@huggingface/tasks 0.0.6 → 0.0.8
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +16 -2
- package/dist/index.d.ts +381 -5
- package/dist/index.js +1986 -77
- package/dist/index.mjs +1985 -76
- package/package.json +2 -4
- package/src/default-widget-inputs.ts +718 -0
- package/src/index.ts +35 -4
- package/src/library-to-tasks.ts +47 -0
- package/src/library-ui-elements.ts +765 -0
- package/src/model-data.ts +239 -0
- package/src/pipelines.ts +39 -0
- package/src/snippets/curl.ts +63 -0
- package/src/snippets/index.ts +6 -0
- package/src/snippets/inputs.ts +144 -0
- package/src/snippets/js.ts +150 -0
- package/src/snippets/python.ts +155 -0
- package/src/{audio-classification → tasks/audio-classification}/about.md +2 -1
- package/src/{audio-classification → tasks/audio-classification}/data.ts +3 -3
- package/src/{audio-to-audio → tasks/audio-to-audio}/data.ts +1 -1
- package/src/{automatic-speech-recognition → tasks/automatic-speech-recognition}/about.md +3 -2
- package/src/{automatic-speech-recognition → tasks/automatic-speech-recognition}/data.ts +6 -6
- package/src/{conversational → tasks/conversational}/data.ts +1 -1
- package/src/{depth-estimation → tasks/depth-estimation}/data.ts +1 -1
- package/src/{document-question-answering → tasks/document-question-answering}/data.ts +1 -1
- package/src/{feature-extraction → tasks/feature-extraction}/data.ts +2 -7
- package/src/{fill-mask → tasks/fill-mask}/data.ts +1 -1
- package/src/{image-classification → tasks/image-classification}/data.ts +1 -1
- package/src/{image-segmentation → tasks/image-segmentation}/data.ts +1 -1
- package/src/{image-to-image → tasks/image-to-image}/about.md +8 -7
- package/src/{image-to-image → tasks/image-to-image}/data.ts +1 -1
- package/src/{image-to-text → tasks/image-to-text}/data.ts +1 -1
- package/src/{tasksData.ts → tasks/index.ts} +144 -15
- package/src/{object-detection → tasks/object-detection}/data.ts +1 -1
- package/src/{placeholder → tasks/placeholder}/data.ts +1 -1
- package/src/{question-answering → tasks/question-answering}/data.ts +1 -1
- package/src/{reinforcement-learning → tasks/reinforcement-learning}/data.ts +1 -1
- package/src/{sentence-similarity → tasks/sentence-similarity}/data.ts +1 -1
- package/src/{summarization → tasks/summarization}/data.ts +1 -1
- package/src/{table-question-answering → tasks/table-question-answering}/data.ts +1 -1
- package/src/{tabular-classification → tasks/tabular-classification}/data.ts +1 -1
- package/src/{tabular-regression → tasks/tabular-regression}/data.ts +1 -1
- package/src/{text-classification → tasks/text-classification}/data.ts +1 -1
- package/src/{text-generation → tasks/text-generation}/about.md +13 -3
- package/src/{text-generation → tasks/text-generation}/data.ts +2 -2
- package/src/{text-to-image → tasks/text-to-image}/data.ts +1 -1
- package/src/{text-to-speech → tasks/text-to-speech}/about.md +2 -1
- package/src/{text-to-speech → tasks/text-to-speech}/data.ts +4 -4
- package/src/{text-to-video → tasks/text-to-video}/data.ts +1 -1
- package/src/{token-classification → tasks/token-classification}/data.ts +1 -1
- package/src/{translation → tasks/translation}/data.ts +1 -1
- package/src/{unconditional-image-generation → tasks/unconditional-image-generation}/data.ts +1 -1
- package/src/{video-classification → tasks/video-classification}/about.md +8 -28
- package/src/{video-classification → tasks/video-classification}/data.ts +1 -1
- package/src/{visual-question-answering → tasks/visual-question-answering}/data.ts +1 -1
- package/src/{zero-shot-classification → tasks/zero-shot-classification}/data.ts +1 -1
- package/src/{zero-shot-image-classification → tasks/zero-shot-image-classification}/data.ts +1 -1
- package/src/Types.ts +0 -64
- package/src/const.ts +0 -59
- /package/src/{modelLibraries.ts → model-libraries.ts} +0 -0
- /package/src/{audio-to-audio → tasks/audio-to-audio}/about.md +0 -0
- /package/src/{conversational → tasks/conversational}/about.md +0 -0
- /package/src/{depth-estimation → tasks/depth-estimation}/about.md +0 -0
- /package/src/{document-question-answering → tasks/document-question-answering}/about.md +0 -0
- /package/src/{feature-extraction → tasks/feature-extraction}/about.md +0 -0
- /package/src/{fill-mask → tasks/fill-mask}/about.md +0 -0
- /package/src/{image-classification → tasks/image-classification}/about.md +0 -0
- /package/src/{image-segmentation → tasks/image-segmentation}/about.md +0 -0
- /package/src/{image-to-text → tasks/image-to-text}/about.md +0 -0
- /package/src/{object-detection → tasks/object-detection}/about.md +0 -0
- /package/src/{placeholder → tasks/placeholder}/about.md +0 -0
- /package/src/{question-answering → tasks/question-answering}/about.md +0 -0
- /package/src/{reinforcement-learning → tasks/reinforcement-learning}/about.md +0 -0
- /package/src/{sentence-similarity → tasks/sentence-similarity}/about.md +0 -0
- /package/src/{summarization → tasks/summarization}/about.md +0 -0
- /package/src/{table-question-answering → tasks/table-question-answering}/about.md +0 -0
- /package/src/{tabular-classification → tasks/tabular-classification}/about.md +0 -0
- /package/src/{tabular-regression → tasks/tabular-regression}/about.md +0 -0
- /package/src/{text-classification → tasks/text-classification}/about.md +0 -0
- /package/src/{text-to-image → tasks/text-to-image}/about.md +0 -0
- /package/src/{text-to-video → tasks/text-to-video}/about.md +0 -0
- /package/src/{token-classification → tasks/token-classification}/about.md +0 -0
- /package/src/{translation → tasks/translation}/about.md +0 -0
- /package/src/{unconditional-image-generation → tasks/unconditional-image-generation}/about.md +0 -0
- /package/src/{visual-question-answering → tasks/visual-question-answering}/about.md +0 -0
- /package/src/{zero-shot-classification → tasks/zero-shot-classification}/about.md +0 -0
- /package/src/{zero-shot-image-classification → tasks/zero-shot-image-classification}/about.md +0 -0
|
@@ -0,0 +1,765 @@
|
|
|
1
|
+
import type { ModelData } from "./model-data";
|
|
2
|
+
import type { ModelLibraryKey } from "./model-libraries";
|
|
3
|
+
|
|
4
|
+
/**
|
|
5
|
+
* Elements configurable by a model library.
