
407
+ ```javascript
408
+ // Financial Forecasting Model
409
+ const financialForecast = {
410
+ revenueProjection: {
411
+ current_month: {
412
+ actual: 847000,
413
+ target: 825000,
414
+ variance: 22000,
415
+ variance_percent: 2.67
416
+ },
417
+
418
+ quarterly_forecast: {
419
+ q1_projection: 2540000,
420
+ q1_confidence: 94.2,
421
+ q2_projection: 2785000,
422
+ q2_confidence: 87.1,
423
+ annual_target: 11500000,
424
+ projected_achievement: 102.3
425
+ },
426
+
427
+ growth_metrics: {
428
+ month_over_month: 8.7, // percentage
429
+ quarter_over_quarter: 12.4, // percentage
430
+ year_over_year: 34.2 // percentage
431
+ }
432
+ },
433
+
434
+ customerMetrics: {
435
+ acquisition: {
436
+ new_customers_month: 847,
437
+ acquisition_cost: 127, // CAC
438
+ payback_period: 8.3, // months
439
+ conversion_rate: 3.2 // percentage
440
+ },
441
+
442
+ retention: {
443
+ monthly_churn: 2.8, // percentage
444
+ annual_retention: 91.2, // percentage
445
+ expansion_rate: 118, // net revenue retention
446
+ upsell_rate: 23.4 // percentage
447
+ }
448
+ },
449
+
450
+ profitabilityAnalysis: {
451
+ gross_margin: 78.3, // percentage
452
+ operating_margin: 15.7, // percentage
453
+ customer_lifetime_value: 3240, // CLV
454
+ ltv_to_cac_ratio: 25.5, // LTV:CAC
455
+ months_to_recover_cac: 8.3 // payback period
456
+ }
457
+ };
458
+
459
+ // Revenue Waterfall Analysis
460
+ function generateRevenueWaterfall(startRevenue, components) {
461
+ const waterfall = [
462
+ { category: "Starting Revenue", value: startRevenue, cumulative: startRevenue },
463
+ { category: "New Customers", value: components.new_customer_revenue, cumulative: 0 },
464
+ { category: "Expansion", value: components.expansion_revenue, cumulative: 0 },
465
+ { category: "Churn", value: -components.churned_revenue, cumulative: 0 },
466
+ { category: "Contraction", value: -components.contraction_revenue, cumulative: 0 }
467
+ ];
468
+
469
+ let running_total = startRevenue;
470
+ for (let i = 1; i < waterfall.length; i++) {
471
+ running_total += waterfall[i].value;
472
+ waterfall[i].cumulative = running_total;
473
+ }
474
+
475
+ waterfall.push({
476
+ category: "Ending Revenue",
477
+ value: running_total,
478
+ cumulative: running_total
479
+ });
480
+
481
+ return waterfall;
482
+ }
483
+ ```
484
+
485
+ ### 3.2 Customer Success & Retention Analytics
486
+ #### Customer Health Scoring
487
+ ```yaml
488
+ # Customer Success Metrics
489
+ Customer Health Indicators:
490
+ Usage & Engagement:
491
+ - [ ] Product usage frequency and depth
492
+ - [ ] Feature adoption progression
493
+ - [ ] Support ticket volume and sentiment
494
+ - [ ] Training and onboarding completion
495
+ - [ ] Community engagement levels
496
+ - [ ] Integration setup and utilization
497
+ - [ ] Advanced feature usage rates
498
+ - [ ] User role expansion within accounts
499
+
500
+ Business Value Realization:
501
+ - [ ] Time to first value achievement
502
+ - [ ] ROI metrics and business outcomes
503
+ - [ ] Success milestone completion
504
+ - [ ] Goal achievement rates
505
+ - [ ] Business objective alignment
506
+ - [ ] Value realization documentation
507
+ - [ ] Executive sponsorship strength
508
+ - [ ] Renewal probability scoring
509
+
510
+ Relationship Health:
511
+ - [ ] Net Promoter Score (NPS) trends
512
+ - [ ] Customer satisfaction surveys
513
+ - [ ] Executive relationship quality
514
+ - [ ] Champion identification and strength
515
+ - [ ] Communication frequency and quality
516
+ - [ ] Feedback loop effectiveness
517
+ - [ ] Partnership development opportunities
518
+ - [ ] Advocacy and reference potential
519
+ ```
520
+
521
+ #### Churn Prediction & Prevention
522
+ ```javascript
523
+ // Customer Health Score Calculation
524
+ const calculateCustomerHealth = (customer) => {
525
+ const healthFactors = {
526
+ usage_score: calculateUsageScore(customer.usage_metrics),
527
