@huggingface/tasks 0.0.6 → 0.0.8

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (86) hide show
  1. package/README.md +16 -2
  2. package/dist/index.d.ts +381 -5
  3. package/dist/index.js +1986 -77
  4. package/dist/index.mjs +1985 -76
  5. package/package.json +2 -4
  6. package/src/default-widget-inputs.ts +718 -0
  7. package/src/index.ts +35 -4
  8. package/src/library-to-tasks.ts +47 -0
  9. package/src/library-ui-elements.ts +765 -0
  10. package/src/model-data.ts +239 -0
  11. package/src/pipelines.ts +39 -0
  12. package/src/snippets/curl.ts +63 -0
  13. package/src/snippets/index.ts +6 -0
  14. package/src/snippets/inputs.ts +144 -0
  15. package/src/snippets/js.ts +150 -0
  16. package/src/snippets/python.ts +155 -0
  17. package/src/{audio-classification → tasks/audio-classification}/about.md +2 -1
  18. package/src/{audio-classification → tasks/audio-classification}/data.ts +3 -3
  19. package/src/{audio-to-audio → tasks/audio-to-audio}/data.ts +1 -1
  20. package/src/{automatic-speech-recognition → tasks/automatic-speech-recognition}/about.md +3 -2
  21. package/src/{automatic-speech-recognition → tasks/automatic-speech-recognition}/data.ts +6 -6
  22. package/src/{conversational → tasks/conversational}/data.ts +1 -1
  23. package/src/{depth-estimation → tasks/depth-estimation}/data.ts +1 -1
  24. package/src/{document-question-answering → tasks/document-question-answering}/data.ts +1 -1
  25. package/src/{feature-extraction → tasks/feature-extraction}/data.ts +2 -7
  26. package/src/{fill-mask → tasks/fill-mask}/data.ts +1 -1
  27. package/src/{image-classification → tasks/image-classification}/data.ts +1 -1
  28. package/src/{image-segmentation → tasks/image-segmentation}/data.ts +1 -1
  29. package/src/{image-to-image → tasks/image-to-image}/about.md +8 -7
  30. package/src/{image-to-image → tasks/image-to-image}/data.ts +1 -1
  31. package/src/{image-to-text → tasks/image-to-text}/data.ts +1 -1
  32. package/src/{tasksData.ts → tasks/index.ts} +144 -15
  33. package/src/{object-detection → tasks/object-detection}/data.ts +1 -1
  34. package/src/{placeholder → tasks/placeholder}/data.ts +1 -1
  35. package/src/{question-answering → tasks/question-answering}/data.ts +1 -1
  36. package/src/{reinforcement-learning → tasks/reinforcement-learning}/data.ts +1 -1
  37. package/src/{sentence-similarity → tasks/sentence-similarity}/data.ts +1 -1
  38. package/src/{summarization → tasks/summarization}/data.ts +1 -1
  39. package/src/{table-question-answering → tasks/table-question-answering}/data.ts +1 -1
  40. package/src/{tabular-classification → tasks/tabular-classification}/data.ts +1 -1
  41. package/src/{tabular-regression → tasks/tabular-regression}/data.ts +1 -1
  42. package/src/{text-classification → tasks/text-classification}/data.ts +1 -1
  43. package/src/{text-generation → tasks/text-generation}/about.md +13 -3
  44. package/src/{text-generation → tasks/text-generation}/data.ts +2 -2
  45. package/src/{text-to-image → tasks/text-to-image}/data.ts +1 -1
  46. package/src/{text-to-speech → tasks/text-to-speech}/about.md +2 -1
  47. package/src/{text-to-speech → tasks/text-to-speech}/data.ts +4 -4
  48. package/src/{text-to-video → tasks/text-to-video}/data.ts +1 -1
  49. package/src/{token-classification → tasks/token-classification}/data.ts +1 -1
  50. package/src/{translation → tasks/translation}/data.ts +1 -1
  51. package/src/{unconditional-image-generation → tasks/unconditional-image-generation}/data.ts +1 -1
  52. package/src/{video-classification → tasks/video-classification}/about.md +8 -28
  53. package/src/{video-classification → tasks/video-classification}/data.ts +1 -1