|
|
6
|
+
*/
|
|
7
|
+
export interface LibraryUiElement {
|
|
8
|
+
/**
|
|
9
|
+
* Name displayed on the main
|
|
10
|
+
* call-to-action button on the model page.
|
|
11
|
+
*/
|
|
12
|
+
btnLabel: string;
|
|
13
|
+
/**
|
|
14
|
+
* Repo name
|
|
15
|
+
*/
|
|
16
|
+
repoName: string;
|
|
17
|
+
/**
|
|
18
|
+
* URL to library's repo
|
|
19
|
+
*/
|
|
20
|
+
repoUrl: string;
|
|
21
|
+
/**
|
|
22
|
+
* URL to library's docs
|
|
23
|
+
*/
|
|
24
|
+
docsUrl?: string;
|
|
25
|
+
/**
|
|
26
|
+
* Code snippet displayed on model page
|
|
27
|
+
*/
|
|
28
|
+
snippets: (model: ModelData) => string[];
|
|
29
|
+
}
|
|
30
|
+
|
|
31
|
+
function nameWithoutNamespace(modelId: string): string {
|
|
32
|
+
const splitted = modelId.split("/");
|
|
33
|
+
return splitted.length === 1 ? splitted[0] : splitted[1];
|
|
34
|
+
}
|
|
35
|
+
|
|
36
|
+
//#region snippets
|
|
37
|
+
|
|
38
|
+
const adapter_transformers = (model: ModelData) => [
|
|
39
|
+
`from transformers import ${model.config?.adapter_transformers?.model_class}
|
|
40
|
+
|
|
41
|
+
model = ${model.config?.adapter_transformers?.model_class}.from_pretrained("${model.config?.adapter_transformers?.model_name}")
|
|
42
|
+
model.load_adapter("${model.id}", source="hf")`,
|
|
43
|
+
];
|
|
44
|
+
|
|
45
|
+
const allennlpUnknown = (model: ModelData) => [
|
|
46
|
+
`import allennlp_models
|
|
47
|
+
from allennlp.predictors.predictor import Predictor
|
|
48
|
+
|
|
49
|
+
predictor = Predictor.from_path("hf://${model.id}")`,
|
|
50
|
+
];
|
|
51
|
+
|
|
52
|
+
const allennlpQuestionAnswering = (model: ModelData) => [
|
|
53
|
+
`import allennlp_models
|
|
54
|
+
from allennlp.predictors.predictor import Predictor
|
|
55
|
+
|
|
56
|
+
predictor = Predictor.from_path("hf://${model.id}")
|
|
57
|
+
predictor_input = {"passage": "My name is Wolfgang and I live in Berlin", "question": "Where do I live?"}
|
|
58
|
+
predictions = predictor.predict_json(predictor_input)`,
|
|
59
|
+
];
|
|
60
|
+
|
|
61
|
+
const allennlp = (model: ModelData) => {
|
|
62
|
+
if (model.tags?.includes("question-answering")) {
|
|
63
|
+
return allennlpQuestionAnswering(model);
|
|
64
|
+
}
|
|
65
|
+
return allennlpUnknown(model);
|
|
66
|
+
};
|
|
67
|
+
|
|
68
|
+
const asteroid = (model: ModelData) => [
|
|
69
|
+
`from asteroid.models import BaseModel
|
|
70
|
+
|
|
71
|
+
model = BaseModel.from_pretrained("${model.id}")`,
|
|
72
|
+
];
|
|
73
|
+
|
|
74
|
+
function get_base_diffusers_model(model: ModelData): string {
|
|
75
|
+
return model.cardData?.base_model ?? "fill-in-base-model";
|
|
76
|
+
}
|
|
77
|
+
|
|
78
|
+
const bertopic = (model: ModelData) => [
|
|
79
|
+
`from bertopic import BERTopic
|
|
80
|
+
|
|
81
|
+
model = BERTopic.load("${model.id}")`,
|
|
82
|
+
];
|
|
83
|
+
|
|
84
|
+
const diffusers_default = (model: ModelData) => [
|
|
85
|
+
`from diffusers import DiffusionPipeline
|
|
86
|
+
|
|
87
|
+
pipeline = DiffusionPipeline.from_pretrained("${model.id}")`,
|
|
88
|
+
];
|
|
89
|
+
|
|
90
|
+
const diffusers_controlnet = (model: ModelData) => [
|
|
91
|
+
`from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
|
92
|
+
|
|
93
|
+
controlnet = ControlNetModel.from_pretrained("${model.id}")
|
|
94
|
+
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
|
|
95
|
+
"${get_base_diffusers_model(model)}", controlnet=controlnet
|
|
96
|
+
)`,
|
|
97
|
+
];
|
|
98
|
+
|
|
99
|
+
const diffusers_lora = (model: ModelData) => [
|
|
100
|
+
`from diffusers import DiffusionPipeline
|
|
101
|
+
|
|
102
|
+
pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
|
|
103
|
+
pipeline.load_lora_weights("${model.id}")`,
|
|
104
|
+
];
|
|
105
|
+
|
|
106
|
+
const diffusers_textual_inversion = (model: ModelData) => [
|
|
107
|
+
`from diffusers import DiffusionPipeline
|
|
108
|
+
|
|
109
|
+
pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
|
|
110
|
+
pipeline.load_textual_inversion("${model.id}")`,
|
|
111
|
+
];
|
|
112
|
+
|
|
113
|
+
const diffusers = (model: ModelData) => {
|
|
114
|
+
if (model.tags?.includes("controlnet")) {
|
|
115
|
+
return diffusers_controlnet(model);
|
|
116
|
+
} else if (model.tags?.includes("lora")) {
|
|
117
|
+
return diffusers_lora(model);
|
|
118
|
+
} else if (model.tags?.includes("textual_inversion")) {
|
|
119
|
+
return diffusers_textual_inversion(model);
|
|
120
|
+
} else {
|
|
121
|
+
return diffusers_default(model);
|
|
122
|
+
}
|
|
123
|
+
};
|
|
124
|
+
|
|
125
|
+
const espnetTTS = (model: ModelData) => [
|
|
126
|
+
`from espnet2.bin.tts_inference import Text2Speech