+ engagement_score: calculateEngagementScore(customer.activity),
528
+ support_score: calculateSupportScore(customer.tickets),
529
+ payment_score: calculatePaymentScore(customer.billing),
530
+ relationship_score: calculateRelationshipScore(customer.interactions)
531
+ };
532
+
533
+ const weights = {
534
+ usage_score: 0.30,
535
+ engagement_score: 0.25,
536
+ support_score: 0.20,
537
+ payment_score: 0.15,
538
+ relationship_score: 0.10
539
+ };
540
+
541
+ let totalScore = 0;
542
+ for (const [factor, weight] of Object.entries(weights)) {
543
+ totalScore += healthFactors[factor] * weight;
544
+ }
545
+
546
+ const riskLevel = determineRiskLevel(totalScore);
547
+ const churnProbability = calculateChurnProbability(healthFactors);
548
+
549
+ return {
550
+ overall_health_score: Math.round(totalScore),
551
+ risk_level: riskLevel,
552
+ churn_probability: churnProbability,
553
+ component_scores: healthFactors,
554
+ recommended_actions: generateRecommendations(healthFactors, riskLevel),
555
+ next_review_date: calculateNextReviewDate(riskLevel)
556
+ };
557
+ };
558
+
559
+ // Risk Level Classification
560
+ const RISK_LEVELS = {
561
+ green: { min: 80, label: "Healthy", actions: ["expansion_opportunity", "advocacy"] },
562
+ yellow: { min: 60, label: "At Risk", actions: ["engagement_campaign", "training"] },
563
+ orange: { min: 40, label: "High Risk", actions: ["immediate_intervention", "executive_engagement"] },
564
+ red: { min: 0, label: "Critical", actions: ["emergency_response", "retention_campaign"] }
565
+ };
566
+
567
+ // Churn Prevention Workflow
568
+ const churnPreventionActions = {
569
+ early_warning_triggers: [
570
+ "login_frequency_decline",
571
+ "feature_usage_drop",
572
+ "support_ticket_increase",
573
+ "billing_issues",
574
+ "champion_departure"
575
+ ],
576
+
577
+ intervention_strategies: {
578
+ automated: ["email_campaigns", "in_app_guidance", "resource_recommendations"],
579
+ human: ["success_manager_outreach", "executive_check_in", "custom_training"],
580
+ strategic: ["contract_renegotiation", "pilot_programs", "partnership_opportunities"]
581
+ }
582
+ };
583
+ ```
584
+
585
+ ---
586
+
587
+ ## 🎯 4. Marketing & Sales Analytics
588
+
589
+ ### 4.1 Marketing Performance Dashboard
590
+ #### Campaign Attribution & ROI
591
+ ```yaml
592
+ # Marketing Analytics Configuration
593
+ Campaign Performance:
594
+ Digital Marketing Channels:
595
+ - [ ] Organic search traffic and conversions
596
+ - [ ] Paid search (SEM) performance and ROI
597
+ - [ ] Social media engagement and conversions
598
+ - [ ] Email marketing open/click/conversion rates
599
+ - [ ] Content marketing performance metrics
600
+ - [ ] Display advertising impressions and CTR
601
+ - [ ] Affiliate and partner channel performance
602
+ - [ ] Retargeting campaign effectiveness
603
+
604
+ Lead Generation & Qualification:
605
+ - [ ] Marketing Qualified Leads (MQLs) volume
606
+ - [ ] MQL to SQL (Sales Qualified Lead) conversion
607
+ - [ ] Lead source attribution and quality
608
+ - [ ] Cost per lead by channel
609
+ - [ ] Lead scoring accuracy and effectiveness
610
+ - [ ] Pipeline velocity by lead source
611
+ - [ ] Lead nurturing campaign performance
612
+ - [ ] Marketing influence on closed deals
613
+
614
+ Brand & Content Performance:
615
+ - [ ] Brand awareness and sentiment tracking
616
+ - [ ] Content engagement and sharing rates
617
+ - [ ] Website traffic sources and behavior
618
+ - [ ] SEO ranking improvements
619
+ - [ ] Thought leadership metrics
620
+ - [ ] PR and media mention tracking
621
+ - [ ] Event participation and lead generation
622
+ - [ ] Customer advocacy and referral rates
623
+ ```
624
+
625
+ #### Multi-Touch Attribution Model
626
+ ```javascript
627
+ // Marketing Attribution Dashboard
628
+ const marketingAttribution = {
629
+ attributionModel: "time_decay", // Options: first_touch, last_touch, linear, time_decay, position_based