  54. package/src/{visual-question-answering → tasks/visual-question-answering}/data.ts +1 -1
  55. package/src/{zero-shot-classification → tasks/zero-shot-classification}/data.ts +1 -1
  56. package/src/{zero-shot-image-classification → tasks/zero-shot-image-classification}/data.ts +1 -1
  57. package/src/Types.ts +0 -64
  58. package/src/const.ts +0 -59
  59. /package/src/{modelLibraries.ts → model-libraries.ts} +0 -0
  60. /package/src/{audio-to-audio → tasks/audio-to-audio}/about.md +0 -0
  61. /package/src/{conversational → tasks/conversational}/about.md +0 -0
  62. /package/src/{depth-estimation → tasks/depth-estimation}/about.md +0 -0
  63. /package/src/{document-question-answering → tasks/document-question-answering}/about.md +0 -0
  64. /package/src/{feature-extraction → tasks/feature-extraction}/about.md +0 -0
  65. /package/src/{fill-mask → tasks/fill-mask}/about.md +0 -0
  66. /package/src/{image-classification → tasks/image-classification}/about.md +0 -0
  67. /package/src/{image-segmentation → tasks/image-segmentation}/about.md +0 -0
  68. /package/src/{image-to-text → tasks/image-to-text}/about.md +0 -0
  69. /package/src/{object-detection → tasks/object-detection}/about.md +0 -0
  70. /package/src/{placeholder → tasks/placeholder}/about.md +0 -0
  71. /package/src/{question-answering → tasks/question-answering}/about.md +0 -0
  72. /package/src/{reinforcement-learning → tasks/reinforcement-learning}/about.md +0 -0
  73. /package/src/{sentence-similarity → tasks/sentence-similarity}/about.md +0 -0
  74. /package/src/{summarization → tasks/summarization}/about.md +0 -0
  75. /package/src/{table-question-answering → tasks/table-question-answering}/about.md +0 -0
  76. /package/src/{tabular-classification → tasks/tabular-classification}/about.md +0 -0
  77. /package/src/{tabular-regression → tasks/tabular-regression}/about.md +0 -0
  78. /package/src/{text-classification → tasks/text-classification}/about.md +0 -0
  79. /package/src/{text-to-image → tasks/text-to-image}/about.md +0 -0
  80. /package/src/{text-to-video → tasks/text-to-video}/about.md +0 -0
  81. /package/src/{token-classification → tasks/token-classification}/about.md +0 -0
  82. /package/src/{translation → tasks/translation}/about.md +0 -0
  83. /package/src/{unconditional-image-generation → tasks/unconditional-image-generation}/about.md +0 -0
  84. /package/src/{visual-question-answering → tasks/visual-question-answering}/about.md +0 -0
  85. /package/src/{zero-shot-classification → tasks/zero-shot-classification}/about.md +0 -0
  86. /package/src/{zero-shot-image-classification → tasks/zero-shot-image-classification}/about.md +0 -0
package/dist/index.mjs CHANGED
@@ -1,3 +1,1391 @@
1
+ var __defProp = Object.defineProperty;
2
+ var __export = (target, all) => {
3
+ for (var name in all)
4
+ __defProp(target, name, { get: all[name], enumerable: true });
5
+ };
6
+
7
+ // src/library-to-tasks.ts
8
+ var LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS = {
9
+ "adapter-transformers": ["question-answering", "text-classification", "token-classification"],
10
+ allennlp: ["question-answering"],
11
+ asteroid: [
12
+ // "audio-source-separation",
13
+ "audio-to-audio"
14
+ ],
15
+ bertopic: ["text-classification"],
16
+ diffusers: ["image-to-image", "text-to-image"],
17
+ doctr: ["object-detection"],
18
+ espnet: ["text-to-speech", "automatic-speech-recognition"],
19
+ fairseq: ["text-to-speech", "audio-to-audio"],
20
+ fastai: ["image-classification"],
21
+ fasttext: ["feature-extraction", "text-classification"],
22
+ flair: ["token-classification"],
23
+ k2: ["automatic-speech-recognition"],
24
+ keras: ["image-classification"],
25
