@huggingface/tasks 0.0.6 → 0.0.8
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +16 -2
- package/dist/index.d.ts +381 -5
- package/dist/index.js +1986 -77
- package/dist/index.mjs +1985 -76
- package/package.json +2 -4
- package/src/default-widget-inputs.ts +718 -0
- package/src/index.ts +35 -4
- package/src/library-to-tasks.ts +47 -0
- package/src/library-ui-elements.ts +765 -0
- package/src/model-data.ts +239 -0
- package/src/pipelines.ts +39 -0
- package/src/snippets/curl.ts +63 -0
- package/src/snippets/index.ts +6 -0
- package/src/snippets/inputs.ts +144 -0
- package/src/snippets/js.ts +150 -0
- package/src/snippets/python.ts +155 -0
- package/src/{audio-classification → tasks/audio-classification}/about.md +2 -1
- package/src/{audio-classification → tasks/audio-classification}/data.ts +3 -3
- package/src/{audio-to-audio → tasks/audio-to-audio}/data.ts +1 -1
- package/src/{automatic-speech-recognition → tasks/automatic-speech-recognition}/about.md +3 -2
- package/src/{automatic-speech-recognition → tasks/automatic-speech-recognition}/data.ts +6 -6
- package/src/{conversational → tasks/conversational}/data.ts +1 -1
- package/src/{depth-estimation → tasks/depth-estimation}/data.ts +1 -1
- package/src/{document-question-answering → tasks/document-question-answering}/data.ts +1 -1
- package/src/{feature-extraction → tasks/feature-extraction}/data.ts +2 -7
- package/src/{fill-mask → tasks/fill-mask}/data.ts +1 -1
- package/src/{image-classification → tasks/image-classification}/data.ts +1 -1
- package/src/{image-segmentation → tasks/image-segmentation}/data.ts +1 -1
- package/src/{image-to-image → tasks/image-to-image}/about.md +8 -7
- package/src/{image-to-image → tasks/image-to-image}/data.ts +1 -1
- package/src/{image-to-text → tasks/image-to-text}/data.ts +1 -1
- package/src/{tasksData.ts → tasks/index.ts} +144 -15
- package/src/{object-detection → tasks/object-detection}/data.ts +1 -1
- package/src/{placeholder → tasks/placeholder}/data.ts +1 -1
- package/src/{question-answering → tasks/question-answering}/data.ts +1 -1
- package/src/{reinforcement-learning → tasks/reinforcement-learning}/data.ts +1 -1
- package/src/{sentence-similarity → tasks/sentence-similarity}/data.ts +1 -1
- package/src/{summarization → tasks/summarization}/data.ts +1 -1
- package/src/{table-question-answering → tasks/table-question-answering}/data.ts +1 -1
- package/src/{tabular-classification → tasks/tabular-classification}/data.ts +1 -1
- package/src/{tabular-regression → tasks/tabular-regression}/data.ts +1 -1
- package/src/{text-classification → tasks/text-classification}/data.ts +1 -1
- package/src/{text-generation → tasks/text-generation}/about.md +13 -3
- package/src/{text-generation → tasks/text-generation}/data.ts +2 -2
- package/src/{text-to-image → tasks/text-to-image}/data.ts +1 -1
- package/src/{text-to-speech → tasks/text-to-speech}/about.md +2 -1
- package/src/{text-to-speech → tasks/text-to-speech}/data.ts +4 -4
- package/src/{text-to-video → tasks/text-to-video}/data.ts +1 -1
- package/src/{token-classification → tasks/token-classification}/data.ts +1 -1
- package/src/{translation → tasks/translation}/data.ts +1 -1
- package/src/{unconditional-image-generation → tasks/unconditional-image-generation}/data.ts +1 -1
- package/src/{video-classification → tasks/video-classification}/about.md +8 -28
- package/src/{video-classification → tasks/video-classification}/data.ts +1 -1
- package/src/{visual-question-answering → tasks/visual-question-answering}/data.ts +1 -1
- package/src/{zero-shot-classification → tasks/zero-shot-classification}/data.ts +1 -1
- package/src/{zero-shot-image-classification → tasks/zero-shot-image-classification}/data.ts +1 -1
- package/src/Types.ts +0 -64
- package/src/const.ts +0 -59
- /package/src/{modelLibraries.ts → model-libraries.ts} +0 -0
- /package/src/{audio-to-audio → tasks/audio-to-audio}/about.md +0 -0
- /package/src/{conversational → tasks/conversational}/about.md +0 -0
- /package/src/{depth-estimation → tasks/depth-estimation}/about.md +0 -0
- /package/src/{document-question-answering → tasks/document-question-answering}/about.md +0 -0
- /package/src/{feature-extraction → tasks/feature-extraction}/about.md +0 -0
- /package/src/{fill-mask → tasks/fill-mask}/about.md +0 -0
- /package/src/{image-classification → tasks/image-classification}/about.md +0 -0
- /package/src/{image-segmentation → tasks/image-segmentation}/about.md +0 -0
- /package/src/{image-to-text → tasks/image-to-text}/about.md +0 -0
- /package/src/{object-detection → tasks/object-detection}/about.md +0 -0
- /package/src/{placeholder → tasks/placeholder}/about.md +0 -0
- /package/src/{question-answering → tasks/question-answering}/about.md +0 -0
- /package/src/{reinforcement-learning → tasks/reinforcement-learning}/about.md +0 -0
- /package/src/{sentence-similarity → tasks/sentence-similarity}/about.md +0 -0
- /package/src/{summarization → tasks/summarization}/about.md +0 -0
- /package/src/{table-question-answering → tasks/table-question-answering}/about.md +0 -0
- /package/src/{tabular-classification → tasks/tabular-classification}/about.md +0 -0
- /package/src/{tabular-regression → tasks/tabular-regression}/about.md +0 -0
- /package/src/{text-classification → tasks/text-classification}/about.md +0 -0
- /package/src/{text-to-image → tasks/text-to-image}/about.md +0 -0
- /package/src/{text-to-video → tasks/text-to-video}/about.md +0 -0
- /package/src/{token-classification → tasks/token-classification}/about.md +0 -0
- /package/src/{translation → tasks/translation}/about.md +0 -0
- /package/src/{unconditional-image-generation → tasks/unconditional-image-generation}/about.md +0 -0
- /package/src/{visual-question-answering → tasks/visual-question-answering}/about.md +0 -0
- /package/src/{zero-shot-classification → tasks/zero-shot-classification}/about.md +0 -0
- /package/src/{zero-shot-image-classification → tasks/zero-shot-image-classification}/about.md +0 -0
package/dist/index.mjs
CHANGED
|
@@ -1,3 +1,1391 @@
|
|
|
1
|
+
var __defProp = Object.defineProperty;
|
|
2
|
+
var __export = (target, all) => {
|
|
3
|
+
for (var name in all)
|
|
4
|
+
__defProp(target, name, { get: all[name], enumerable: true });
|
|
5
|
+
};
|
|
6
|
+
|
|
7
|
+
// src/library-to-tasks.ts
|
|
8
|
+
var LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS = {
|
|
9
|
+
"adapter-transformers": ["question-answering", "text-classification", "token-classification"],
|
|
10
|
+
allennlp: ["question-answering"],
|
|
11
|
+
asteroid: [
|
|
12
|
+
// "audio-source-separation",
|
|
13
|
+
"audio-to-audio"
|
|
14
|
+
],
|
|
15
|
+
bertopic: ["text-classification"],
|
|
16
|
+
diffusers: ["image-to-image", "text-to-image"],
|
|
17
|
+
doctr: ["object-detection"],
|
|
18
|
+
espnet: ["text-to-speech", "automatic-speech-recognition"],
|
|
19
|
+
fairseq: ["text-to-speech", "audio-to-audio"],
|
|
20
|
+
fastai: ["image-classification"],
|
|
21
|
+
fasttext: ["feature-extraction", "text-classification"],
|
|
22
|
+
flair: ["token-classification"],
|
|
23
|
+
k2: ["automatic-speech-recognition"],
|
|
24
|
+
keras: ["image-classification"],
|
|
25
|
+
nemo: ["automatic-speech-recognition"],
|
|
26
|
+
open_clip: ["zero-shot-classification", "zero-shot-image-classification"],
|
|
27
|
+
paddlenlp: ["conversational", "fill-mask", "summarization", "zero-shot-classification"],
|
|
28
|
+
peft: ["text-generation"],
|
|
29
|
+
"pyannote-audio": ["automatic-speech-recognition"],
|
|
30
|
+
"sentence-transformers": ["feature-extraction", "sentence-similarity"],
|
|
31
|
+
sklearn: ["tabular-classification", "tabular-regression", "text-classification"],
|
|
32
|
+
spacy: ["token-classification", "text-classification", "sentence-similarity"],
|
|
33
|
+
"span-marker": ["token-classification"],
|
|
34
|
+
speechbrain: [
|
|
35
|
+
"audio-classification",
|
|
36
|
+
"audio-to-audio",
|
|
37
|
+
"automatic-speech-recognition",
|
|
38
|
+
"text-to-speech",
|
|
39
|
+
"text2text-generation"
|
|
40
|
+
],
|
|
41
|
+
stanza: ["token-classification"],
|
|
42
|
+
timm: ["image-classification"],
|
|
43
|
+
mindspore: ["image-classification"]
|
|
44
|
+
};
|
|
45
|
+
|
|
46
|
+
// src/library-ui-elements.ts
|
|
47
|
+
function nameWithoutNamespace(modelId) {
|
|
48
|
+
const splitted = modelId.split("/");
|
|
49
|
+
return splitted.length === 1 ? splitted[0] : splitted[1];
|
|
50
|
+
}
|
|
51
|
+
var adapter_transformers = (model) => [
|
|
52
|
+
`from transformers import ${model.config?.adapter_transformers?.model_class}
|
|
53
|
+
|
|
54
|
+
model = ${model.config?.adapter_transformers?.model_class}.from_pretrained("${model.config?.adapter_transformers?.model_name}")
|
|
55
|
+
model.load_adapter("${model.id}", source="hf")`
|
|
56
|
+
];
|
|
57
|
+
var allennlpUnknown = (model) => [
|
|
58
|
+
`import allennlp_models
|
|
59
|
+
from allennlp.predictors.predictor import Predictor
|
|
60
|
+
|
|
61
|
+
predictor = Predictor.from_path("hf://${model.id}")`
|
|
62
|
+
];
|
|
63
|
+
var allennlpQuestionAnswering = (model) => [
|
|
64
|
+
`import allennlp_models
|
|
65
|
+
from allennlp.predictors.predictor import Predictor
|
|
66
|
+
|
|
67
|
+
predictor = Predictor.from_path("hf://${model.id}")
|
|
68
|
+
predictor_input = {"passage": "My name is Wolfgang and I live in Berlin", "question": "Where do I live?"}
|
|
69
|
+
predictions = predictor.predict_json(predictor_input)`
|
|
70
|
+
];
|
|
71
|
+
var allennlp = (model) => {
|
|
72
|
+
if (model.tags?.includes("question-answering")) {
|
|
73
|
+
return allennlpQuestionAnswering(model);
|
|
74
|
+
}
|
|
75
|
+
return allennlpUnknown(model);
|
|
76
|
+
};
|
|
77
|
+
var asteroid = (model) => [
|
|
78
|
+
`from asteroid.models import BaseModel
|
|
79
|
+
|
|
80
|
+
model = BaseModel.from_pretrained("${model.id}")`
|
|
81
|
+
];
|
|
82
|
+
function get_base_diffusers_model(model) {
|
|
83
|
+
return model.cardData?.base_model ?? "fill-in-base-model";
|
|
84
|
+
}
|
|
85
|
+
var bertopic = (model) => [
|
|
86
|
+
`from bertopic import BERTopic
|
|
87
|
+
|
|
88
|
+
model = BERTopic.load("${model.id}")`
|
|
89
|
+
];
|
|
90
|
+
var diffusers_default = (model) => [
|
|
91
|
+
`from diffusers import DiffusionPipeline
|
|
92
|
+
|
|
93
|
+
pipeline = DiffusionPipeline.from_pretrained("${model.id}")`
|
|
94
|
+
];
|
|
95
|
+
var diffusers_controlnet = (model) => [
|
|
96
|
+
`from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
|
97
|
+
|
|
98
|
+
controlnet = ControlNetModel.from_pretrained("${model.id}")
|
|
99
|
+
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
|
|
100
|
+
"${get_base_diffusers_model(model)}", controlnet=controlnet
|
|
101
|
+
)`
|
|
102
|
+
];
|
|
103
|
+
var diffusers_lora = (model) => [
|
|
104
|
+
`from diffusers import DiffusionPipeline
|
|
105
|
+
|
|
106
|
+
pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
|
|
107
|
+
pipeline.load_lora_weights("${model.id}")`
|
|
108
|
+
];
|
|
109
|
+
var diffusers_textual_inversion = (model) => [
|
|
110
|
+
`from diffusers import DiffusionPipeline
|
|
111
|
+
|
|
112
|
+
pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
|
|
113
|
+
pipeline.load_textual_inversion("${model.id}")`
|
|
114
|
+
];
|
|
115
|
+
var diffusers = (model) => {
|
|
116
|
+
if (model.tags?.includes("controlnet")) {
|
|
117
|
+
return diffusers_controlnet(model);
|
|
118
|
+
} else if (model.tags?.includes("lora")) {
|
|
119
|
+
return diffusers_lora(model);
|
|
120
|
+
} else if (model.tags?.includes("textual_inversion")) {
|
|
121
|
+
return diffusers_textual_inversion(model);
|
|
122
|
+
} else {
|
|
123
|
+
return diffusers_default(model);
|
|
124
|
+
}
|
|
125
|
+
};
|
|
126
|
+
var espnetTTS = (model) => [
|
|
127
|
+
`from espnet2.bin.tts_inference import Text2Speech
|
|
128
|
+
|
|
129
|
+
model = Text2Speech.from_pretrained("${model.id}")
|
|
130
|
+
|
|
131
|
+
speech, *_ = model("text to generate speech from")`
|
|
132
|
+
];
|
|
133
|
+
var espnetASR = (model) => [
|
|
134
|
+
`from espnet2.bin.asr_inference import Speech2Text
|
|
135
|
+
|
|
136
|
+
model = Speech2Text.from_pretrained(
|
|
137
|
+
"${model.id}"
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
speech, rate = soundfile.read("speech.wav")
|
|
141
|
+
text, *_ = model(speech)[0]`
|
|
142
|
+
];
|
|
143
|
+
var espnetUnknown = () => [`unknown model type (must be text-to-speech or automatic-speech-recognition)`];
|
|
144
|
+
var espnet = (model) => {
|
|
145
|
+
if (model.tags?.includes("text-to-speech")) {
|
|
146
|
+
return espnetTTS(model);
|
|
147
|
+
} else if (model.tags?.includes("automatic-speech-recognition")) {
|
|
148
|
+
return espnetASR(model);
|
|
149
|
+
}
|
|
150
|
+
return espnetUnknown();
|
|
151
|
+
};
|
|
152
|
+
var fairseq = (model) => [
|
|
153
|
+
`from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
|
|
154
|
+
|
|
155
|
+
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
|
|
156
|
+
"${model.id}"
|
|
157
|
+
)`
|
|
158
|
+
];
|
|
159
|
+
var flair = (model) => [
|
|
160
|
+
`from flair.models import SequenceTagger
|
|
161
|
+
|
|
162
|
+
tagger = SequenceTagger.load("${model.id}")`
|
|
163
|
+
];
|
|
164
|
+
var keras = (model) => [
|
|
165
|
+
`from huggingface_hub import from_pretrained_keras
|
|
166
|
+
|
|
167
|
+
model = from_pretrained_keras("${model.id}")
|
|
168
|
+
`
|
|
169
|
+
];
|
|
170
|
+
var open_clip = (model) => [
|
|
171
|
+
`import open_clip
|
|
172
|
+
|
|
173
|
+
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:${model.id}')
|
|
174
|
+
tokenizer = open_clip.get_tokenizer('hf-hub:${model.id}')`
|
|
175
|
+
];
|
|
176
|
+
var paddlenlp = (model) => {
|
|
177
|
+
if (model.config?.architectures?.[0]) {
|
|
178
|
+
const architecture = model.config.architectures[0];
|
|
179
|
+
return [
|
|
180
|
+
[
|
|
181
|
+
`from paddlenlp.transformers import AutoTokenizer, ${architecture}`,
|
|
182
|
+
"",
|
|
183
|
+
`tokenizer = AutoTokenizer.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`,
|
|
184
|
+
`model = ${architecture}.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`
|
|
185
|
+
].join("\n")
|
|
186
|
+
];
|
|
187
|
+
} else {
|
|
188
|
+
return [
|
|
189
|
+
[
|
|
190
|
+
`# \u26A0\uFE0F Type of model unknown`,
|
|
191
|
+
`from paddlenlp.transformers import AutoTokenizer, AutoModel`,
|
|
192
|
+
"",
|
|
193
|
+
`tokenizer = AutoTokenizer.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`,
|
|
194
|
+
`model = AutoModel.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`
|
|
195
|
+
].join("\n")
|
|
196
|
+
];
|
|
197
|
+
}
|
|
198
|
+
};
|
|
199
|
+
var pyannote_audio_pipeline = (model) => [
|
|
200
|
+
`from pyannote.audio import Pipeline
|
|
201
|
+
|
|
202
|
+
pipeline = Pipeline.from_pretrained("${model.id}")
|
|
203
|
+
|
|
204
|
+
# inference on the whole file
|
|
205
|
+
pipeline("file.wav")
|
|
206
|
+
|
|
207
|
+
# inference on an excerpt
|
|
208
|
+
from pyannote.core import Segment
|
|
209
|
+
excerpt = Segment(start=2.0, end=5.0)
|
|
210
|
+
|
|
211
|
+
from pyannote.audio import Audio
|
|
212
|
+
waveform, sample_rate = Audio().crop("file.wav", excerpt)
|
|
213
|
+
pipeline({"waveform": waveform, "sample_rate": sample_rate})`
|
|
214
|
+
];
|
|
215
|
+
var pyannote_audio_model = (model) => [
|
|
216
|
+
`from pyannote.audio import Model, Inference
|
|
217
|
+
|
|
218
|
+
model = Model.from_pretrained("${model.id}")
|
|
219
|
+
inference = Inference(model)
|
|
220
|
+
|
|
221
|
+
# inference on the whole file
|
|
222
|
+
inference("file.wav")
|
|
223
|
+
|
|
224
|
+
# inference on an excerpt
|
|
225
|
+
from pyannote.core import Segment
|
|
226
|
+
excerpt = Segment(start=2.0, end=5.0)
|
|
227
|
+
inference.crop("file.wav", excerpt)`
|
|
228
|
+
];
|
|
229
|
+
var pyannote_audio = (model) => {
|
|
230
|
+
if (model.tags?.includes("pyannote-audio-pipeline")) {
|
|
231
|
+
return pyannote_audio_pipeline(model);
|
|
232
|
+
}
|
|
233
|
+
return pyannote_audio_model(model);
|
|
234
|
+
};
|
|
235
|
+
var tensorflowttsTextToMel = (model) => [
|
|
236
|
+
`from tensorflow_tts.inference import AutoProcessor, TFAutoModel
|
|
237
|
+
|
|
238
|
+
processor = AutoProcessor.from_pretrained("${model.id}")
|
|
239
|
+
model = TFAutoModel.from_pretrained("${model.id}")
|
|
240
|
+
`
|
|
241
|
+
];
|
|
242
|
+
var tensorflowttsMelToWav = (model) => [
|
|
243
|
+
`from tensorflow_tts.inference import TFAutoModel
|
|
244
|
+
|
|
245
|
+
model = TFAutoModel.from_pretrained("${model.id}")
|
|
246
|
+
audios = model.inference(mels)
|
|
247
|
+
`
|
|
248
|
+
];
|
|
249
|
+
var tensorflowttsUnknown = (model) => [
|
|
250
|
+
`from tensorflow_tts.inference import TFAutoModel
|
|
251
|
+
|
|
252
|
+
model = TFAutoModel.from_pretrained("${model.id}")
|
|
253
|
+
`
|
|
254
|
+
];
|
|
255
|
+
var tensorflowtts = (model) => {
|
|
256
|
+
if (model.tags?.includes("text-to-mel")) {
|
|
257
|
+
return tensorflowttsTextToMel(model);
|
|
258
|
+
} else if (model.tags?.includes("mel-to-wav")) {
|
|
259
|
+
return tensorflowttsMelToWav(model);
|
|
260
|
+
}
|
|
261
|
+
return tensorflowttsUnknown(model);
|
|
262
|
+
};
|
|
263
|
+
var timm = (model) => [
|
|
264
|
+
`import timm
|
|
265
|
+
|
|
266
|
+
model = timm.create_model("hf_hub:${model.id}", pretrained=True)`
|
|
267
|
+
];
|
|
268
|
+
var skopsPickle = (model, modelFile) => {
|
|
269
|
+
return [
|
|
270
|
+
`import joblib
|
|
271
|
+
from skops.hub_utils import download
|
|
272
|
+
download("${model.id}", "path_to_folder")
|
|
273
|
+
model = joblib.load(
|
|
274
|
+
"${modelFile}"
|
|
275
|
+
)
|
|
276
|
+
# only load pickle files from sources you trust
|
|
277
|
+
# read more about it here https://skops.readthedocs.io/en/stable/persistence.html`
|
|
278
|
+
];
|
|
279
|
+
};
|
|
280
|
+
var skopsFormat = (model, modelFile) => {
|
|
281
|
+
return [
|
|
282
|
+
`from skops.hub_utils import download
|
|
283
|
+
from skops.io import load
|
|
284
|
+
download("${model.id}", "path_to_folder")
|
|
285
|
+
# make sure model file is in skops format
|
|
286
|
+
# if model is a pickle file, make sure it's from a source you trust
|
|
287
|
+
model = load("path_to_folder/${modelFile}")`
|
|
288
|
+
];
|
|
289
|
+
};
|
|
290
|
+
var skopsJobLib = (model) => {
|
|
291
|
+
return [
|
|
292
|
+
`from huggingface_hub import hf_hub_download
|
|
293
|
+
import joblib
|
|
294
|
+
model = joblib.load(
|
|
295
|
+
hf_hub_download("${model.id}", "sklearn_model.joblib")
|
|
296
|
+
)
|
|
297
|
+
# only load pickle files from sources you trust
|
|
298
|
+
# read more about it here https://skops.readthedocs.io/en/stable/persistence.html`
|
|
299
|
+
];
|
|
300
|
+
};
|
|
301
|
+
var sklearn = (model) => {
|
|
302
|
+
if (model.tags?.includes("skops")) {
|
|
303
|
+
const skopsmodelFile = model.config?.sklearn?.filename;
|
|
304
|
+
const skopssaveFormat = model.config?.sklearn?.model_format;
|
|
305
|
+
if (!skopsmodelFile) {
|
|
306
|
+
return [`# \u26A0\uFE0F Model filename not specified in config.json`];
|
|
307
|
+
}
|
|
308
|
+
if (skopssaveFormat === "pickle") {
|
|
309
|
+
return skopsPickle(model, skopsmodelFile);
|
|
310
|
+
} else {
|
|
311
|
+
return skopsFormat(model, skopsmodelFile);
|
|
312
|
+
}
|
|
313
|
+
} else {
|
|
314
|
+
return skopsJobLib(model);
|
|
315
|
+
}
|
|
316
|
+
};
|
|
317
|
+
var fastai = (model) => [
|
|
318
|
+
`from huggingface_hub import from_pretrained_fastai
|
|
319
|
+
|
|
320
|
+
learn = from_pretrained_fastai("${model.id}")`
|
|
321
|
+
];
|
|
322
|
+
var sampleFactory = (model) => [
|
|
323
|
+
`python -m sample_factory.huggingface.load_from_hub -r ${model.id} -d ./train_dir`
|
|
324
|
+
];
|
|
325
|
+
var sentenceTransformers = (model) => [
|
|
326
|
+
`from sentence_transformers import SentenceTransformer
|
|
327
|
+
|
|
328
|
+
model = SentenceTransformer("${model.id}")`
|
|
329
|
+
];
|
|
330
|
+
var spacy = (model) => [
|
|
331
|
+
`!pip install https://huggingface.co/${model.id}/resolve/main/${nameWithoutNamespace(model.id)}-any-py3-none-any.whl
|
|
332
|
+
|
|
333
|
+
# Using spacy.load().
|
|
334
|
+
import spacy
|
|
335
|
+
nlp = spacy.load("${nameWithoutNamespace(model.id)}")