630
+
631
+ channelPerformance: {
632
+ organic_search: {
633
+ visits: 24750,
634
+ conversions: 847,
635
+ conversion_rate: 3.42,
636
+ cost: 0,
637
+ revenue: 284000,
638
+ roi: Infinity,
639
+ assisted_conversions: 1256
640
+ },
641
+
642
+ paid_search: {
643
+ visits: 18420,
644
+ conversions: 623,
645
+ conversion_rate: 3.38,
646
+ cost: 45000,
647
+ revenue: 189000,
648
+ roi: 4.2,
649
+ assisted_conversions: 892
650
+ },
651
+
652
+ social_media: {
653
+ visits: 12350,
654
+ conversions: 298,
655
+ conversion_rate: 2.41,
656
+ cost: 18000,
657
+ revenue: 87000,
658
+ roi: 4.83,
659
+ assisted_conversions: 756
660
+ },
661
+
662
+ email: {
663
+ visits: 8940,
664
+ conversions: 412,
665
+ conversion_rate: 4.61,
666
+ cost: 5000,
667
+ revenue: 145000,
668
+ roi: 29.0,
669
+ assisted_conversions: 623
670
+ }
671
+ },
672
+
673
+ customerJourneyAnalysis: {
674
+ average_touchpoints: 7.3,
675
+ average_journey_length: 23, // days
676
+ top_conversion_paths: [
677
+ "Organic Search → Email → Paid Search → Direct",
678
+ "Social Media → Organic Search → Email → Direct",
679
+ "Paid Search → Direct → Email → Direct"
680
+ ],
681
+ journey_value_distribution: {
682
+ single_touch: 15.2, // percentage
683
+ multi_touch: 84.8 // percentage
684
+ }
685
+ }
686
+ };
687
+
688
+ // Campaign ROI Calculation
689
+ function calculateCampaignROI(campaign) {
690
+ const directRevenue = campaign.attributed_revenue;
691
+ const assistedRevenue = campaign.assisted_revenue * 0.3; // 30% attribution weight
692
+ const totalRevenue = directRevenue + assistedRevenue;
693
+ const totalCost = campaign.media_spend + campaign.operational_cost;
694
+
695
+ return {
696
+ total_revenue: totalRevenue,
697
+ total_cost: totalCost,
698
+ roi: ((totalRevenue - totalCost) / totalCost) * 100,
699
+ roas: totalRevenue / campaign.media_spend, // Return on Ad Spend
700
+ cpa: totalCost / campaign.conversions, // Cost per Acquisition
701
+ ltv_to_cac: campaign.avg_customer_ltv / (totalCost / campaign.conversions)
702
+ };
703
+ }
704
+ ```
705
+
706
+ ### 4.2 Sales Performance Analytics
707
+ #### Pipeline Management & Forecasting
708
+ ```yaml
709
+ # Sales Analytics Configuration
710
+ Pipeline Metrics:
711
+ Opportunity Management:
712
+ - [ ] Total pipeline value by stage
713
+ - [ ] Stage conversion rates and velocity
714
+ - [ ] Average deal size by segment
715
+ - [ ] Sales cycle length trends
716
+ - [ ] Win rate by product/service
717
+ - [ ] Loss analysis and competitive insights
718
+ - [ ] Pipeline coverage ratio
719
+ - [ ] Forecast accuracy by sales rep
720
+
721
+ Sales Team Performance:
722
+ - [ ] Individual quota attainment
723
+ - [ ] Activities per rep (calls, meetings, emails)
724
+ - [ ] Pipeline generation by rep
725
+ - [ ] Average deal size by rep
726
+ - [ ] Sales cycle efficiency
727
+ - [ ] Customer retention by sales rep
728
+ - [ ] Upsell and cross-sell success rates
729
+ - [ ] Territory performance analysis
730
+
731
+ Revenue Forecasting:
732
+ - [ ] Committed vs. best case scenarios
733
+ - [ ] Quarterly and annual projections
734
+ - [ ] Pipeline health scoring
735
+ - [ ] Historical accuracy trends
736
+ - [ ] Risk-adjusted forecasting
737
+ - [ ] Seasonal pattern analysis
738
+ - [ ] Market condition impact
739
+ - [ ] Competitive win/loss analysis
740
+ ```
741
+
742
+ #### Sales Intelligence Dashboard
743
+ ```javascript
744
+ // Sales Performance Dashboard
745
+ const salesDashboard = {
746
+ pipelineMetrics: {
747
+ total_pipeline_value: 5420000,
748
+ weighted_pipeline: 2840000,
749
+ deals_in_pipeline: 247,
750
+ average_deal_size: 21943,
751
+ pipeline_velocity: 67, // days average
752
+ pipeline_coverage: 3.2, // ratio
753
+
754
+ stage_breakdown: {
755
+ discovery: { count: 89, value: 1245000, conversion_rate: 45 },
756
+ proposal: { count: 67, value: 1680000, conversion_rate: 62 },
757