+ nemo: ["automatic-speech-recognition"],
26
+ open_clip: ["zero-shot-classification", "zero-shot-image-classification"],
27
+ paddlenlp: ["conversational", "fill-mask", "summarization", "zero-shot-classification"],
28
+ peft: ["text-generation"],
29
+ "pyannote-audio": ["automatic-speech-recognition"],
30
+ "sentence-transformers": ["feature-extraction", "sentence-similarity"],
31
+ sklearn: ["tabular-classification", "tabular-regression", "text-classification"],
32
+ spacy: ["token-classification", "text-classification", "sentence-similarity"],
33
+ "span-marker": ["token-classification"],
34
+ speechbrain: [
35
+ "audio-classification",
36
+ "audio-to-audio",
37
+ "automatic-speech-recognition",
38
+ "text-to-speech",
39
+ "text2text-generation"
40
+ ],
41
+ stanza: ["token-classification"],
42
+ timm: ["image-classification"],
43
+ mindspore: ["image-classification"]
44
+ };
45
+
46
+ // src/library-ui-elements.ts
47
+ function nameWithoutNamespace(modelId) {
48
+ const splitted = modelId.split("/");
49
+ return splitted.length === 1 ? splitted[0] : splitted[1];
50
+ }
51
+ var adapter_transformers = (model) => [
52
+ `from transformers import ${model.config?.adapter_transformers?.model_class}
53
+
54
+ model = ${model.config?.adapter_transformers?.model_class}.from_pretrained("${model.config?.adapter_transformers?.model_name}")
55
+ model.load_adapter("${model.id}", source="hf")`
56
+ ];
57
+ var allennlpUnknown = (model) => [
58
+ `import allennlp_models
59
+ from allennlp.predictors.predictor import Predictor
60
+
61
+ predictor = Predictor.from_path("hf://${model.id}")`
62
+ ];
63
+ var allennlpQuestionAnswering = (model) => [
64
+ `import allennlp_models
65
+ from allennlp.predictors.predictor import Predictor
66
+
67
+ predictor = Predictor.from_path("hf://${model.id}")
68
+ predictor_input = {"passage": "My name is Wolfgang and I live in Berlin", "question": "Where do I live?"}
69
+ predictions = predictor.predict_json(predictor_input)`
70
+ ];
71
+ var allennlp = (model) => {
72
+ if (model.tags?.includes("question-answering")) {
73
+ return allennlpQuestionAnswering(model);
74
+ }
75
+ return allennlpUnknown(model);
76
+ };
77
+ var asteroid = (model) => [
78
+ `from asteroid.models import BaseModel
79
+
80
+ model = BaseModel.from_pretrained("${model.id}")`
81
+ ];
82
+ function get_base_diffusers_model(model) {
83
+ return model.cardData?.base_model ?? "fill-in-base-model";
84
+ }
85
+ var bertopic = (model) => [
86
+ `from bertopic import BERTopic
87
+
88
+ model = BERTopic.load("${model.id}")`
89
+ ];
90
+ var diffusers_default = (model) => [
91
+ `from diffusers import DiffusionPipeline
92
+
93
+ pipeline = DiffusionPipeline.from_pretrained("${model.id}")`
94
+ ];
95
+ var diffusers_controlnet = (model) => [
96
+ `from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
97
+
98
+ controlnet = ControlNetModel.from_pretrained("${model.id}")
99
+ pipeline = StableDiffusionControlNetPipeline.from_pretrained(
100
+ "${get_base_diffusers_model(model)}", controlnet=controlnet
101
+ )`
102
+ ];
103
+ var diffusers_lora = (model) => [
104
+ `from diffusers import DiffusionPipeline
105
+
106
+ pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
107
+ pipeline.load_lora_weights("${model.id}")`
108
+ ];
109
+ var diffusers_textual_inversion = (model) => [
110
+ `from diffusers import DiffusionPipeline
111
+
112
+ pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
113
+ pipeline.load_textual_inversion("${model.id}")`
114
+ ];
115
+ var diffusers = (model) => {
116
+ if (model.tags?.includes("controlnet")) {
117
+ return diffusers_controlnet(model);
118
+ } else if (model.tags?.includes("lora")) {
119