|
|
336
|
+
|
|
337
|
+
# Importing as module.
|
|
338
|
+
import ${nameWithoutNamespace(model.id)}
|
|
339
|
+
nlp = ${nameWithoutNamespace(model.id)}.load()`
|
|
340
|
+
];
|
|
341
|
+
var span_marker = (model) => [
|
|
342
|
+
`from span_marker import SpanMarkerModel
|
|
343
|
+
|
|
344
|
+
model = SpanMarkerModel.from_pretrained("${model.id}")`
|
|
345
|
+
];
|
|
346
|
+
var stanza = (model) => [
|
|
347
|
+
`import stanza
|
|
348
|
+
|
|
349
|
+
stanza.download("${nameWithoutNamespace(model.id).replace("stanza-", "")}")
|
|
350
|
+
nlp = stanza.Pipeline("${nameWithoutNamespace(model.id).replace("stanza-", "")}")`
|
|
351
|
+
];
|
|
352
|
+
var speechBrainMethod = (speechbrainInterface) => {
|
|
353
|
+
switch (speechbrainInterface) {
|
|
354
|
+
case "EncoderClassifier":
|
|
355
|
+
return "classify_file";
|
|
356
|
+
case "EncoderDecoderASR":
|
|
357
|
+
case "EncoderASR":
|
|
358
|
+
return "transcribe_file";
|
|
359
|
+
case "SpectralMaskEnhancement":
|
|
360
|
+
return "enhance_file";
|
|
361
|
+
case "SepformerSeparation":
|
|
362
|
+
return "separate_file";
|
|
363
|
+
default:
|
|
364
|
+
return void 0;
|
|
365
|
+
}
|
|
366
|
+
};
|
|
367
|
+
var speechbrain = (model) => {
|
|
368
|
+
const speechbrainInterface = model.config?.speechbrain?.interface;
|
|
369
|
+
if (speechbrainInterface === void 0) {
|
|
370
|
+
return [`# interface not specified in config.json`];
|
|
371
|
+
}
|
|
372
|
+
const speechbrainMethod = speechBrainMethod(speechbrainInterface);
|
|
373
|
+
if (speechbrainMethod === void 0) {
|
|
374
|
+
return [`# interface in config.json invalid`];
|
|
375
|
+
}
|
|
376
|
+
return [
|
|
377
|
+
`from speechbrain.pretrained import ${speechbrainInterface}
|
|
378
|
+
model = ${speechbrainInterface}.from_hparams(
|
|
379
|
+
"${model.id}"
|
|
380
|
+
)
|
|
381
|
+
model.${speechbrainMethod}("file.wav")`
|
|
382
|
+
];
|
|
383
|
+
};
|
|
384
|
+
var transformers = (model) => {
|
|
385
|
+
const info = model.transformersInfo;
|
|
386
|
+
if (!info) {
|
|
387
|
+
return [`# \u26A0\uFE0F Type of model unknown`];
|
|
388
|
+
}
|
|
389
|
+
const remote_code_snippet = info.custom_class ? ", trust_remote_code=True" : "";
|
|
390
|
+
let autoSnippet;
|
|
391
|
+
if (info.processor) {
|
|
392
|
+
const varName = info.processor === "AutoTokenizer" ? "tokenizer" : info.processor === "AutoFeatureExtractor" ? "extractor" : "processor";
|
|
393
|
+
autoSnippet = [
|
|
394
|
+
"# Load model directly",
|
|
395
|
+
`from transformers import ${info.processor}, ${info.auto_model}`,
|
|
396
|
+
"",
|
|
397
|
+
`${varName} = ${info.processor}.from_pretrained("${model.id}"` + remote_code_snippet + ")",
|
|
398
|
+
`model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")"
|
|
399
|
+
].join("\n");
|
|
400
|
+
} else {
|
|
401
|
+
autoSnippet = [
|
|
402
|
+
"# Load model directly",
|
|
403
|
+
`from transformers import ${info.auto_model}`,
|
|
404
|
+
`model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")"
|
|
405
|
+
].join("\n");
|
|
406
|
+
}
|
|
407
|
+
if (model.pipeline_tag) {
|
|
408
|
+
const pipelineSnippet = [
|
|
409
|
+
"# Use a pipeline as a high-level helper",
|
|
410
|
+
"from transformers import pipeline",
|
|
411
|
+
"",
|
|
412
|
+
`pipe = pipeline("${model.pipeline_tag}", model="${model.id}"` + remote_code_snippet + ")"
|
|
413
|
+
].join("\n");
|
|
414
|
+
return [pipelineSnippet, autoSnippet];
|
|
415
|
+
}
|
|
416
|
+
return [autoSnippet];
|
|
417
|
+
};
|
|
418
|
+
var transformersJS = (model) => {
|
|
419
|
+
if (!model.pipeline_tag) {
|
|
420
|
+
return [`// \u26A0\uFE0F Unknown pipeline tag`];
|
|
421
|
+
}
|
|
422
|
+
const libName = "@xenova/transformers";
|
|
423
|
+
return [
|
|
424
|
+
`// npm i ${libName}
|
|
425
|
+
import { pipeline } from '${libName}';
|
|
426
|
+
|
|
427
|
+
// Allocate pipeline
|
|
428
|
+
const pipe = await pipeline('${model.pipeline_tag}', '${model.id}');`
|
|
429
|
+
];
|
|
430
|
+
};
|
|
431
|
+
var peftTask = (peftTaskType) => {
|
|
432
|
+
switch (peftTaskType) {
|
|
433
|
+
case "CAUSAL_LM":
|
|
434
|
+
return "CausalLM";
|
|
435
|
+
case "SEQ_2_SEQ_LM":
|
|
436
|
+
return "Seq2SeqLM";
|
|
437
|
+
case "TOKEN_CLS":
|
|
438
|
+
return "TokenClassification";
|
|
439
|
+
case "SEQ_CLS":
|
|
440
|
+
return "SequenceClassification";
|
|
441
|
+
default:
|
|
442
|
+
return void 0;
|
|
443
|
+
}
|
|
444
|
+
};
|
|
445
|
+
var peft = (model) => {
|
|
446
|
+
const { base_model_name: peftBaseModel, task_type: peftTaskType } = model.config?.peft ?? {};
|
|
447
|
+
const pefttask = peftTask(peftTaskType);
|
|
448
|
+
if (!pefttask) {
|
|
449
|
+
return [`Task type is invalid.`];
|
|
450
|
+
}
|
|
451
|
+
if (!peftBaseModel) {
|
|
452
|
+
return [`Base model is not found.`];
|
|
453
|
+
}
|
|
454
|
+
return [
|
|
455
|
+
`from peft import PeftModel, PeftConfig
|
|
456
|
+
from transformers import AutoModelFor${pefttask}
|
|
457
|
+
|
|
458
|
+
config = PeftConfig.from_pretrained("${model.id}")
|
|
459
|
+
model = AutoModelFor${pefttask}.from_pretrained("${peftBaseModel}")
|
|
460
|
+
model = PeftModel.from_pretrained(model, "${model.id}")`
|
|
461
|
+
];
|
|
462
|
+
};
|
|
463
|
+
var fasttext = (model) => [
|
|
464
|
+
`from huggingface_hub import hf_hub_download
|
|
465
|
+
import fasttext
|
|
466
|
+
|
|
467
|
+
model = fasttext.load_model(hf_hub_download("${model.id}", "model.bin"))`
|
|
468
|
+
];
|
|
469
|
+
var stableBaselines3 = (model) => [
|
|
470
|
+
`from huggingface_sb3 import load_from_hub
|
|
471
|
+
checkpoint = load_from_hub(
|
|
472
|
+
repo_id="${model.id}",
|
|
473
|
+
filename="{MODEL FILENAME}.zip",
|
|
474
|
+
)`
|
|
475
|
+
];
|
|
476
|
+
var nemoDomainResolver = (domain, model) => {
|
|
477
|
+
switch (domain) {
|
|
478
|
+
case "ASR":
|
|
479
|
+
return [
|
|
480
|
+
`import nemo.collections.asr as nemo_asr
|
|
481
|
+
asr_model = nemo_asr.models.ASRModel.from_pretrained("${model.id}")
|
|
482
|
+
|
|
483
|
+
transcriptions = asr_model.transcribe(["file.wav"])`
|
|
484
|
+
];
|
|
485
|
+
default:
|
|
486
|
+
return void 0;
|
|
487
|
+
}
|
|
488
|
+
};
|
|
489
|
+
var mlAgents = (model) => [`mlagents-load-from-hf --repo-id="${model.id}" --local-dir="./downloads"`];
|
|
490
|
+
var nemo = (model) => {
|
|
491
|
+
let command = void 0;
|
|
492
|
+
if (model.tags?.includes("automatic-speech-recognition")) {
|
|
493
|
+
command = nemoDomainResolver("ASR", model);
|
|
494
|
+
}
|
|
495
|
+
return command ?? [`# tag did not correspond to a valid NeMo domain.`];
|
|
496
|
+
};
|
|
497
|
+
var pythae = (model) => [
|
|
498
|
+
`from pythae.models import AutoModel
|
|
499
|
+
|
|
500
|
+
model = AutoModel.load_from_hf_hub("${model.id}")`
|
|
501
|
+
];
|
|
502
|
+
var MODEL_LIBRARIES_UI_ELEMENTS = {
|
|
503
|
+
"adapter-transformers": {
|
|
504
|
+
btnLabel: "Adapter Transformers",
|
|
505
|
+
repoName: "adapter-transformers",
|
|
506
|
+
repoUrl: "https://github.com/Adapter-Hub/adapter-transformers",
|
|
507
|
+
docsUrl: "https://huggingface.co/docs/hub/adapter-transformers",
|
|
508
|
+
snippets: adapter_transformers
|
|
509
|
+
},
|
|
510
|
+
allennlp: {
|
|
511
|
+
btnLabel: "AllenNLP",
|
|
512
|
+
repoName: "AllenNLP",
|
|
513
|
+
repoUrl: "https://github.com/allenai/allennlp",
|
|
514
|
+
docsUrl: "https://huggingface.co/docs/hub/allennlp",
|
|
515
|
+
snippets: allennlp
|
|
516
|
+
},
|
|
517
|
+
asteroid: {
|
|
518
|
+
btnLabel: "Asteroid",
|
|
519
|
+
repoName: "Asteroid",
|
|
520
|
+
repoUrl: "https://github.com/asteroid-team/asteroid",
|
|
521
|
+
docsUrl: "https://huggingface.co/docs/hub/asteroid",
|
|
522
|
+
snippets: asteroid
|
|
523
|
+
},
|
|
524
|
+
bertopic: {
|
|
525
|
+
btnLabel: "BERTopic",
|
|
526
|
+
repoName: "BERTopic",
|
|
527
|
+
repoUrl: "https://github.com/MaartenGr/BERTopic",
|
|
528
|
+
snippets: bertopic
|
|
529
|
+
},
|
|
530
|
+
diffusers: {
|
|
531
|
+
btnLabel: "Diffusers",
|
|
532
|
+
repoName: "\u{1F917}/diffusers",
|
|
533
|
+
repoUrl: "https://github.com/huggingface/diffusers",
|
|
534
|
+
docsUrl: "https://huggingface.co/docs/hub/diffusers",
|
|
535
|
+
snippets: diffusers
|
|
536
|
+
},
|
|
537
|
+
espnet: {
|
|
538
|
+
btnLabel: "ESPnet",
|
|
539
|
+
repoName: "ESPnet",
|
|
540
|
+
repoUrl: "https://github.com/espnet/espnet",
|
|
541
|
+
docsUrl: "https://huggingface.co/docs/hub/espnet",
|
|
542
|
+
snippets: espnet
|
|
543
|
+
},
|
|
544
|
+
fairseq: {
|
|
545
|
+
btnLabel: "Fairseq",
|
|
546
|
+
repoName: "fairseq",
|
|
547
|
+
repoUrl: "https://github.com/pytorch/fairseq",
|
|
548
|
+
snippets: fairseq
|
|
549
|
+
},
|
|
550
|
+
flair: {
|
|
551
|
+
btnLabel: "Flair",
|
|
552
|
+
repoName: "Flair",
|
|
553
|
+
repoUrl: "https://github.com/flairNLP/flair",
|
|
554
|
+
docsUrl: "https://huggingface.co/docs/hub/flair",
|
|
555
|
+
snippets: flair
|
|
556
|
+
},
|
|
557
|
+
keras: {
|
|
558
|
+
btnLabel: "Keras",
|
|
559
|
+
repoName: "Keras",
|
|
560
|
+
repoUrl: "https://github.com/keras-team/keras",
|
|
561
|
+
docsUrl: "https://huggingface.co/docs/hub/keras",
|
|
562
|
+
snippets: keras
|
|
563
|
+
},
|
|
564
|
+
nemo: {
|
|
565
|
+
btnLabel: "NeMo",
|
|
566
|
+
repoName: "NeMo",
|
|
567
|
+
repoUrl: "https://github.com/NVIDIA/NeMo",
|
|
568
|
+
snippets: nemo
|
|
569
|
+
},
|
|
570
|
+
open_clip: {
|
|
571
|
+
btnLabel: "OpenCLIP",
|
|
572
|
+
repoName: "OpenCLIP",
|
|
573
|
+
repoUrl: "https://github.com/mlfoundations/open_clip",
|
|
574
|
+
snippets: open_clip
|
|
575
|
+
},
|
|
576
|
+
paddlenlp: {
|
|
577
|
+
btnLabel: "paddlenlp",
|
|
578
|
+
repoName: "PaddleNLP",
|
|
579
|
+
repoUrl: "https://github.com/PaddlePaddle/PaddleNLP",
|
|
580
|
+
docsUrl: "https://huggingface.co/docs/hub/paddlenlp",
|
|
581
|
+
snippets: paddlenlp
|
|
582
|
+
},
|
|
583
|
+
peft: {
|
|
584
|
+
btnLabel: "PEFT",
|
|
585
|
+
repoName: "PEFT",
|
|
586
|
+
repoUrl: "https://github.com/huggingface/peft",
|
|
587
|
+
snippets: peft
|
|
588
|
+
},
|
|
589
|
+
"pyannote-audio": {
|
|
590
|
+
btnLabel: "pyannote.audio",
|
|
591
|
+
repoName: "pyannote-audio",
|
|
592
|
+
repoUrl: "https://github.com/pyannote/pyannote-audio",
|
|
593
|
+
snippets: pyannote_audio
|
|
594
|
+
},
|
|
595
|
+
"sentence-transformers": {
|
|
596
|
+
btnLabel: "sentence-transformers",
|
|
597
|
+
repoName: "sentence-transformers",
|
|
598
|
+
repoUrl: "https://github.com/UKPLab/sentence-transformers",
|
|
599
|
+
docsUrl: "https://huggingface.co/docs/hub/sentence-transformers",
|
|
600
|
+
snippets: sentenceTransformers
|
|
601
|
+
},
|
|
602
|
+
sklearn: {
|
|
603
|
+
btnLabel: "Scikit-learn",
|
|
604
|
+
repoName: "Scikit-learn",
|
|
605
|
+
repoUrl: "https://github.com/scikit-learn/scikit-learn",
|
|
606
|
+
snippets: sklearn
|
|
607
|
+
},
|
|
608
|
+
fastai: {
|
|
609
|
+
btnLabel: "fastai",
|
|
610
|
+
repoName: "fastai",
|
|
611
|
+
repoUrl: "https://github.com/fastai/fastai",
|
|
612
|
+
docsUrl: "https://huggingface.co/docs/hub/fastai",
|
|
613
|
+
snippets: fastai
|
|
614
|
+
},
|
|
615
|
+
spacy: {
|
|
616
|
+
btnLabel: "spaCy",
|
|
617
|
+
repoName: "spaCy",
|
|
618
|
+
repoUrl: "https://github.com/explosion/spaCy",
|
|
619
|
+
docsUrl: "https://huggingface.co/docs/hub/spacy",
|
|
620
|
+
snippets: spacy
|
|
621
|
+
},
|
|
622
|
+
"span-marker": {
|
|
623
|
+
btnLabel: "SpanMarker",
|
|
624
|
+
repoName: "SpanMarkerNER",
|
|
625
|
+
repoUrl: "https://github.com/tomaarsen/SpanMarkerNER",
|
|
626
|
+
docsUrl: "https://huggingface.co/docs/hub/span_marker",
|
|
627
|
+
snippets: span_marker
|
|
628
|
+
},
|
|
629
|
+
speechbrain: {
|
|
630
|
+
btnLabel: "speechbrain",
|
|
631
|
+
repoName: "speechbrain",
|
|
632
|
+
repoUrl: "https://github.com/speechbrain/speechbrain",
|
|
633
|
+
docsUrl: "https://huggingface.co/docs/hub/speechbrain",
|
|
634
|
+
snippets: speechbrain
|
|
635
|
+
},
|
|
636
|
+
stanza: {
|
|
637
|
+
btnLabel: "Stanza",
|
|
638
|
+
repoName: "stanza",
|
|
639
|
+
repoUrl: "https://github.com/stanfordnlp/stanza",
|
|
640
|
+
docsUrl: "https://huggingface.co/docs/hub/stanza",
|
|
641
|
+
snippets: stanza
|
|
642
|
+
},
|
|
643
|
+
tensorflowtts: {
|
|
644
|
+
btnLabel: "TensorFlowTTS",
|
|
645
|
+
repoName: "TensorFlowTTS",
|
|
646
|
+
repoUrl: "https://github.com/TensorSpeech/TensorFlowTTS",
|
|
647
|
+
snippets: tensorflowtts
|
|
648
|
+
},
|
|
649
|
+
timm: {
|
|
650
|
+
btnLabel: "timm",
|
|
651
|
+
repoName: "pytorch-image-models",
|
|
652
|
+
repoUrl: "https://github.com/rwightman/pytorch-image-models",
|
|
653
|
+
docsUrl: "https://huggingface.co/docs/hub/timm",
|
|
654
|
+
snippets: timm
|
|
655
|
+
},
|
|
656
|
+
transformers: {
|
|
657
|
+
btnLabel: "Transformers",
|
|
658
|
+
repoName: "\u{1F917}/transformers",
|
|
659
|
+
repoUrl: "https://github.com/huggingface/transformers",
|
|
660
|
+
docsUrl: "https://huggingface.co/docs/hub/transformers",
|
|
661
|
+
snippets: transformers
|
|
662
|
+
},
|
|
663
|
+
"transformers.js": {
|
|
664
|
+
btnLabel: "Transformers.js",
|
|
665
|
+
repoName: "transformers.js",
|
|
666
|
+
repoUrl: "https://github.com/xenova/transformers.js",
|
|
667
|
+
docsUrl: "https://huggingface.co/docs/hub/transformers-js",
|
|
668
|
+
snippets: transformersJS
|
|
669
|
+
},
|
|
670
|
+
fasttext: {
|
|
671
|
+
btnLabel: "fastText",
|
|
672
|
+
repoName: "fastText",
|
|
673
|
+
repoUrl: "https://fasttext.cc/",
|
|
674
|
+
snippets: fasttext
|
|
675
|
+
},
|
|
676
|
+
"sample-factory": {
|
|
677
|
+
btnLabel: "sample-factory",
|
|
678
|
+
repoName: "sample-factory",
|
|
679
|
+
repoUrl: "https://github.com/alex-petrenko/sample-factory",
|
|
680
|
+
docsUrl: "https://huggingface.co/docs/hub/sample-factory",
|
|
681
|
+
snippets: sampleFactory
|
|
682
|
+
},
|
|
683
|
+
"stable-baselines3": {
|
|
684
|
+
btnLabel: "stable-baselines3",
|
|
685
|
+
repoName: "stable-baselines3",
|
|
686
|
+
repoUrl: "https://github.com/huggingface/huggingface_sb3",
|
|
687
|
+
docsUrl: "https://huggingface.co/docs/hub/stable-baselines3",
|
|
688
|
+
snippets: stableBaselines3
|
|
689
|
+
},
|
|
690
|
+
"ml-agents": {
|
|
691
|
+
btnLabel: "ml-agents",
|
|
692
|
+
repoName: "ml-agents",
|
|
693
|
+
repoUrl: "https://github.com/huggingface/ml-agents",
|
|
694
|
+
docsUrl: "https://huggingface.co/docs/hub/ml-agents",
|
|
695
|
+
snippets: mlAgents
|
|
696
|
+
},
|
|
697
|
+
pythae: {
|
|
698
|
+
btnLabel: "pythae",
|
|
699
|
+
repoName: "pythae",
|
|
700
|
+
repoUrl: "https://github.com/clementchadebec/benchmark_VAE",
|
|
701
|
+
snippets: pythae
|
|
702
|
+
}
|
|
703
|
+
};
|
|
704
|
+
|
|
705
|
+
// src/default-widget-inputs.ts
|
|
706
|
+
var MAPPING_EN = /* @__PURE__ */ new Map([
|
|
707
|
+
["text-classification", [`I like you. I love you`]],
|
|
708
|
+
[
|
|
709
|
+
"token-classification",
|
|
710
|
+
[
|
|
711
|
+
`My name is Wolfgang and I live in Berlin`,
|
|
712
|
+
`My name is Sarah and I live in London`,
|
|
713
|
+
`My name is Clara and I live in Berkeley, California.`
|
|
714
|
+
]
|
|
715
|
+
],
|
|
716
|
+
[
|
|
717
|
+
"table-question-answering",
|
|
718
|
+
[
|
|
719
|
+
{
|
|
720
|
+
text: `How many stars does the transformers repository have?`,
|
|
721
|
+
table: {
|
|
722
|
+
Repository: ["Transformers", "Datasets", "Tokenizers"],
|
|
723
|
+
Stars: [36542, 4512, 3934],
|
|
724
|
+
Contributors: [651, 77, 34],
|
|
725
|
+
"Programming language": ["Python", "Python", "Rust, Python and NodeJS"]
|
|
726
|
+
}
|
|
727
|
+
}
|
|
728
|
+
]
|
|
729
|
+
],
|
|
730
|
+
[
|
|
731
|
+
"question-answering",
|
|
732
|
+
[
|
|
733
|
+
{
|
|
734
|
+
text: `Where do I live?`,
|
|
735
|
+
context: `My name is Wolfgang and I live in Berlin`
|
|
736
|
+
},
|
|
737
|
+
{
|
|
738
|
+
text: `Where do I live?`,
|
|
739
|
+
context: `My name is Sarah and I live in London`
|
|
740
|
+
},
|
|
741
|
+
{
|
|
742
|
+
text: `What's my name?`,
|
|
743
|
+
context: `My name is Clara and I live in Berkeley.`
|
|
744
|
+
},
|
|
745
|
+
{
|
|
746
|
+
text: `Which name is also used to describe the Amazon rainforest in English?`,
|
|
747
|
+
context: `The Amazon rainforest (Portuguese: Floresta Amaz\xF4nica or Amaz\xF4nia; Spanish: Selva Amaz\xF3nica, Amazon\xEDa or usually Amazonia; French: For\xEAt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain "Amazonas" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species.`
|
|
748
|
+
}
|
|
749
|
+
]
|
|
750
|
+
],
|
|
751
|
+
[
|
|
752
|
+
"zero-shot-classification",
|
|
753
|
+
[
|
|
754
|
+
{
|
|
755
|
+
text: "I have a problem with my iphone that needs to be resolved asap!!",
|
|
756
|
+
candidate_labels: "urgent, not urgent, phone, tablet, computer",
|
|
757
|
+
multi_class: true
|
|
758
|
+
},
|
|
759
|
+
{
|
|
760
|
+
text: "Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.",
|
|
761
|
+
candidate_labels: "mobile, website, billing, account access",
|
|
762
|
+
multi_class: false
|
|
763
|
+
},
|
|
764
|
+
{
|
|
765
|
+
text: "A new model offers an explanation for how the Galilean satellites formed around the solar system\u2019s largest world. Konstantin Batygin did not set out to solve one of the solar system\u2019s most puzzling mysteries when he went for a run up a hill in Nice, France. Dr. Batygin, a Caltech researcher, best known for his contributions to the search for the solar system\u2019s missing \u201CPlanet Nine,\u201D spotted a beer bottle. At a steep, 20 degree grade, he wondered why it wasn\u2019t rolling down the hill. He realized there was a breeze at his back holding the bottle in place. Then he had a thought that would only pop into the mind of a theoretical astrophysicist: \u201COh! This is how Europa formed.\u201D Europa is one of Jupiter\u2019s four large Galilean moons. And in a paper published Monday in the Astrophysical Journal, Dr. Batygin and a co-author, Alessandro Morbidelli, a planetary scientist at the C\xF4te d\u2019Azur Observatory in France, present a theory explaining how some moons form around gas giants like Jupiter and Saturn, suggesting that millimeter-sized grains of hail produced during the solar system\u2019s formation became trapped around these massive worlds, taking shape one at a time into the potentially habitable moons we know today.",
|
|
766
|
+
candidate_labels: "space & cosmos, scientific discovery, microbiology, robots, archeology",
|
|
767
|
+
multi_class: true
|
|
768
|
+
}
|
|
769
|
+
]
|
|
770
|
+
],
|
|
771
|
+
["translation", [`My name is Wolfgang and I live in Berlin`, `My name is Sarah and I live in London`]],
|
|
772
|
+
[
|
|
773
|
+
"summarization",
|
|
774
|
+
[
|
|
775
|
+
`The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct.`
|
|
776
|
+
]
|
|
777
|
+
],
|
|
778
|
+
[
|
|
779
|
+
"conversational",
|
|
780
|
+
[
|
|
781
|
+
`Hey my name is Julien! How are you?`,
|
|
782
|
+
`Hey my name is Thomas! How are you?`,
|
|
783
|
+
`Hey my name is Mariama! How are you?`,
|
|
784
|
+
`Hey my name is Clara! How are you?`,
|
|
785
|
+
`Hey my name is Julien! How are you?`,
|
|
786
|
+
`Hi.`
|
|
787
|
+
]
|
|
788
|
+
],
|
|
789
|
+
[
|
|
790
|
+
"text-generation",
|
|
791
|
+
[
|
|
792
|
+
`My name is Julien and I like to`,
|
|
793
|
+
`My name is Thomas and my main`,
|
|
794
|
+
`My name is Mariama, my favorite`,
|
|
795
|
+
`My name is Clara and I am`,
|
|
796
|
+
`My name is Lewis and I like to`,
|
|
797
|
+
`My name is Merve and my favorite`,
|
|
798
|
+
`My name is Teven and I am`,
|
|
799
|
+
`Once upon a time,`
|
|
800
|
+
]
|
|
801
|
+
],
|
|
802
|
+
["fill-mask", [`Paris is the <mask> of France.`, `The goal of life is <mask>.`]],
|
|
803
|
+
[
|
|
804
|
+
"sentence-similarity",
|
|
805
|
+
[
|
|
806
|
+
{
|
|
807
|
+
source_sentence: "That is a happy person",
|
|
808
|
+
sentences: ["That is a happy dog", "That is a very happy person", "Today is a sunny day"]
|
|
809
|
+
}
|
|
810
|
+
]
|
|
811
|
+
]
|
|
812
|
+
]);
|
|
813
|
+
var MAPPING_ZH = /* @__PURE__ */ new Map([
|
|
814
|
+
["text-classification", [`\u6211\u559C\u6B22\u4F60\u3002 \u6211\u7231\u4F60`]],
|
|
815
|
+
["token-classification", [`\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`, `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`, `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u4F4F\u5728\u52A0\u5DDE\u4F2F\u514B\u5229\u3002`]],
|
|
816
|
+
[
|
|
817
|
+
"question-answering",
|
|
818
|
+
[
|
|
819
|
+
{
|
|
820
|
+
text: `\u6211\u4F4F\u5728\u54EA\u91CC\uFF1F`,
|
|
821
|
+
context: `\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`
|
|
822
|
+
},
|
|
823
|
+
{
|
|
824
|
+
text: `\u6211\u4F4F\u5728\u54EA\u91CC\uFF1F`,
|
|
825
|
+
context: `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`
|
|
826
|
+
},
|
|
827
|
+
{
|
|
828
|
+
text: `\u6211\u7684\u540D\u5B57\u662F\u4EC0\u4E48\uFF1F`,
|
|
829
|
+
context: `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u4F4F\u5728\u4F2F\u514B\u5229\u3002`
|
|
830
|
+
}
|
|
831
|
+
]
|
|
832
|
+
],
|
|
833
|
+
["translation", [`\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`, `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`]],