+ negotiation: { count: 34, value: 1420000, conversion_rate: 78 },
758
+ closed_won: { count: 28, value: 1075000, conversion_rate: 100 }
759
+ }
760
+ },
761
+
762
+ salesRepPerformance: {
763
+ quota_attainment: {
764
+ above_100: 12, // number of reps
765
+ between_75_100: 18,
766
+ between_50_75: 8,
767
+ below_50: 4
768
+ },
769
+
770
+ activity_metrics: {
771
+ calls_per_day: 47,
772
+ meetings_per_week: 23,
773
+ emails_per_day: 89,
774
+ demos_per_week: 12
775
+ },
776
+
777
+ efficiency_metrics: {
778
+ lead_response_time: 1.3, // hours
779
+ follow_up_consistency: 87, // percentage
780
+ crm_data_quality: 94, // percentage
781
+ pipeline_hygiene: 91 // percentage
782
+ }
783
+ },
784
+
785
+ forecastAccuracy: {
786
+ current_quarter: {
787
+ committed_forecast: 2100000,
788
+ best_case_forecast: 2450000,
789
+ actual_to_date: 1680000,
790
+ projected_final: 2180000,
791
+ accuracy_percentage: 96.2
792
+ },
793
+
794
+ historical_accuracy: {
795
+ last_4_quarters: [94.2, 91.8, 96.7, 88.3],
796
+ improvement_trend: 2.1, // percentage points
797
+ forecast_bias: -2.4 // negative = conservative
798
+ }
799
+ }
800
+ };
801
+
802
+ // Deal Score Calculation
803
+ function calculateDealScore(deal) {
804
+ const factors = {
805
+ stage_probability: getStageBaseProbability(deal.stage),
806
+ champion_strength: deal.champion_score || 50,
807
+ budget_confirmed: deal.budget_confirmed ? 100 : 20,
808
+ decision_timeframe: deal.decision_timeframe <= 30 ? 100 : 50,
809
+ competitive_position: deal.competitive_position || 60,
810
+ solution_fit: deal.solution_fit_score || 70
811
+ };
812
+
813
+ const weights = {
814
+ stage_probability: 0.25,
815
+ champion_strength: 0.20,
816
+ budget_confirmed: 0.20,
817
+ decision_timeframe: 0.15,
818
+ competitive_position: 0.10,
819
+ solution_fit: 0.10
820
+ };
821
+
822
+ let weightedScore = 0;
823
+ for (const [factor, weight] of Object.entries(weights)) {
824
+ weightedScore += (factors[factor] * weight) / 100;
825
+ }
826
+
827
+ return {
828
+ deal_score: Math.round(weightedScore * 100),
829
+ risk_factors: identifyRiskFactors(factors),
830
+ recommended_actions: generateSalesActions(factors),
831
+ close_probability: weightedScore
832
+ };
833
+ }
834
+ ```
835
+
836
+ ---
837
+
838
+ ## 🔍 5. Advanced Analytics & Predictive Insights
839
+
840
+ ### 5.1 Machine Learning & AI Analytics
841
+ #### Predictive Analytics Framework
842
+ ```yaml
843
+ # AI/ML Analytics Configuration
844
+ Predictive Models:
845
+ Customer Behavior Prediction:
846
+ - [ ] Churn prediction models (90-day horizon)
847
+ - [ ] Lifetime value prediction
848
+ - [ ] Upsell/cross-sell propensity scoring
849
+ - [ ] Optimal pricing recommendations
850
+ - [ ] Product recommendation engines
851
+ - [ ] Purchase timing predictions
852
+ - [ ] Support ticket escalation prediction
853
+ - [ ] User engagement likelihood scoring
854
+
855
+ Business Forecasting:
856
+ - [ ] Revenue forecasting with confidence intervals
857
+ - [ ] Demand forecasting by product/service
858
+ - [ ] Market trend analysis and prediction
859
+ - [ ] Seasonal pattern recognition
860
+ - [ ] Capacity planning optimization
861
+ - [ ] Resource allocation recommendations
862
+ - [ ] Risk assessment and mitigation scoring
863
+ - [ ] Competitive analysis and positioning
864
+
865
+ Operational Optimization:
866
+ - [ ] System performance anomaly detection
867
+ - [ ] Predictive maintenance scheduling
868
+ - [ ] Resource utilization optimization
869
+ - [ ] Quality assurance automation
870
+ - [ ] Fraud detection and prevention
871
+ - [ ] Security threat identification
872
+ - [ ] Process efficiency recommendations
873
+ - [ ] Cost optimization opportunities
874
+ ```
875
+
876
+ #### Real-time Analytics Engine
877
+ ```javascript
878
+ // Predictive Analytics Dashboard
879
+ const predictiveAnalytics = {
880
+ churnPrediction: {
881
+ model_accuracy: 94.2,