|
|
127
|
+
|
|
128
|
+
model = Text2Speech.from_pretrained("${model.id}")
|
|
129
|
+
|
|
130
|
+
speech, *_ = model("text to generate speech from")`,
|
|
131
|
+
];
|
|
132
|
+
|
|
133
|
+
const espnetASR = (model: ModelData) => [
|
|
134
|
+
`from espnet2.bin.asr_inference import Speech2Text
|
|
135
|
+
|
|
136
|
+
model = Speech2Text.from_pretrained(
|
|
137
|
+
"${model.id}"
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
speech, rate = soundfile.read("speech.wav")
|
|
141
|
+
text, *_ = model(speech)[0]`,
|
|
142
|
+
];
|
|
143
|
+
|
|
144
|
+
const espnetUnknown = () => [`unknown model type (must be text-to-speech or automatic-speech-recognition)`];
|
|
145
|
+
|
|
146
|
+
const espnet = (model: ModelData) => {
|
|
147
|
+
if (model.tags?.includes("text-to-speech")) {
|
|
148
|
+
return espnetTTS(model);
|
|
149
|
+
} else if (model.tags?.includes("automatic-speech-recognition")) {
|
|
150
|
+
return espnetASR(model);
|
|
151
|
+
}
|
|
152
|
+
return espnetUnknown();
|
|
153
|
+
};
|
|
154
|
+
|
|
155
|
+
const fairseq = (model: ModelData) => [
|
|
156
|
+
`from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
|
|
157
|
+
|
|
158
|
+
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
|
|
159
|
+
"${model.id}"
|
|
160
|
+
)`,
|
|
161
|
+
];
|
|
162
|
+
|
|
163
|
+
const flair = (model: ModelData) => [
|
|
164
|
+
`from flair.models import SequenceTagger
|
|
165
|
+
|
|
166
|
+
tagger = SequenceTagger.load("${model.id}")`,
|
|
167
|
+
];
|
|
168
|
+
|
|
169
|
+
const keras = (model: ModelData) => [
|
|
170
|
+
`from huggingface_hub import from_pretrained_keras
|
|
171
|
+
|
|
172
|
+
model = from_pretrained_keras("${model.id}")
|
|
173
|
+
`,
|
|
174
|
+
];
|
|
175
|
+
|
|
176
|
+
const open_clip = (model: ModelData) => [
|
|
177
|
+
`import open_clip
|
|
178
|
+
|
|
179
|
+
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:${model.id}')
|
|
180
|
+
tokenizer = open_clip.get_tokenizer('hf-hub:${model.id}')`,
|
|
181
|
+
];
|
|
182
|
+
|
|
183
|
+
const paddlenlp = (model: ModelData) => {
|
|
184
|
+
if (model.config?.architectures?.[0]) {
|
|
185
|
+
const architecture = model.config.architectures[0];
|
|
186
|
+
return [
|
|
187
|
+
[
|
|
188
|
+
`from paddlenlp.transformers import AutoTokenizer, ${architecture}`,
|
|
189
|
+
"",
|
|
190
|
+
`tokenizer = AutoTokenizer.from_pretrained("${model.id}"${
|
|
191
|
+
model.private ? ", use_auth_token=True" : ""
|
|
192
|
+
}, from_hf_hub=True)`,
|
|
193
|
+
`model = ${architecture}.from_pretrained("${model.id}"${
|
|
194
|
+
model.private ? ", use_auth_token=True" : ""
|
|
195
|
+
}, from_hf_hub=True)`,
|
|
196
|
+
].join("\n"),
|
|
197
|
+
];
|
|
198
|
+
} else {
|
|
199
|
+
return [
|
|
200
|
+
[
|
|
201
|
+
`# ⚠️ Type of model unknown`,
|
|
202
|
+
`from paddlenlp.transformers import AutoTokenizer, AutoModel`,
|
|
203
|
+
"",
|
|
204
|
+
`tokenizer = AutoTokenizer.from_pretrained("${model.id}"${
|
|
205
|
+
model.private ? ", use_auth_token=True" : ""
|
|
206
|
+
}, from_hf_hub=True)`,
|
|
207
|
+
`model = AutoModel.from_pretrained("${model.id}"${
|
|
208
|
+
model.private ? ", use_auth_token=True" : ""
|
|
209
|
+
}, from_hf_hub=True)`,
|
|
210
|
+
].join("\n"),
|
|
211
|
+
];
|
|
212
|
+
}
|
|
213
|
+
};
|
|
214
|
+
|
|
215
|
+
const pyannote_audio_pipeline = (model: ModelData) => [
|
|
216
|
+
`from pyannote.audio import Pipeline
|
|
217
|
+
|
|
218
|
+
pipeline = Pipeline.from_pretrained("${model.id}")
|
|
219
|
+
|
|
220
|
+
# inference on the whole file
|
|
221
|
+
pipeline("file.wav")
|
|
222
|
+
|
|
223
|
+
# inference on an excerpt
|
|
224
|
+
from pyannote.core import Segment
|
|
225
|
+
excerpt = Segment(start=2.0, end=5.0)
|
|
226
|
+
|
|
227
|
+
from pyannote.audio import Audio
|
|
228
|
+
waveform, sample_rate = Audio().crop("file.wav", excerpt)
|
|
229
|
+
pipeline({"waveform": waveform, "sample_rate": sample_rate})`,
|
|
230
|
+
];
|
|
231
|
+
|
|
232
|
+
const pyannote_audio_model = (model: ModelData) => [
|
|
233
|
+
`from pyannote.audio import Model, Inference
|
|
234
|
+
|
|
235
|
+
model = Model.from_pretrained("${model.id}")
|
|
236
|
+
inference = Inference(model)
|
|
237
|
+
|
|
238
|
+
# inference on the whole file
|
|
239
|
+
inference("file.wav")
|
|
240
|
+
|
|
241
|
+
# inference on an excerpt
|
|
242
|
+
from pyannote.core import Segment
|
|
243
|
+
excerpt = Segment(start=2.0, end=5.0)
|
|
244
|
+
inference.crop("file.wav", excerpt)`,
|
|
245
|
+
];
|
|
246
|
+
|
|
247
|
+
const pyannote_audio = (model: ModelData) => {