+ return diffusers_lora(model);
120
+ } else if (model.tags?.includes("textual_inversion")) {
121
+ return diffusers_textual_inversion(model);
122
+ } else {
123
+ return diffusers_default(model);
124
+ }
125
+ };
126
+ var espnetTTS = (model) => [
127
+ `from espnet2.bin.tts_inference import Text2Speech
128
+
129
+ model = Text2Speech.from_pretrained("${model.id}")
130
+
131
+ speech, *_ = model("text to generate speech from")`
132
+ ];
133
+ var espnetASR = (model) => [
134
+ `from espnet2.bin.asr_inference import Speech2Text
135
+
136
+ model = Speech2Text.from_pretrained(
137
+ "${model.id}"
138
+ )
139
+
140
+ speech, rate = soundfile.read("speech.wav")
141
+ text, *_ = model(speech)[0]`
142
+ ];
143
+ var espnetUnknown = () => [`unknown model type (must be text-to-speech or automatic-speech-recognition)`];
144
+ var espnet = (model) => {
145
+ if (model.tags?.includes("text-to-speech")) {
146
+ return espnetTTS(model);
147
+ } else if (model.tags?.includes("automatic-speech-recognition")) {
148
+ return espnetASR(model);
149
+ }
150
+ return espnetUnknown();
151
+ };
152
+ var fairseq = (model) => [
153
+ `from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
154
+
155
+ models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
156
+ "${model.id}"
157
+ )`
158
+ ];
159
+ var flair = (model) => [
160
+ `from flair.models import SequenceTagger
161
+
162
+ tagger = SequenceTagger.load("${model.id}")`
163
+ ];
164
+ var keras = (model) => [
165
+ `from huggingface_hub import from_pretrained_keras
166
+
167
+ model = from_pretrained_keras("${model.id}")
168
+ `
169
+ ];
170
+ var open_clip = (model) => [
171
+ `import open_clip
172
+
173
+ model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:${model.id}')
174
+ tokenizer = open_clip.get_tokenizer('hf-hub:${model.id}')`
175
+ ];
176
+ var paddlenlp = (model) => {
177
+ if (model.config?.architectures?.[0]) {
178
+ const architecture = model.config.architectures[0];
179
+ return [
180
+ [
181
+ `from paddlenlp.transformers import AutoTokenizer, ${architecture}`,
182
+ "",
183
+ `tokenizer = AutoTokenizer.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`,
184
+ `model = ${architecture}.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`
185
+ ].join("\n")
186
+ ];
187
+ } else {
188
+ return [
189
+ [
190
+ `# \u26A0\uFE0F Type of model unknown`,
191
+ `from paddlenlp.transformers import AutoTokenizer, AutoModel`,
192
+ "",
193
+ `tokenizer = AutoTokenizer.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`,
194
+ `model = AutoModel.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`
195
+ ].join("\n")
196
+ ];
197
+ }
198
+ };
199
+ var pyannote_audio_pipeline = (model) => [
200
+ `from pyannote.audio import Pipeline
201
+
202
+ pipeline = Pipeline.from_pretrained("${model.id}")
203
+
204
+ # inference on the whole file
205
+ pipeline("file.wav")
206
+
207
+ # inference on an excerpt
208
+ from pyannote.core import Segment
209
+ excerpt = Segment(start=2.0, end=5.0)
210
+
211
+ from pyannote.audio import Audio
212
+ waveform, sample_rate = Audio().crop("file.wav", excerpt)
213
+ pipeline({"waveform": waveform, "sample_rate": sample_rate})`
214
+ ];
215
+ var pyannote_audio_model = (model) => [
216
+ `from pyannote.audio import Model, Inference
217
+
218
+ model = Model.from_pretrained("${model.id}")
219
+ inference = Inference(model)
220
+
221
+ # inference on the whole file
222
+ inference("file.wav")
223
+
224
+ # inference on an excerpt
225
+ from pyannote.core import Segment
226
+ excerpt = Segment(start=2.0, end=5.0)
227
+ inference.crop("file.wav", excerpt)`
228
+ ];
229
+ var pyannote_audio = (model) => {
230
+ if (model.tags?.includes("pyannote-audio-pipeline")) {