882
+ false_positive_rate: 3.1,
883
+ customers_at_risk: {
884
+ high_risk: 47, // 90%+ churn probability
885
+ medium_risk: 123, // 60-90% churn probability
886
+ low_risk: 289 // 30-60% churn probability
887
+ },
888
+
889
+ intervention_impact: {
890
+ prevented_churn: 156,
891
+ retained_revenue: 487000,
892
+ intervention_cost: 34000,
893
+ roi: 1435 // percentage
894
+ }
895
+ },
896
+
897
+ revenueForecast: {
898
+ next_30_days: {
899
+ predicted_revenue: 784000,
900
+ confidence_interval: [721000, 847000],
901
+ prediction_accuracy: 96.7,
902
+ key_drivers: ["seasonal_uptick", "campaign_performance", "pipeline_velocity"]
903
+ },
904
+
905
+ scenario_analysis: {
906
+ optimistic: { revenue: 923000, probability: 25 },
907
+ realistic: { revenue: 784000, probability: 50 },
908
+ pessimistic: { revenue: 645000, probability: 25 }
909
+ }
910
+ },
911
+
912
+ anomalyDetection: {
913
+ detected_anomalies: [
914
+ {
915
+ metric: "api_response_time",
916
+ severity: "medium",
917
+ deviation: 2.3, // standard deviations
918
+ timestamp: "2024-01-15T14:30:00Z",
919
+ likely_cause: "database_performance"
920
+ }
921
+ ],
922
+
923
+ automated_responses: {
924
+ alerts_sent: 12,
925
+ auto_scaling_triggered: 3,
926
+ circuit_breakers_activated: 1,
927
+ false_positives: 2
928
+ }
929
+ }
930
+ };
931
+
932
+ // AI Model Performance Monitoring
933
+ const modelPerformance = {
934
+ churn_model: {
935
+ accuracy: 94.2,
936
+ precision: 91.8,
937
+ recall: 89.3,
938
+ f1_score: 90.5,
939
+ last_retrained: "2024-01-10",
940
+ next_retrain: "2024-02-10",
941
+ data_drift_score: 0.23,
942
+ model_degradation: "minimal"
943
+ },
944
+
945
+ recommendation_engine: {
946
+ click_through_rate: 8.7,
947
+ conversion_rate: 3.2,
948
+ revenue_per_recommendation: 24.50,
949
+ personalization_score: 87.3,
950
+ catalog_coverage: 76.8,
951
+ diversity_score: 82.1
952
+ }
953
+ };
954
+ ```
955
+
956
+ ### 5.2 Real-time Decision Intelligence
957
+ #### Automated Alert & Action System
958
+ ```yaml
959
+ # Intelligent Alerting Configuration
960
+ Automated Decision Making:
961
+ Performance Optimization:
962
+ - [ ] Auto-scaling trigger optimization
963
+ - [ ] Load balancing algorithm adjustment
964
+ - [ ] Cache invalidation strategy automation
965
+ - [ ] Database query optimization suggestions
966
+ - [ ] CDN configuration optimization
967
+ - [ ] Resource allocation rebalancing
968
+ - [ ] Cost optimization recommendations
969
+ - [ ] Performance bottleneck identification
970
+
971
+ Business Process Automation:
972
+ - [ ] Lead scoring and routing automation
973
+ - [ ] Customer success intervention triggers
974
+ - [ ] Pricing optimization recommendations
975
+ - [ ] Inventory level optimization
976
+ - [ ] Marketing campaign optimization
977
+ - [ ] A/B test result interpretation
978
+ - [ ] Content personalization engines
979
+ - [ ] Fraud detection and prevention
980
+
981
+ Risk Management:
982
+ - [ ] Security threat response automation
983
+ - [ ] Compliance violation detection
984
+ - [ ] Financial risk assessment
985
+ - [ ] Operational risk monitoring
986
+ - [ ] Customer health score alerts
987
+ - [ ] Revenue at risk identification
988
+ - [ ] Quality assurance automation
989
+ - [ ] Incident escalation optimization
990
+ ```
991
+
992
+ #### Decision Support Framework
993
+ ```javascript
994
+ // Real-time Decision Engine
995
+ const decisionEngine = {
996
+ performanceOptimization: {
997
+ autoScaling: {
998
+ cpu_threshold: 75,
999
+ memory_threshold: 80,
1000
+ scale_up_cooldown: 300, // seconds
1001
+ scale_down_cooldown: 600, // seconds
1002
+ max_instances: 20,
1003
+ min_instances: 2
1004
+ },
1005
+
1006
+ loadBalancing: {
1007
+ algorithm: "least_connections",
1008
+ health_check_interval: 30,
1009
+ failure_threshold: 3,
1010
+ success_threshold: 2,
1011
+ timeout: 5000 // milliseconds
1012
+ }
1013
+ },
1014
+