|
|
248
|
+
if (model.tags?.includes("pyannote-audio-pipeline")) {
|
|
249
|
+
return pyannote_audio_pipeline(model);
|
|
250
|
+
}
|
|
251
|
+
return pyannote_audio_model(model);
|
|
252
|
+
};
|
|
253
|
+
|
|
254
|
+
const tensorflowttsTextToMel = (model: ModelData) => [
|
|
255
|
+
`from tensorflow_tts.inference import AutoProcessor, TFAutoModel
|
|
256
|
+
|
|
257
|
+
processor = AutoProcessor.from_pretrained("${model.id}")
|
|
258
|
+
model = TFAutoModel.from_pretrained("${model.id}")
|
|
259
|
+
`,
|
|
260
|
+
];
|
|
261
|
+
|
|
262
|
+
const tensorflowttsMelToWav = (model: ModelData) => [
|
|
263
|
+
`from tensorflow_tts.inference import TFAutoModel
|
|
264
|
+
|
|
265
|
+
model = TFAutoModel.from_pretrained("${model.id}")
|
|
266
|
+
audios = model.inference(mels)
|
|
267
|
+
`,
|
|
268
|
+
];
|
|
269
|
+
|
|
270
|
+
const tensorflowttsUnknown = (model: ModelData) => [
|
|
271
|
+
`from tensorflow_tts.inference import TFAutoModel
|
|
272
|
+
|
|
273
|
+
model = TFAutoModel.from_pretrained("${model.id}")
|
|
274
|
+
`,
|
|
275
|
+
];
|
|
276
|
+
|
|
277
|
+
const tensorflowtts = (model: ModelData) => {
|
|
278
|
+
if (model.tags?.includes("text-to-mel")) {
|
|
279
|
+
return tensorflowttsTextToMel(model);
|
|
280
|
+
} else if (model.tags?.includes("mel-to-wav")) {
|
|
281
|
+
return tensorflowttsMelToWav(model);
|
|
282
|
+
}
|
|
283
|
+
return tensorflowttsUnknown(model);
|
|
284
|
+
};
|
|
285
|
+
|
|
286
|
+
const timm = (model: ModelData) => [
|
|
287
|
+
`import timm
|
|
288
|
+
|
|
289
|
+
model = timm.create_model("hf_hub:${model.id}", pretrained=True)`,
|
|
290
|
+
];
|
|
291
|
+
|
|
292
|
+
const skopsPickle = (model: ModelData, modelFile: string) => {
|
|
293
|
+
return [
|
|
294
|
+
`import joblib
|
|
295
|
+
from skops.hub_utils import download
|
|
296
|
+
download("${model.id}", "path_to_folder")
|
|
297
|
+
model = joblib.load(
|
|
298
|
+
"${modelFile}"
|
|
299
|
+
)
|
|
300
|
+
# only load pickle files from sources you trust
|
|
301
|
+
# read more about it here https://skops.readthedocs.io/en/stable/persistence.html`,
|
|
302
|
+
];
|
|
303
|
+
};
|
|
304
|
+
|
|
305
|
+
const skopsFormat = (model: ModelData, modelFile: string) => {
|
|
306
|
+
return [
|
|
307
|
+
`from skops.hub_utils import download
|
|
308
|
+
from skops.io import load
|
|
309
|
+
download("${model.id}", "path_to_folder")
|
|
310
|
+
# make sure model file is in skops format
|
|
311
|
+
# if model is a pickle file, make sure it's from a source you trust
|
|
312
|
+
model = load("path_to_folder/${modelFile}")`,
|
|
313
|
+
];
|
|
314
|
+
};
|
|
315
|
+
|
|
316
|
+
const skopsJobLib = (model: ModelData) => {
|
|
317
|
+
return [
|
|
318
|
+
`from huggingface_hub import hf_hub_download
|
|
319
|
+
import joblib
|
|
320
|
+
model = joblib.load(
|
|
321
|
+
hf_hub_download("${model.id}", "sklearn_model.joblib")
|
|
322
|
+
)
|
|
323
|
+
# only load pickle files from sources you trust
|
|
324
|
+
# read more about it here https://skops.readthedocs.io/en/stable/persistence.html`,
|
|
325
|
+
];
|
|
326
|
+
};
|
|
327
|
+
|
|
328
|
+
const sklearn = (model: ModelData) => {
|
|
329
|
+
if (model.tags?.includes("skops")) {
|
|
330
|
+
const skopsmodelFile = model.config?.sklearn?.filename;
|
|
331
|
+
const skopssaveFormat = model.config?.sklearn?.model_format;
|
|
332
|
+
if (!skopsmodelFile) {
|
|
333
|
+
return [`# ⚠️ Model filename not specified in config.json`];
|
|
334
|
+
}
|
|
335
|
+
if (skopssaveFormat === "pickle") {
|
|
336
|
+
return skopsPickle(model, skopsmodelFile);
|
|
337
|
+
} else {
|
|
338
|
+
return skopsFormat(model, skopsmodelFile);
|
|
339
|
+
}
|
|
340
|
+
} else {
|
|
341
|
+
return skopsJobLib(model);
|
|
342
|
+
}
|
|
343
|
+
};
|
|
344
|
+
|
|
345
|
+
const fastai = (model: ModelData) => [
|
|
346
|
+
`from huggingface_hub import from_pretrained_fastai
|
|
347
|
+
|
|
348
|
+
learn = from_pretrained_fastai("${model.id}")`,
|
|
349
|
+
];
|
|
350
|
+
|
|
351
|
+
const sampleFactory = (model: ModelData) => [
|
|
352
|
+
`python -m sample_factory.huggingface.load_from_hub -r ${model.id} -d ./train_dir`,
|
|
353
|
+
];
|
|
354
|
+
|
|
355
|
+
const sentenceTransformers = (model: ModelData) => [
|
|
356
|
+
`from sentence_transformers import SentenceTransformer
|
|
357
|
+
|
|
358
|
+
model = SentenceTransformer("${model.id}")`,
|
|
359
|
+
];
|
|
360
|
+
|
|
361
|
+
const spacy = (model: ModelData) => [
|
|
362
|
+
`!pip install https://huggingface.co/${model.id}/resolve/main/${nameWithoutNamespace(model.id)}-any-py3-none-any.whl