231
+ return pyannote_audio_pipeline(model);
232
+ }
233
+ return pyannote_audio_model(model);
234
+ };
235
+ var tensorflowttsTextToMel = (model) => [
236
+ `from tensorflow_tts.inference import AutoProcessor, TFAutoModel
237
+
238
+ processor = AutoProcessor.from_pretrained("${model.id}")
239
+ model = TFAutoModel.from_pretrained("${model.id}")
240
+ `
241
+ ];
242
+ var tensorflowttsMelToWav = (model) => [
243
+ `from tensorflow_tts.inference import TFAutoModel
244
+
245
+ model = TFAutoModel.from_pretrained("${model.id}")
246
+ audios = model.inference(mels)
247
+ `
248
+ ];
249
+ var tensorflowttsUnknown = (model) => [
250
+ `from tensorflow_tts.inference import TFAutoModel
251
+
252
+ model = TFAutoModel.from_pretrained("${model.id}")
253
+ `
254
+ ];
255
+ var tensorflowtts = (model) => {
256
+ if (model.tags?.includes("text-to-mel")) {
257
+ return tensorflowttsTextToMel(model);
258
+ } else if (model.tags?.includes("mel-to-wav")) {
259
+ return tensorflowttsMelToWav(model);
260
+ }
261
+ return tensorflowttsUnknown(model);
262
+ };
263
+ var timm = (model) => [
264
+ `import timm
265
+
266
+ model = timm.create_model("hf_hub:${model.id}", pretrained=True)`
267
+ ];
268
+ var skopsPickle = (model, modelFile) => {
269
+ return [
270
+ `import joblib
271
+ from skops.hub_utils import download
272
+ download("${model.id}", "path_to_folder")
273
+ model = joblib.load(
274
+ "${modelFile}"
275
+ )
276
+ # only load pickle files from sources you trust
277
+ # read more about it here https://skops.readthedocs.io/en/stable/persistence.html`
278
+ ];
279
+ };
280
+ var skopsFormat = (model, modelFile) => {
281
+ return [
282
+ `from skops.hub_utils import download
283
+ from skops.io import load
284
+ download("${model.id}", "path_to_folder")
285
+ # make sure model file is in skops format
286
+ # if model is a pickle file, make sure it's from a source you trust
287
+ model = load("path_to_folder/${modelFile}")`
288
+ ];
289
+ };
290
+ var skopsJobLib = (model) => {
291
+ return [
292
+ `from huggingface_hub import hf_hub_download
293
+ import joblib
294
+ model = joblib.load(
295
+ hf_hub_download("${model.id}", "sklearn_model.joblib")
296
+ )
297
+ # only load pickle files from sources you trust
298
+ # read more about it here https://skops.readthedocs.io/en/stable/persistence.html`
299
+ ];
300
+ };
301
+ var sklearn = (model) => {
302
+ if (model.tags?.includes("skops")) {
303
+ const skopsmodelFile = model.config?.sklearn?.filename;
304
+ const skopssaveFormat = model.config?.sklearn?.model_format;
305
+ if (!skopsmodelFile) {
306
+ return [`# \u26A0\uFE0F Model filename not specified in config.json`];
307
+ }
308
+ if (skopssaveFormat === "pickle") {
309
+ return skopsPickle(model, skopsmodelFile);
310
+ } else {
311
+ return skopsFormat(model, skopsmodelFile);
312
+ }
313
+ } else {
314
+ return skopsJobLib(model);
315
+ }
316
+ };
317
+ var fastai = (model) => [
318
+ `from huggingface_hub import from_pretrained_fastai
319
+
320
+ learn = from_pretrained_fastai("${model.id}")`
321
+ ];
322
+ var sampleFactory = (model) => [
323
+ `python -m sample_factory.huggingface.load_from_hub -r ${model.id} -d ./train_dir`
324
+ ];
325
+ var sentenceTransformers = (model) => [
326
+ `from sentence_transformers import SentenceTransformer
327
+
328
+ model = SentenceTransformer("${model.id}")`
329
+ ];
330
+ var spacy = (model) => [
331
+ `!pip install https://huggingface.co/${model.id}/resolve/main/${nameWithoutNamespace(model.id)}-any-py3-none-any.whl
332
+
333
+ # Using spacy.load().
334
+ import spacy
335
+ nlp = spacy.load("${nameWithoutNamespace(model.id)}")
336
+
337
+ # Importing as module.