1015
+ businessOptimization: {
1016
+ pricingEngine: {
1017
+ dynamic_pricing_enabled: true,
1018
+ price_elasticity_model: "advanced",
1019
+ competitor_monitoring: true,
1020
+ margin_protection: 15, // minimum percentage
1021
+ max_price_change: 10 // percentage per adjustment
1022
+ },
1023
+
1024
+ inventoryManagement: {
1025
+ reorder_point_calculation: "ai_optimized",
1026
+ safety_stock_multiplier: 1.5,
1027
+ seasonal_adjustment: true,
1028
+ demand_forecasting: "ml_enhanced",
1029
+ supplier_lead_time_variance: 0.2
1030
+ }
1031
+ },
1032
+
1033
+ riskManagement: {
1034
+ fraudDetection: {
1035
+ real_time_scoring: true,
1036
+ machine_learning_enabled: true,
1037
+ risk_threshold: 85,
1038
+ auto_block_threshold: 95,
1039
+ manual_review_threshold: 70
1040
+ },
1041
+
1042
+ operationalRisk: {
1043
+ incident_prediction: true,
1044
+ capacity_monitoring: true,
1045
+ dependency_tracking: true,
1046
+ sla_monitoring: true,
1047
+ automated_mitigation: true
1048
+ }
1049
+ }
1050
+ };
1051
+
1052
+ // Decision Confidence Scoring
1053
+ function calculateDecisionConfidence(decision_factors) {
1054
+ const weights = {
1055
+ data_quality: 0.25,
1056
+ historical_accuracy: 0.20,
1057
+ sample_size: 0.20,
1058
+ model_performance: 0.15,
1059
+ external_validation: 0.10,
1060
+ expert_consensus: 0.10
1061
+ };
1062
+
1063
+ let confidence_score = 0;
1064
+ for (const [factor, weight] of Object.entries(weights)) {
1065
+ confidence_score += decision_factors[factor] * weight;
1066
+ }
1067
+
1068
+ return {
1069
+ confidence_percentage: Math.round(confidence_score),
1070
+ recommendation_strength: getRecommendationStrength(confidence_score),
1071
+ risk_assessment: assessDecisionRisk(decision_factors),
1072
+ required_approvals: getRequiredApprovals(confidence_score)
1073
+ };
1074
+ }
1075
+ ```
1076
+
1077
+ ---
1078
+
1079
+ ## 📱 6. Dashboard Implementation & User Experience
1080
+
1081
+ ### 6.1 Multi-Platform Dashboard Design
1082
+ #### Responsive Dashboard Framework
1083
+ ```yaml
1084
+ # Dashboard Implementation Specifications
1085
+ User Interface Design:
1086
+ Executive Dashboard (C-Suite):
1087
+ - [ ] High-level KPI overview with trend indicators
1088
+ - [ ] Real-time business health score
1089
+ - [ ] Exception-based reporting (alerts only)
1090
+ - [ ] Mobile-responsive design for on-the-go access
1091
+ - [ ] One-click drill-down capabilities
1092
+ - [ ] Customizable widget arrangements
1093
+ - [ ] Export capabilities (PDF, PowerPoint)
1094
+ - [ ] Scheduled automated reporting
1095
+
1096
+ Operational Dashboard (Managers):
1097
+ - [ ] Detailed metrics with historical context
1098
+ - [ ] Team performance comparisons
1099
+ - [ ] Goal tracking and progress indicators
1100
+ - [ ] Resource utilization monitoring
1101
+ - [ ] Predictive analytics insights
1102
+ - [ ] Collaborative annotation features
1103
+ - [ ] Real-time collaboration tools
1104
+ - [ ] Custom alert configurations
1105
+
1106
+ Analyst Dashboard (Individual Contributors):
1107
+ - [ ] Granular data exploration tools
1108
+ - [ ] Advanced filtering and segmentation
1109
+ - [ ] Custom query builders
1110
+ - [ ] Data export and API access
1111
+ - [ ] Visualization customization
1112
+ - [ ] Statistical analysis tools
1113
+ - [ ] Machine learning model insights
1114
+ - [ ] Peer comparison capabilities
1115
+ ```
1116
+
1117
+ #### Dashboard Performance Optimization
1118
+ ```javascript
1119
+ // Dashboard Performance Configuration
1120
+ const dashboardPerformance = {
1121
+ loadTimeTargets: {
1122
+ initial_load: 2000, // milliseconds
1123
+ widget_refresh: 500, // milliseconds
1124
+ data_query: 1000, // milliseconds
1125
+ visualization_render: 300 // milliseconds
1126
+ },
1127
+
1128
+ cachingStrategy: {
1129
+ real_time_data: 30, // seconds
1130
+ historical_data: 3600, // seconds (1 hour)
1131
+ static_content: 86400, // seconds (24 hours)