|
|
834
|
+
[
|
|
835
|
+
"zero-shot-classification",
|
|
836
|
+
[
|
|
837
|
+
{
|
|
838
|
+
text: "\u623F\u95F4\u5E72\u51C0\u660E\u4EAE\uFF0C\u975E\u5E38\u4E0D\u9519",
|
|
839
|
+
candidate_labels: "\u8FD9\u662F\u4E00\u6761\u5DEE\u8BC4, \u8FD9\u662F\u4E00\u6761\u597D\u8BC4"
|
|
840
|
+
}
|
|
841
|
+
]
|
|
842
|
+
],
|
|
843
|
+
[
|
|
844
|
+
"summarization",
|
|
845
|
+
[
|
|
846
|
+
`\u8BE5\u5854\u9AD8324\u7C73\uFF081063\u82F1\u5C3A\uFF09\uFF0C\u4E0E\u4E00\u5E6281\u5C42\u7684\u5EFA\u7B51\u7269\u4E00\u6837\u9AD8\uFF0C\u662F\u5DF4\u9ECE\u6700\u9AD8\u7684\u5EFA\u7B51\u7269\u3002 \u5B83\u7684\u5E95\u5EA7\u662F\u65B9\u5F62\u7684\uFF0C\u6BCF\u8FB9\u957F125\u7C73\uFF08410\u82F1\u5C3A\uFF09\u3002 \u5728\u5EFA\u9020\u8FC7\u7A0B\u4E2D\uFF0C\u827E\u83F2\u5C14\u94C1\u5854\u8D85\u8FC7\u4E86\u534E\u76DB\u987F\u7EAA\u5FF5\u7891\uFF0C\u6210\u4E3A\u4E16\u754C\u4E0A\u6700\u9AD8\u7684\u4EBA\u9020\u7ED3\u6784\uFF0C\u5B83\u4FDD\u6301\u4E8641\u5E74\u7684\u5934\u8854\uFF0C\u76F4\u52301930\u5E74\u7EBD\u7EA6\u5E02\u7684\u514B\u83B1\u65AF\u52D2\u5927\u697C\u7AE3\u5DE5\u3002\u8FD9\u662F\u7B2C\u4E00\u4E2A\u5230\u8FBE300\u7C73\u9AD8\u5EA6\u7684\u7ED3\u6784\u3002 \u7531\u4E8E1957\u5E74\u5728\u5854\u9876\u589E\u52A0\u4E86\u5E7F\u64AD\u5929\u7EBF\uFF0C\u56E0\u6B64\u5B83\u73B0\u5728\u6BD4\u514B\u83B1\u65AF\u52D2\u5927\u53A6\u9AD85.2\u7C73\uFF0817\u82F1\u5C3A\uFF09\u3002 \u9664\u53D1\u5C04\u5668\u5916\uFF0C\u827E\u83F2\u5C14\u94C1\u5854\u662F\u6CD5\u56FD\u7B2C\u4E8C\u9AD8\u7684\u72EC\u7ACB\u5F0F\u5EFA\u7B51\uFF0C\u4EC5\u6B21\u4E8E\u7C73\u52B3\u9AD8\u67B6\u6865\u3002`
|
|
847
|
+
]
|
|
848
|
+
],
|
|
849
|
+
[
|
|
850
|
+
"text-generation",
|
|
851
|
+
[`\u6211\u53EB\u6731\u5229\u5B89\uFF0C\u6211\u559C\u6B22`, `\u6211\u53EB\u6258\u9A6C\u65AF\uFF0C\u6211\u7684\u4E3B\u8981`, `\u6211\u53EB\u739B\u4E3D\u4E9A\uFF0C\u6211\u6700\u559C\u6B22\u7684`, `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u662F`, `\u4ECE\u524D\uFF0C`]
|
|
852
|
+
],
|
|
853
|
+
["fill-mask", [`\u5DF4\u9ECE\u662F<mask>\u56FD\u7684\u9996\u90FD\u3002`, `\u751F\u6D3B\u7684\u771F\u8C1B\u662F<mask>\u3002`]],
|
|
854
|
+
[
|
|
855
|
+
"sentence-similarity",
|
|
856
|
+
[
|
|
857
|
+
{
|
|
858
|
+
source_sentence: "\u90A3\u662F \u500B\u5FEB\u6A02\u7684\u4EBA",
|
|
859
|
+
sentences: ["\u90A3\u662F \u689D\u5FEB\u6A02\u7684\u72D7", "\u90A3\u662F \u500B\u975E\u5E38\u5E78\u798F\u7684\u4EBA", "\u4ECA\u5929\u662F\u6674\u5929"]
|
|
860
|
+
}
|
|
861
|
+
]
|
|
862
|
+
]
|
|
863
|
+
]);
|
|
864
|
+
var MAPPING_FR = /* @__PURE__ */ new Map([
|
|
865
|
+
["text-classification", [`Je t'appr\xE9cie beaucoup. Je t'aime.`]],
|
|
866
|
+
["token-classification", [`Mon nom est Wolfgang et je vis \xE0 Berlin`]],
|
|
867
|
+
[
|
|
868
|
+
"question-answering",
|
|
869
|
+
[
|
|
870
|
+
{
|
|
871
|
+
text: `O\xF9 est-ce que je vis?`,
|
|
872
|
+
context: `Mon nom est Wolfgang et je vis \xE0 Berlin`
|
|
873
|
+
}
|
|
874
|
+
]
|
|
875
|
+
],
|
|
876
|
+
["translation", [`Mon nom est Wolfgang et je vis \xE0 Berlin`]],
|
|
877
|
+
[
|
|
878
|
+
"summarization",
|
|
879
|
+
[
|
|
880
|
+
`La tour fait 324 m\xE8tres (1,063 pieds) de haut, environ la m\xEAme hauteur qu'un immeuble de 81 \xE9tages, et est la plus haute structure de Paris. Sa base est carr\xE9e, mesurant 125 m\xE8tres (410 pieds) sur chaque c\xF4t\xE9. Durant sa construction, la tour Eiffel surpassa le Washington Monument pour devenir la plus haute structure construite par l'homme dans le monde, un titre qu'elle conserva pendant 41 ans jusqu'\xE0 l'ach\xE8vement du Chrysler Building \xE0 New-York City en 1930. Ce fut la premi\xE8re structure \xE0 atteindre une hauteur de 300 m\xE8tres. Avec l'ajout d'une antenne de radiodiffusion au sommet de la tour Eiffel en 1957, celle-ci redevint plus haute que le Chrysler Building de 5,2 m\xE8tres (17 pieds). En excluant les transmetteurs, elle est la seconde plus haute stucture autoportante de France apr\xE8s le viaduc de Millau.`
|
|
881
|
+
]
|
|
882
|
+
],
|
|
883
|
+
["text-generation", [`Mon nom est Julien et j'aime`, `Mon nom est Thomas et mon principal`, `Il \xE9tait une fois`]],
|
|
884
|
+
["fill-mask", [`Paris est la <mask> de la France.`]],
|
|
885
|
+
[
|
|
886
|
+
"sentence-similarity",
|
|
887
|
+
[
|
|
888
|
+
{
|
|
889
|
+
source_sentence: "C'est une personne heureuse",
|
|
890
|
+
sentences: [
|
|
891
|
+
"C'est un chien heureux",
|
|
892
|
+
"C'est une personne tr\xE8s heureuse",
|
|
893
|
+
"Aujourd'hui est une journ\xE9e ensoleill\xE9e"
|
|
894
|
+
]
|
|
895
|
+
}
|
|
896
|
+
]
|
|
897
|
+
]
|
|
898
|
+
]);
|
|
899
|
+
var MAPPING_ES = /* @__PURE__ */ new Map([
|
|
900
|
+
["text-classification", [`Te quiero. Te amo.`]],
|
|
901
|
+
["token-classification", [`Me llamo Wolfgang y vivo en Berlin`]],
|
|
902
|
+
[
|
|
903
|
+
"question-answering",
|
|
904
|
+
[
|
|
905
|
+
{
|
|
906
|
+
text: `\xBFD\xF3nde vivo?`,
|
|
907
|
+
context: `Me llamo Wolfgang y vivo en Berlin`
|
|
908
|
+
},
|
|
909
|
+
{
|
|
910
|
+
text: `\xBFQui\xE9n invent\xF3 el submarino?`,
|
|
911
|
+
context: `Isaac Peral fue un murciano que invent\xF3 el submarino`
|
|
912
|
+
},
|
|
913
|
+
{
|
|
914
|
+
text: `\xBFCu\xE1ntas personas hablan espa\xF1ol?`,
|
|
915
|
+
context: `El espa\xF1ol es el segundo idioma m\xE1s hablado del mundo con m\xE1s de 442 millones de hablantes`
|
|
916
|
+
}
|
|
917
|
+
]
|
|
918
|
+
],
|
|
919
|
+
[
|
|
920
|
+
"translation",
|
|
921
|
+
[
|
|
922
|
+
`Me llamo Wolfgang y vivo en Berlin`,
|
|
923
|
+
`Los ingredientes de una tortilla de patatas son: huevos, patatas y cebolla`
|
|
924
|
+
]
|
|
925
|
+
],
|
|
926
|
+
[
|
|
927
|
+
"summarization",
|
|
928
|
+
[
|
|
929
|
+
`La torre tiene 324 metros (1.063 pies) de altura, aproximadamente la misma altura que un edificio de 81 pisos y la estructura m\xE1s alta de Par\xEDs. Su base es cuadrada, mide 125 metros (410 pies) a cada lado. Durante su construcci\xF3n, la Torre Eiffel super\xF3 al Washington Monument para convertirse en la estructura artificial m\xE1s alta del mundo, un t\xEDtulo que mantuvo durante 41 a\xF1os hasta que el Chrysler Building en la ciudad de Nueva York se termin\xF3 en 1930. Fue la primera estructura en llegar Una altura de 300 metros. Debido a la adici\xF3n de una antena de transmisi\xF3n en la parte superior de la torre en 1957, ahora es m\xE1s alta que el Chrysler Building en 5,2 metros (17 pies). Excluyendo los transmisores, la Torre Eiffel es la segunda estructura independiente m\xE1s alta de Francia despu\xE9s del Viaducto de Millau.`
|
|
930
|
+
]
|
|
931
|
+
],
|
|
932
|
+
[
|
|
933
|
+
"text-generation",
|
|
934
|
+
[
|
|
935
|
+
`Me llamo Julien y me gusta`,
|
|
936
|
+
`Me llamo Thomas y mi principal`,
|
|
937
|
+
`Me llamo Manuel y trabajo en`,
|
|
938
|
+
`\xC9rase una vez,`,
|
|
939
|
+
`Si t\xFA me dices ven, `
|
|
940
|
+
]
|
|
941
|
+
],
|
|
942
|
+
["fill-mask", [`Mi nombre es <mask> y vivo en Nueva York.`, `El espa\xF1ol es un idioma muy <mask> en el mundo.`]],
|
|
943
|
+
[
|
|
944
|
+
"sentence-similarity",
|
|
945
|
+
[
|
|
946
|
+
{
|
|
947
|
+
source_sentence: "Esa es una persona feliz",
|
|
948
|
+
sentences: ["Ese es un perro feliz", "Esa es una persona muy feliz", "Hoy es un d\xEDa soleado"]
|
|
949
|
+
}
|
|
950
|
+
]
|
|
951
|
+
]
|
|
952
|
+
]);
|
|
953
|
+
var MAPPING_RU = /* @__PURE__ */ new Map([
|
|
954
|
+
["text-classification", [`\u0422\u044B \u043C\u043D\u0435 \u043D\u0440\u0430\u0432\u0438\u0448\u044C\u0441\u044F. \u042F \u0442\u0435\u0431\u044F \u043B\u044E\u0431\u043B\u044E`]],
|
|
955
|
+
["token-classification", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`]],
|
|
956
|
+
[
|
|
957
|
+
"question-answering",
|
|
958
|
+
[
|
|
959
|
+
{
|
|
960
|
+
text: `\u0413\u0434\u0435 \u0436\u0438\u0432\u0443?`,
|
|
961
|
+
context: `\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`
|
|
962
|
+
}
|
|
963
|
+
]
|
|
964
|
+
],
|
|
965
|
+
["translation", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`]],
|
|
966
|
+
[
|
|
967
|
+
"summarization",
|
|
968
|
+
[
|
|
969
|
+
`\u0412\u044B\u0441\u043E\u0442\u0430 \u0431\u0430\u0448\u043D\u0438 \u0441\u043E\u0441\u0442\u0430\u0432\u043B\u044F\u0435\u0442 324 \u043C\u0435\u0442\u0440\u0430 (1063 \u0444\u0443\u0442\u0430), \u043F\u0440\u0438\u043C\u0435\u0440\u043D\u043E \u0442\u0430\u043A\u0430\u044F \u0436\u0435 \u0432\u044B\u0441\u043E\u0442\u0430, \u043A\u0430\u043A \u0443 81-\u044D\u0442\u0430\u0436\u043D\u043E\u0433\u043E \u0437\u0434\u0430\u043D\u0438\u044F, \u0438 \u0441\u0430\u043C\u043E\u0435 \u0432\u044B\u0441\u043E\u043A\u043E\u0435 \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435 \u0432 \u041F\u0430\u0440\u0438\u0436\u0435. \u0415\u0433\u043E \u043E\u0441\u043D\u043E\u0432\u0430\u043D\u0438\u0435 \u043A\u0432\u0430\u0434\u0440\u0430\u0442\u043D\u043E, \u0440\u0430\u0437\u043C\u0435\u0440\u043E\u043C 125 \u043C\u0435\u0442\u0440\u043E\u0432 (410 \u0444\u0443\u0442\u043E\u0432) \u0441 \u043B\u044E\u0431\u043E\u0439 \u0441\u0442\u043E\u0440\u043E\u043D\u044B. \u0412\u043E \u0432\u0440\u0435\u043C\u044F \u0441\u0442\u0440\u043E\u0438\u0442\u0435\u043B\u044C\u0441\u0442\u0432\u0430 \u042D\u0439\u0444\u0435\u043B\u0435\u0432\u0430 \u0431\u0430\u0448\u043D\u044F \u043F\u0440\u0435\u0432\u0437\u043E\u0448\u043B\u0430 \u043C\u043E\u043D\u0443\u043C\u0435\u043D\u0442 \u0412\u0430\u0448\u0438\u043D\u0433\u0442\u043E\u043D\u0430, \u0441\u0442\u0430\u0432 \u0441\u0430\u043C\u044B\u043C \u0432\u044B\u0441\u043E\u043A\u0438\u043C \u0438\u0441\u043A\u0443\u0441\u0441\u0442\u0432\u0435\u043D\u043D\u044B\u043C \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435\u043C \u0432 \u043C\u0438\u0440\u0435, \u0438 \u044D\u0442\u043E\u0442 \u0442\u0438\u0442\u0443\u043B \u043E\u043D\u0430 \u0443\u0434\u0435\u0440\u0436\u0438\u0432\u0430\u043B\u0430 \u0432 \u0442\u0435\u0447\u0435\u043D\u0438\u0435 41 \u0433\u043E\u0434\u0430 \u0434\u043E \u0437\u0430\u0432\u0435\u0440\u0448\u0435\u043D\u0438\u044F \u0441\u0442\u0440\u043E\u0438\u0442\u0435\u043B\u044C\u0441\u0442\u0432\u043E \u0437\u0434\u0430\u043D\u0438\u044F \u041A\u0440\u0430\u0439\u0441\u043B\u0435\u0440 \u0432 \u041D\u044C\u044E-\u0419\u043E\u0440\u043A\u0435 \u0432 1930 \u0433\u043E\u0434\u0443. \u042D\u0442\u043E \u043F\u0435\u0440\u0432\u043E\u0435 \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435 \u043A\u043E\u0442\u043E\u0440\u043E\u0435 \u0434\u043E\u0441\u0442\u0438\u0433\u043B\u043E \u0432\u044B\u0441\u043E\u0442\u044B 300 \u043C\u0435\u0442\u0440\u043E\u0432. \u0418\u0437-\u0437\u0430 \u0434\u043E\u0431\u0430\u0432\u043B\u0435\u043D\u0438\u044F \u0432\u0435\u0449\u0430\u0442\u0435\u043B\u044C\u043D\u043E\u0439 \u0430\u043D\u0442\u0435\u043D\u043D\u044B \u043D\u0430 \u0432\u0435\u0440\u0448\u0438\u043D\u0435 \u0431\u0430\u0448\u043D\u0438 \u0432 1957 \u0433\u043E\u0434\u0443 \u043E\u043D\u0430 \u0441\u0435\u0439\u0447\u0430\u0441 \u0432\u044B\u0448\u0435 \u0437\u0434\u0430\u043D\u0438\u044F \u041A\u0440\u0430\u0439\u0441\u043B\u0435\u0440 \u043D\u0430 5,2 \u043C\u0435\u0442\u0440\u0430 (17 \u0444\u0443\u0442\u043E\u0432). \u0417\u0430 \u0438\u0441\u043A\u043B\u044E\u0447\u0435\u043D\u0438\u0435\u043C \u043F\u0435\u0440\u0435\u0434\u0430\u0442\u0447\u0438\u043A\u043E\u0432, \u042D\u0439\u0444\u0435\u043B\u0435\u0432\u0430 \u0431\u0430\u0448\u043D\u044F \u044F\u0432\u043B\u044F\u0435\u0442\u0441\u044F \u0432\u0442\u043E\u0440\u043E\u0439 \u0441\u0430\u043C\u043E\u0439 \u0432\u044B\u0441\u043E\u043A\u043E\u0439 \u043E\u0442\u0434\u0435\u043B\u044C\u043D\u043E \u0441\u0442\u043E\u044F\u0449\u0435\u0439 \u0441\u0442\u0440\u0443\u043A\u0442\u0443\u0440\u043E\u0439 \u0432\u043E \u0424\u0440\u0430\u043D\u0446\u0438\u0438 \u043F\u043E\u0441\u043B\u0435 \u0432\u0438\u0430\u0434\u0443\u043A\u0430 \u041C\u0438\u0439\u043E.`
|
|
970
|
+
]
|
|
971
|
+
],
|
|
972
|
+
["text-generation", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0416\u044E\u043B\u044C\u0435\u043D \u0438`, `\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0422\u043E\u043C\u0430\u0441 \u0438 \u043C\u043E\u0439 \u043E\u0441\u043D\u043E\u0432\u043D\u043E\u0439`, `\u041E\u0434\u043D\u0430\u0436\u0434\u044B`]],
|
|
973
|
+
["fill-mask", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 <mask> \u0438 \u044F \u0438\u043D\u0436\u0435\u043D\u0435\u0440 \u0436\u0438\u0432\u0443\u0449\u0438\u0439 \u0432 \u041D\u044C\u044E-\u0419\u043E\u0440\u043A\u0435.`]],
|
|
974
|
+
[
|
|
975
|
+
"sentence-similarity",
|
|
976
|
+
[
|
|
977
|
+
{
|
|
978
|
+
source_sentence: "\u042D\u0442\u043E \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u044B\u0439 \u0447\u0435\u043B\u043E\u0432\u0435\u043A",
|
|
979
|
+
sentences: ["\u042D\u0442\u043E \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u0430\u044F \u0441\u043E\u0431\u0430\u043A\u0430", "\u042D\u0442\u043E \u043E\u0447\u0435\u043D\u044C \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u044B\u0439 \u0447\u0435\u043B\u043E\u0432\u0435\u043A", "\u0421\u0435\u0433\u043E\u0434\u043D\u044F \u0441\u043E\u043B\u043D\u0435\u0447\u043D\u044B\u0439 \u0434\u0435\u043D\u044C"]
|
|
980
|
+
}
|
|
981
|
+
]
|
|
982
|
+
]
|
|
983
|
+
]);
|
|
984
|
+
var MAPPING_UK = /* @__PURE__ */ new Map([
|
|
985
|
+
["translation", [`\u041C\u0435\u043D\u0435 \u0437\u0432\u0430\u0442\u0438 \u0412\u043E\u043B\u044C\u0444\u0491\u0430\u043D\u0491 \u0456 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0456\u043D\u0456.`]],
|
|
986
|
+
["fill-mask", [`\u041C\u0435\u043D\u0435 \u0437\u0432\u0430\u0442\u0438 <mask>.`]]
|
|
987
|
+
]);
|
|
988
|
+
var MAPPING_IT = /* @__PURE__ */ new Map([
|
|
989
|
+
["text-classification", [`Mi piaci. Ti amo`]],
|
|
990
|
+
[
|
|
991
|
+
"token-classification",
|
|
992
|
+
[
|
|
993
|
+
`Mi chiamo Wolfgang e vivo a Berlino`,
|
|
994
|
+
`Mi chiamo Sarah e vivo a Londra`,
|
|
995
|
+
`Mi chiamo Clara e vivo a Berkeley in California.`
|
|
996
|
+
]
|
|
997
|
+
],
|
|
998
|
+
[
|
|
999
|
+
"question-answering",
|
|
1000
|
+
[
|
|
1001
|
+
{
|
|
1002
|
+
text: `Dove vivo?`,
|
|
1003
|
+
context: `Mi chiamo Wolfgang e vivo a Berlino`
|
|
1004
|
+
},
|
|
1005
|
+
{
|
|
1006
|
+
text: `Dove vivo?`,
|
|
1007
|
+
context: `Mi chiamo Sarah e vivo a Londra`
|
|
1008
|
+
},
|
|
1009
|
+
{
|
|
1010
|
+
text: `Come mio chiamo?`,
|
|
1011
|
+
context: `Mi chiamo Clara e vivo a Berkeley.`
|
|
1012
|
+
}
|
|
1013
|
+
]
|
|
1014
|
+
],
|
|
1015
|
+
["translation", [`Mi chiamo Wolfgang e vivo a Berlino`, `Mi chiamo Sarah e vivo a Londra`]],
|
|
1016
|
+
[
|
|
1017
|
+
"summarization",
|
|
1018
|
+
[
|
|
1019
|
+
`La torre degli Asinelli \xE8 una delle cosiddette due torri di Bologna, simbolo della citt\xE0, situate in piazza di porta Ravegnana, all'incrocio tra le antiche strade San Donato (ora via Zamboni), San Vitale, Maggiore e Castiglione. Eretta, secondo la tradizione, fra il 1109 e il 1119 dal nobile Gherardo Asinelli, la torre \xE8 alta 97,20 metri, pende verso ovest per 2,23 metri e presenta all'interno una scalinata composta da 498 gradini. Ancora non si pu\xF2 dire con certezza quando e da chi fu costruita la torre degli Asinelli. Si presume che la torre debba il proprio nome a Gherardo Asinelli, il nobile cavaliere di fazione ghibellina al quale se ne attribuisce la costruzione, iniziata secondo una consolidata tradizione l'11 ottobre 1109 e terminata dieci anni dopo, nel 1119.`
|
|
1020
|
+
]
|
|
1021
|
+
],
|
|
1022
|
+
[
|
|
1023
|
+
"text-generation",
|
|
1024
|
+
[
|
|
1025
|
+
`Mi chiamo Loreto e mi piace`,
|
|
1026
|
+
`Mi chiamo Thomas e il mio principale`,
|
|
1027
|
+
`Mi chiamo Marianna, la mia cosa preferita`,
|
|
1028
|
+
`Mi chiamo Clara e sono`,
|
|
1029
|
+
`C'era una volta`
|
|
1030
|
+
]
|
|
1031
|
+
],
|
|
1032
|
+
["fill-mask", [`Roma \xE8 la <mask> d'Italia.`, `Lo scopo della vita \xE8 <mask>.`]],
|
|
1033
|
+
[
|
|
1034
|
+
"sentence-similarity",
|
|
1035
|
+
[
|
|
1036
|
+
{
|
|
1037
|
+
source_sentence: "Questa \xE8 una persona felice",
|
|
1038
|
+
sentences: ["Questo \xE8 un cane felice", "Questa \xE8 una persona molto felice", "Oggi \xE8 una giornata di sole"]
|
|
1039
|
+
}
|
|
1040
|
+
]
|
|
1041
|
+
]
|
|
1042
|
+
]);
|
|
1043
|
+
var MAPPING_FA = /* @__PURE__ */ new Map([
|
|
1044
|
+
[
|
|
1045
|
+
"text-classification",
|
|
1046
|
+
[`\u067E\u0631\u0648\u0698\u0647 \u0628\u0647 \u0645\u0648\u0642\u0639 \u062A\u062D\u0648\u06CC\u0644 \u0634\u062F \u0648 \u0647\u0645\u0647 \u0686\u06CC\u0632 \u062E\u0648\u0628 \u0628\u0648\u062F.`, `\u0633\u06CC\u0628\u200C\u0632\u0645\u06CC\u0646\u06CC \u0628\u06CC\u200C\u06A9\u06CC\u0641\u06CC\u062A \u0628\u0648\u062F.`, `\u0642\u06CC\u0645\u062A \u0648 \u06A9\u06CC\u0641\u06CC\u062A \u0639\u0627\u0644\u06CC`, `\u062E\u0648\u0628 \u0646\u0628\u0648\u062F \u0627\u0635\u0644\u0627`]
|
|
1047
|
+
],
|
|
1048
|
+
[
|
|
1049
|
+
"token-classification",
|
|
1050
|
+
[
|
|
1051
|
+
`\u0627\u06CC\u0646 \u0633\u0631\u06CC\u0627\u0644 \u0628\u0647 \u0635\u0648\u0631\u062A \u0631\u0633\u0645\u06CC \u062F\u0631 \u062A\u0627\u0631\u06CC\u062E \u062F\u0647\u0645 \u0645\u06CC \u06F2\u06F0\u06F1\u06F1 \u062A\u0648\u0633\u0637 \u0634\u0628\u06A9\u0647 \u0641\u0627\u06A9\u0633 \u0628\u0631\u0627\u06CC \u067E\u062E\u0634 \u0631\u0632\u0631\u0648 \u0634\u062F.`,
|
|
1052
|
+
`\u062F\u0641\u062A\u0631 \u0645\u0631\u06A9\u0632\u06CC \u0634\u0631\u06A9\u062A \u067E\u0627\u0631\u0633\u200C\u0645\u06CC\u0646\u0648 \u062F\u0631 \u0634\u0647\u0631 \u0627\u0631\u0627\u06A9 \u062F\u0631 \u0627\u0633\u062A\u0627\u0646 \u0645\u0631\u06A9\u0632\u06CC \u0642\u0631\u0627\u0631 \u062F\u0627\u0631\u062F.`,
|
|
1053
|
+
`\u0648\u06CC \u062F\u0631 \u0633\u0627\u0644 \u06F2\u06F0\u06F1\u06F3 \u062F\u0631\u06AF\u0630\u0634\u062A \u0648 \u0645\u0633\u0626\u0648\u0644 \u062E\u0627\u06A9\u0633\u067E\u0627\u0631\u06CC \u0648 \u0627\u0642\u0648\u0627\u0645\u0634 \u0628\u0631\u0627\u06CC \u0627\u0648 \u0645\u0631\u0627\u0633\u0645 \u06CC\u0627\u062F\u0628\u0648\u062F \u06AF\u0631\u0641\u062A\u0646\u062F.`
|
|
1054
|
+
]
|
|
1055
|
+
],
|
|
1056
|
+
[
|
|
1057
|
+
"question-answering",
|
|
1058
|
+
[
|
|
1059
|
+
{
|
|
1060
|
+
text: `\u0645\u0646 \u06A9\u062C\u0627 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645\u061F`,
|
|
1061
|
+
context: `\u0646\u0627\u0645 \u0645\u0646 \u067E\u0698\u0645\u0627\u0646 \u0627\u0633\u062A \u0648 \u062F\u0631 \u06AF\u0631\u06AF\u0627\u0646 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645.`
|
|
1062
|
+
},
|
|
1063
|
+
{
|
|
1064
|
+
text: `\u0646\u0627\u0645\u0645 \u0686\u06CC\u0633\u062A \u0648 \u06A9\u062C\u0627 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0646\u0645\u061F`,
|
|
1065
|
+
context: `\u0627\u0633\u0645\u0645 \u0633\u0627\u0631\u0627 \u0627\u0633\u062A \u0648 \u062F\u0631 \u0622\u0641\u0631\u06CC\u0642\u0627\u06CC \u062C\u0646\u0648\u0628\u06CC \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645.`
|
|
1066
|
+
},
|
|
1067
|
+
{
|
|
1068
|
+
text: `\u0646\u0627\u0645 \u0645\u0646 \u0686\u06CC\u0633\u062A\u061F`,
|
|
1069
|
+
context: `\u0645\u0646 \u0645\u0631\u06CC\u0645 \u0647\u0633\u062A\u0645 \u0648 \u062F\u0631 \u062A\u0628\u0631\u06CC\u0632 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0646\u0645.`
|
|
1070
|
+
},
|
|
1071
|
+
{
|
|
1072
|
+
text: `\u0628\u06CC\u0634\u062A\u0631\u06CC\u0646 \u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644 \u0622\u0645\u0627\u0632\u0648\u0646 \u062F\u0631 \u06A9\u062F\u0627\u0645 \u06A9\u0634\u0648\u0631 \u0627\u0633\u062A\u061F`,
|
|
1073
|
+
context: [
|
|
1074
|
+
"\u0622\u0645\u0627\u0632\u0648\u0646 \u0646\u0627\u0645 \u0628\u0632\u0631\u06AF\u200C\u062A\u0631\u06CC\u0646 \u062C\u0646\u06AF\u0644 \u0628\u0627\u0631\u0627\u0646\u06CC \u062C\u0647\u0627\u0646 \u0627\u0633\u062A \u06A9\u0647 \u062F\u0631 \u0634\u0645\u0627\u0644 \u0622\u0645\u0631\u06CC\u06A9\u0627\u06CC \u062C\u0646\u0648\u0628\u06CC \u0642\u0631\u0627\u0631 \u06AF\u0631\u0641\u062A\u0647 \u0648 \u0628\u06CC\u0634\u062A\u0631 \u0622\u0646 \u062F\u0631 \u062E\u0627\u06A9 \u0628\u0631\u0632\u06CC\u0644 \u0648 \u067E\u0631\u0648",
|
|
1075
|
+
"\u062C\u0627\u06CC \u062F\u0627\u0631\u062F. \u0628\u06CC\u0634 \u0627\u0632 \u0646\u06CC\u0645\u06CC \u0627\u0632 \u0647\u0645\u0647 \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0628\u0627\u0631\u0627\u0646\u06CC \u0628\u0627\u0642\u06CC\u200C\u0645\u0627\u0646\u062F\u0647 \u062F\u0631 \u062C\u0647\u0627\u0646 \u062F\u0631 \u0622\u0645\u0627\u0632\u0648\u0646 \u0642\u0631\u0627\u0631 \u062F\u0627\u0631\u062F.",
|
|
1076
|
+
"\u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0622\u0645\u0627\u0632\u0648\u0646 \u06F5\u066B\u06F5 \u0645\u06CC\u0644\u06CC\u0648\u0646 \u06A9\u06CC\u0644\u0648\u0645\u062A\u0631 \u0645\u0631\u0628\u0639 \u0627\u0633\u062A \u06A9\u0647 \u0628\u06CC\u0646 \u06F9 \u06A9\u0634\u0648\u0631 \u062A\u0642\u0633\u06CC\u0645 \u0634\u062F\u0647\u200C\u0627\u0633\u062A."