338
+ import ${nameWithoutNamespace(model.id)}
339
+ nlp = ${nameWithoutNamespace(model.id)}.load()`
340
+ ];
341
+ var span_marker = (model) => [
342
+ `from span_marker import SpanMarkerModel
343
+
344
+ model = SpanMarkerModel.from_pretrained("${model.id}")`
345
+ ];
346
+ var stanza = (model) => [
347
+ `import stanza
348
+
349
+ stanza.download("${nameWithoutNamespace(model.id).replace("stanza-", "")}")
350
+ nlp = stanza.Pipeline("${nameWithoutNamespace(model.id).replace("stanza-", "")}")`
351
+ ];
352
+ var speechBrainMethod = (speechbrainInterface) => {
353
+ switch (speechbrainInterface) {
354
+ case "EncoderClassifier":
355
+ return "classify_file";
356
+ case "EncoderDecoderASR":
357
+ case "EncoderASR":
358
+ return "transcribe_file";
359
+ case "SpectralMaskEnhancement":
360
+ return "enhance_file";
361
+ case "SepformerSeparation":
362
+ return "separate_file";
363
+ default:
364
+ return void 0;
365
+ }
366
+ };
367
+ var speechbrain = (model) => {
368
+ const speechbrainInterface = model.config?.speechbrain?.interface;
369
+ if (speechbrainInterface === void 0) {
370
+ return [`# interface not specified in config.json`];
371
+ }
372
+ const speechbrainMethod = speechBrainMethod(speechbrainInterface);
373
+ if (speechbrainMethod === void 0) {
374
+ return [`# interface in config.json invalid`];
375
+ }
376
+ return [
377
+ `from speechbrain.pretrained import ${speechbrainInterface}
378
+ model = ${speechbrainInterface}.from_hparams(
379
+ "${model.id}"
380
+ )
381
+ model.${speechbrainMethod}("file.wav")`
382
+ ];
383
+ };
384
+ var transformers = (model) => {
385
+ const info = model.transformersInfo;
386
+ if (!info) {
387
+ return [`# \u26A0\uFE0F Type of model unknown`];
388
+ }
389
+ const remote_code_snippet = info.custom_class ? ", trust_remote_code=True" : "";
390
+ let autoSnippet;
391
+ if (info.processor) {
392
+ const varName = info.processor === "AutoTokenizer" ? "tokenizer" : info.processor === "AutoFeatureExtractor" ? "extractor" : "processor";
393
+ autoSnippet = [
394
+ "# Load model directly",
395
+ `from transformers import ${info.processor}, ${info.auto_model}`,
396
+ "",
397
+ `${varName} = ${info.processor}.from_pretrained("${model.id}"` + remote_code_snippet + ")",
398
+ `model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")"
399
+ ].join("\n");
400
+ } else {
401
+ autoSnippet = [
402
+ "# Load model directly",
403
+ `from transformers import ${info.auto_model}`,
404
+ `model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")"
405
+ ].join("\n");
406
+ }
407
+ if (model.pipeline_tag) {
408
+ const pipelineSnippet = [
409
+ "# Use a pipeline as a high-level helper",
410
+ "from transformers import pipeline",
411
+ "",
412
+ `pipe = pipeline("${model.pipeline_tag}", model="${model.id}"` + remote_code_snippet + ")"
413
+ ].join("\n");
414
+ return [pipelineSnippet, autoSnippet];
415
+ }
416
+ return [autoSnippet];
417
+ };
418
+ var transformersJS = (model) => {
419
+ if (!model.pipeline_tag) {
420
+ return [`// \u26A0\uFE0F Unknown pipeline tag`];
421
+ }
422
+ const libName = "@xenova/transformers";
423
+ return [
424
+ `// npm i ${libName}
425
+ import { pipeline } from '${libName}';
426
+
427
+ // Allocate pipeline
428
+ const pipe = await pipeline('${model.pipeline_tag}', '${model.id}');`
429
+ ];
430
+ };
431
+ var peftTask = (peftTaskType) => {