1132
+ user_preferences: 604800 // seconds (7 days)
1133
+ },
1134
+
1135
+ dataOptimization: {
1136
+ aggregation_levels: ["minute", "hour", "day", "week", "month"],
1137
+ compression_enabled: true,
1138
+ lazy_loading: true,
1139
+ progressive_enhancement: true,
1140
+ offline_capability: true
1141
+ },
1142
+
1143
+ userExperience: {
1144
+ personalization: {
1145
+ saved_views: 10,
1146
+ custom_widgets: 25,
1147
+ notification_preferences: true,
1148
+ theme_customization: true,
1149
+ layout_persistence: true
1150
+ },
1151
+
1152
+ accessibility: {
1153
+ wcag_compliance: "AA",
1154
+ keyboard_navigation: true,
1155
+ screen_reader_support: true,
1156
+ high_contrast_mode: true,
1157
+ font_size_adjustment: true
1158
+ }
1159
+ }
1160
+ };
1161
+
1162
+ // Widget Configuration Framework
1163
+ const widgetFramework = {
1164
+ chartTypes: [
1165
+ "line_chart", "bar_chart", "pie_chart", "scatter_plot",
1166
+ "heatmap", "gauge", "funnel", "sankey", "treemap",
1167
+ "geographic_map", "network_diagram", "candlestick"
1168
+ ],
1169
+
1170
+ interactivity: {
1171
+ drill_down: true,
1172
+ cross_filtering: true,
1173
+ tooltip_customization: true,
1174
+ zoom_and_pan: true,
1175
+ brush_selection: true,
1176
+ context_menu: true
1177
+ },
1178
+
1179
+ dataConnections: {
1180
+ real_time_streams: ["websocket", "sse", "polling"],
1181
+ databases: ["postgresql", "mysql", "mongodb", "elasticsearch"],
1182
+ apis: ["rest", "graphql", "grpc"],
1183
+ files: ["csv", "json", "excel", "parquet"],
1184
+ cloud_services: ["aws", "gcp", "azure", "snowflake"]
1185
+ }
1186
+ };
1187
+ ```
1188
+
1189
+ ### 6.2 Security & Governance
1190
+ #### Data Access & Privacy Controls
1191
+ ```yaml
1192
+ # Dashboard Security Configuration
1193
+ Access Control:
1194
+ Role-Based Permissions:
1195
+ - [ ] Executive access (all metrics, high-level views)
1196
+ - [ ] Manager access (team metrics, departmental data)
1197
+ - [ ] Analyst access (detailed data, exploration tools)
1198
+ - [ ] Guest access (limited public metrics)
1199
+ - [ ] API access (programmatic data consumption)
1200
+ - [ ] Audit access (compliance and governance data)
1201
+ - [ ] Developer access (system metrics, debugging tools)
1202
+ - [ ] Customer access (self-service analytics)
1203
+
1204
+ Data Governance:
1205
+ - [ ] PII data masking and anonymization
1206
+ - [ ] Regional data residency compliance
1207
+ - [ ] Audit trail for all data access
1208
+ - [ ] Data retention policy enforcement
1209
+ - [ ] Consent management integration
1210
+ - [ ] Right to deletion compliance
1211
+ - [ ] Data lineage tracking
1212
+ - [ ] Quality scoring and validation
1213
+
1214
+ Security Measures:
1215
+ - [ ] Multi-factor authentication (MFA)
1216
+ - [ ] Single sign-on (SSO) integration
1217
+ - [ ] API rate limiting and throttling
1218
+ - [ ] Encryption at rest and in transit
1219
+ - [ ] Network security and VPN access
1220
+ - [ ] Regular security assessments
1221
+ - [ ] Intrusion detection and monitoring
1222
+ - [ ] Compliance reporting automation
1223
+ ```
1224
+
1225
+ ---
1226
+
1227
+ ## 🎯 7. Success Metrics & KPI Framework
1228
+
1229
+ ### 7.1 Organizational KPI Hierarchy
1230
+ #### Balanced Scorecard Approach
1231
+ ```yaml
1232
+ # Enterprise KPI Framework
1233
+ Financial Perspective:
1234
+ Growth Metrics:
1235
+ - [ ] Revenue growth rate (target: 25% YoY)
1236
+ - [ ] Profit margin improvement
1237
+ - [ ] Cash flow and burn rate
1238
+ - [ ] Return on investment (ROI)
1239
+ - [ ] Market share growth
1240
+ - [ ] Customer lifetime value growth
1241
+ - [ ] Cost per acquisition optimization
1242
+ - [ ] Revenue diversification index
1243
+
1244
+ Customer Perspective:
1245
+ Satisfaction & Retention:
1246
+ - [ ] Net Promoter Score (target: >50)
1247
+ - [ ] Customer satisfaction score (target: >4.5/5)
1248
+ - [ ] Customer retention rate (target: >90%)