|
|
1077
|
+
].join("\n")
|
|
1078
|
+
}
|
|
1079
|
+
]
|
|
1080
|
+
],
|
|
1081
|
+
[
|
|
1082
|
+
"translation",
|
|
1083
|
+
[
|
|
1084
|
+
"\u0628\u06CC\u0634\u062A\u0631 \u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0622\u0645\u0627\u0632\u0648\u0646 \u062F\u0631 \u062D\u0648\u0636\u0647 \u0622\u0628\u0631\u06CC\u0632 \u0631\u0648\u062F \u0622\u0645\u0627\u0632\u0648\u0646 \u0648 \u06F1\u06F1\u06F0\u06F0 \u0634\u0627\u062E\u0647 \u0622\u0646 \u0648\u0627\u0642\u0639 \u0634\u062F\u0647\u200C\u0627\u0633\u062A.",
|
|
1085
|
+
"\u0645\u0631\u062F\u0645\u0627\u0646 \u0646\u064E\u0628\u064E\u0637\u06CC \u0627\u0632 \u0647\u0632\u0627\u0631\u0647\u200C\u0647\u0627\u06CC \u06CC\u06A9\u0645 \u0648 \u062F\u0648\u0645 \u067E\u06CC\u0634 \u0627\u0632 \u0645\u06CC\u0644\u0627\u062F \u062F\u0631 \u0627\u06CC\u0646 \u0645\u0646\u0637\u0642\u0647 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0631\u062F\u0646\u062F."
|
|
1086
|
+
]
|
|
1087
|
+
],
|
|
1088
|
+
[
|
|
1089
|
+
"summarization",
|
|
1090
|
+
[
|
|
1091
|
+
[
|
|
1092
|
+
"\u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u062B\u0631 \u062D\u06A9\u06CC\u0645 \u0627\u0628\u0648\u0627\u0644\u0642\u0627\u0633\u0645 \u0641\u0631\u062F\u0648\u0633\u06CC \u062A\u0648\u0633\u06CC\u060C \u062D\u0645\u0627\u0633\u0647\u200C\u0627\u06CC \u0645\u0646\u0638\u0648\u0645\u060C \u0628\u0631 \u062D\u0633\u0628 \u062F\u0633\u062A \u0646\u0648\u0634\u062A\u0647\u200C\u0647\u0627\u06CC ",
|
|
1093
|
+
"\u0645\u0648\u062C\u0648\u062F \u062F\u0631\u0628\u0631\u06AF\u06CC\u0631\u0646\u062F\u0647 \u0646\u0632\u062F\u06CC\u06A9 \u0628\u0647 \u06F5\u06F0\u066C\u06F0\u06F0\u06F0 \u0628\u06CC\u062A \u062A\u0627 \u0646\u0632\u062F\u06CC\u06A9 \u0628\u0647 \u06F6\u06F1\u066C\u06F0\u06F0\u06F0 \u0628\u06CC\u062A \u0648 \u06CC\u06A9\u06CC \u0627\u0632 ",
|
|
1094
|
+
"\u0628\u0632\u0631\u06AF\u200C\u062A\u0631\u06CC\u0646 \u0648 \u0628\u0631\u062C\u0633\u062A\u0647\u200C\u062A\u0631\u06CC\u0646 \u0633\u0631\u0648\u062F\u0647\u200C\u0647\u0627\u06CC \u062D\u0645\u0627\u0633\u06CC \u062C\u0647\u0627\u0646 \u0627\u0633\u062A \u06A9\u0647 \u0633\u0631\u0627\u06CC\u0634 \u0622\u0646 \u062F\u0633\u062A\u200C\u0622\u0648\u0631\u062F\u0650 ",
|
|
1095
|
+
"\u062F\u0633\u062A\u200C\u06A9\u0645 \u0633\u06CC \u0633\u0627\u0644 \u06A9\u0627\u0631\u0650 \u067E\u06CC\u0648\u0633\u062A\u0647\u0654 \u0627\u06CC\u0646 \u0633\u062E\u0646\u200C\u0633\u0631\u0627\u06CC \u0646\u0627\u0645\u062F\u0627\u0631 \u0627\u06CC\u0631\u0627\u0646\u06CC \u0627\u0633\u062A. \u0645\u0648\u0636\u0648\u0639 \u0627\u06CC\u0646 \u0634\u0627\u0647\u06A9\u0627\u0631 \u0627\u062F\u0628\u06CC\u060C",
|
|
1096
|
+
" \u0627\u0641\u0633\u0627\u0646\u0647\u200C\u0647\u0627 \u0648 \u062A\u0627\u0631\u06CC\u062E \u0627\u06CC\u0631\u0627\u0646 \u0627\u0632 \u0622\u063A\u0627\u0632 \u062A\u0627 \u062D\u0645\u0644\u0647\u0654 \u0639\u0631\u0628\u200C\u0647\u0627 \u0628\u0647 \u0627\u06CC\u0631\u0627\u0646 \u062F\u0631 \u0633\u062F\u0647\u0654 \u0647\u0641\u062A\u0645 \u0645\u06CC\u0644\u0627\u062F\u06CC \u0627\u0633\u062A",
|
|
1097
|
+
" (\u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u0632 \u0633\u0647 \u0628\u062E\u0634 \u0627\u0633\u0637\u0648\u0631\u0647\u060C \u067E\u0647\u0644\u0648\u0627\u0646\u06CC \u0648 \u062A\u0627\u0631\u06CC\u062E\u06CC \u062A\u0634\u06A9\u06CC\u0644 \u0634\u062F\u0647\u200C\u0627\u0633\u062A) \u06A9\u0647 \u062F\u0631 \u0686\u0647\u0627\u0631",
|
|
1098
|
+
" \u062F\u0648\u062F\u0645\u0627\u0646 \u067E\u0627\u062F\u0634\u0627\u0647\u06CC\u0650 \u067E\u06CC\u0634\u062F\u0627\u062F\u06CC\u0627\u0646\u060C \u06A9\u06CC\u0627\u0646\u06CC\u0627\u0646\u060C \u0627\u0634\u06A9\u0627\u0646\u06CC\u0627\u0646 \u0648 \u0633\u0627\u0633\u0627\u0646\u06CC\u0627\u0646 \u06AF\u0646\u062C\u0627\u0646\u062F\u0647 \u0645\u06CC\u200C\u0634\u0648\u062F.",
|
|
1099
|
+
" \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0628\u0631 \u0648\u0632\u0646 \xAB\u0641\u064E\u0639\u0648\u0644\u064F\u0646 \u0641\u0639\u0648\u0644\u0646 \u0641\u0639\u0648\u0644\u0646 \u0641\u064E\u0639\u064E\u0644\u0652\xBB\u060C \u062F\u0631 \u0628\u062D\u0631\u0650 \u0645\u064F\u062A\u064E\u0642\u0627\u0631\u0650\u0628\u0650 \u0645\u062B\u0645\u064E\u0651\u0646\u0650 \u0645\u062D\u0630\u0648\u0641 \u0646\u06AF\u0627\u0634\u062A\u0647 \u0634\u062F\u0647\u200C\u0627\u0633\u062A.",
|
|
1100
|
+
"\u0647\u0646\u06AF\u0627\u0645\u06CC \u06A9\u0647 \u0632\u0628\u0627\u0646 \u062F\u0627\u0646\u0634 \u0648 \u0627\u062F\u0628\u06CC\u0627\u062A \u062F\u0631 \u0627\u06CC\u0631\u0627\u0646 \u0632\u0628\u0627\u0646 \u0639\u0631\u0628\u06CC \u0628\u0648\u062F\u060C \u0641\u0631\u062F\u0648\u0633\u06CC\u060C \u0628\u0627 \u0633\u0631\u0648\u062F\u0646 \u0634\u0627\u0647\u0646\u0627\u0645\u0647",
|
|
1101
|
+
" \u0628\u0627 \u0648\u06CC\u0698\u06AF\u06CC\u200C\u0647\u0627\u06CC \u0647\u062F\u0641\u200C\u0645\u0646\u062F\u06CC \u06A9\u0647 \u062F\u0627\u0634\u062A\u060C \u0632\u0628\u0627\u0646 \u067E\u0627\u0631\u0633\u06CC \u0631\u0627 \u0632\u0646\u062F\u0647 \u0648 \u067E\u0627\u06CC\u062F\u0627\u0631 \u06A9\u0631\u062F. \u06CC\u06A9\u06CC \u0627\u0632 ",
|
|
1102
|
+
" \u0628\u0646\u200C\u0645\u0627\u06CC\u0647\u200C\u0647\u0627\u06CC \u0645\u0647\u0645\u06CC \u06A9\u0647 \u0641\u0631\u062F\u0648\u0633\u06CC \u0628\u0631\u0627\u06CC \u0633\u0631\u0648\u062F\u0646 \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u0632 \u0622\u0646 \u0627\u0633\u062A\u0641\u0627\u062F\u0647 \u06A9\u0631\u062F\u060C",
|
|
1103
|
+
" \u0634\u0627\u0647\u0646\u0627\u0645\u0647\u0654 \u0627\u0628\u0648\u0645\u0646\u0635\u0648\u0631\u06CC \u0628\u0648\u062F. \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0646\u0641\u0648\u0630 \u0628\u0633\u06CC\u0627\u0631\u06CC \u062F\u0631 \u062C\u0647\u062A\u200C\u06AF\u06CC\u0631\u06CC ",
|
|
1104
|
+
" \u0641\u0631\u0647\u0646\u06AF \u0641\u0627\u0631\u0633\u06CC \u0648 \u0646\u06CC\u0632 \u0628\u0627\u0632\u062A\u0627\u0628\u200C\u0647\u0627\u06CC \u0634\u06A9\u0648\u0647\u200C\u0645\u0646\u062F\u06CC \u062F\u0631 \u0627\u062F\u0628\u06CC\u0627\u062A \u062C\u0647\u0627\u0646 \u062F\u0627\u0634\u062A\u0647\u200C\u0627\u0633\u062A \u0648 \u0634\u0627\u0639\u0631\u0627\u0646 ",
|
|
1105
|
+
" \u0628\u0632\u0631\u06AF\u06CC \u0645\u0627\u0646\u0646\u062F \u06AF\u0648\u062A\u0647 \u0648 \u0648\u06CC\u06A9\u062A\u0648\u0631 \u0647\u0648\u06AF\u0648 \u0627\u0632 \u0622\u0646 \u0628\u0647 \u0646\u06CC\u06A9\u06CC \u06CC\u0627\u062F \u06A9\u0631\u062F\u0647\u200C\u0627\u0646\u062F."
|
|
1106
|
+
].join("\n")
|
|
1107
|
+
]
|
|
1108
|
+
],
|
|
1109
|
+
["text-generation", ["\u0627\u0633\u0645 \u0645\u0646 \u0646\u0627\u0632\u0646\u06CC\u0646 \u0627\u0633\u062A \u0648 \u0645\u0646", "\u0631\u0648\u0632\u06CC \u0631\u0648\u0632\u06AF\u0627\u0631\u06CC"]],
|
|
1110
|
+
[
|
|
1111
|
+
"fill-mask",
|
|
1112
|
+
[
|
|
1113
|
+
`\u0632\u0646\u062F\u06AF\u06CC \u06CC\u06A9 \u0633\u0648\u0627\u0644 \u0627\u0633\u062A \u0648 \u0627\u06CC\u0646 \u06A9\u0647 \u0686\u06AF\u0648\u0646\u0647 <mask> \u06A9\u0646\u06CC\u0645 \u067E\u0627\u0633\u062E \u0627\u06CC\u0646 \u0633\u0648\u0627\u0644!`,
|
|
1114
|
+
`\u0632\u0646\u062F\u06AF\u06CC \u0627\u0632 \u0645\u0631\u06AF \u067E\u0631\u0633\u06CC\u062F: \u0686\u0631\u0627 \u0647\u0645\u0647 \u0645\u0646 \u0631\u0627 <mask> \u062F\u0627\u0631\u0646\u062F \u0627\u0645\u0627 \u0627\u0632 \u062A\u0648 \u0645\u062A\u0646\u0641\u0631\u0646\u062F\u061F`
|
|
1115
|
+
]
|
|
1116
|
+
]
|
|
1117
|
+
]);
|
|
1118
|
+
var MAPPING_AR = /* @__PURE__ */ new Map([
|
|
1119
|
+
["text-classification", [`\u0623\u062D\u0628\u0643. \u0623\u0647\u0648\u0627\u0643`]],
|
|
1120
|
+
[
|
|
1121
|
+
"token-classification",
|
|
1122
|
+
[`\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u0631\u0644\u064A\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0645\u064A \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0627\u0644\u0642\u062F\u0633 \u0641\u064A \u0641\u0644\u0633\u0637\u064A\u0646.`]
|
|
1123
|
+
],
|
|
1124
|
+
[
|
|
1125
|
+
"question-answering",
|
|
1126
|
+
[
|
|
1127
|
+
{
|
|
1128
|
+
text: `\u0623\u064A\u0646 \u0623\u0633\u0643\u0646\u061F`,
|
|
1129
|
+
context: `\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u064A\u0631\u0648\u062A`
|
|
1130
|
+
},
|
|
1131
|
+
{
|
|
1132
|
+
text: `\u0623\u064A\u0646 \u0623\u0633\u0643\u0646\u061F`,
|
|
1133
|
+
context: `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`
|
|
1134
|
+
},
|
|
1135
|
+
{
|
|
1136
|
+
text: `\u0645\u0627 \u0627\u0633\u0645\u064A\u061F`,
|
|
1137
|
+
context: `\u0627\u0633\u0645\u064A \u0633\u0639\u064A\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u062D\u064A\u0641\u0627.`
|
|
1138
|
+
},
|
|
1139
|
+
{
|
|
1140
|
+
text: `\u0645\u0627 \u0644\u0642\u0628 \u062E\u0627\u0644\u062F \u0628\u0646 \u0627\u0644\u0648\u0644\u064A\u062F \u0628\u0627\u0644\u0639\u0631\u0628\u064A\u0629\u061F`,
|
|
1141
|
+
context: `\u062E\u0627\u0644\u062F \u0628\u0646 \u0627\u0644\u0648\u0644\u064A\u062F \u0645\u0646 \u0623\u0628\u0637\u0627\u0644 \u0648\u0642\u0627\u062F\u0629 \u0627\u0644\u0641\u062A\u062D \u0627\u0644\u0625\u0633\u0644\u0627\u0645\u064A \u0648\u0642\u062F \u062A\u062D\u062F\u062B\u062A \u0639\u0646\u0647 \u0627\u0644\u0644\u063A\u0627\u062A \u0627\u0644\u0625\u0646\u062C\u0644\u064A\u0632\u064A\u0629 \u0648\u0627\u0644\u0641\u0631\u0646\u0633\u064A\u0629 \u0648\u0627\u0644\u0625\u0633\u0628\u0627\u0646\u064A\u0629 \u0648\u0644\u0642\u0628 \u0628\u0633\u064A\u0641 \u0627\u0644\u0644\u0647 \u0627\u0644\u0645\u0633\u0644\u0648\u0644.`
|
|
1142
|
+
}
|
|
1143
|
+
]
|
|
1144
|
+
],
|
|
1145
|
+
["translation", [`\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u0631\u0644\u064A\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`]],
|
|
1146
|
+
[
|
|
1147
|
+
"summarization",
|
|
1148
|
+
[
|
|
1149
|
+
`\u062A\u0642\u0639 \u0627\u0644\u0623\u0647\u0631\u0627\u0645\u0627\u062A \u0641\u064A \u0627\u0644\u062C\u064A\u0632\u0629 \u0642\u0631\u0628 \u0627\u0644\u0642\u0627\u0647\u0631\u0629 \u0641\u064A \u0645\u0635\u0631 \u0648\u0642\u062F \u0628\u0646\u064A\u062A \u0645\u0646\u0630 \u0639\u062F\u0629 \u0642\u0631\u0648\u0646\u060C \u0648\u0642\u064A\u0644 \u0625\u0646\u0647\u0627 \u0643\u0627\u0646\u062A \u0642\u0628\u0648\u0631\u0627 \u0644\u0644\u0641\u0631\u0627\u0639\u0646\u0629 \u0648\u062A\u0645 \u0628\u0646\u0627\u0624\u0647\u0627 \u0628\u0639\u0645\u0644\u064A\u0629 \u0647\u0646\u062F\u0633\u064A\u0629 \u0631\u0627\u0626\u0639\u0629 \u0648\u0627\u0633\u062A\u0642\u062F\u0645\u062A \u062D\u062C\u0627\u0631\u062A\u0647\u0627 \u0645\u0646 \u062C\u0628\u0644 \u0627\u0644\u0645\u0642\u0637\u0645 \u0648\u062A\u0645 \u0646\u0642\u0644\u0647\u0627 \u0628\u0627\u0644\u0633\u0641\u0646 \u0623\u0648 \u0639\u0644\u0649 \u0627\u0644\u0631\u0645\u0644\u060C \u0648\u0645\u0627 \u062A\u0632\u0627\u0644 \u0634\u0627\u0645\u062E\u0629 \u0648\u064A\u0642\u0635\u062F\u0647\u0627 \u0627\u0644\u0633\u064A\u0627\u062D \u0645\u0646 \u0643\u0627\u0641\u0629 \u0623\u0631\u062C\u0627\u0621 \u0627\u0644\u0645\u0639\u0645\u0648\u0631\u0629.`
|
|
1150
|
+
]
|
|
1151
|
+
],
|
|
1152
|
+
[
|
|
1153
|
+
"text-generation",
|
|
1154
|
+
[
|
|
1155
|
+
`\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u062D\u0628 \u0623\u0646`,
|
|
1156
|
+
`\u062F\u0639 \u0627\u0644\u0645\u0643\u0627\u0631\u0645 \u0644\u0627 \u062A\u0631\u062D\u0644 \u0644\u0628\u063A\u064A\u062A\u0647\u0627 - \u0648\u0627\u0642\u0639\u062F \u0641\u0625\u0646\u0643 \u0623\u0646\u062A \u0627\u0644\u0637\u0627\u0639\u0645 \u0627\u0644\u0643\u0627\u0633\u064A.`,
|
|
1157
|
+
`\u0644\u0645\u0627\u0630\u0627 \u0646\u062D\u0646 \u0647\u0646\u0627\u061F`,
|
|
1158
|
+
`\u0627\u0644\u0642\u062F\u0633 \u0645\u062F\u064A\u0646\u0629 \u062A\u0627\u0631\u064A\u062E\u064A\u0629\u060C \u0628\u0646\u0627\u0647\u0627 \u0627\u0644\u0643\u0646\u0639\u0627\u0646\u064A\u0648\u0646 \u0641\u064A`,
|
|
1159
|
+
`\u0643\u0627\u0646 \u064A\u0627 \u0645\u0627 \u0643\u0627\u0646 \u0641\u064A \u0642\u062F\u064A\u0645 \u0627\u0644\u0632\u0645\u0627\u0646`
|
|
1160
|
+
]
|
|
1161
|
+
],
|
|
1162
|
+
["fill-mask", [`\u0628\u0627\u0631\u064A\u0633 <mask> \u0641\u0631\u0646\u0633\u0627.`, `\u0641\u0644\u0633\u0641\u0629 \u0627\u0644\u062D\u064A\u0627\u0629 \u0647\u064A <mask>.`]],
|
|
1163
|
+
[
|
|
1164
|
+
"sentence-similarity",
|
|
1165
|
+
[
|
|
1166
|
+
{
|
|
1167
|
+
source_sentence: "\u0647\u0630\u0627 \u0634\u062E\u0635 \u0633\u0639\u064A\u062F",
|
|
1168
|
+
sentences: ["\u0647\u0630\u0627 \u0643\u0644\u0628 \u0633\u0639\u064A\u062F", "\u0647\u0630\u0627 \u0634\u062E\u0635 \u0633\u0639\u064A\u062F \u062C\u062F\u0627", "\u0627\u0644\u064A\u0648\u0645 \u0647\u0648 \u064A\u0648\u0645 \u0645\u0634\u0645\u0633"]
|
|
1169
|
+
}
|
|
1170
|
+
]
|
|
1171
|
+
]
|
|
1172
|
+
]);
|
|
1173
|
+
var MAPPING_BN = /* @__PURE__ */ new Map([
|
|
1174
|
+
["text-classification", [`\u09AC\u09BE\u0999\u09BE\u09B2\u09BF\u09B0 \u0998\u09B0\u09C7 \u0998\u09B0\u09C7 \u0986\u099C \u09A8\u09AC\u09BE\u09A8\u09CD\u09A8 \u0989\u09CE\u09B8\u09AC\u0964`]],
|
|
1175
|
+
[
|
|
1176
|
+
"token-classification",
|
|
1177
|
+
[`\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u099C\u09BE\u09B9\u09BF\u09A6 \u098F\u09AC\u0982 \u0986\u09AE\u09BF \u09A2\u09BE\u0995\u09BE\u09DF \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`, `\u09A4\u09BF\u09A8\u09BF \u0997\u09C1\u0997\u09B2\u09C7 \u099A\u09BE\u0995\u09B0\u09C0 \u0995\u09B0\u09C7\u09A8\u0964`, `\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B8\u09C1\u09B8\u09CD\u09AE\u09BF\u09A4\u09BE \u098F\u09AC\u0982 \u0986\u09AE\u09BF \u0995\u09B2\u0995\u09BE\u09A4\u09BE\u09DF \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`]
|
|
1178
|
+
],
|
|
1179
|
+
["translation", [`\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u099C\u09BE\u09B9\u09BF\u09A6, \u0986\u09AE\u09BF \u09B0\u0982\u09AA\u09C1\u09B0\u09C7 \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`, `\u0986\u09AA\u09A8\u09BF \u0995\u09C0 \u0986\u099C\u0995\u09C7 \u09AC\u09BE\u09B8\u09BE\u09DF \u0986\u09B8\u09AC\u09C7\u09A8?`]],
|
|
1180
|
+
[
|
|
1181
|
+
"summarization",
|
|
1182
|
+
[
|
|
1183
|
+
`\u2018\u0987\u0995\u09CB\u09A8\u09AE\u09BF\u09B8\u09CD\u099F\u2019 \u09B2\u09BF\u0996\u09C7\u099B\u09C7, \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u099A\u09BE\u09B0 \u09AE\u09BE\u09B8 \u09B8\u09CD\u09A5\u09BE\u09DF\u09C0 \u09B9\u0993\u09DF\u09BE\u09B0 \u0996\u09AC\u09B0\u099F\u09BF \u09A6\u09C1\u0987 \u0995\u09BE\u09B0\u09A3\u09C7 \u0986\u09A8\u09A8\u09CD\u09A6\u09C7\u09B0\u0964 \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF \u09AF\u09A4 \u09A6\u09BF\u09A8 \u09AA\u09B0\u09CD\u09AF\u09A8\u09CD\u09A4 \u09B6\u09B0\u09C0\u09B0\u09C7 \u099F\u09BF\u0995\u09AC\u09C7, \u09A4\u09A4 \u09A6\u09BF\u09A8 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3 \u09A5\u09C7\u0995\u09C7 \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BF\u09A4 \u09A5\u09BE\u0995\u09BE \u09B8\u09AE\u09CD\u09AD\u09AC\u0964 \u0985\u09B0\u09CD\u09A5\u09BE\u09CE, \u098F\u09AE\u09A8 \u098F\u0995 \u099F\u09BF\u0995\u09BE\u09B0 \u09AA\u09CD\u09B0\u09DF\u09CB\u099C\u09A8 \u09B9\u09AC\u09C7, \u09AF\u09BE \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u0989\u09A4\u09CD\u09AA\u09BE\u09A6\u09A8\u0995\u09C7 \u09AA\u09CD\u09B0\u09B0\u09CB\u099A\u09BF\u09A4 \u0995\u09B0\u09A4\u09C7 \u09AA\u09BE\u09B0\u09C7 \u098F\u09AC\u0982 \u09A6\u09C0\u09B0\u09CD\u0998\u09B8\u09CD\u09A5\u09BE\u09DF\u09C0 \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BE \u09A6\u09BF\u09A4\u09C7 \u09AA\u09BE\u09B0\u09C7\u0964 \u098F\u0997\u09C1\u09B2\u09CB \u0996\u09C1\u0981\u099C\u09C7 \u09AC\u09C7\u09B0 \u0995\u09B0\u09BE\u0993 \u09B8\u09B9\u099C\u0964 \u098F\u099F\u09BF \u0986\u09AD\u09BE\u09B8 \u09A6\u09C7\u09DF, \u09AC\u09CD\u09AF\u09BE\u09AA\u0995 \u09B9\u09BE\u09B0\u09C7 \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3 \u09AB\u09B2\u09BE\u09AB\u09B2 \u09AE\u09CB\u099F\u09BE\u09AE\u09C1\u099F\u09BF \u09A8\u09BF\u09B0\u09CD\u09AD\u09C1\u09B2 \u09B9\u0993\u09DF\u09BE \u0989\u099A\u09BF\u09A4\u0964 \u09A6\u09CD\u09AC\u09BF\u09A4\u09C0\u09DF \u0986\u09B0\u09C7\u0995\u099F\u09BF \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B0 \u09A8\u09C7\u09A4\u09C3\u09A4\u09CD\u09AC \u09A6\u09BF\u09DF\u09C7\u099B\u09C7\u09A8 \u09AF\u09C1\u0995\u09CD\u09A4\u09B0\u09BE\u099C\u09CD\u09AF\u09C7\u09B0 \u09AE\u09C7\u09A1\u09BF\u0995\u09C7\u09B2 \u09B0\u09BF\u09B8\u09BE\u09B0\u09CD\u099A \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2\u09C7\u09B0 (\u098F\u09AE\u0986\u09B0\u09B8\u09BF) \u0987\u09AE\u09BF\u0989\u09A8\u09CB\u09B2\u099C\u09BF\u09B8\u09CD\u099F \u09A4\u09BE\u0993 \u09A6\u0982\u0964 \u09A4\u09BF\u09A8\u09BF \u099F\u09BF-\u09B8\u09C7\u09B2 \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3\u09C7 \u0995\u09BE\u099C \u0995\u09B0\u09C7\u099B\u09C7\u09A8\u0964 \u099F\u09BF-\u09B8\u09C7\u09B2 \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3\u09C7\u09B0 \u09AA\u09CD\u09B0\u0995\u09CD\u09B0\u09BF\u09DF\u09BE \u0985\u09AC\u09B6\u09CD\u09AF \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u09AE\u09A4\u09CB \u098F\u09A4 \u0986\u09B2\u09CB\u099A\u09BF\u09A4 \u09A8\u09DF\u0964 \u09A4\u09AC\u09C7 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3\u09C7\u09B0 \u09AC\u09BF\u09B0\u09C1\u09A6\u09CD\u09A7\u09C7 \u09B2\u09DC\u09BE\u0987 \u098F\u09AC\u0982 \u09A6\u09C0\u09B0\u09CD\u0998\u09AE\u09C7\u09DF\u09BE\u09A6\u09BF \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BE\u09DF \u09B8\u09AE\u09BE\u09A8 \u0997\u09C1\u09B0\u09C1\u09A4\u09CD\u09AC\u09AA\u09C2\u09B0\u09CD\u09A3 \u09AD\u09C2\u09AE\u09BF\u0995\u09BE \u09AA\u09BE\u09B2\u09A8 \u0995\u09B0\u09C7\u0964 \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B8\u0982\u0995\u09CD\u09B0\u09BE\u09A8\u09CD\u09A4 \u09A8\u09BF\u09AC\u09A8\u09CD\u09A7 \u09AA\u09CD\u09B0\u0995\u09BE\u09B6\u09BF\u09A4 \u09B9\u09DF\u09C7\u099B\u09C7 \u2018\u09A8\u09C7\u099A\u09BE\u09B0 \u0987\u09AE\u09BF\u0989\u09A8\u09CB\u09B2\u099C\u09BF\u2019 \u09B8\u09BE\u09AE\u09DF\u09BF\u0995\u09C0\u09A4\u09C7\u0964 \u09A4\u09BE\u0981\u09B0\u09BE \u09AC\u09B2\u099B\u09C7\u09A8, \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u0995\u09CB\u09AD\u09BF\u09A1-\u09E7\u09EF \u09AE\u09C3\u09A6\u09C1 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3\u09C7\u09B0 \u09B6\u09BF\u0995\u09BE\u09B0 \u09E8\u09EE \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09B0 \u09B0\u0995\u09CD\u09A4\u09C7\u09B0 \u09A8\u09AE\u09C1\u09A8\u09BE, \u09E7\u09EA \u099C\u09A8 \u0997\u09C1\u09B0\u09C1\u09A4\u09B0 \u0985\u09B8\u09C1\u09B8\u09CD\u09A5 \u0993 \u09E7\u09EC \u099C\u09A8 \u09B8\u09C1\u09B8\u09CD\u09A5 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09B0 \u09B0\u0995\u09CD\u09A4\u09C7\u09B0 \u09A8\u09AE\u09C1\u09A8\u09BE \u09AA\u09B0\u09C0\u0995\u09CD\u09B7\u09BE \u0995\u09B0\u09C7\u099B\u09C7\u09A8\u0964 \u0997\u09AC\u09C7\u09B7\u09A3\u09BE \u09A8\u09BF\u09AC\u09A8\u09CD\u09A7\u09C7 \u09AC\u09B2\u09BE \u09B9\u09DF, \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09BF\u09A4 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09A6\u09C7\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u099F\u09BF-\u09B8\u09C7\u09B2\u09C7\u09B0 \u09A4\u09C0\u09AC\u09CD\u09B0 \u09AA\u09CD\u09B0\u09A4\u09BF\u0995\u09CD\u09B0\u09BF\u09DF\u09BE \u09A4\u09BE\u0981\u09B0\u09BE \u09A6\u09C7\u0996\u09C7\u099B\u09C7\u09A8\u0964 \u098F \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u09AE\u09C3\u09A6\u09C1 \u0993 \u0997\u09C1\u09B0\u09C1\u09A4\u09B0 \u0985\u09B8\u09C1\u09B8\u09CD\u09A5 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09A6\u09C7\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u09AA\u09CD\u09B0\u09A4\u09BF\u0995\u09CD\u09B0\u09BF\u09DF\u09BE\u09B0 \u09AD\u09BF\u09A8\u09CD\u09A8\u09A4\u09BE \u09AA\u09BE\u0993\u09DF\u09BE \u0997\u09C7\u099B\u09C7\u0964`