|
|
363
|
+
|
|
364
|
+
# Using spacy.load().
|
|
365
|
+
import spacy
|
|
366
|
+
nlp = spacy.load("${nameWithoutNamespace(model.id)}")
|
|
367
|
+
|
|
368
|
+
# Importing as module.
|
|
369
|
+
import ${nameWithoutNamespace(model.id)}
|
|
370
|
+
nlp = ${nameWithoutNamespace(model.id)}.load()`,
|
|
371
|
+
];
|
|
372
|
+
|
|
373
|
+
const span_marker = (model: ModelData) => [
|
|
374
|
+
`from span_marker import SpanMarkerModel
|
|
375
|
+
|
|
376
|
+
model = SpanMarkerModel.from_pretrained("${model.id}")`,
|
|
377
|
+
];
|
|
378
|
+
|
|
379
|
+
const stanza = (model: ModelData) => [
|
|
380
|
+
`import stanza
|
|
381
|
+
|
|
382
|
+
stanza.download("${nameWithoutNamespace(model.id).replace("stanza-", "")}")
|
|
383
|
+
nlp = stanza.Pipeline("${nameWithoutNamespace(model.id).replace("stanza-", "")}")`,
|
|
384
|
+
];
|
|
385
|
+
|
|
386
|
+
const speechBrainMethod = (speechbrainInterface: string) => {
|
|
387
|
+
switch (speechbrainInterface) {
|
|
388
|
+
case "EncoderClassifier":
|
|
389
|
+
return "classify_file";
|
|
390
|
+
case "EncoderDecoderASR":
|
|
391
|
+
case "EncoderASR":
|
|
392
|
+
return "transcribe_file";
|
|
393
|
+
case "SpectralMaskEnhancement":
|
|
394
|
+
return "enhance_file";
|
|
395
|
+
case "SepformerSeparation":
|
|
396
|
+
return "separate_file";
|
|
397
|
+
default:
|
|
398
|
+
return undefined;
|
|
399
|
+
}
|
|
400
|
+
};
|
|
401
|
+
|
|
402
|
+
const speechbrain = (model: ModelData) => {
|
|
403
|
+
const speechbrainInterface = model.config?.speechbrain?.interface;
|
|
404
|
+
if (speechbrainInterface === undefined) {
|
|
405
|
+
return [`# interface not specified in config.json`];
|
|
406
|
+
}
|
|
407
|
+
|
|
408
|
+
const speechbrainMethod = speechBrainMethod(speechbrainInterface);
|
|
409
|
+
if (speechbrainMethod === undefined) {
|
|
410
|
+
return [`# interface in config.json invalid`];
|
|
411
|
+
}
|
|
412
|
+
|
|
413
|
+
return [
|
|
414
|
+
`from speechbrain.pretrained import ${speechbrainInterface}
|
|
415
|
+
model = ${speechbrainInterface}.from_hparams(
|
|
416
|
+
"${model.id}"
|
|
417
|
+
)
|
|
418
|
+
model.${speechbrainMethod}("file.wav")`,
|
|
419
|
+
];
|
|
420
|
+
};
|
|
421
|
+
|
|
422
|
+
const transformers = (model: ModelData) => {
|
|
423
|
+
const info = model.transformersInfo;
|
|
424
|
+
if (!info) {
|
|
425
|
+
return [`# ⚠️ Type of model unknown`];
|
|
426
|
+
}
|
|
427
|
+
const remote_code_snippet = info.custom_class ? ", trust_remote_code=True" : "";
|
|
428
|
+
|
|
429
|
+
let autoSnippet: string;
|
|
430
|
+
if (info.processor) {
|
|
431
|
+
const varName =
|
|
432
|
+
info.processor === "AutoTokenizer"
|
|
433
|
+
? "tokenizer"
|
|
434
|
+
: info.processor === "AutoFeatureExtractor"
|
|
435
|
+
? "extractor"
|
|
436
|
+
: "processor";
|
|
437
|
+
autoSnippet = [
|
|
438
|
+
"# Load model directly",
|
|
439
|
+
`from transformers import ${info.processor}, ${info.auto_model}`,
|
|
440
|
+
"",
|
|
441
|
+
`${varName} = ${info.processor}.from_pretrained("${model.id}"` + remote_code_snippet + ")",
|
|
442
|
+
`model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")",
|
|
443
|
+
].join("\n");
|
|
444
|
+
} else {
|
|
445
|
+
autoSnippet = [
|
|
446
|
+
"# Load model directly",
|
|
447
|
+
`from transformers import ${info.auto_model}`,
|
|
448
|
+
`model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")",
|
|
449
|
+
].join("\n");
|
|
450
|
+
}
|
|
451
|
+
|
|
452
|
+
if (model.pipeline_tag) {
|
|
453
|
+
const pipelineSnippet = [
|
|
454
|
+
"# Use a pipeline as a high-level helper",
|
|
455
|
+
"from transformers import pipeline",
|
|
456
|
+
"",
|
|
457
|
+
`pipe = pipeline("${model.pipeline_tag}", model="${model.id}"` + remote_code_snippet + ")",
|
|
458
|
+
].join("\n");
|
|
459
|
+
return [pipelineSnippet, autoSnippet];
|
|
460
|
+
}
|
|
461
|
+
return [autoSnippet];