432
+ switch (peftTaskType) {
433
+ case "CAUSAL_LM":
434
+ return "CausalLM";
435
+ case "SEQ_2_SEQ_LM":
436
+ return "Seq2SeqLM";
437
+ case "TOKEN_CLS":
438
+ return "TokenClassification";
439
+ case "SEQ_CLS":
440
+ return "SequenceClassification";
441
+ default:
442
+ return void 0;
443
+ }
444
+ };
445
+ var peft = (model) => {
446
+ const { base_model_name: peftBaseModel, task_type: peftTaskType } = model.config?.peft ?? {};
447
+ const pefttask = peftTask(peftTaskType);
448
+ if (!pefttask) {
449
+ return [`Task type is invalid.`];
450
+ }
451
+ if (!peftBaseModel) {
452
+ return [`Base model is not found.`];
453
+ }
454
+ return [
455
+ `from peft import PeftModel, PeftConfig
456
+ from transformers import AutoModelFor${pefttask}
457
+
458
+ config = PeftConfig.from_pretrained("${model.id}")
459
+ model = AutoModelFor${pefttask}.from_pretrained("${peftBaseModel}")
460
+ model = PeftModel.from_pretrained(model, "${model.id}")`
461
+ ];
462
+ };
463
+ var fasttext = (model) => [
464
+ `from huggingface_hub import hf_hub_download
465
+ import fasttext
466
+
467
+ model = fasttext.load_model(hf_hub_download("${model.id}", "model.bin"))`
468
+ ];
469
+ var stableBaselines3 = (model) => [
470
+ `from huggingface_sb3 import load_from_hub
471
+ checkpoint = load_from_hub(
472
+ repo_id="${model.id}",
473
+ filename="{MODEL FILENAME}.zip",
474
+ )`
475
+ ];
476
+ var nemoDomainResolver = (domain, model) => {
477
+ switch (domain) {
478
+ case "ASR":
479
+ return [
480
+ `import nemo.collections.asr as nemo_asr
481
+ asr_model = nemo_asr.models.ASRModel.from_pretrained("${model.id}")
482
+
483
+ transcriptions = asr_model.transcribe(["file.wav"])`
484
+ ];
485
+ default:
486
+ return void 0;
487
+ }
488
+ };
489
+ var mlAgents = (model) => [`mlagents-load-from-hf --repo-id="${model.id}" --local-dir="./downloads"`];
490
+ var nemo = (model) => {
491
+ let command = void 0;
492
+ if (model.tags?.includes("automatic-speech-recognition")) {
493
+ command = nemoDomainResolver("ASR", model);
494
+ }
495
+ return command ?? [`# tag did not correspond to a valid NeMo domain.`];
496
+ };
497
+ var pythae = (model) => [
498
+ `from pythae.models import AutoModel
499
+
500
+ model = AutoModel.load_from_hf_hub("${model.id}")`
501
+ ];
502
+ var MODEL_LIBRARIES_UI_ELEMENTS = {
503
+ "adapter-transformers": {
504
+ btnLabel: "Adapter Transformers",
505
+ repoName: "adapter-transformers",
506
+ repoUrl: "https://github.com/Adapter-Hub/adapter-transformers",
507
+ docsUrl: "https://huggingface.co/docs/hub/adapter-transformers",
508
+ snippets: adapter_transformers
509
+ },
510
+ allennlp: {
511
+ btnLabel: "AllenNLP",
512
+ repoName: "AllenNLP",
513
+ repoUrl: "https://github.com/allenai/allennlp",
514
+ docsUrl: "https://huggingface.co/docs/hub/allennlp",
515
+ snippets: allennlp
516
+ },
517
+ asteroid: {
518
+ btnLabel: "Asteroid",
519
+ repoName: "Asteroid",
520
+ repoUrl: "https://github.com/asteroid-team/asteroid",
521
+ docsUrl: "https://huggingface.co/docs/hub/asteroid",
522
+ snippets: asteroid
523
+ },
524
+ bertopic: {
525
+ btnLabel: "BERTopic",
526
+ repoName: "BERTopic",
527
+ repoUrl: "https://github.com/MaartenGr/BERTopic",
528
+ snippets: bertopic
529
+ },
530
+ diffusers: {
531
+ btnLabel: "Diffusers",
532
+ repoName: "\u{1F917}/diffusers",
533
+ repoUrl: "https://github.com/huggingface/diffusers",