|
|
1184
|
+
]
|
|
1185
|
+
],
|
|
1186
|
+
["text-generation", [`\u0986\u09AE\u09BF \u09B0\u09A4\u09A8 \u098F\u09AC\u0982 \u0986\u09AE\u09BF`, `\u09A4\u09C1\u09AE\u09BF \u09AF\u09A6\u09BF \u099A\u09BE\u0993 \u09A4\u09AC\u09C7`, `\u09AE\u09BF\u09A5\u09BF\u09B2\u09BE \u0986\u099C\u0995\u09C7 \u09AC\u09A1\u09CD\u09A1`]],
|
|
1187
|
+
["fill-mask", [`\u0986\u09AE\u09BF \u09AC\u09BE\u0982\u09B2\u09BE\u09DF <mask> \u0997\u09BE\u0987\u0964`, `\u0986\u09AE\u09BF <mask> \u0996\u09C1\u09AC \u09AD\u09BE\u09B2\u09CB\u09AC\u09BE\u09B8\u09BF\u0964 `]],
|
|
1188
|
+
[
|
|
1189
|
+
"question-answering",
|
|
1190
|
+
[
|
|
1191
|
+
{
|
|
1192
|
+
text: `\u09AA\u09CD\u09B0\u09A5\u09AE \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0995\u09CB\u09A5\u09BE\u09DF \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09DF ?`,
|
|
1193
|
+
context: `\u09AA\u09CD\u09B0\u09A5\u09AE \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AF\u09BC \u09E7\u09EF\u09EE\u09EA \u09B8\u09BE\u09B2\u09C7 \u09B8\u0982\u09AF\u09C1\u0995\u09CD\u09A4 \u0986\u09B0\u09AC \u0986\u09AE\u09BF\u09B0\u09BE\u09A4 \u098F\u09B0 \u09B6\u09BE\u09B0\u099C\u09BE\u09B9 \u09A4\u09C7 \u09AF\u09C7\u0996\u09BE\u09A8\u09C7 \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2\u09C7\u09B0 \u09AE\u09C2\u09B2 \u0985\u09AB\u09BF\u09B8 \u099B\u09BF\u09B2 (\u09E7\u09EF\u09EF\u09EB \u09AA\u09B0\u09CD\u09AF\u09A8\u09CD\u09A4)\u0964 \u09AD\u09BE\u09B0\u09A4 \u09B6\u09CD\u09B0\u09C0\u09B2\u0999\u09CD\u0995\u09BE\u09B0 \u09B8\u09BE\u09A5\u09C7 \u0986\u09A8\u09CD\u09A4\u09B0\u09BF\u0995\u09A4\u09BE\u09B9\u09C0\u09A8 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u09B8\u09AE\u09CD\u09AA\u09B0\u09CD\u0995\u09C7\u09B0 \u0995\u09BE\u09B0\u09A3\u09C7 \u09E7\u09EF\u09EE\u09EC \u09B8\u09BE\u09B2\u09C7\u09B0 \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u09AC\u09B0\u09CD\u099C\u09A8 \u0995\u09B0\u09C7\u0964 \u09E7\u09EF\u09EF\u09E9 \u09B8\u09BE\u09B2\u09C7 \u09AD\u09BE\u09B0\u09A4 \u0993 \u09AA\u09BE\u0995\u09BF\u09B8\u09CD\u09A4\u09BE\u09A8 \u098F\u09B0 \u09AE\u09A7\u09CD\u09AF\u09C7 \u09B0\u09BE\u099C\u09A8\u09C8\u09A4\u09BF\u0995 \u0985\u09B8\u09CD\u09A5\u09BF\u09B0\u09A4\u09BE\u09B0 \u0995\u09BE\u09B0\u09A3\u09C7 \u098F\u099F\u09BF \u09AC\u09BE\u09A4\u09BF\u09B2 \u09B9\u09AF\u09BC\u09C7 \u09AF\u09BE\u09AF\u09BC\u0964 \u09B6\u09CD\u09B0\u09C0\u09B2\u0999\u09CD\u0995\u09BE \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA \u09B6\u09C1\u09B0\u09C1 \u09A5\u09C7\u0995\u09C7 \u0985\u0982\u09B6 \u0997\u09CD\u09B0\u09B9\u09A3 \u0995\u09B0\u09C7 \u0986\u09B8\u099B\u09C7\u0964 \u0986\u09A8\u09CD\u09A4\u09B0\u09CD\u099C\u09BE\u09A4\u09BF\u0995 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2 \u09A8\u09BF\u09AF\u09BC\u09AE \u0995\u09B0\u09C7 \u09A6\u09BF\u09AF\u09BC\u09C7\u099B\u09C7 \u09AF\u09C7 \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA\u09C7\u09B0 \u09B8\u0995\u09B2 \u0996\u09C7\u09B2\u09BE \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AC\u09C7 \u0985\u09AB\u09BF\u09B8\u09BF\u09AF\u09BC\u09BE\u09B2 \u098F\u0995\u09A6\u09BF\u09A8\u09C7\u09B0 \u0986\u09A8\u09CD\u09A4\u09B0\u09CD\u099C\u09BE\u09A4\u09BF\u0995 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u09B9\u09BF\u09B8\u09C7\u09AC\u09C7\u0964 \u098F\u09B8\u09BF\u09B8\u09BF \u0998\u09CB\u09B7\u09A8\u09BE \u0985\u09A8\u09C1\u09AF\u09BE\u09AF\u09BC\u09C0 \u09AA\u09CD\u09B0\u09A4\u09BF \u09A6\u09C1\u0987 \u09AC\u099B\u09B0 \u09AA\u09B0 \u09AA\u09B0 \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AF\u09BC \u09E8\u09E6\u09E6\u09EE \u09B8\u09BE\u09B2 \u09A5\u09C7\u0995\u09C7\u0964`
|
|
1194
|
+
},
|
|
1195
|
+
{
|
|
1196
|
+
text: `\u09AD\u09BE\u09B0\u09A4\u09C0\u09AF\u09BC \u09AC\u09BE\u0999\u09BE\u09B2\u09BF \u0995\u09A5\u09BE\u09B8\u09BE\u09B9\u09BF\u09A4\u09CD\u09AF\u09BF\u0995 \u09AE\u09B9\u09BE\u09B6\u09CD\u09AC\u09C7\u09A4\u09BE \u09A6\u09C7\u09AC\u09C0\u09B0 \u09AE\u09C3\u09A4\u09CD\u09AF\u09C1 \u0995\u09AC\u09C7 \u09B9\u09DF ?`,
|
|
1197
|
+
context: `\u09E8\u09E6\u09E7\u09EC \u09B8\u09BE\u09B2\u09C7\u09B0 \u09E8\u09E9 \u099C\u09C1\u09B2\u09BE\u0987 \u09B9\u09C3\u09A6\u09B0\u09CB\u0997\u09C7 \u0986\u0995\u09CD\u09B0\u09BE\u09A8\u09CD\u09A4 \u09B9\u09AF\u09BC\u09C7 \u09AE\u09B9\u09BE\u09B6\u09CD\u09AC\u09C7\u09A4\u09BE \u09A6\u09C7\u09AC\u09C0 \u0995\u09B2\u0995\u09BE\u09A4\u09BE\u09B0 \u09AC\u09C7\u09B2 \u09AD\u09BF\u0989 \u0995\u09CD\u09B2\u09BF\u09A8\u09BF\u0995\u09C7 \u09AD\u09B0\u09CD\u09A4\u09BF \u09B9\u09A8\u0964 \u09B8\u09C7\u0987 \u09AC\u099B\u09B0\u0987 \u09E8\u09EE \u099C\u09C1\u09B2\u09BE\u0987 \u098F\u0995\u09BE\u09A7\u09BF\u0995 \u0985\u0999\u09CD\u0997 \u09AC\u09BF\u0995\u09B2 \u09B9\u09AF\u09BC\u09C7 \u09A4\u09BE\u0981\u09B0 \u09AE\u09C3\u09A4\u09CD\u09AF\u09C1 \u0998\u099F\u09C7\u0964 \u09A4\u09BF\u09A8\u09BF \u09AE\u09A7\u09C1\u09AE\u09C7\u09B9, \u09B8\u09C7\u09AA\u09CD\u099F\u09BF\u09B8\u09C7\u09AE\u09BF\u09AF\u09BC\u09BE \u0993 \u09AE\u09C2\u09A4\u09CD\u09B0 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3 \u09B0\u09CB\u0997\u09C7\u0993 \u09AD\u09C1\u0997\u099B\u09BF\u09B2\u09C7\u09A8\u0964`
|
|
1198
|
+
},
|
|
1199
|
+
{
|
|
1200
|
+
text: `\u09AE\u09BE\u09B8\u09CD\u099F\u09BE\u09B0\u09A6\u09BE \u09B8\u09C2\u09B0\u09CD\u09AF\u0995\u09C1\u09AE\u09BE\u09B0 \u09B8\u09C7\u09A8\u09C7\u09B0 \u09AC\u09BE\u09AC\u09BE\u09B0 \u09A8\u09BE\u09AE \u0995\u09C0 \u099B\u09BF\u09B2 ?`,
|
|
1201
|
+
context: `\u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u09E7\u09EE\u09EF\u09EA \u09B8\u09BE\u09B2\u09C7\u09B0 \u09E8\u09E8 \u09AE\u09BE\u09B0\u09CD\u099A \u099A\u099F\u09CD\u099F\u0997\u09CD\u09B0\u09BE\u09AE\u09C7\u09B0 \u09B0\u09BE\u0989\u099C\u09BE\u09A8 \u09A5\u09BE\u09A8\u09BE\u09B0 \u09A8\u09CB\u09AF\u09BC\u09BE\u09AA\u09BE\u09A1\u09BC\u09BE\u09AF\u09BC \u0985\u09B0\u09CD\u09A5\u09A8\u09C8\u09A4\u09BF\u0995 \u09AD\u09BE\u09AC\u09C7 \u0985\u09B8\u09CD\u09AC\u099A\u09CD\u099B\u09B2 \u09AA\u09B0\u09BF\u09AC\u09BE\u09B0\u09C7 \u099C\u09A8\u09CD\u09AE\u0997\u09CD\u09B0\u09B9\u09A3 \u0995\u09B0\u09C7\u09A8\u0964 \u09A4\u09BE\u0981\u09B0 \u09AA\u09BF\u09A4\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B0\u09BE\u099C\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8 \u098F\u09AC\u0982 \u09AE\u09BE\u09A4\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B6\u09B6\u09C0 \u09AC\u09BE\u09B2\u09BE \u09B8\u09C7\u09A8\u0964 \u09B0\u09BE\u099C\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8\u09C7\u09B0 \u09A6\u09C1\u0987 \u099B\u09C7\u09B2\u09C7 \u0986\u09B0 \u099A\u09BE\u09B0 \u09AE\u09C7\u09AF\u09BC\u09C7\u0964 \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u09A4\u09BE\u0981\u09A6\u09C7\u09B0 \u09AA\u09B0\u09BF\u09AC\u09BE\u09B0\u09C7\u09B0 \u099A\u09A4\u09C1\u09B0\u09CD\u09A5 \u09B8\u09A8\u09CD\u09A4\u09BE\u09A8\u0964 \u09A6\u09C1\u0987 \u099B\u09C7\u09B2\u09C7\u09B0 \u09A8\u09BE\u09AE \u09B8\u09C2\u09B0\u09CD\u09AF \u0993 \u0995\u09AE\u09B2\u0964 \u099A\u09BE\u09B0 \u09AE\u09C7\u09AF\u09BC\u09C7\u09B0 \u09A8\u09BE\u09AE \u09AC\u09B0\u09A6\u09BE\u09B8\u09C1\u09A8\u09CD\u09A6\u09B0\u09C0, \u09B8\u09BE\u09AC\u09BF\u09A4\u09CD\u09B0\u09C0, \u09AD\u09BE\u09A8\u09C1\u09AE\u09A4\u09C0 \u0993 \u09AA\u09CD\u09B0\u09AE\u09BF\u09B2\u09BE\u0964 \u09B6\u09C8\u09B6\u09AC\u09C7 \u09AA\u09BF\u09A4\u09BE \u09AE\u09BE\u09A4\u09BE\u0995\u09C7 \u09B9\u09BE\u09B0\u09BE\u09A8\u09CB \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u0995\u09BE\u0995\u09BE \u0997\u09CC\u09B0\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8\u09C7\u09B0 \u0995\u09BE\u099B\u09C7 \u09AE\u09BE\u09A8\u09C1\u09B7 \u09B9\u09AF\u09BC\u09C7\u099B\u09C7\u09A8\u0964 \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u099B\u09C7\u09B2\u09C7\u09AC\u09C7\u09B2\u09BE \u09A5\u09C7\u0995\u09C7\u0987 \u0996\u09C1\u09AC \u09AE\u09A8\u09CB\u09AF\u09CB\u0997\u09C0 \u09AD\u09BE\u09B2 \u099B\u09BE\u09A4\u09CD\u09B0 \u099B\u09BF\u09B2\u09C7\u09A8 \u098F\u09AC\u0982 \u09A7\u09B0\u09CD\u09AE\u09AD\u09BE\u09AC\u09BE\u09AA\u09A8\u09CD\u09A8 \u0997\u09AE\u09CD\u09AD\u09C0\u09B0 \u09AA\u09CD\u09B0\u0995\u09C3\u09A4\u09BF\u09B0 \u099B\u09BF\u09B2\u09C7\u09A8\u0964`
|
|
1202
|
+
}
|
|
1203
|
+
]
|
|
1204
|
+
],
|
|
1205
|
+
[
|
|
1206
|
+
"sentence-similarity",
|
|
1207
|
+
[
|
|
1208
|
+
{
|
|
1209
|
+
source_sentence: "\u09B8\u09C7 \u098F\u0995\u099C\u09A8 \u09B8\u09C1\u0996\u09C0 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF",
|
|
1210
|
+
sentences: ["\u09B8\u09C7 \u09B9\u09CD\u09AF\u09BE\u09AA\u09BF \u0995\u09C1\u0995\u09C1\u09B0", "\u09B8\u09C7 \u0996\u09C1\u09AC \u09B8\u09C1\u0996\u09C0 \u09AE\u09BE\u09A8\u09C1\u09B7", "\u0986\u099C \u098F\u0995\u099F\u09BF \u09B0\u09CC\u09A6\u09CD\u09B0\u09CB\u099C\u09CD\u099C\u09CD\u09AC\u09B2 \u09A6\u09BF\u09A8"]
|
|
1211
|
+
}
|
|
1212
|
+
]
|
|
1213
|
+
]
|
|
1214
|
+
]);
|
|
1215
|
+
var MAPPING_MN = /* @__PURE__ */ new Map([
|
|
1216
|
+
["text-classification", [`\u0411\u0438 \u0447\u0430\u043C\u0434 \u0445\u0430\u0439\u0440\u0442\u0430\u0439`]],
|
|
1217
|
+
[
|
|
1218
|
+
"token-classification",
|
|
1219
|
+
[
|
|
1220
|
+
`\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`,
|
|
1221
|
+
`\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`,
|
|
1222
|
+
`\u041C\u0430\u043D\u0430\u0439 \u0443\u043B\u0441 \u0442\u0430\u0432\u0430\u043D \u0445\u043E\u0448\u0443\u0443 \u043C\u0430\u043B\u0442\u0430\u0439.`
|
|
1223
|
+
]
|
|
1224
|
+
],
|
|
1225
|
+
[
|
|
1226
|
+
"question-answering",
|
|
1227
|
+
[
|
|
1228
|
+
{
|
|
1229
|
+
text: `\u0422\u0430 \u0445\u0430\u0430\u043D\u0430 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433 \u0432\u044D?`,
|
|
1230
|
+
context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`
|
|
1231
|
+
},
|
|
1232
|
+
{
|
|
1233
|
+
text: `\u0422\u0430\u043D\u044B\u0433 \u0445\u044D\u043D \u0433\u044D\u0434\u044D\u0433 \u0432\u044D?`,
|
|
1234
|
+
context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`
|
|
1235
|
+
},
|
|
1236
|
+
{
|
|
1237
|
+
text: `\u041C\u0438\u043D\u0438\u0439 \u043D\u044D\u0440\u0438\u0439\u0433 \u0445\u044D\u043D \u0433\u044D\u0434\u044D\u0433 \u0432\u044D?`,
|
|
1238
|
+
context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`
|
|
1239
|
+
}
|
|
1240
|
+
]
|
|
1241
|
+
],
|
|
1242
|
+
["translation", [`\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`, `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`]],
|
|
1243
|
+
[
|
|
1244
|
+
"summarization",
|
|
1245
|
+
[
|
|
1246
|
+
`\u041C\u043E\u043D\u0433\u043E\u043B \u0423\u043B\u0441 (1992 \u043E\u043D\u043E\u043E\u0441 \u0445\u043E\u0439\u0448) \u2014 \u0434\u043E\u0440\u043D\u043E \u0431\u043E\u043B\u043E\u043D \u0442\u04E9\u0432 \u0410\u0437\u0438\u0434 \u043E\u0440\u0448\u0434\u043E\u0433 \u0431\u04AF\u0440\u044D\u043D \u044D\u0440\u0445\u0442 \u0443\u043B\u0441. \u0425\u043E\u0439\u0434 \u0442\u0430\u043B\u0430\u0430\u0440\u0430\u0430 \u041E\u0440\u043E\u0441, \u0431\u0443\u0441\u0430\u0434 \u0442\u0430\u043B\u0430\u0430\u0440\u0430\u0430 \u0425\u044F\u0442\u0430\u0434 \u0443\u043B\u0441\u0442\u0430\u0439 \u0445\u0438\u043B\u043B\u044D\u0434\u044D\u0433 \u0434\u0430\u043B\u0430\u0439\u0434 \u0433\u0430\u0440\u0446\u0433\u04AF\u0439 \u043E\u0440\u043E\u043D. \u041D\u0438\u0439\u0441\u043B\u044D\u043B \u2014 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440 \u0445\u043E\u0442. \u0410\u043B\u0442\u0430\u0439\u043D \u043D\u0443\u0440\u0443\u0443\u043D\u0430\u0430\u0441 \u0425\u044F\u043D\u0433\u0430\u043D, \u0421\u043E\u0451\u043D\u043E\u043E\u0441 \u0413\u043E\u0432\u044C \u0445\u04AF\u0440\u0441\u044D\u043D 1 \u0441\u0430\u044F 566 \u043C\u044F\u043D\u0433\u0430\u043D \u043A\u043C2 \u0443\u0443\u0434\u0430\u043C \u043D\u0443\u0442\u0430\u0433\u0442\u0430\u0439, \u0434\u044D\u043B\u0445\u0438\u0439\u0434 \u043D\u0443\u0442\u0430\u0433 \u0434\u044D\u0432\u0441\u0433\u044D\u0440\u0438\u0439\u043D \u0445\u044D\u043C\u0436\u044D\u044D\u0433\u044D\u044D\u0440 19-\u0440\u0442 \u0436\u0430\u0433\u0441\u0434\u0430\u0433. 2015 \u043E\u043D\u044B \u044D\u0445\u044D\u043D\u0434 \u041C\u043E\u043D\u0433\u043E\u043B \u0423\u043B\u0441\u044B\u043D \u0445\u04AF\u043D \u0430\u043C 3 \u0441\u0430\u044F \u0445\u04AF\u0440\u0441\u044D\u043D (135-\u0440 \u043E\u043B\u043E\u043D). \u04AE\u043D\u0434\u0441\u044D\u043D\u0434\u044D\u044D \u043C\u043E\u043D\u0433\u043E\u043B \u04AF\u043D\u0434\u044D\u0441\u0442\u044D\u043D (95 \u0445\u0443\u0432\u044C), \u043C\u04E9\u043D \u0445\u0430\u0441\u0430\u0433, \u0442\u0443\u0432\u0430 \u0445\u04AF\u043D \u0431\u0430\u0439\u043D\u0430. 16-\u0440 \u0437\u0443\u0443\u043D\u0430\u0430\u0441 \u0445\u043E\u0439\u0448 \u0431\u0443\u0434\u0434\u044B\u043D \u0448\u0430\u0448\u0438\u043D, 20-\u0440 \u0437\u0443\u0443\u043D\u0430\u0430\u0441 \u0448\u0430\u0448\u0438\u043D\u0433\u04AF\u0439 \u0431\u0430\u0439\u0434\u0430\u043B \u0434\u044D\u043B\u0433\u044D\u0440\u0441\u044D\u043D \u0431\u0430 \u0430\u043B\u0431\u0430\u043D \u0445\u044D\u0440\u044D\u0433\u0442 \u043C\u043E\u043D\u0433\u043E\u043B \u0445\u044D\u043B\u044D\u044D\u0440 \u0445\u0430\u0440\u0438\u043B\u0446\u0430\u043D\u0430.`
|
|
1247
|
+
]
|
|
1248
|
+
],
|
|
1249
|
+
[
|
|
1250
|
+
"text-generation",
|
|
1251
|
+
[`\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438`, `\u0425\u0430\u043C\u0433\u0438\u0439\u043D \u0441\u0430\u0439\u043D \u0434\u0443\u0443\u0447\u0438\u043D \u0431\u043E\u043B`, `\u041C\u0438\u043D\u0438\u0439 \u0434\u0443\u0440\u0442\u0430\u0439 \u0445\u0430\u043C\u0442\u043B\u0430\u0433 \u0431\u043E\u043B`, `\u042D\u0440\u0442 \u0443\u0440\u044C\u0434\u044B\u043D \u0446\u0430\u0433\u0442`]
|
|
1252
|
+
],
|
|
1253
|
+
["fill-mask", [`\u041C\u043E\u043D\u0433\u043E\u043B \u0443\u043B\u0441\u044B\u043D <mask> \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440 \u0445\u043E\u0442\u043E\u043E\u0441 \u044F\u0440\u044C\u0436 \u0431\u0430\u0439\u043D\u0430.`, `\u041C\u0438\u043D\u0438\u0439 \u0430\u043C\u044C\u0434\u0440\u0430\u043B\u044B\u043D \u0437\u043E\u0440\u0438\u043B\u0433\u043E \u0431\u043E\u043B <mask>.`]],
|
|
1254
|
+
[
|
|
1255
|
+
"automatic-speech-recognition",
|
|
1256
|
+
[
|
|
1257
|
+
{
|
|
1258
|
+
label: `Common Voice Train Example`,
|
|
1259
|
+
src: `https://cdn-media.huggingface.co/common_voice/train/common_voice_mn_18577472.wav`
|
|
1260
|
+
},
|
|
1261
|
+
{
|
|
1262
|
+
label: `Common Voice Test Example`,
|
|
1263
|
+
src: `https://cdn-media.huggingface.co/common_voice/test/common_voice_mn_18577346.wav`
|
|
1264
|
+
}
|
|
1265
|
+
]
|
|
1266
|
+
],
|
|
1267
|
+
[
|
|
1268
|
+
"text-to-speech",
|
|
1269
|
+
[
|
|
1270
|
+
`\u0411\u0438 \u041C\u043E\u043D\u0433\u043E\u043B \u0443\u043B\u0441\u044B\u043D \u0438\u0440\u0433\u044D\u043D.`,
|
|
1271
|
+
`\u042D\u043D\u044D\u0445\u04AF\u04AF \u0436\u0438\u0448\u044D\u044D \u043D\u044C \u0446\u0430\u0430\u043D\u0430\u0430 \u044F\u043C\u0430\u0440 \u0447 \u0443\u0442\u0433\u0430 \u0430\u0433\u0443\u0443\u043B\u0430\u0430\u0433\u04AF\u0439 \u0431\u043E\u043B\u043D\u043E`,
|
|
1272
|
+
`\u0421\u0430\u0440 \u0448\u0438\u043D\u044D\u0434\u044D\u044D \u0441\u0430\u0439\u0445\u0430\u043D \u0448\u0438\u043D\u044D\u043B\u044D\u0436 \u0431\u0430\u0439\u043D\u0430 \u0443\u0443?`
|
|
1273
|
+
]
|
|
1274
|
+
],
|
|
1275
|
+
[
|
|
1276
|
+
"sentence-similarity",
|
|
1277
|
+
[
|
|
1278
|
+
{
|
|
1279
|
+
source_sentence: "\u042D\u043D\u044D \u0431\u043E\u043B \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u0445\u04AF\u043D \u044E\u043C",
|
|
1280
|
+
sentences: ["\u042D\u043D\u044D \u0431\u043E\u043B \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u043D\u043E\u0445\u043E\u0439 \u044E\u043C", "\u042D\u043D\u044D \u0431\u043E\u043B \u043C\u0430\u0448 \u0438\u0445 \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u0445\u04AF\u043D \u044E\u043C", "\u04E8\u043D\u04E9\u04E9\u0434\u04E9\u0440 \u043D\u0430\u0440\u043B\u0430\u0433 \u04E9\u0434\u04E9\u0440 \u0431\u0430\u0439\u043D\u0430"]
|
|
1281
|
+
}
|
|
1282
|
+
]
|
|
1283
|
+
]
|
|
1284
|
+
]);
|
|
1285
|
+
var MAPPING_SI = /* @__PURE__ */ new Map([
|
|
1286
|
+
["translation", [`\u0DC3\u0DD2\u0D82\u0DC4\u0DBD \u0D89\u0DAD\u0DCF \u0D85\u0DBD\u0D82\u0D9A\u0DCF\u0DBB \u0DB7\u0DCF\u0DC2\u0DCF\u0DC0\u0D9A\u0DD2.`, `\u0DB8\u0DD9\u0DB8 \u0DAD\u0DCF\u0D9A\u0DCA\u0DC2\u0DAB\u0DBA \u0DB7\u0DCF\u0DC0\u0DD2\u0DAD\u0DCF \u0D9A\u0DBB\u0DB1 \u0D94\u0DB6\u0DA7 \u0DC3\u0DCA\u0DAD\u0DD6\u0DAD\u0DD2\u0DBA\u0DD2.`]],
|
|
1287
|
+
["fill-mask", [`\u0DB8\u0DB8 \u0D9C\u0DD9\u0DAF\u0DBB <mask>.`, `<mask> \u0D89\u0D9C\u0DD9\u0DB1\u0DD3\u0DB8\u0DA7 \u0D9C\u0DD2\u0DBA\u0DCF\u0DBA.`]]
|
|
1288
|
+
]);
|
|
1289
|
+
var MAPPING_DE = /* @__PURE__ */ new Map([
|
|
1290
|
+
[
|
|
1291
|
+
"question-answering",
|
|
1292
|
+
[
|
|
1293
|
+
{
|
|
1294
|
+
text: `Wo wohne ich?`,
|
|
1295
|
+
context: `Mein Name ist Wolfgang und ich lebe in Berlin`
|
|
1296
|
+
},
|
|
1297
|
+
{
|
|
1298
|
+
text: `Welcher Name wird auch verwendet, um den Amazonas-Regenwald auf Englisch zu beschreiben?`,
|
|
1299
|
+
context: `Der Amazonas-Regenwald, auf Englisch auch als Amazonien oder Amazonas-Dschungel bekannt, ist ein feuchter Laubwald, der den gr\xF6\xDFten Teil des Amazonas-Beckens S\xFCdamerikas bedeckt. Dieses Becken umfasst 7.000.000 Quadratkilometer (2.700.000 Quadratmeilen), von denen 5.500.000 Quadratkilometer (2.100.000 Quadratmeilen) vom Regenwald bedeckt sind. Diese Region umfasst Gebiete von neun Nationen. Der gr\xF6\xDFte Teil des Waldes befindet sich in Brasilien mit 60% des Regenwaldes, gefolgt von Peru mit 13%, Kolumbien mit 10% und geringen Mengen in Venezuela, Ecuador, Bolivien, Guyana, Suriname und Franz\xF6sisch-Guayana. Staaten oder Abteilungen in vier Nationen enthalten "Amazonas" in ihren Namen. Der Amazonas repr\xE4sentiert mehr als die H\xE4lfte der verbleibenden Regenw\xE4lder des Planeten und umfasst den gr\xF6\xDFten und artenreichsten tropischen Regenwald der Welt mit gesch\xE4tzten 390 Milliarden Einzelb\xE4umen, die in 16.000 Arten unterteilt sind.`
|
|
1300
|
+
}
|
|
1301
|
+
]
|
|
1302
|
+
],
|
|
1303
|
+
[
|
|
1304
|
+
"sentence-similarity",
|
|
1305
|
+
[
|
|
1306
|
+
{
|
|
1307
|
+
source_sentence: "Das ist eine gl\xFCckliche Person",
|
|
1308
|
+
sentences: [
|
|
1309
|
+
"Das ist ein gl\xFCcklicher Hund",
|
|
1310
|
+
"Das ist eine sehr gl\xFCckliche Person",
|
|
1311
|
+
"Heute ist ein sonniger Tag"
|
|
1312
|
+
]
|
|
1313
|
+
}
|
|
1314
|
+
]
|
|
1315
|
+
]
|
|
1316
|
+
]);
|
|
1317
|
+
var MAPPING_DV = /* @__PURE__ */ new Map([
|
|
1318
|
+
["text-classification", [`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078E\u07A6\u0794\u07A7\u0788\u07AD. \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078D\u07AF\u0784\u07A8\u0788\u07AD`]],
|
|
1319
|
+
[
|
|
1320
|
+
"token-classification",
|
|
1321
|
+
[
|
|
1322
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`,
|
|
1323