1249
+ - [ ] Customer effort score
1250
+ - [ ] Time to value achievement
1251
+ - [ ] Support resolution time
1252
+ - [ ] Product adoption rates
1253
+ - [ ] Advocacy and referral rates
1254
+
1255
+ Internal Process Perspective:
1256
+ Operational Excellence:
1257
+ - [ ] System uptime (target: 99.9%+)
1258
+ - [ ] Development velocity
1259
+ - [ ] Time to market for new features
1260
+ - [ ] Quality metrics (defect rates)
1261
+ - [ ] Process automation level
1262
+ - [ ] Cost efficiency ratios
1263
+ - [ ] Compliance score
1264
+ - [ ] Security incident frequency
1265
+
1266
+ Learning & Growth Perspective:
1267
+ Innovation & Capability:
1268
+ - [ ] Employee satisfaction and engagement
1269
+ - [ ] Skill development and certification
1270
+ - [ ] Innovation pipeline metrics
1271
+ - [ ] Knowledge sharing effectiveness
1272
+ - [ ] Technology adoption rates
1273
+ - [ ] Leadership development
1274
+ - [ ] Diversity and inclusion metrics
1275
+ - [ ] Organizational agility index
1276
+ ```
1277
+
1278
+ ### 7.2 Performance Management Integration
1279
+ #### OKR (Objectives & Key Results) Tracking
1280
+ ```javascript
1281
+ // OKR Dashboard Integration
1282
+ const okrFramework = {
1283
+ companyObjectives: [
1284
+ {
1285
+ id: "CO_2024_Q1_01",
1286
+ objective: "Accelerate customer acquisition and growth",
1287
+ owner: "CEO",
1288
+ progress: 73,
1289
+ confidence: 85,
1290
+ keyResults: [
1291
+ {
1292
+ id: "KR_01",
1293
+ description: "Increase MRR by 30% to $1.2M",
1294
+ target: 1200000,
1295
+ current: 876000,
1296
+ progress: 73,
1297
+ trend: "up"
1298
+ },
1299
+ {
1300
+ id: "KR_02",
1301
+ description: "Achieve 95% customer satisfaction",
1302
+ target: 95,
1303
+ current: 92.3,
1304
+ progress: 97,
1305
+ trend: "up"
1306
+ }
1307
+ ]
1308
+ }
1309
+ ],
1310
+
1311
+ departmentAlignment: {
1312
+ engineering: {
1313
+ alignment_score: 94,
1314
+ contributing_okrs: 8,
1315
+ delivery_confidence: 87
1316
+ },
1317
+ sales: {
1318
+ alignment_score: 91,
1319
+ contributing_okrs: 6,
1320
+ delivery_confidence: 92
1321
+ },
1322
+ marketing: {
1323
+ alignment_score: 88,
1324
+ contributing_okrs: 7,
1325
+ delivery_confidence: 85
1326
+ }
1327
+ },
1328
+
1329
+ progressTracking: {
1330
+ update_frequency: "weekly",
1331
+ automated_tracking: 67, // percentage
1332
+ manual_updates: 33, // percentage
1333
+ confidence_trending: "stable",
1334
+ risk_factors: ["market_conditions", "resource_constraints"]
1335
+ }
1336
+ };
1337
+
1338
+ // Performance Dashboard Integration
1339
+ function generatePerformanceDashboard(timeframe) {
1340
+ return {
1341
+ summary: {
1342
+ okrs_on_track: calculateOKRsOnTrack(),
1343
+ kpis_meeting_targets: calculateKPIsOnTarget(),
1344
+ overall_health_score: calculateOverallHealth(),
1345
+ areas_needing_attention: identifyRiskAreas()
1346
+ },
1347
+
1348
+ trending: {
1349
+ improvement_areas: identifyImprovements(timeframe),
1350
+ declining_metrics: identifyDeclines(timeframe),
1351
+ seasonal_patterns: analyzeSeasonality(timeframe),
1352
+ benchmark_comparisons: getBenchmarkData()
1353
+ },
1354
+
1355
+ recommendations: {
1356
+ quick_wins: identifyQuickWins(),
1357
+ strategic_initiatives: suggestStrategicActions(),
1358
+ resource_reallocation: optimizeResourceAllocation(),
1359
+ process_improvements: identifyProcessGaps()
1360
+ }
1361
+ };
1362
+ }
1363
+ ```
1364
+
1365
+ ---
1366
+
1367
+ **Metrics Dashboard Status:** [Development/Testing/Production]
1368
+ ---
1369
+
1370
+ **Stakeholder Access Matrix:**
1371
+ - **Executive Team:** Full dashboard access + mobile app
1372
+ - **Department Heads:** Departmental dashboards + cross-functional metrics
1373
+ - **Team Leads:** Team performance + individual contributor metrics
1374
+ - **Analysts:** Raw data access + advanced analytics tools
1375
+ - **External Partners:** Limited partner-specific metrics dashboards