|
|
462
|
+
};
|
|
463
|
+
|
|
464
|
+
const transformersJS = (model: ModelData) => {
|
|
465
|
+
if (!model.pipeline_tag) {
|
|
466
|
+
return [`// ⚠️ Unknown pipeline tag`];
|
|
467
|
+
}
|
|
468
|
+
|
|
469
|
+
const libName = "@xenova/transformers";
|
|
470
|
+
|
|
471
|
+
return [
|
|
472
|
+
`// npm i ${libName}
|
|
473
|
+
import { pipeline } from '${libName}';
|
|
474
|
+
|
|
475
|
+
// Allocate pipeline
|
|
476
|
+
const pipe = await pipeline('${model.pipeline_tag}', '${model.id}');`,
|
|
477
|
+
];
|
|
478
|
+
};
|
|
479
|
+
|
|
480
|
+
const peftTask = (peftTaskType?: string) => {
|
|
481
|
+
switch (peftTaskType) {
|
|
482
|
+
case "CAUSAL_LM":
|
|
483
|
+
return "CausalLM";
|
|
484
|
+
case "SEQ_2_SEQ_LM":
|
|
485
|
+
return "Seq2SeqLM";
|
|
486
|
+
case "TOKEN_CLS":
|
|
487
|
+
return "TokenClassification";
|
|
488
|
+
case "SEQ_CLS":
|
|
489
|
+
return "SequenceClassification";
|
|
490
|
+
default:
|
|
491
|
+
return undefined;
|
|
492
|
+
}
|
|
493
|
+
};
|
|
494
|
+
|
|
495
|
+
const peft = (model: ModelData) => {
|
|
496
|
+
const { base_model_name: peftBaseModel, task_type: peftTaskType } = model.config?.peft ?? {};
|
|
497
|
+
const pefttask = peftTask(peftTaskType);
|
|
498
|
+
if (!pefttask) {
|
|
499
|
+
return [`Task type is invalid.`];
|
|
500
|
+
}
|
|
501
|
+
if (!peftBaseModel) {
|
|
502
|
+
return [`Base model is not found.`];
|
|
503
|
+
}
|
|
504
|
+
|
|
505
|
+
return [
|
|
506
|
+
`from peft import PeftModel, PeftConfig
|
|
507
|
+
from transformers import AutoModelFor${pefttask}
|
|
508
|
+
|
|
509
|
+
config = PeftConfig.from_pretrained("${model.id}")
|
|
510
|
+
model = AutoModelFor${pefttask}.from_pretrained("${peftBaseModel}")
|
|
511
|
+
model = PeftModel.from_pretrained(model, "${model.id}")`,
|
|
512
|
+
];
|
|
513
|
+
};
|
|
514
|
+
|
|
515
|
+
const fasttext = (model: ModelData) => [
|
|
516
|
+
`from huggingface_hub import hf_hub_download
|
|
517
|
+
import fasttext
|
|
518
|
+
|
|
519
|
+
model = fasttext.load_model(hf_hub_download("${model.id}", "model.bin"))`,
|
|
520
|
+
];
|
|
521
|
+
|
|
522
|
+
const stableBaselines3 = (model: ModelData) => [
|
|
523
|
+
`from huggingface_sb3 import load_from_hub
|
|
524
|
+
checkpoint = load_from_hub(
|
|
525
|
+
repo_id="${model.id}",
|
|
526
|
+
filename="{MODEL FILENAME}.zip",
|
|
527
|
+
)`,
|
|
528
|
+
];
|
|
529
|
+
|
|
530
|
+
const nemoDomainResolver = (domain: string, model: ModelData): string[] | undefined => {
|
|
531
|
+
switch (domain) {
|
|
532
|
+
case "ASR":
|
|
533
|
+
return [
|
|
534
|
+
`import nemo.collections.asr as nemo_asr
|
|
535
|
+
asr_model = nemo_asr.models.ASRModel.from_pretrained("${model.id}")
|
|
536
|
+
|
|
537
|
+
transcriptions = asr_model.transcribe(["file.wav"])`,
|
|
538
|
+
];
|
|
539
|
+
default:
|
|
540
|
+
return undefined;
|
|
541
|
+
}
|
|
542
|
+
};
|
|
543
|
+
|
|
544
|
+
const mlAgents = (model: ModelData) => [`mlagents-load-from-hf --repo-id="${model.id}" --local-dir="./downloads"`];
|
|
545
|
+
|
|
546
|
+
const nemo = (model: ModelData) => {
|
|
547
|
+
let command: string[] | undefined = undefined;
|
|
548
|
+
// Resolve the tag to a nemo domain/sub-domain
|
|
549
|
+
if (model.tags?.includes("automatic-speech-recognition")) {
|
|
550
|
+
command = nemoDomainResolver("ASR", model);
|
|
551
|
+
}
|
|
552
|
+
|
|
553
|
+
return command ?? [`# tag did not correspond to a valid NeMo domain.`];
|
|
554
|
+
};
|
|
555
|
+
|
|
556
|
+
const pythae = (model: ModelData) => [
|
|
557
|
+
`from pythae.models import AutoModel
|
|
558
|
+
|
|
559
|
+
model = AutoModel.load_from_hf_hub("${model.id}")`,
|
|
560
|
+
];
|
|
561
|
+
|
|
562
|
+
//#endregion
|
|
563
|
+
|
|
564
|
+
export const MODEL_LIBRARIES_UI_ELEMENTS: Partial<Record<ModelLibraryKey, LibraryUiElement>> = {
|
|
565
|
+
"adapter-transformers": {
|
|
566
|