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`,
|
|
1324
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0787\u07A8\u079D\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u078A\u07AD\u078B\u07AB\u060C \u0787\u07A6\u0787\u07B0\u0791\u07AB\u078E\u07A6`
|
|
1325
|
+
]
|
|
1326
|
+
],
|
|
1327
|
+
[
|
|
1328
|
+
"question-answering",
|
|
1329
|
+
[
|
|
1330
|
+
{
|
|
1331
|
+
text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u078C\u07A7\u0786\u07AA\u061F`,
|
|
1332
|
+
context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`
|
|
1333
|
+
},
|
|
1334
|
+
{
|
|
1335
|
+
text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u078C\u07A7\u0786\u07AA\u061F`,
|
|
1336
|
+
context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`
|
|
1337
|
+
},
|
|
1338
|
+
{
|
|
1339
|
+
text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0786\u07AE\u0784\u07A7\u061F`,
|
|
1340
|
+
context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0787\u07A8\u079D\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u078A\u07AD\u078B\u07AB\u078E\u07A6`
|
|
1341
|
+
},
|
|
1342
|
+
{
|
|
1343
|
+
text: `\u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0790\u07A8\u078A\u07A6\u0786\u07AE\u0781\u07B0\u078B\u07A8\u0782\u07AA\u0789\u07A6\u0781\u07B0 \u0787\u07A8\u0782\u078E\u07A8\u0783\u07AD\u0790\u07A8 \u0784\u07A6\u0780\u07AA\u0782\u07B0 \u0784\u07AD\u0782\u07AA\u0782\u07B0\u0786\u07AA\u0783\u07A7\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u0782\u07A6\u0789\u07AC\u0787\u07B0\u061F`,
|
|
1344
|
+
context: `\u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 (\u0795\u07AF\u0797\u07AA\u0796\u07A9\u0792\u07B0: \u078A\u07B0\u078D\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07A7 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0786\u07A7 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0787\u07A7\u061B \u0790\u07B0\u0795\u07AC\u0782\u07A8\u079D\u07B0: \u0790\u07AC\u078D\u07B0\u0788\u07A7 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0786\u07A7, \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0787\u07A7 \u0782\u07AB\u0782\u07A9 \u0787\u07A7\u0782\u07B0\u0789\u07AA\u0786\u07AE\u0781\u07B0 \u0787\u07AC\u0789\u07A6\u0792\u07AF\u0782\u07A8\u0787\u07A7\u061B \u078A\u07B0\u0783\u07AC\u0782\u07B0\u0797\u07B0: \u078A\u07AE\u0783\u07AD \u0787\u07AC\u0789\u07AC\u0792\u07AE\u0782\u07A8\u0787\u07AC\u0782\u07B0\u061B \u0791\u07A6\u0797\u07B0: \u0787\u07AC\u0789\u07AC\u0792\u07AF\u0782\u07B0\u0783\u07AD\u078E\u07AC\u0788\u07A6\u0787\u07AA\u0791\u07B0)\u060C \u0787\u07A8\u078E\u07A8\u0783\u07AD\u0790\u07A8 \u0784\u07A6\u0780\u07AA\u0782\u07B0 \u0784\u07AA\u0782\u07A7 \u0787\u07AC\u0789\u07AC\u0792\u07AF\u0782\u07A8\u0787\u07A7 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u078B\u07A6 \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0796\u07A6\u0782\u07B0\u078E\u07A6\u078D\u07B0 \u0787\u07A6\u0786\u07A9, \u0790\u07A6\u0787\u07AA\u078C\u07AA \u0787\u07AC\u0789\u07AC\u0783\u07A8\u0786\u07A7\u078E\u07AC \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0784\u07AD\u0790\u07A8\u0782\u07B0 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07AC \u0784\u07AE\u0791\u07AA\u0784\u07A6\u0787\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07A8\u0789\u07AC\u0782\u07AD \u0789\u07AE\u0787\u07A8\u0790\u07B0\u0793\u07B0 \u0784\u07AE\u0783\u07AF\u0791\u07B0\u078D\u07A9\u078A\u07B0 \u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07AC\u0787\u07AC\u0786\u07AC\u0788\u07AC. \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0784\u07AD\u0790\u07A8\u0782\u07B0 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07AC \u0784\u07AE\u0791\u07AA \u0789\u07A8\u0782\u07A6\u0786\u07A9 7 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0786\u07A8\u078D\u07AF\u0789\u07A9\u0793\u07A6\u0783 (2.7 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0789\u07A6\u0787\u07A8\u078D\u07B0(. \u0789\u07A9\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 5.5 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0786\u07A8\u078D\u07AF\u0789\u07A9\u0793\u07A6\u0783 (2.1 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0789\u07A6\u0787\u07A8\u078D\u07B0) \u0787\u07A6\u0786\u07A9 \u0789\u07A8 \u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07AC\u0788\u07AC. \u0789\u07A8 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07A6\u0787\u07A8 9 \u078E\u07A6\u0787\u07AA\u0789\u07A6\u0786\u07A6\u0781\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07A7 \u0793\u07AC\u0783\u07A8\u0793\u07A6\u0783\u07A9 \u0780\u07A8\u0789\u07AC\u0782\u07AC\u0787\u07AC\u0788\u07AC. 60% \u0787\u07A7\u0787\u07A8\u0787\u07AC\u0786\u07AC \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0784\u07AE\u0791\u07AA \u0784\u07A6\u0787\u07AC\u0787\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07A6\u0782\u07A9 \u0784\u07B0\u0783\u07AC\u0792\u07A8\u078D\u07B0\u0787\u07A6\u0781\u07AC\u0788\u07AC. \u0787\u07AD\u078E\u07AC \u078A\u07A6\u0780\u07AA\u078C\u07AA\u0782\u07B0 13% \u0787\u07A7\u0787\u07AC\u0786\u07AA \u0795\u07AC\u0783\u07AB \u0787\u07A7\u0787\u07A8 10% \u0787\u07A7\u0787\u07AC\u0786\u07AA \u0786\u07AE\u078D\u07A6\u0789\u07B0\u0784\u07A8\u0787\u07A7 \u0787\u07A6\u078B\u07A8 \u0786\u07AA\u0791\u07A6 \u0784\u07A6\u0787\u07AC\u0787\u07B0 \u0780\u07A8\u0789\u07AC\u0782\u07AD \u078E\u07AE\u078C\u07AA\u0782\u07B0 \u0788\u07AC\u0782\u07AC\u0792\u07AA\u0787\u07AC\u078D\u07A7, \u0787\u07AC\u0786\u07B0\u0787\u07A6\u0791\u07AF, \u0784\u07AE\u078D\u07A8\u0788\u07A8\u0787\u07A7, \u078E\u07AA\u0794\u07A7\u0782\u07A7, \u0790\u07AA\u0783\u07A8\u0782\u07A7\u0789\u07B0 \u0787\u07A6\u078B\u07A8 \u078A\u07B0\u0783\u07AC\u0782\u07B0\u0797\u07B0 \u078E\u07B0\u0787\u07A7\u0782\u07A7 \u0787\u07A6\u0781\u07B0 \u0788\u07AC\u0790\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07A9\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 4 \u078E\u07A6\u0787\u07AA\u0789\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8 "\u0787\u07AC\u0789\u07AC\u0792\u07AE\u0782\u07A7\u0790\u07B0" \u0780\u07A8\u0789\u07A6\u0782\u07A6\u0787\u07A8\u078E\u07AC\u0782\u07B0 \u0790\u07B0\u0793\u07AD\u0793\u07B0 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u0791\u07A8\u0795\u07A7\u0793\u07B0\u0789\u07A6\u0782\u07B0\u0793\u07B0 \u0787\u07A6\u0786\u07A6\u0781\u07B0 \u0782\u07A6\u0782\u07B0\u078B\u07A9\u078A\u07A6\u0787\u07A8\u0788\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07AA\u0785\u07A8 \u078B\u07AA\u0782\u07A8\u0794\u07AD\u078E\u07A6\u0787\u07A8 \u0784\u07A7\u0786\u07A9 \u0780\u07AA\u0783\u07A8 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 \u078B\u07AC\u0784\u07A6\u0787\u07A8\u0786\u07AA\u0785\u07A6 \u0787\u07AC\u0787\u07B0\u0784\u07A6\u0794\u07A6\u0781\u07B0\u0788\u07AA\u0783\u07AC\u0784\u07AE\u0791\u07AA\u0788\u07A6\u0783\u07AC\u0787\u07B0 \u0787\u07AC\u0789\u07AD\u0792\u07AE\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0780\u07A8\u0787\u07B0\u0790\u07A7\u0786\u07AA\u0783\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07A8\u0787\u07A9 \u0789\u07AA\u0785\u07A8 \u078B\u07AA\u0782\u07A8\u0794\u07AC\u0787\u07A8\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AE \u0784\u07AE\u0791\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0784\u07A6\u0787\u07AE\u0791\u07A6\u0787\u07A8\u0788\u07A6\u0783\u0790\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0793\u07B0\u0783\u07AC\u0786\u07B0\u0793\u07AC\u0788\u07AC. \u078D\u07A6\u078A\u07A7\u0786\u07AA\u0783\u07AC\u0788\u07AD \u078E\u07AE\u078C\u07AA\u0782\u07B0 16 \u0780\u07A7\u0790\u07B0 \u0790\u07B0\u0795\u07A9\u079D\u07A9\u0790\u07B0\u0787\u07A6\u0781\u07B0 \u0784\u07AC\u0780\u07A8\u078E\u07AC\u0782\u07B0\u0788\u07A7 390 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0788\u07A6\u0787\u07B0\u078C\u07A6\u0783\u07AA\u078E\u07AC \u078E\u07A6\u0790\u07B0 \u0789\u07A8\u078C\u07A7\u078E\u07A6\u0787\u07A8 \u0780\u07A8\u0789\u07AC\u0782\u07AC\u0787\u07AC\u0788\u07AC`
|
|
1345
|
+
}
|
|
1346
|
+
]
|
|
1347
|
+
],
|
|
1348
|
+
[
|
|
1349
|
+
"translation",
|
|
1350
|
+
[
|
|
1351
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`,
|
|
1352
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`
|
|
1353
|
+
]
|
|
1354
|
+
],
|
|
1355
|
+
[
|
|
1356
|
+
"summarization",
|
|
1357
|
+
[
|
|
1358
|
+
`\u0793\u07A6\u0788\u07A6\u0783\u07AA\u078E\u07AC \u0787\u07AA\u0790\u07B0\u0789\u07A8\u0782\u07A6\u0786\u07A9 324 \u0789\u07A9\u0793\u07A6\u0783\u07AA\u060C \u0787\u07AC\u0787\u07A9 \u078E\u07A7\u078C\u07B0\u078E\u07A6\u0782\u0791\u07A6\u0786\u07A6\u0781\u07B0 81 \u0784\u07AA\u0783\u07A9\u078E\u07AC \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07A6\u0786\u07A7\u0787\u07A8 \u0787\u07AC\u0787\u07B0\u0788\u07A6\u0783\u07AC\u0788\u07AC. \u0787\u07AC\u0787\u07A9 \u0795\u07AC\u0783\u07A8\u0790\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07AA\u0783\u07A8 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07AC\u0788\u07AC. \u0787\u07AD\u078E\u07AC \u0780\u07A6\u078C\u07A6\u0783\u07AC\u0790\u07B0\u0786\u07A6\u0782\u07A6\u0781\u07B0 \u0780\u07AA\u0783\u07A8 \u0784\u07AA\u0791\u07AA\u078E\u07AC \u078B\u07A8\u078E\u07AA\u0789\u07A8\u0782\u07A6\u0786\u07A9 \u0786\u07AE\u0782\u07B0\u0789\u07AC \u078A\u07A6\u0783\u07A7\u078C\u07A6\u0786\u07AA\u0782\u07B0 125 \u0789\u07A9\u0793\u07A6\u0783\u07AC\u0788\u07AC. (410 \u078A\u07AB\u0793\u07AA) \u0787\u07A6\u0787\u07A8\u078A\u07A8\u078D\u07B0 \u0793\u07A6\u0788\u07A6\u0783\u07AA \u0784\u07A8\u0782\u07A7\u0786\u07AA\u0783\u07A8 \u0787\u07A8\u0783\u07AA\u060C \u0788\u07AE\u079D\u07A8\u0782\u07B0\u078E\u07B0\u0793\u07A6\u0782\u07B0 \u0789\u07AE\u0782\u07A8\u0787\u07AA\u0789\u07AC\u0782\u07B0\u0793\u07B0\u078E\u07AC \u0787\u07AA\u0790\u07B0\u0789\u07A8\u0782\u07B0 \u078A\u07A6\u0780\u07A6\u0782\u07A6\u0787\u07A6\u0785\u07A7 \u078E\u07AE\u0790\u07B0\u060C \u078B\u07AA\u0782\u07A8\u0794\u07AD\u078E\u07A6\u0787\u07A8 \u0789\u07A9\u0780\u07AA\u0782\u07B0 \u0787\u07AA\u078A\u07AC\u0787\u07B0\u078B\u07A8 \u078C\u07A6\u0782\u07B0\u078C\u07A6\u0782\u07AA\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u078C\u07A6\u0782\u07AA\u078E\u07AC \u078D\u07A6\u078E\u07A6\u0784\u07AA \u078D\u07A8\u0784\u07AA\u0782\u07AC\u0788\u07AC. \u0787\u07A6\u078B\u07A8 1930 \u078E\u07A6\u0787\u07A8 \u0782\u07A8\u0787\u07AA \u0794\u07AF\u0786\u07B0\u078E\u07AC \u0786\u07B0\u0783\u07A6\u0787\u07A8\u0790\u07B0\u078D\u07A6\u0783 \u0784\u07A8\u078D\u07B0\u0791\u07A8\u0782\u07B0\u078E\u07B0 \u0784\u07A8\u0782\u07A7\u0786\u07AA\u0783\u07AA\u0789\u07A7\u0787\u07A8 \u0780\u07A6\u0789\u07A6\u0787\u07A6\u0781\u07B0 41 \u0787\u07A6\u0780\u07A6\u0783\u07AA \u0788\u07A6\u0782\u07B0\u078B\u07AC\u0782\u07B0 \u0789\u07A8\u078D\u07A6\u078E\u07A6\u0784\u07AA \u0780\u07A8\u078A\u07AC\u0780\u07AC\u0787\u07B0\u0793\u07A8\u0787\u07AC\u0788\u07AC. \u0789\u07A8\u0787\u07A9 300 \u0789\u07A9\u0793\u07A6\u0783\u07A6\u0781\u07B0 \u0788\u07AA\u0783\u07AC \u0787\u07AA\u0790\u07B0\u0786\u07AE\u0781\u07B0 \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07B0\u0786\u07AA\u0783\u07AC\u0788\u07AA\u0782\u07AA \u078A\u07AA\u0783\u07A6\u078C\u07A6\u0789\u07A6 \u078C\u07A6\u0782\u07AC\u0788\u07AC. 1957 \u078E\u07A6\u0787\u07A8 \u0793\u07A6\u0788\u07A6\u0783\u07AA\u078E\u07AC \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0789\u07A6\u078C\u07A9\u078E\u07A6\u0787\u07A8 \u0780\u07A6\u0783\u07AA\u0786\u07AA\u0783\u07AC\u0788\u07AA\u0782\u07AA \u0784\u07B0\u0783\u07AF\u0791\u07B0\u0786\u07A7\u0790\u07B0\u0793\u07A8\u0782\u07B0\u078E \u0787\u07AD\u0783\u07A8\u0787\u07A6\u078D\u07B0\u078E\u07AC \u0790\u07A6\u0784\u07A6\u0784\u07AA\u0782\u07B0 \u0789\u07A8\u0780\u07A7\u0783\u07AA \u0789\u07A8 \u0793\u07A6\u0788\u07A6\u0783\u07AA \u0786\u07B0\u0783\u07A6\u0787\u07A8\u0790\u07B0\u078D\u07A6\u0783 \u0784\u07A8\u078D\u07B0\u0791\u07A8\u0782\u07B0\u078E\u0787\u07A6\u0781\u07B0 \u0788\u07AA\u0783\u07AC 5.2 \u0789\u07A9\u0793\u07A6\u0783 (17 \u078A\u07AB\u0793\u07AA) \u0787\u07AA\u0780\u07AC\u0788\u07AC. \u0789\u07A8 \u0793\u07B0\u0783\u07A7\u0782\u07B0\u0790\u07B0\u0789\u07A8\u0793\u07A6\u0783\u07AA \u0782\u07AA\u078D\u07A7\u060C \u0787\u07A6\u0787\u07A8\u078A\u07A8\u078D\u07B0 \u0793\u07A6\u0788\u07A6\u0783\u07A6\u0786\u07A9\u060C \u0789\u07A8\u078D\u07A7\u0787\u07AA \u0788\u07A8\u0787\u07A7\u0791\u07A6\u0786\u07B0\u0793\u07A6\u0781\u07B0 \u078A\u07A6\u0780\u07AA \u078A\u07B0\u0783\u07A7\u0782\u07B0\u0790\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07AA\u0783\u07A8 2 \u0788\u07A6\u0782\u07A6\u0787\u07A6\u0781\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u078A\u07B0\u0783\u07A9\u0790\u07B0\u0793\u07AD\u0782\u07B0\u0791\u07A8\u0782\u07B0\u078E \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07AC\u0788\u07AC`
|
|
1359
|
+
]
|
|
1360
|
+
],
|
|
1361
|
+
[
|
|
1362
|
+
"text-generation",
|
|
1363
|
+
[
|
|
1364
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0794\u07AB\u0790\u07AA\u078A\u07B0 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0789\u07A6\u0787\u07A8\u078E\u07A6\u0782\u0791\u07AA`,
|
|
1365
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0789\u07A6\u0783\u07A8\u0787\u07A6\u0789\u07B0\u060C \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u078E\u07A6\u0794\u07A7\u0788\u07A7`,
|
|
1366
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u078A\u07A7\u078C\u07AA\u0789\u07A6\u078C\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0`,
|
|
1367
|
+
`\u060C\u0787\u07AC\u0787\u07B0 \u0792\u07A6\u0789\u07A7\u0782\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8`
|
|
1368
|
+
]
|
|
1369
|
+
],
|
|
1370
|
+
["fill-mask", [`.<mask> \u0789\u07A7\u078D\u07AC \u0787\u07A6\u0786\u07A9 \u078B\u07A8\u0788\u07AC\u0780\u07A8\u0783\u07A7\u0787\u07B0\u0796\u07AD\u078E\u07AC`, `\u078E\u07A6\u0783\u07AA\u078B\u07A8\u0794\u07A6\u0787\u07A6\u0786\u07A9 \u078B\u07A8\u0788\u07AC\u0780\u07A8\u0782\u07B0\u078E\u07AC \u0789\u07AC\u078B\u07AA\u078E\u07A6\u0787\u07A8 <mask> \u0786\u07AC\u0787\u07AA\u0789\u07AC\u0787\u07B0.`]]
|
|
1371
|
+
]);
|
|
1372
|
+
var MAPPING_DEFAULT_WIDGET = /* @__PURE__ */ new Map([
|
|
1373
|
+
["en", MAPPING_EN],
|
|
1374
|
+
["zh", MAPPING_ZH],
|
|
1375
|
+
["fr", MAPPING_FR],
|
|
1376
|
+
["es", MAPPING_ES],
|
|
1377
|
+
["ru", MAPPING_RU],
|
|
1378
|
+
["uk", MAPPING_UK],
|
|
1379
|
+
["it", MAPPING_IT],
|
|
1380
|
+
["fa", MAPPING_FA],
|
|
1381
|
+
["ar", MAPPING_AR],
|
|
1382
|
+
["bn", MAPPING_BN],
|
|
1383
|
+
["mn", MAPPING_MN],
|
|
1384
|
+
["si", MAPPING_SI],
|
|
1385
|
+
["de", MAPPING_DE],
|
|
1386
|
+
["dv", MAPPING_DV]
|
|
1387
|
+
]);
|
|
1388
|
+
|
|
1
1389
|
// src/pipelines.ts
|
|
2
1390
|
var MODALITIES = ["cv", "nlp", "audio", "tabular", "multimodal", "rl", "other"];
|
|
3
1391
|
var MODALITY_LABELS = {
|
|
@@ -375,9 +1763,28 @@ var PIPELINE_DATA = {
|
|
|
375
1763
|
},
|
|
376
1764
|
"image-to-image": {
|
|
377
1765
|
name: "Image-to-Image",
|
|
1766
|
+
subtasks: [
|
|
1767
|
+
{
|
|
1768
|
+
type: "image-inpainting",
|
|
1769
|
+
name: "Image Inpainting"
|
|
1770
|
+
},
|
|
1771
|
+
{
|
|
1772
|
+
type: "image-colorization",
|
|
1773
|
+
name: "Image Colorization"
|
|
1774
|
+
},
|
|
1775
|
+
{
|
|
1776
|
+
type: "super-resolution",
|
|
1777
|
+
name: "Super Resolution"
|
|
1778
|
+
}
|
|
1779
|
+
],
|
|
378
1780
|
modality: "cv",
|
|
379
1781
|
color: "indigo"
|
|
380
1782
|
},
|
|
1783
|
+
"image-to-video": {
|
|
1784
|
+
name: "Image-to-Video",
|
|
1785
|
+
modality: "multimodal",
|
|
1786
|
+
color: "indigo"
|
|
1787
|
+
},
|
|
381
1788
|
"unconditional-image-generation": {
|
|
382
1789
|
name: "Unconditional Image Generation",
|
|
383
1790
|
modality: "cv",
|
|
@@ -546,6 +1953,26 @@ var PIPELINE_DATA = {
|
|
|
546
1953
|
modality: "multimodal",
|
|
547
1954
|
color: "green"
|
|
548
1955
|
},
|
|
1956
|
+
"mask-generation": {
|
|
1957
|
+
name: "Mask Generation",
|
|
1958
|
+
modality: "cv",
|
|
1959
|
+
color: "indigo"
|
|
1960
|
+
},
|
|
1961
|
+
"zero-shot-object-detection": {
|
|
1962
|
+
name: "Zero-Shot Object Detection",
|
|
1963
|
+
modality: "cv",
|
|
1964
|
+
color: "yellow"
|
|
1965
|
+
},
|
|
1966
|
+
"text-to-3d": {
|
|
1967
|
+
name: "Text-to-3D",
|
|
1968
|
+
modality: "multimodal",
|
|
1969
|
+
color: "yellow"
|
|
1970
|
+
},
|
|
1971
|
+
"image-to-3d": {
|
|
1972
|
+
name: "Image-to-3D",
|
|
1973
|
+
modality: "multimodal",
|
|
1974
|
+
color: "green"
|
|
1975
|
+
},
|
|
549
1976
|
other: {
|
|
550
1977
|
name: "Other",
|
|
551
1978
|
modality: "other",
|
|
@@ -558,7 +1985,7 @@ var PIPELINE_TYPES = Object.keys(PIPELINE_DATA);
|
|
|
558
1985
|
var SUBTASK_TYPES = Object.values(PIPELINE_DATA).flatMap((data) => "subtasks" in data ? data.subtasks : []).map((s) => s.type);
|
|
559
1986
|
var PIPELINE_TYPES_SET = new Set(PIPELINE_TYPES);
|
|
560
1987
|
|
|
561
|
-
// src/audio-classification/data.ts
|
|
1988
|
+
// src/tasks/audio-classification/data.ts
|
|
562
1989
|
var taskData = {
|
|
563
1990
|
datasets: [
|
|
564
1991
|
{
|
|
@@ -623,8 +2050,8 @@ var taskData = {
|
|
|
623
2050
|
],
|
|
624
2051
|
spaces: [
|
|
625
2052
|
{
|
|
626
|
-
description: "An application that can
|
|
627
|
-
id: "
|
|
2053
|
+
description: "An application that can classify music into different genre.",
|
|
2054
|
+
id: "kurianbenoy/audioclassification"
|
|
628
2055
|
}
|
|
629
2056
|
],
|
|
630
2057
|
summary: "Audio classification is the task of assigning a label or class to a given audio. It can be used for recognizing which command a user is giving or the emotion of a statement, as well as identifying a speaker.",
|
|
@@ -633,7 +2060,7 @@ var taskData = {
|
|
|
633
2060
|
};
|
|
634
2061
|
var data_default = taskData;
|
|
635
2062
|
|
|
636
|
-
// src/audio-to-audio/data.ts
|
|
2063
|
+
// src/tasks/audio-to-audio/data.ts
|
|
637
2064
|
var taskData2 = {
|
|
638
2065
|
datasets: [
|
|
639
2066
|
{
|
|
@@ -695,7 +2122,7 @@ var taskData2 = {
|
|
|
695
2122
|
};
|
|
696
2123
|
var data_default2 = taskData2;
|
|
697
2124
|
|
|
698
|
-
// src/automatic-speech-recognition/data.ts
|
|
2125
|
+
// src/tasks/automatic-speech-recognition/data.ts
|
|
699
2126
|
var taskData3 = {
|
|
700
2127
|
datasets: [
|
|
701
2128
|
{
|
|
@@ -740,7 +2167,7 @@ var taskData3 = {
|
|
|
740
2167
|
models: [
|
|
741
2168
|
{
|
|
742
2169
|
description: "A powerful ASR model by OpenAI.",
|
|
743
|
-
id: "openai/whisper-large-
|
|
2170
|
+
id: "openai/whisper-large-v3"
|
|
744
2171
|
},
|
|
745
2172
|
{
|
|
746
2173
|
description: "A good generic ASR model by MetaAI.",
|
|
@@ -754,24 +2181,24 @@ var taskData3 = {
|
|
|
754
2181
|
spaces: [
|
|
755
2182
|
{
|
|
756
2183
|
description: "A powerful general-purpose speech recognition application.",
|
|
757
|
-
id: "
|
|
2184
|
+
id: "hf-audio/whisper-large-v3"
|
|
758
2185
|
},
|
|
759
2186
|
{
|
|
760
2187
|
description: "Fastest speech recognition application.",
|
|
761
2188
|
id: "sanchit-gandhi/whisper-jax"
|
|
762
2189
|
},
|
|
763
2190
|
{
|
|
764
|
-
description: "
|
|
765
|
-
id: "
|
|
2191
|
+
description: "A high quality speech and text translation model by Meta.",
|
|
2192
|
+
id: "facebook/seamless_m4t"
|
|
766
2193
|
}
|
|
767
2194
|
],
|
|
768
2195
|
summary: "Automatic Speech Recognition (ASR), also known as Speech to Text (STT), is the task of transcribing a given audio to text. It has many applications, such as voice user interfaces.",
|
|
769
|
-
widgetModels: ["openai/whisper-large-