+
btnLabel: "Adapter Transformers",
|
|
567
|
+
repoName: "adapter-transformers",
|
|
568
|
+
repoUrl: "https://github.com/Adapter-Hub/adapter-transformers",
|
|
569
|
+
docsUrl: "https://huggingface.co/docs/hub/adapter-transformers",
|
|
570
|
+
snippets: adapter_transformers,
|
|
571
|
+
},
|
|
572
|
+
allennlp: {
|
|
573
|
+
btnLabel: "AllenNLP",
|
|
574
|
+
repoName: "AllenNLP",
|
|
575
|
+
repoUrl: "https://github.com/allenai/allennlp",
|
|
576
|
+
docsUrl: "https://huggingface.co/docs/hub/allennlp",
|
|
577
|
+
snippets: allennlp,
|
|
578
|
+
},
|
|
579
|
+
asteroid: {
|
|
580
|
+
btnLabel: "Asteroid",
|
|
581
|
+
repoName: "Asteroid",
|
|
582
|
+
repoUrl: "https://github.com/asteroid-team/asteroid",
|
|
583
|
+
docsUrl: "https://huggingface.co/docs/hub/asteroid",
|
|
584
|
+
snippets: asteroid,
|
|
585
|
+
},
|
|
586
|
+
bertopic: {
|
|
587
|
+
btnLabel: "BERTopic",
|
|
588
|
+
repoName: "BERTopic",
|
|
589
|
+
repoUrl: "https://github.com/MaartenGr/BERTopic",
|
|
590
|
+
snippets: bertopic,
|
|
591
|
+
},
|
|
592
|
+
diffusers: {
|
|
593
|
+
btnLabel: "Diffusers",
|
|
594
|
+
repoName: "🤗/diffusers",
|
|
595
|
+
repoUrl: "https://github.com/huggingface/diffusers",
|
|
596
|
+
docsUrl: "https://huggingface.co/docs/hub/diffusers",
|
|
597
|
+
snippets: diffusers,
|
|
598
|
+
},
|
|
599
|
+
espnet: {
|
|
600
|
+
btnLabel: "ESPnet",
|
|
601
|
+
repoName: "ESPnet",
|
|
602
|
+
repoUrl: "https://github.com/espnet/espnet",
|
|
603
|
+
docsUrl: "https://huggingface.co/docs/hub/espnet",
|
|
604
|
+
snippets: espnet,
|
|
605
|
+
},
|
|
606
|
+
fairseq: {
|
|
607
|
+
btnLabel: "Fairseq",
|
|
608
|
+
repoName: "fairseq",
|
|
609
|
+
repoUrl: "https://github.com/pytorch/fairseq",
|
|
610
|
+
snippets: fairseq,
|
|
611
|
+
},
|
|
612
|
+
flair: {
|
|
613
|
+
btnLabel: "Flair",
|
|
614
|
+
repoName: "Flair",
|
|
615
|
+
repoUrl: "https://github.com/flairNLP/flair",
|
|
616
|
+
docsUrl: "https://huggingface.co/docs/hub/flair",
|
|
617
|
+
snippets: flair,
|
|
618
|
+
},
|
|
619
|
+
keras: {
|
|
620
|
+
btnLabel: "Keras",
|
|
621
|
+
repoName: "Keras",
|
|
622
|
+
repoUrl: "https://github.com/keras-team/keras",
|
|
623
|
+
docsUrl: "https://huggingface.co/docs/hub/keras",
|
|
624
|
+
snippets: keras,
|
|
625
|
+
},
|
|
626
|
+
nemo: {
|
|
627
|
+
btnLabel: "NeMo",
|
|
628
|
+
repoName: "NeMo",
|
|
629
|
+
repoUrl: "https://github.com/NVIDIA/NeMo",
|
|
630
|
+
snippets: nemo,
|
|
631
|
+
},
|
|
632
|
+
open_clip: {
|
|
633
|
+
btnLabel: "OpenCLIP",
|
|
634
|
+
repoName: "OpenCLIP",
|
|
635
|
+
repoUrl: "https://github.com/mlfoundations/open_clip",
|
|
636
|
+
snippets: open_clip,
|
|
637
|
+
},
|
|
638
|
+
paddlenlp: {
|
|
639
|
+
btnLabel: "paddlenlp",
|
|
640
|
+
repoName: "PaddleNLP",
|
|
641
|
+
repoUrl: "https://github.com/PaddlePaddle/PaddleNLP",
|
|
642
|
+
docsUrl: "https://huggingface.co/docs/hub/paddlenlp",
|
|
643
|
+
snippets: paddlenlp,
|
|
644
|
+
},
|
|
645
|
+
peft: {
|
|
646
|
+
btnLabel: "PEFT",
|
|
647
|
+
repoName: "PEFT",
|
|
648
|
+
repoUrl: "https://github.com/huggingface/peft",
|
|
649
|
+
snippets: peft,
|
|
650
|
+
},
|
|
651
|
+
"pyannote-audio": {
|
|
652
|
+
btnLabel: "pyannote.audio",
|
|
653
|
+
repoName: "pyannote-audio",
|
|
654
|
+
repoUrl: "https://github.com/pyannote/pyannote-audio",
|
|
655
|
+
snippets: pyannote_audio,
|
|
656
|
+
},
|
|
657
|
+
"sentence-transformers": {
|
|
658
|
+
btnLabel: "sentence-transformers",
|
|
659
|
+
repoName: "sentence-transformers",
|
|
660
|
+
repoUrl: "https://github.com/UKPLab/sentence-transformers",
|
|
661
|
+
docsUrl: "https://huggingface.co/docs/hub/sentence-transformers",
|
|
662
|
+
snippets: sentenceTransformers,
|
|
663
|
+
},
|
|
664
|
+
sklearn: {
|
|
665
|
+
btnLabel: "Scikit-learn",
|
|
666
|
+
repoName: "Scikit-learn",
|
|
667
|
+
repoUrl: "https://github.com/scikit-learn/scikit-learn",