|
|
2196
|
+
widgetModels: ["openai/whisper-large-v3"],
|
|
770
2197
|
youtubeId: "TksaY_FDgnk"
|
|
771
2198
|
};
|
|
772
2199
|
var data_default3 = taskData3;
|
|
773
2200
|
|
|
774
|
-
// src/conversational/data.ts
|
|
2201
|
+
// src/tasks/conversational/data.ts
|
|
775
2202
|
var taskData4 = {
|
|
776
2203
|
datasets: [
|
|
777
2204
|
{
|
|
@@ -831,7 +2258,7 @@ var taskData4 = {
|
|
|
831
2258
|
};
|
|
832
2259
|
var data_default4 = taskData4;
|
|
833
2260
|
|
|
834
|
-
// src/document-question-answering/data.ts
|
|
2261
|
+
// src/tasks/document-question-answering/data.ts
|
|
835
2262
|
var taskData5 = {
|
|
836
2263
|
datasets: [
|
|
837
2264
|
{
|
|
@@ -896,7 +2323,7 @@ var taskData5 = {
|
|
|
896
2323
|
};
|
|
897
2324
|
var data_default5 = taskData5;
|
|
898
2325
|
|
|
899
|
-
// src/feature-extraction/data.ts
|
|
2326
|
+
// src/tasks/feature-extraction/data.ts
|
|
900
2327
|
var taskData6 = {
|
|
901
2328
|
datasets: [
|
|
902
2329
|
{
|
|
@@ -925,12 +2352,7 @@ var taskData6 = {
|
|
|
925
2352
|
}
|
|
926
2353
|
]
|
|
927
2354
|
},
|
|
928
|
-
metrics: [
|
|
929
|
-
{
|
|
930
|
-
description: "",
|
|
931
|
-
id: ""
|
|
932
|
-
}
|
|
933
|
-
],
|
|
2355
|
+
metrics: [],
|
|
934
2356
|
models: [
|
|
935
2357
|
{
|
|
936
2358
|
description: "A powerful feature extraction model for natural language processing tasks.",
|
|
@@ -947,7 +2369,7 @@ var taskData6 = {
|
|
|
947
2369
|
};
|
|
948
2370
|
var data_default6 = taskData6;
|
|
949
2371
|
|
|
950
|
-
// src/fill-mask/data.ts
|
|
2372
|
+
// src/tasks/fill-mask/data.ts
|
|
951
2373
|
var taskData7 = {
|
|
952
2374
|
datasets: [
|
|
953
2375
|
{
|
|
@@ -1022,7 +2444,7 @@ var taskData7 = {
|
|
|
1022
2444
|
};
|
|
1023
2445
|
var data_default7 = taskData7;
|
|
1024
2446
|
|
|
1025
|
-
// src/image-classification/data.ts
|
|
2447
|
+
// src/tasks/image-classification/data.ts
|
|
1026
2448
|
var taskData8 = {
|
|
1027
2449
|
datasets: [
|
|
1028
2450
|
{
|
|
@@ -1108,7 +2530,7 @@ var taskData8 = {
|
|
|
1108
2530
|
};
|
|
1109
2531
|
var data_default8 = taskData8;
|
|
1110
2532
|
|
|
1111
|
-
// src/image-to-image/data.ts
|
|
2533
|
+
// src/tasks/image-to-image/data.ts
|
|
1112
2534
|
var taskData9 = {
|
|
1113
2535
|
datasets: [
|
|
1114
2536
|
{
|
|
@@ -1203,7 +2625,7 @@ var taskData9 = {
|
|
|
1203
2625
|
};
|
|
1204
2626
|
var data_default9 = taskData9;
|
|
1205
2627
|
|
|
1206
|
-
// src/image-to-text/data.ts
|
|
2628
|
+
// src/tasks/image-to-text/data.ts
|
|
1207
2629
|
var taskData10 = {
|
|
1208
2630
|
datasets: [
|
|
1209
2631
|
{
|
|
@@ -1287,7 +2709,7 @@ var taskData10 = {
|
|
|
1287
2709
|
};
|
|
1288
2710
|
var data_default10 = taskData10;
|
|
1289
2711
|
|
|
1290
|
-
// src/image-segmentation/data.ts
|
|
2712
|
+
// src/tasks/image-segmentation/data.ts
|
|
1291
2713
|
var taskData11 = {
|
|
1292
2714
|
datasets: [
|
|
1293
2715
|
{
|
|
@@ -1382,7 +2804,7 @@ var taskData11 = {
|
|
|
1382
2804
|
};
|
|
1383
2805
|
var data_default11 = taskData11;
|
|
1384
2806
|
|
|
1385
|
-
// src/object-detection/data.ts
|
|
2807
|
+
// src/tasks/object-detection/data.ts
|
|
1386
2808
|
var taskData12 = {
|
|
1387
2809
|
datasets: [
|
|
1388
2810
|
{
|
|
@@ -1454,7 +2876,7 @@ var taskData12 = {
|
|
|
1454
2876
|
};
|
|
1455
2877
|
var data_default12 = taskData12;
|
|
1456
2878
|
|
|
1457
|
-
// src/depth-estimation/data.ts
|
|
2879
|
+
// src/tasks/depth-estimation/data.ts
|
|
1458
2880
|
var taskData13 = {
|
|
1459
2881
|
datasets: [
|
|
1460
2882
|
{
|
|
@@ -1505,7 +2927,7 @@ var taskData13 = {
|
|
|
1505
2927
|
};
|
|
1506
2928
|
var data_default13 = taskData13;
|
|
1507
2929
|
|
|
1508
|
-
// src/placeholder/data.ts
|
|
2930
|
+
// src/tasks/placeholder/data.ts
|
|
1509
2931
|
var taskData14 = {
|
|
1510
2932
|
datasets: [],
|
|
1511
2933
|
demo: {
|
|
@@ -1522,7 +2944,7 @@ var taskData14 = {
|
|
|
1522
2944
|
};
|
|
1523
2945
|
var data_default14 = taskData14;
|
|
1524
2946
|
|
|
1525
|
-
// src/reinforcement-learning/data.ts
|
|
2947
|
+
// src/tasks/reinforcement-learning/data.ts
|
|
1526
2948
|
var taskData15 = {
|
|
1527
2949
|
datasets: [
|
|
1528
2950
|
{
|
|
@@ -1591,7 +3013,7 @@ var taskData15 = {
|
|
|
1591
3013
|
};
|
|
1592
3014
|
var data_default15 = taskData15;
|
|
1593
3015
|
|
|
1594
|
-
// src/question-answering/data.ts
|
|
3016
|
+
// src/tasks/question-answering/data.ts
|
|
1595
3017
|
var taskData16 = {
|
|
1596
3018
|
datasets: [
|
|
1597
3019
|
{
|
|
@@ -1658,7 +3080,7 @@ var taskData16 = {
|
|
|
1658
3080
|
};
|
|
1659
3081
|
var data_default16 = taskData16;
|
|
1660
3082
|
|
|
1661
|
-
// src/sentence-similarity/data.ts
|
|
3083
|
+
// src/tasks/sentence-similarity/data.ts
|
|
1662
3084
|
var taskData17 = {
|
|
1663
3085
|
datasets: [
|
|
1664
3086
|
{
|
|
@@ -1753,7 +3175,7 @@ var taskData17 = {
|
|
|
1753
3175
|
};
|
|
1754
3176
|
var data_default17 = taskData17;
|
|
1755
3177
|
|
|
1756
|
-
// src/summarization/data.ts
|
|
3178
|
+
// src/tasks/summarization/data.ts
|
|
1757
3179
|
var taskData18 = {
|
|
1758
3180
|
datasets: [
|
|
1759
3181
|
{
|
|
@@ -1821,7 +3243,7 @@ var taskData18 = {
|
|
|
1821
3243
|
};
|
|
1822
3244
|
var data_default18 = taskData18;
|
|
1823
3245
|
|
|
1824
|
-
// src/table-question-answering/data.ts
|
|
3246
|
+
// src/tasks/table-question-answering/data.ts
|
|
1825
3247
|
var taskData19 = {
|
|
1826
3248
|
datasets: [
|
|
1827
3249
|
{
|
|
@@ -1875,7 +3297,7 @@ var taskData19 = {
|
|
|
1875
3297
|
};
|
|
1876
3298
|
var data_default19 = taskData19;
|
|
1877
3299
|
|
|
1878
|
-
// src/tabular-classification/data.ts
|
|
3300
|
+
// src/tasks/tabular-classification/data.ts
|
|
1879
3301
|
var taskData20 = {
|
|
1880
3302
|
datasets: [
|
|
1881
3303
|
{
|
|
@@ -1942,7 +3364,7 @@ var taskData20 = {
|
|
|
1942
3364
|
};
|
|
1943
3365
|
var data_default20 = taskData20;
|
|
1944
3366
|
|
|
1945
|
-
// src/tabular-regression/data.ts
|
|
3367
|
+
// src/tasks/tabular-regression/data.ts
|
|
1946
3368
|
var taskData21 = {
|
|
1947
3369
|
datasets: [
|
|
1948
3370
|
{
|
|
@@ -1997,7 +3419,7 @@ var taskData21 = {
|
|
|
1997
3419
|
};
|
|
1998
3420
|
var data_default21 = taskData21;
|
|
1999
3421
|
|
|
2000
|
-
// src/text-to-image/data.ts
|
|
3422
|
+
// src/tasks/text-to-image/data.ts
|
|
2001
3423
|
var taskData22 = {
|
|
2002
3424
|
datasets: [
|
|
2003
3425
|
{
|
|
@@ -2084,7 +3506,7 @@ var taskData22 = {
|
|
|
2084
3506
|
};
|
|
2085
3507
|
var data_default22 = taskData22;
|
|
2086
3508
|
|
|
2087
|
-
// src/text-to-speech/data.ts
|
|
3509
|
+
// src/tasks/text-to-speech/data.ts
|
|
2088
3510
|
var taskData23 = {
|
|
2089
3511
|
datasets: [
|
|
2090
3512
|
{
|
|
@@ -2137,8 +3559,8 @@ var taskData23 = {
|
|
|
2137
3559
|
id: "suno/bark"
|
|
2138
3560
|
},
|
|
2139
3561
|
{
|
|
2140
|
-
description: "
|
|
2141
|
-
id: "coqui/
|
|
3562
|
+
description: "XTTS is a Voice generation model that lets you clone voices into different languages.",
|
|
3563
|
+
id: "coqui/xtts"
|
|
2142
3564
|
},
|
|
2143
3565
|
{
|
|
2144
3566
|
description: "An application that synthesizes speech for various speaker types.",
|
|
@@ -2146,12 +3568,12 @@ var taskData23 = {
|
|
|
2146
3568
|
}
|
|
2147
3569
|
],
|
|
2148
3570
|
summary: "Text-to-Speech (TTS) is the task of generating natural sounding speech given text input. TTS models can be extended to have a single model that generates speech for multiple speakers and multiple languages.",
|
|
2149
|
-
widgetModels: ["
|
|
3571
|
+
widgetModels: ["suno/bark"],
|
|
2150
3572
|
youtubeId: "NW62DpzJ274"
|
|
2151
3573
|
};
|
|
2152
3574
|
var data_default23 = taskData23;
|
|
2153
3575
|
|
|
2154
|
-
// src/token-classification/data.ts
|
|
3576
|
+
// src/tasks/token-classification/data.ts
|
|
2155
3577
|
var taskData24 = {
|
|
2156
3578
|
datasets: [
|
|
2157
3579
|
{
|
|
@@ -2230,7 +3652,7 @@ var taskData24 = {
|
|
|
2230
3652
|
};
|
|
2231
3653
|
var data_default24 = taskData24;
|
|
2232
3654
|
|
|
2233
|
-
// src/translation/data.ts
|
|
3655
|
+
// src/tasks/translation/data.ts
|
|
2234
3656
|
var taskData25 = {
|
|
2235
3657
|
datasets: [
|
|
2236
3658
|
{
|
|
@@ -2294,7 +3716,7 @@ var taskData25 = {
|
|
|
2294
3716
|
};
|
|
2295
3717
|
var data_default25 = taskData25;
|
|
2296
3718
|
|
|
2297
|
-
// src/text-classification/data.ts
|
|
3719
|
+
// src/tasks/text-classification/data.ts
|
|
2298
3720
|
var taskData26 = {
|
|
2299
3721
|
datasets: [
|
|
2300
3722
|
{
|
|
@@ -2382,7 +3804,7 @@ var taskData26 = {
|
|
|
2382
3804
|
};
|
|
2383
3805
|
var data_default26 = taskData26;
|
|
2384
3806
|
|
|
2385
|
-
// src/text-generation/data.ts
|
|
3807
|
+
// src/tasks/text-generation/data.ts
|
|
2386
3808
|
var taskData27 = {
|
|
2387
3809
|
datasets: [
|
|
2388
3810
|
{
|
|
@@ -2497,12 +3919,12 @@ var taskData27 = {
|
|
|
2497
3919
|
}
|
|
2498
3920
|
],
|
|
2499
3921
|
summary: "Generating text is the task of producing new text. These models can, for example, fill in incomplete text or paraphrase.",
|
|
2500
|
-
widgetModels: ["
|
|
3922
|
+
widgetModels: ["HuggingFaceH4/zephyr-7b-beta"],
|
|
2501
3923
|
youtubeId: "Vpjb1lu0MDk"
|
|
2502
3924
|
};
|
|
2503
3925
|
var data_default27 = taskData27;
|
|
2504
3926
|
|
|
2505
|
-
// src/text-to-video/data.ts
|
|
3927
|
+
// src/tasks/text-to-video/data.ts
|
|
2506
3928
|
var taskData28 = {
|
|
2507
3929
|
datasets: [
|
|
2508
3930
|
{
|
|
@@ -2597,7 +4019,7 @@ var taskData28 = {
|
|
|
2597
4019
|
};
|
|
2598
4020
|
var data_default28 = taskData28;
|
|
2599
4021
|
|
|
2600
|
-
// src/unconditional-image-generation/data.ts
|
|
4022
|
+
// src/tasks/unconditional-image-generation/data.ts
|
|
2601
4023
|
var taskData29 = {
|
|
2602
4024
|
datasets: [
|
|
2603
4025
|
{
|
|
@@ -2662,7 +4084,7 @@ var taskData29 = {
|
|
|
2662
4084
|
};
|
|
2663
4085
|
var data_default29 = taskData29;
|
|
2664
4086
|
|
|
2665
|
-
// src/video-classification/data.ts
|
|
4087
|
+
// src/tasks/video-classification/data.ts
|
|
2666
4088
|
var taskData30 = {
|
|
2667
4089
|
datasets: [
|
|
2668
4090
|
{
|
|
@@ -2744,7 +4166,7 @@ var taskData30 = {
|
|
|
2744
4166
|
};
|
|
2745
4167
|
var data_default30 = taskData30;
|
|
2746
4168
|
|
|
2747
|
-
// src/visual-question-answering/data.ts
|
|
4169
|
+
// src/tasks/visual-question-answering/data.ts
|
|
2748
4170
|
var taskData31 = {
|
|
2749
4171
|
datasets: [
|
|
2750
4172
|
{
|
|
@@ -2833,7 +4255,7 @@ var taskData31 = {
|
|
|
2833
4255
|
};
|
|
2834
4256
|
var data_default31 = taskData31;
|
|
2835
4257
|
|
|
2836
|
-
// src/zero-shot-classification/data.ts
|
|
4258
|
+
// src/tasks/zero-shot-classification/data.ts
|
|
2837
4259
|
var taskData32 = {
|
|
2838
4260
|
datasets: [
|
|
2839
4261
|
{
|
|
@@ -2895,7 +4317,7 @@ var taskData32 = {
|
|
|
2895
4317
|
};
|
|
2896
4318
|
var data_default32 = taskData32;
|
|
2897
4319
|
|
|
2898
|
-
// src/zero-shot-image-classification/data.ts
|
|
4320
|
+
// src/tasks/zero-shot-image-classification/data.ts
|
|
2899
4321
|
var taskData33 = {
|
|
2900
4322
|
datasets: [
|
|
2901
4323
|
{
|
|
@@ -2968,22 +4390,24 @@ var taskData33 = {
|
|
|
2968
4390
|
};
|
|
2969
4391
|
var data_default33 = taskData33;
|
|
2970
4392
|
|
|
2971
|
-
// src/
|
|
4393
|
+
// src/tasks/index.ts
|
|
2972
4394
|
var TASKS_MODEL_LIBRARIES = {
|
|
2973
|
-
"audio-classification": ["speechbrain", "transformers"],
|
|
4395
|
+
"audio-classification": ["speechbrain", "transformers", "transformers.js"],
|
|
2974
4396
|
"audio-to-audio": ["asteroid", "speechbrain"],
|
|
2975
4397
|
"automatic-speech-recognition": ["espnet", "nemo", "speechbrain", "transformers", "transformers.js"],
|
|
2976
4398
|
conversational: ["transformers"],
|
|
2977
|
-
"depth-estimation": ["transformers"],
|
|
2978
|
-
"document-question-answering": ["transformers"],
|
|
4399
|
+
"depth-estimation": ["transformers", "transformers.js"],
|
|
4400
|
+
"document-question-answering": ["transformers", "transformers.js"],
|
|
2979
4401
|
"feature-extraction": ["sentence-transformers", "transformers", "transformers.js"],
|
|
2980
4402
|
"fill-mask": ["transformers", "transformers.js"],
|
|
2981
4403
|
"graph-ml": ["transformers"],
|
|
2982
4404
|
"image-classification": ["keras", "timm", "transformers", "transformers.js"],
|
|
2983
4405
|
"image-segmentation": ["transformers", "transformers.js"],
|
|
2984
|
-
"image-to-image": [],
|
|
4406
|
+
"image-to-image": ["diffusers", "transformers.js"],
|
|
2985
4407
|
"image-to-text": ["transformers.js"],
|
|
2986
|
-
"video
|
|
4408
|
+
"image-to-video": ["diffusers"],
|
|
4409
|
+
"video-classification": ["transformers"],
|
|
4410
|
+
"mask-generation": ["transformers"],
|
|
2987
4411
|
"multiple-choice": ["transformers"],
|
|
2988
4412
|
"object-detection": ["transformers", "transformers.js"],
|
|
2989
4413
|
other: [],
|
|
@@ -3000,10 +4424,10 @@ var TASKS_MODEL_LIBRARIES = {
|
|
|
3000
4424
|
"text-classification": ["adapter-transformers", "spacy", "transformers", "transformers.js"],
|
|
3001
4425
|
"text-generation": ["transformers", "transformers.js"],
|
|
3002
4426
|
"text-retrieval": [],
|
|
3003
|
-
"text-to-image": [],
|
|
3004
|
-
"text-to-speech": ["espnet", "tensorflowtts", "transformers"],
|
|
3005
|
-
"text-to-audio": ["transformers"],
|
|
3006
|
-
"text-to-video": [],
|
|
4427
|
+
"text-to-image": ["diffusers"],
|
|
4428
|
+
"text-to-speech": ["espnet", "tensorflowtts", "transformers", "transformers.js"],
|
|
4429
|
+
"text-to-audio": ["transformers", "transformers.js"],
|
|
4430
|
+
"text-to-video": ["diffusers"],
|
|
3007
4431
|
"text2text-generation": ["transformers", "transformers.js"],
|
|
3008
4432
|
"time-series-forecasting": [],
|
|
3009
4433
|
"token-classification": [
|
|
@@ -3016,14 +4440,23 @@ var TASKS_MODEL_LIBRARIES = {
|
|
|
3016
4440
|
"transformers.js"
|
|
3017
4441
|
],
|
|
3018
4442
|
translation: ["transformers", "transformers.js"],
|
|
3019
|
-
"unconditional-image-generation": [],
|
|
3020
|
-
"visual-question-answering": [],
|
|
4443
|
+
"unconditional-image-generation": ["diffusers"],
|
|
4444
|
+
"visual-question-answering": ["transformers", "transformers.js"],
|
|
3021
4445
|
"voice-activity-detection": [],
|
|
3022
4446
|
"zero-shot-classification": ["transformers", "transformers.js"],
|
|
3023
|
-
"zero-shot-image-classification": ["transformers.js"]
|
|
4447
|
+
"zero-shot-image-classification": ["transformers", "transformers.js"],
|
|
4448
|
+
"zero-shot-object-detection": ["transformers", "transformers.js"],
|
|
4449
|
+
"text-to-3d": [],
|
|
4450
|
+
"image-to-3d": []
|
|
3024
4451
|
};
|
|
3025
|
-
|
|
3026
|
-
|
|
4452
|
+
function getData(type, partialTaskData = data_default14) {
|
|
4453
|
+
return {
|
|
4454
|
+
...partialTaskData,
|
|
4455
|
+
id: type,
|
|
4456
|
+
label: PIPELINE_DATA[type].name,
|
|
4457
|
+
libraries: TASKS_MODEL_LIBRARIES[type]
|
|
4458
|
+
};
|
|
4459
|
+
}
|
|
3027
4460
|
var TASKS_DATA = {
|
|
3028
4461
|
"audio-classification": getData("audio-classification", data_default),
|
|
3029
4462
|
"audio-to-audio": getData("audio-to-audio", data_default2),
|
|
@@ -3038,6 +4471,8 @@ var TASKS_DATA = {
|
|
|
3038
4471
|
"image-segmentation": getData("image-segmentation", data_default11),
|
|
3039
4472
|
"image-to-image": getData("image-to-image", data_default9),
|
|
3040
4473
|
"image-to-text": getData("image-to-text", data_default10),
|
|
4474
|
+
"image-to-video": void 0,
|
|
4475
|
+
"mask-generation": getData("mask-generation", data_default14),
|
|
3041
4476
|
"multiple-choice": void 0,
|
|
3042
4477
|
"object-detection": getData("object-detection", data_default12),
|
|
3043
4478
|
"video-classification": getData("video-classification", data_default30),
|
|
@@ -3067,18 +4502,13 @@ var TASKS_DATA = {
|
|
|
3067
4502
|
"visual-question-answering": getData("visual-question-answering", data_default31),
|
|
3068
4503
|
"voice-activity-detection": void 0,
|
|
3069
4504
|
"zero-shot-classification": getData("zero-shot-classification", data_default32),
|
|
3070
|
-
"zero-shot-image-classification": getData("zero-shot-image-classification", data_default33)
|
|
4505
|
+
"zero-shot-image-classification": getData("zero-shot-image-classification", data_default33),
|
|
4506
|
+
"zero-shot-object-detection": getData("zero-shot-object-detection", data_default14),
|
|
4507
|
+
"text-to-3d": getData("text-to-3d", data_default14),
|
|
4508
|
+
"image-to-3d": getData("image-to-3d", data_default14)
|
|
3071
4509
|
};
|
|
3072
|
-
function getData(type, partialTaskData = data_default14) {
|
|
3073
|
-
return {
|
|
3074
|
-
...partialTaskData,
|
|
3075
|
-
id: type,
|
|
3076
|
-
label: PIPELINE_DATA[type].name,
|
|
3077
|
-
libraries: TASKS_MODEL_LIBRARIES[type]
|
|
3078
|
-
};
|
|
3079
|
-
}
|
|
3080
4510
|
|
|
3081
|
-
// src/
|
|
4511
|
+
// src/model-libraries.ts
|
|
3082
4512
|
var ModelLibrary = /* @__PURE__ */ ((ModelLibrary2) => {
|
|
3083
4513
|
ModelLibrary2["adapter-transformers"] = "Adapter Transformers";
|
|
3084
4514
|
ModelLibrary2["allennlp"] = "allenNLP";
|
|
@@ -3119,6 +4549,17 @@ var ALL_DISPLAY_MODEL_LIBRARY_KEYS = Object.keys(ModelLibrary).filter(
|
|
|
3119
4549
|
(k) => !["doctr", "k2", "mindspore", "tensorflowtts"].includes(k)
|
|
3120
4550
|
);
|
|
3121
4551
|
|
|
4552
|
+
// src/model-data.ts
|
|
4553
|
+
var InferenceDisplayability = /* @__PURE__ */ ((InferenceDisplayability2) => {
|
|
4554
|
+
InferenceDisplayability2["Yes"] = "Yes";
|
|
4555
|
+
InferenceDisplayability2["ExplicitOptOut"] = "ExplicitOptOut";
|
|
4556
|
+
InferenceDisplayability2["CustomCode"] = "CustomCode";
|
|
4557
|
+
InferenceDisplayability2["LibraryNotDetected"] = "LibraryNotDetected";
|
|
4558
|
+
InferenceDisplayability2["PipelineNotDetected"] = "PipelineNotDetected";
|
|
4559
|
+
InferenceDisplayability2["PipelineLibraryPairNotSupported"] = "PipelineLibraryPairNotSupported";
|
|
4560
|
+
return InferenceDisplayability2;
|
|
4561
|
+
})(InferenceDisplayability || {});
|
|
4562
|
+
|
|
3122
4563
|
// src/tags.ts
|
|
3123
4564
|
var TAG_NFAA_CONTENT = "not-for-all-audiences";
|
|
3124
4565
|
var OTHER_TAGS_SUGGESTIONS = [
|
|
@@ -3135,10 +4576,476 @@ var OTHER_TAGS_SUGGESTIONS = [
|
|
|
3135
4576
|
];
|
|
3136
4577
|
var TAG_TEXT_GENERATION_INFERENCE = "text-generation-inference";
|
|
3137
4578
|
var TAG_CUSTOM_CODE = "custom_code";
|
|
4579
|
+
|
|
4580
|
+
// src/snippets/index.ts
|
|
4581
|
+
var snippets_exports = {};
|
|
4582
|
+
__export(snippets_exports, {
|
|
4583
|
+
curl: () => curl_exports,
|
|
4584
|
+
inputs: () => inputs_exports,
|
|
4585
|
+
js: () => js_exports,
|
|
4586
|
+
python: () => python_exports
|
|
4587
|
+
});
|
|
4588
|
+
|
|
4589
|
+
// src/snippets/inputs.ts
|
|
4590
|
+
var inputs_exports = {};
|
|
4591
|
+
__export(inputs_exports, {
|
|
4592
|
+
getModelInputSnippet: () => getModelInputSnippet
|
|
4593
|
+
});
|
|
4594
|
+
var inputsZeroShotClassification = () => `"Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!"`;
|
|
4595
|
+
var inputsTranslation = () => `"\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435"`;
|
|
4596
|
+
var inputsSummarization = () => `"The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct."`;
|
|
4597
|
+
var inputsConversational = () => `{
|
|
4598
|
+
"past_user_inputs": ["Which movie is the best ?"],
|
|
4599
|
+
"generated_responses": ["It is Die Hard for sure."],
|
|
4600
|
+
"text": "Can you explain why ?"
|
|
4601
|
+
}`;
|
|
4602
|
+
var inputsTableQuestionAnswering = () => `{
|
|
4603
|
+
"query": "How many stars does the transformers repository have?",
|
|
4604
|
+
"table": {
|
|
4605
|
+
"Repository": ["Transformers", "Datasets", "Tokenizers"],
|
|
4606
|
+
"Stars": ["36542", "4512", "3934"],
|
|
4607
|
+
"Contributors": ["651", "77", "34"],
|
|
4608
|
+
"Programming language": [
|
|
4609
|
+
"Python",
|
|
4610
|
+
"Python",
|
|
4611
|
+
"Rust, Python and NodeJS"
|
|
4612
|
+
]
|
|
4613
|
+
}
|
|
4614
|
+
}`;
|
|
4615
|
+
var inputsVisualQuestionAnswering = () => `{
|
|
4616
|
+
"image": "cat.png",
|
|
4617
|
+
"question": "What is in this image?"
|
|
4618
|
+
}`;
|
|
4619
|
+
var inputsQuestionAnswering = () => `{
|
|
4620
|
+
"question": "What is my name?",
|
|
4621
|
+
"context": "My name is Clara and I live in Berkeley."
|
|
4622
|
+
}`;
|
|
4623
|
+
var inputsTextClassification = () => `"I like you. I love you"`;
|
|
4624
|
+
var inputsTokenClassification = () => `"My name is Sarah Jessica Parker but you can call me Jessica"`;
|
|
4625
|
+
var inputsTextGeneration = () => `"Can you please let us know more details about your "`;
|
|
4626
|
+
var inputsText2TextGeneration = () => `"The answer to the universe is"`;
|
|
4627
|
+
var inputsFillMask = (model) => `"The answer to the universe is ${model.mask_token}."`;
|
|
4628
|
+
var inputsSentenceSimilarity = () => `{
|
|
4629
|
+
"source_sentence": "That is a happy person",
|
|
4630
|
+
"sentences": [
|
|
4631
|
+
"That is a happy dog",
|
|
4632
|
+
"That is a very happy person",
|
|
4633
|
+
"Today is a sunny day"
|
|
4634
|
+
]
|
|
4635
|
+
}`;
|
|
4636
|
+
var inputsFeatureExtraction = () => `"Today is a sunny day and I will get some ice cream."`;
|
|
4637
|
+
var inputsImageClassification = () => `"cats.jpg"`;
|
|
4638
|
+
var inputsImageToText = () => `"cats.jpg"`;
|
|
4639
|
+
var inputsImageSegmentation = () => `"cats.jpg"`;
|
|
4640
|
+
var inputsObjectDetection = () => `"cats.jpg"`;
|
|
4641
|
+
var inputsAudioToAudio = () => `"sample1.flac"`;
|
|
4642
|
+
var inputsAudioClassification = () => `"sample1.flac"`;
|
|
4643
|
+
var inputsTextToImage = () => `"Astronaut riding a horse"`;
|
|
4644
|
+
var inputsTextToSpeech = () => `"The answer to the universe is 42"`;
|
|
4645
|
+
var inputsTextToAudio = () => `"liquid drum and bass, atmospheric synths, airy sounds"`;
|
|
4646
|
+
var inputsAutomaticSpeechRecognition = () => `"sample1.flac"`;
|
|
4647
|
+
var inputsTabularPrediction = () => `'{"Height":[11.52,12.48],"Length1":[23.2,24.0],"Length2":[25.4,26.3],"Species": ["Bream","Bream"]}'`;
|
|
4648
|
+
var inputsZeroShotImageClassification = () => `"cats.jpg"`;
|
|
4649
|
+
var modelInputSnippets = {
|
|
4650
|
+
"audio-to-audio": inputsAudioToAudio,
|
|
4651
|
+
"audio-classification": inputsAudioClassification,
|
|
4652
|
+
"automatic-speech-recognition": inputsAutomaticSpeechRecognition,
|
|
4653
|
+
conversational: inputsConversational,
|
|
4654
|
+
"document-question-answering": inputsVisualQuestionAnswering,
|
|
4655
|
+
"feature-extraction": inputsFeatureExtraction,
|
|
4656
|
+
"fill-mask": inputsFillMask,
|
|
4657
|
+
"image-classification": inputsImageClassification,
|
|
4658
|
+
"image-to-text": inputsImageToText,
|
|
4659
|
+
"image-segmentation": inputsImageSegmentation,
|
|
4660
|
+
"object-detection": inputsObjectDetection,
|
|
4661
|
+
"question-answering": inputsQuestionAnswering,
|
|
4662
|
+
"sentence-similarity": inputsSentenceSimilarity,
|
|
4663
|
+
summarization: inputsSummarization,
|
|
4664
|
+
"table-question-answering": inputsTableQuestionAnswering,
|
|
4665
|
+
"tabular-regression": inputsTabularPrediction,
|
|
4666
|
+
"tabular-classification": inputsTabularPrediction,
|
|
4667
|
+
"text-classification": inputsTextClassification,
|
|
4668
|
+
"text-generation": inputsTextGeneration,
|
|
4669
|
+
"text-to-image": inputsTextToImage,
|
|
4670
|
+
"text-to-speech": inputsTextToSpeech,
|
|
4671
|
+
"text-to-audio": inputsTextToAudio,
|
|
4672
|
+
"text2text-generation": inputsText2TextGeneration,
|
|
4673
|
+
"token-classification": inputsTokenClassification,
|
|
4674
|
+
translation: inputsTranslation,
|
|
4675
|
+
"zero-shot-classification": inputsZeroShotClassification,
|
|
4676
|
+
"zero-shot-image-classification": inputsZeroShotImageClassification
|
|
4677
|
+
};
|
|
4678
|
+
function getModelInputSnippet(model, noWrap = false, noQuotes = false) {
|
|
4679
|
+
if (model.pipeline_tag) {
|
|
4680
|
+
const inputs = modelInputSnippets[model.pipeline_tag];
|
|
4681
|
+
if (inputs) {
|
|
4682
|
+
let result = inputs(model);
|
|
4683
|
+
if (noWrap) {
|
|
4684
|
+
result = result.replace(/(?:(?:\r?\n|\r)\t*)|\t+/g, " ");
|
|
4685
|
+
}
|
|
4686
|
+
if (noQuotes) {
|
|
4687
|
+
const REGEX_QUOTES = /^"(.+)"$/s;
|
|
4688
|
+
const match = result.match(REGEX_QUOTES);
|
|
4689
|
+
result = match ? match[1] : result;
|
|
4690
|
+
}
|
|
4691
|
+
return result;
|
|
4692
|
+
}
|
|
4693
|
+
}
|
|
4694
|
+
return "No input example has been defined for this model task.";
|
|
4695
|
+
}
|
|
4696
|
+
|
|
4697
|
+
// src/snippets/curl.ts
|
|
4698
|
+
var curl_exports = {};
|
|
4699
|
+
__export(curl_exports, {
|
|
4700
|
+
curlSnippets: () => curlSnippets,
|
|
4701
|
+
getCurlInferenceSnippet: () => getCurlInferenceSnippet,
|
|
4702
|
+
hasCurlInferenceSnippet: () => hasCurlInferenceSnippet,
|
|
4703
|
+
snippetBasic: () => snippetBasic,
|
|
4704
|
+
snippetFile: () => snippetFile,
|
|
4705
|
+
snippetZeroShotClassification: () => snippetZeroShotClassification
|
|
4706
|
+
});
|
|
4707
|
+
var snippetBasic = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
|
|
4708
|
+
-X POST \\
|
|
4709
|
+
-d '{"inputs": ${getModelInputSnippet(model, true)}}' \\
|
|
4710
|
+
-H 'Content-Type: application/json' \\
|
|
4711
|
+
-H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
|
|
4712
|
+
`;
|
|
4713
|
+
var snippetZeroShotClassification = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
|
|
4714
|
+
-X POST \\
|
|
4715
|
+
-d '{"inputs": ${getModelInputSnippet(model, true)}, "parameters": {"candidate_labels": ["refund", "legal", "faq"]}}' \\
|
|
4716
|
+
-H 'Content-Type: application/json' \\
|
|
4717
|
+
-H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
|
|
4718
|
+
`;
|
|
4719
|
+
var snippetFile = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
|
|
4720
|
+
-X POST \\
|
|
4721
|
+
--data-binary '@${getModelInputSnippet(model, true, true)}' \\
|
|
4722
|
+
-H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
|
|
4723
|
+
`;
|
|
4724
|
+
var curlSnippets = {
|
|
4725
|
+
// Same order as in js/src/lib/interfaces/Types.ts
|
|
4726
|
+
"text-classification": snippetBasic,
|
|
4727
|
+
"token-classification": snippetBasic,
|
|
4728
|
+
"table-question-answering": snippetBasic,
|
|
4729
|
+
"question-answering": snippetBasic,
|
|
4730
|
+
"zero-shot-classification": snippetZeroShotClassification,
|
|
4731
|
+
translation: snippetBasic,
|
|
4732
|
+
summarization: snippetBasic,
|
|
4733
|
+
conversational: snippetBasic,
|
|
4734
|
+
"feature-extraction": snippetBasic,
|
|
4735
|
+
"text-generation": snippetBasic,
|
|
4736
|
+
"text2text-generation": snippetBasic,
|
|
4737
|
+
"fill-mask": snippetBasic,
|
|
4738
|
+
"sentence-similarity": snippetBasic,
|
|
4739
|
+
"automatic-speech-recognition": snippetFile,
|
|
4740
|
+
"text-to-image": snippetBasic,
|
|
4741
|
+
"text-to-speech": snippetBasic,
|
|
4742
|
+
"text-to-audio": snippetBasic,
|
|
4743
|
+
"audio-to-audio": snippetFile,
|
|
4744
|
+
"audio-classification": snippetFile,
|
|
4745
|
+
"image-classification": snippetFile,
|
|
4746
|
+
"image-to-text": snippetFile,
|
|
4747
|
+
"object-detection": snippetFile,
|
|
4748
|
+
"image-segmentation": snippetFile
|
|
4749
|
+
};
|
|
4750
|
+
function getCurlInferenceSnippet(model, accessToken) {
|
|
4751
|
+
return model.pipeline_tag && model.pipeline_tag in curlSnippets ? curlSnippets[model.pipeline_tag]?.(model, accessToken) ?? "" : "";
|
|
4752
|
+
}
|
|
4753
|
+
function hasCurlInferenceSnippet(model) {
|
|
4754
|
+
return !!model.pipeline_tag && model.pipeline_tag in curlSnippets;
|
|
4755
|
+
}
|
|
4756
|
+
|
|
4757
|
+
// src/snippets/python.ts
|
|
4758
|
+
var python_exports = {};
|
|
4759
|
+
__export(python_exports, {
|
|
4760
|
+
getPythonInferenceSnippet: () => getPythonInferenceSnippet,
|
|
4761
|
+
hasPythonInferenceSnippet: () => hasPythonInferenceSnippet,
|
|
4762
|
+
pythonSnippets: () => pythonSnippets,
|
|
4763
|
+
snippetBasic: () => snippetBasic2,
|
|
4764
|
+
snippetDocumentQuestionAnswering: () => snippetDocumentQuestionAnswering,
|
|
4765
|
+
snippetFile: () => snippetFile2,
|
|
4766
|
+
snippetTabular: () => snippetTabular,
|
|
4767
|
+
snippetTextToAudio: () => snippetTextToAudio,
|
|
4768
|
+
snippetTextToImage: () => snippetTextToImage,
|
|
4769
|
+
snippetZeroShotClassification: () => snippetZeroShotClassification2,
|
|
4770
|
+
snippetZeroShotImageClassification: () => snippetZeroShotImageClassification
|
|
4771
|
+
});
|
|
4772
|
+
var snippetZeroShotClassification2 = (model) => `def query(payload):
|
|
4773
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4774
|
+
return response.json()
|
|
4775
|
+
|
|
4776
|
+
output = query({
|
|
4777
|
+
"inputs": ${getModelInputSnippet(model)},
|
|
4778
|
+
"parameters": {"candidate_labels": ["refund", "legal", "faq"]},
|
|
4779
|
+
})`;
|
|
4780
|
+
var snippetZeroShotImageClassification = (model) => `def query(data):
|
|
4781
|
+
with open(data["image_path"], "rb") as f:
|
|
4782
|
+
img = f.read()
|
|
4783
|
+
payload={
|
|
4784
|
+
"parameters": data["parameters"],
|
|
4785
|
+
"inputs": base64.b64encode(img).decode("utf-8")
|
|
4786
|
+
}
|
|
4787
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4788
|
+
return response.json()
|
|
4789
|
+
|
|
4790
|
+
output = query({
|
|
4791
|
+
"image_path": ${getModelInputSnippet(model)},
|
|
4792
|
+
"parameters": {"candidate_labels": ["cat", "dog", "llama"]},
|
|
4793
|
+
})`;
|
|
4794
|
+
var snippetBasic2 = (model) => `def query(payload):
|
|
4795
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4796
|
+
return response.json()
|
|
4797
|
+
|
|
4798
|
+
output = query({
|
|
4799
|
+
"inputs": ${getModelInputSnippet(model)},
|
|
4800
|
+
})`;
|
|
4801
|
+
var snippetFile2 = (model) => `def query(filename):
|
|
4802
|
+
with open(filename, "rb") as f:
|
|
4803
|
+
data = f.read()
|
|
4804
|
+
response = requests.post(API_URL, headers=headers, data=data)
|
|
4805
|
+
return response.json()
|
|
4806
|
+
|
|
4807
|
+
output = query(${getModelInputSnippet(model)})`;
|
|
4808
|
+
var snippetTextToImage = (model) => `def query(payload):
|
|
4809
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4810
|
+
return response.content
|
|
4811
|
+
image_bytes = query({
|
|
4812
|
+
"inputs": ${getModelInputSnippet(model)},
|
|
4813
|
+
})
|
|
4814
|
+
# You can access the image with PIL.Image for example
|
|
4815
|
+
import io
|
|
4816
|
+
from PIL import Image
|
|
4817
|
+
image = Image.open(io.BytesIO(image_bytes))`;
|
|
4818
|
+
var snippetTabular = (model) => `def query(payload):
|
|
4819
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4820
|
+
return response.content
|
|
4821
|
+
response = query({
|
|
4822
|
+
"inputs": {"data": ${getModelInputSnippet(model)}},
|
|
4823
|
+
})`;
|
|
4824
|
+
var snippetTextToAudio = (model) => {
|
|
4825
|
+
if (model.library_name === "transformers") {
|
|
4826
|
+
return `def query(payload):
|
|
4827
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4828
|
+
return response.content
|
|
4829
|
+
|
|
4830
|
+
audio_bytes = query({
|
|
4831
|
+
"inputs": ${getModelInputSnippet(model)},
|
|
4832
|
+
})
|
|
4833
|
+
# You can access the audio with IPython.display for example
|
|
4834
|
+
from IPython.display import Audio
|
|
4835
|
+
Audio(audio_bytes)`;
|
|
4836
|
+
} else {
|
|
4837
|
+
return `def query(payload):
|
|
4838
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4839
|
+
return response.json()
|
|
4840
|
+
|
|
4841
|
+
audio, sampling_rate = query({
|
|
4842
|
+
"inputs": ${getModelInputSnippet(model)},
|
|
4843
|
+
})
|
|
4844
|
+
# You can access the audio with IPython.display for example
|
|
4845
|
+
from IPython.display import Audio
|
|
4846
|
+
Audio(audio, rate=sampling_rate)`;
|
|
4847
|
+
}
|
|
4848
|
+
};
|
|
4849
|
+
var snippetDocumentQuestionAnswering = (model) => `def query(payload):
|
|
4850
|
+
with open(payload["image"], "rb") as f:
|
|
4851
|
+
img = f.read()
|
|
4852
|
+
payload["image"] = base64.b64encode(img).decode("utf-8")
|
|
4853
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4854
|
+
return response.json()
|
|
4855
|
+
|
|
4856
|
+
output = query({
|
|
4857
|
+
"inputs": ${getModelInputSnippet(model)},
|
|
4858
|
+
})`;
|
|
4859
|
+
var pythonSnippets = {
|
|
4860
|
+
// Same order as in tasks/src/pipelines.ts
|
|
4861
|
+
"text-classification": snippetBasic2,
|
|
4862
|
+
"token-classification": snippetBasic2,
|
|
4863
|
+
"table-question-answering": snippetBasic2,
|
|
4864
|
+
"question-answering": snippetBasic2,
|
|
4865
|
+
"zero-shot-classification": snippetZeroShotClassification2,
|
|
4866
|
+
translation: snippetBasic2,
|
|
4867
|
+
summarization: snippetBasic2,
|
|
4868
|
+
conversational: snippetBasic2,
|
|
4869
|
+
"feature-extraction": snippetBasic2,
|
|
4870
|
+
"text-generation": snippetBasic2,
|
|
4871
|
+
"text2text-generation": snippetBasic2,
|
|
4872
|
+
"fill-mask": snippetBasic2,
|
|
4873
|
+
"sentence-similarity": snippetBasic2,
|
|
4874
|
+
"automatic-speech-recognition": snippetFile2,
|
|
4875
|
+
"text-to-image": snippetTextToImage,
|
|
4876
|
+
"text-to-speech": snippetTextToAudio,
|
|
4877
|
+
"text-to-audio": snippetTextToAudio,
|
|
4878
|
+
"audio-to-audio": snippetFile2,
|
|
4879
|
+
"audio-classification": snippetFile2,
|
|
4880
|
+
"image-classification": snippetFile2,
|
|
4881
|
+
"tabular-regression": snippetTabular,
|
|
4882
|
+
"tabular-classification": snippetTabular,
|
|
4883
|
+
"object-detection": snippetFile2,
|
|
4884
|
+
"image-segmentation": snippetFile2,
|
|
4885
|
+
"document-question-answering": snippetDocumentQuestionAnswering,
|
|
4886
|
+
"image-to-text": snippetFile2,
|
|
4887
|
+
"zero-shot-image-classification": snippetZeroShotImageClassification
|
|
4888
|
+
};
|
|
4889
|
+
function getPythonInferenceSnippet(model, accessToken) {
|
|
4890
|
+
const body = model.pipeline_tag && model.pipeline_tag in pythonSnippets ? pythonSnippets[model.pipeline_tag]?.(model) ?? "" : "";
|
|
4891
|
+
return `import requests
|
|
4892
|
+
|
|
4893
|
+
API_URL = "https://api-inference.huggingface.co/models/${model.id}"
|
|
4894
|
+
headers = {"Authorization": ${accessToken ? `"Bearer ${accessToken}"` : `f"Bearer {API_TOKEN}"`}}
|
|
4895
|
+
|
|
4896
|
+
${body}`;
|
|
4897
|
+
}
|
|
4898
|
+
function hasPythonInferenceSnippet(model) {
|
|
4899
|
+
return !!model.pipeline_tag && model.pipeline_tag in pythonSnippets;
|
|
4900
|
+
}
|
|
4901
|
+
|
|
4902
|
+
// src/snippets/js.ts
|
|
4903
|
+
var js_exports = {};
|
|
4904
|
+
__export(js_exports, {
|
|
4905
|
+
getJsInferenceSnippet: () => getJsInferenceSnippet,
|
|
4906
|
+
hasJsInferenceSnippet: () => hasJsInferenceSnippet,
|
|
4907
|
+
jsSnippets: () => jsSnippets,
|
|
4908
|
+
snippetBasic: () => snippetBasic3,
|
|
4909
|
+
snippetFile: () => snippetFile3,
|
|
4910
|
+
snippetTextToAudio: () => snippetTextToAudio2,
|
|
4911
|
+
snippetTextToImage: () => snippetTextToImage2,
|
|
4912
|
+
snippetZeroShotClassification: () => snippetZeroShotClassification3
|
|
4913
|
+
});
|
|
4914
|
+
var snippetBasic3 = (model, accessToken) => `async function query(data) {
|
|
4915
|
+
const response = await fetch(
|
|
4916
|
+
"https://api-inference.huggingface.co/models/${model.id}",
|
|
4917
|
+
{
|
|
4918
|
+
headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
|
|
4919
|
+
method: "POST",
|
|
4920
|
+
body: JSON.stringify(data),
|
|
4921
|
+
}
|
|
4922
|
+
);
|
|
4923
|
+
const result = await response.json();
|
|
4924
|
+
return result;
|
|
4925
|
+
}
|
|
4926
|
+
|
|
4927
|
+
query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
|
|
4928
|
+
console.log(JSON.stringify(response));
|
|
4929
|
+
});`;
|
|
4930
|
+
var snippetZeroShotClassification3 = (model, accessToken) => `async function query(data) {
|
|
4931
|
+
const response = await fetch(
|
|
4932
|
+
"https://api-inference.huggingface.co/models/${model.id}",
|
|
4933
|
+
{
|
|
4934
|
+
headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
|
|
4935
|
+
method: "POST",
|
|
4936
|
+
body: JSON.stringify(data),
|
|
4937
|
+
}
|
|
4938
|
+
);
|
|
4939
|
+
const result = await response.json();
|
|
4940
|
+
return result;
|
|
4941
|
+
}
|
|
4942
|
+
|
|
4943
|
+
query({"inputs": ${getModelInputSnippet(
|
|
4944
|
+
model
|
|
4945
|
+
)}, "parameters": {"candidate_labels": ["refund", "legal", "faq"]}}).then((response) => {
|
|
4946
|
+
console.log(JSON.stringify(response));
|
|
4947
|
+
});`;
|
|
4948
|
+
var snippetTextToImage2 = (model, accessToken) => `async function query(data) {
|
|
4949
|
+
const response = await fetch(
|
|
4950
|
+
"https://api-inference.huggingface.co/models/${model.id}",
|
|
4951
|
+
{
|
|
4952
|
+
headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
|
|
4953
|
+
method: "POST",
|
|
4954
|
+
body: JSON.stringify(data),
|
|
4955
|
+
}
|
|
4956
|
+
);
|
|
4957
|
+
const result = await response.blob();
|
|
4958
|
+
return result;
|
|
4959
|
+
}
|
|
4960
|
+
query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
|
|
4961
|
+
// Use image
|
|
4962
|
+
});`;
|
|
4963
|
+
var snippetTextToAudio2 = (model, accessToken) => {
|
|
4964
|
+
const commonSnippet = `async function query(data) {
|
|
4965
|
+
const response = await fetch(
|
|
4966
|
+
"https://api-inference.huggingface.co/models/${model.id}",
|
|
4967
|
+
{
|
|
4968
|
+
headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
|
|
4969
|
+
method: "POST",
|
|
4970
|
+
body: JSON.stringify(data),
|
|
4971
|
+
}
|
|
4972
|
+
);`;
|
|
4973
|
+
if (model.library_name === "transformers") {
|
|
4974
|
+
return commonSnippet + `
|
|
4975
|
+
const result = await response.blob();
|
|
4976
|
+
return result;
|
|
4977
|
+
}
|
|
4978
|
+
query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
|
|
4979
|
+
// Returns a byte object of the Audio wavform. Use it directly!
|
|
4980
|
+
});`;
|
|
4981
|
+
} else {
|
|
4982
|
+
return commonSnippet + `
|
|
4983
|
+
const result = await response.json();
|
|
4984
|
+
return result;
|
|
4985
|
+
}
|
|
4986
|
+
|
|
4987
|
+
query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
|
|
4988
|
+
console.log(JSON.stringify(response));
|
|
4989
|
+
});`;
|
|
4990
|
+
}
|
|
4991
|
+
};
|
|
4992
|
+
var snippetFile3 = (model, accessToken) => `async function query(filename) {
|
|
4993
|
+
const data = fs.readFileSync(filename);
|
|
4994
|
+
const response = await fetch(
|
|
4995
|
+
"https://api-inference.huggingface.co/models/${model.id}",
|
|
4996
|
+
{
|
|
4997
|
+
headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
|
|
4998
|
+
method: "POST",
|
|
4999
|
+
body: data,
|
|
5000
|
+
}
|
|
5001
|
+
);
|
|
5002
|
+
const result = await response.json();
|
|
5003
|
+
return result;
|
|
5004
|
+
}
|
|
5005
|
+
|
|
5006
|
+
query(${getModelInputSnippet(model)}).then((response) => {
|
|
5007
|
+
console.log(JSON.stringify(response));
|
|
5008
|
+
});`;
|
|
5009
|
+
var jsSnippets = {
|
|
5010
|
+
// Same order as in js/src/lib/interfaces/Types.ts
|
|
5011
|
+
"text-classification": snippetBasic3,
|
|
5012
|
+
"token-classification": snippetBasic3,
|
|
5013
|
+
"table-question-answering": snippetBasic3,
|
|
5014
|
+
"question-answering": snippetBasic3,
|
|
5015
|
+
"zero-shot-classification": snippetZeroShotClassification3,
|
|
5016
|
+
translation: snippetBasic3,
|
|
5017
|
+
summarization: snippetBasic3,
|
|
5018
|
+
conversational: snippetBasic3,
|
|
5019
|
+
"feature-extraction": snippetBasic3,
|
|
5020
|
+
"text-generation": snippetBasic3,
|
|
5021
|
+
"text2text-generation": snippetBasic3,
|
|
5022
|
+
"fill-mask": snippetBasic3,
|
|
5023
|
+
"sentence-similarity": snippetBasic3,
|
|
5024
|
+
"automatic-speech-recognition": snippetFile3,
|
|
5025
|
+
"text-to-image": snippetTextToImage2,
|
|
5026
|
+
"text-to-speech": snippetTextToAudio2,
|
|
5027
|
+
"text-to-audio": snippetTextToAudio2,
|
|
5028
|
+
"audio-to-audio": snippetFile3,
|
|
5029
|
+
"audio-classification": snippetFile3,
|
|
5030
|
+
"image-classification": snippetFile3,
|
|
5031
|
+
"image-to-text": snippetFile3,
|
|
5032
|
+
"object-detection": snippetFile3,
|
|
5033
|
+
"image-segmentation": snippetFile3
|
|
5034
|
+
};
|
|
5035
|
+
function getJsInferenceSnippet(model, accessToken) {
|
|
5036
|
+
return model.pipeline_tag && model.pipeline_tag in jsSnippets ? jsSnippets[model.pipeline_tag]?.(model, accessToken) ?? "" : "";
|
|
5037
|
+
}
|
|
5038
|
+
function hasJsInferenceSnippet(model) {
|
|
5039
|
+
return !!model.pipeline_tag && model.pipeline_tag in jsSnippets;
|
|
5040
|
+
}
|
|
3138
5041
|
export {
|
|
3139
5042
|
ALL_DISPLAY_MODEL_LIBRARY_KEYS,
|
|
5043
|
+
InferenceDisplayability,
|
|
5044
|
+
LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS,
|
|
5045
|
+
MAPPING_DEFAULT_WIDGET,
|
|
3140
5046
|
MODALITIES,
|
|
3141
5047
|
MODALITY_LABELS,
|
|
5048
|
+
MODEL_LIBRARIES_UI_ELEMENTS,
|
|
3142
5049
|
ModelLibrary,
|
|
3143
5050
|
OTHER_TAGS_SUGGESTIONS,
|
|
3144
5051
|
PIPELINE_DATA,
|
|
@@ -3148,5 +5055,7 @@ export {
|
|
|
3148
5055
|
TAG_CUSTOM_CODE,
|
|
3149
5056
|
TAG_NFAA_CONTENT,
|
|
3150
5057
|
TAG_TEXT_GENERATION_INFERENCE,
|
|
3151
|
-
TASKS_DATA
|
|
5058
|
+
TASKS_DATA,
|
|
5059
|
+
TASKS_MODEL_LIBRARIES,
|
|
5060
|
+
snippets_exports as snippets
|
|
3152
5061
|
};
|