|
|
668
|
+
snippets: sklearn,
|
|
669
|
+
},
|
|
670
|
+
fastai: {
|
|
671
|
+
btnLabel: "fastai",
|
|
672
|
+
repoName: "fastai",
|
|
673
|
+
repoUrl: "https://github.com/fastai/fastai",
|
|
674
|
+
docsUrl: "https://huggingface.co/docs/hub/fastai",
|
|
675
|
+
snippets: fastai,
|
|
676
|
+
},
|
|
677
|
+
spacy: {
|
|
678
|
+
btnLabel: "spaCy",
|
|
679
|
+
repoName: "spaCy",
|
|
680
|
+
repoUrl: "https://github.com/explosion/spaCy",
|
|
681
|
+
docsUrl: "https://huggingface.co/docs/hub/spacy",
|
|
682
|
+
snippets: spacy,
|
|
683
|
+
},
|
|
684
|
+
"span-marker": {
|
|
685
|
+
btnLabel: "SpanMarker",
|
|
686
|
+
repoName: "SpanMarkerNER",
|
|
687
|
+
repoUrl: "https://github.com/tomaarsen/SpanMarkerNER",
|
|
688
|
+
docsUrl: "https://huggingface.co/docs/hub/span_marker",
|
|
689
|
+
snippets: span_marker,
|
|
690
|
+
},
|
|
691
|
+
speechbrain: {
|
|
692
|
+
btnLabel: "speechbrain",
|
|
693
|
+
repoName: "speechbrain",
|
|
694
|
+
repoUrl: "https://github.com/speechbrain/speechbrain",
|
|
695
|
+
docsUrl: "https://huggingface.co/docs/hub/speechbrain",
|
|
696
|
+
snippets: speechbrain,
|
|
697
|
+
},
|
|
698
|
+
stanza: {
|
|
699
|
+
btnLabel: "Stanza",
|
|
700
|
+
repoName: "stanza",
|
|
701
|
+
repoUrl: "https://github.com/stanfordnlp/stanza",
|
|
702
|
+
docsUrl: "https://huggingface.co/docs/hub/stanza",
|
|
703
|
+
snippets: stanza,
|
|
704
|
+
},
|
|
705
|
+
tensorflowtts: {
|
|
706
|
+
btnLabel: "TensorFlowTTS",
|
|
707
|
+
repoName: "TensorFlowTTS",
|
|
708
|
+
repoUrl: "https://github.com/TensorSpeech/TensorFlowTTS",
|
|
709
|
+
snippets: tensorflowtts,
|
|
710
|
+
},
|
|
711
|
+
timm: {
|
|
712
|
+
btnLabel: "timm",
|
|
713
|
+
repoName: "pytorch-image-models",
|
|
714
|
+
repoUrl: "https://github.com/rwightman/pytorch-image-models",
|
|
715
|
+
docsUrl: "https://huggingface.co/docs/hub/timm",
|
|
716
|
+
snippets: timm,
|
|
717
|
+
},
|
|
718
|
+
transformers: {
|
|
719
|
+
btnLabel: "Transformers",
|
|
720
|
+
repoName: "🤗/transformers",
|
|
721
|
+
repoUrl: "https://github.com/huggingface/transformers",
|
|
722
|
+
docsUrl: "https://huggingface.co/docs/hub/transformers",
|
|
723
|
+
snippets: transformers,
|
|
724
|
+
},
|
|
725
|
+
"transformers.js": {
|
|
726
|
+
btnLabel: "Transformers.js",
|
|
727
|
+
repoName: "transformers.js",
|
|
728
|
+
repoUrl: "https://github.com/xenova/transformers.js",
|
|
729
|
+
docsUrl: "https://huggingface.co/docs/hub/transformers-js",
|
|
730
|
+
snippets: transformersJS,
|
|
731
|
+
},
|
|
732
|
+
fasttext: {
|
|
733
|
+
btnLabel: "fastText",
|
|
734
|
+
repoName: "fastText",
|
|
735
|
+
repoUrl: "https://fasttext.cc/",
|
|
736
|
+
snippets: fasttext,
|
|
737
|
+
},
|
|
738
|
+
"sample-factory": {
|
|
739
|
+
btnLabel: "sample-factory",
|
|
740
|
+
repoName: "sample-factory",
|
|
741
|
+
repoUrl: "https://github.com/alex-petrenko/sample-factory",
|
|
742
|
+
docsUrl: "https://huggingface.co/docs/hub/sample-factory",
|
|
743
|
+
snippets: sampleFactory,
|
|
744
|
+
},
|
|
745
|
+
"stable-baselines3": {
|
|
746
|
+
btnLabel: "stable-baselines3",
|
|
747
|
+
repoName: "stable-baselines3",
|
|
748
|
+
repoUrl: "https://github.com/huggingface/huggingface_sb3",
|
|
749
|
+
docsUrl: "https://huggingface.co/docs/hub/stable-baselines3",
|
|
750
|
+
snippets: stableBaselines3,
|
|
751
|
+
},
|
|
752
|
+
"ml-agents": {
|
|
753
|
+
btnLabel: "ml-agents",
|
|
754
|
+
repoName: "ml-agents",
|
|
755
|
+
repoUrl: "https://github.com/huggingface/ml-agents",
|
|
756
|
+
docsUrl: "https://huggingface.co/docs/hub/ml-agents",
|
|
757
|
+
snippets: mlAgents,
|
|
758
|
+
},
|
|
759
|
+
pythae: {
|
|
760
|
+
btnLabel: "pythae",
|
|
761
|
+
repoName: "pythae",
|
|
762
|
+
repoUrl: "https://github.com/clementchadebec/benchmark_VAE",
|
|
763
|
+
snippets: pythae,
|
|
764
|
+
},
|
|
765
|
+
} as const;
|