534
+ docsUrl: "https://huggingface.co/docs/hub/diffusers",
535
+ snippets: diffusers
536
+ },
537
+ espnet: {
538
+ btnLabel: "ESPnet",
539
+ repoName: "ESPnet",
540
+ repoUrl: "https://github.com/espnet/espnet",
541
+ docsUrl: "https://huggingface.co/docs/hub/espnet",
542
+ snippets: espnet
543
+ },
544
+ fairseq: {
545
+ btnLabel: "Fairseq",
546
+ repoName: "fairseq",
547
+ repoUrl: "https://github.com/pytorch/fairseq",
548
+ snippets: fairseq
549
+ },
550
+ flair: {
551
+ btnLabel: "Flair",
552
+ repoName: "Flair",
553
+ repoUrl: "https://github.com/flairNLP/flair",
554
+ docsUrl: "https://huggingface.co/docs/hub/flair",
555
+ snippets: flair
556
+ },
557
+ keras: {
558
+ btnLabel: "Keras",
559
+ repoName: "Keras",
560
+ repoUrl: "https://github.com/keras-team/keras",
561
+ docsUrl: "https://huggingface.co/docs/hub/keras",
562
+ snippets: keras
563
+ },
564
+ nemo: {
565
+ btnLabel: "NeMo",
566
+ repoName: "NeMo",
567
+ repoUrl: "https://github.com/NVIDIA/NeMo",
568
+ snippets: nemo
569
+ },
570
+ open_clip: {
571
+ btnLabel: "OpenCLIP",
572
+ repoName: "OpenCLIP",
573
+ repoUrl: "https://github.com/mlfoundations/open_clip",
574
+ snippets: open_clip
575
+ },
576
+ paddlenlp: {
577
+ btnLabel: "paddlenlp",
578
+ repoName: "PaddleNLP",
579
+ repoUrl: "https://github.com/PaddlePaddle/PaddleNLP",
580
+ docsUrl: "https://huggingface.co/docs/hub/paddlenlp",
581
+ snippets: paddlenlp
582
+ },
583
+ peft: {
584
+ btnLabel: "PEFT",
585
+ repoName: "PEFT",
586
+ repoUrl: "https://github.com/huggingface/peft",
587
+ snippets: peft
588
+ },
589
+ "pyannote-audio": {
590
+ btnLabel: "pyannote.audio",
591
+ repoName: "pyannote-audio",
592
+ repoUrl: "https://github.com/pyannote/pyannote-audio",
593
+ snippets: pyannote_audio
594
+ },
595
+ "sentence-transformers": {
596
+ btnLabel: "sentence-transformers",
597
+ repoName: "sentence-transformers",
598
+ repoUrl: "https://github.com/UKPLab/sentence-transformers",
599
+ docsUrl: "https://huggingface.co/docs/hub/sentence-transformers",
600
+ snippets: sentenceTransformers
601
+ },
602
+ sklearn: {
603
+ btnLabel: "Scikit-learn",
604
+ repoName: "Scikit-learn",
605
+ repoUrl: "https://github.com/scikit-learn/scikit-learn",
606
+ snippets: sklearn
607
+ },
608
+ fastai: {
609
+ btnLabel: "fastai",
610
+ repoName: "fastai",
611
+ repoUrl: "https://github.com/fastai/fastai",
612
+ docsUrl: "https://huggingface.co/docs/hub/fastai",
613
+ snippets: fastai
614
+ },
615
+ spacy: {
616
+ btnLabel: "spaCy",
617
+ repoName: "spaCy",
618
+ repoUrl: "https://github.com/explosion/spaCy",
619
+ docsUrl: "https://huggingface.co/docs/hub/spacy",
620
+ snippets: spacy
621
+ },
622
+ "span-marker": {
623
+ btnLabel: "SpanMarker",
624
+ repoName: "SpanMarkerNER",
625
+ repoUrl: "https://github.com/tomaarsen/SpanMarkerNER",
626
+ docsUrl: "https://huggingface.co/docs/hub/span_marker",
627
+ snippets: span_marker
628
+ },
629
+ speechbrain: {
630
+ btnLabel: "speechbrain",
631
+ repoName: "speechbrain",
632
+ repoUrl: "https://github.com/speechbrain/speechbrain",
633
+ docsUrl: "https://huggingface.co/docs/hub/speechbrain",
634
+ snippets: speechbrain
635
+ },
636
+ stanza: {
637
+ btnLabel: "Stanza",
638
+ repoName: "stanza",
639
+ repoUrl: "https://github.com/stanfordnlp/stanza",
640
+ docsUrl: "https://huggingface.co/docs/hub/stanza",
641
+ snippets: stanza
642
+ },
643
+ tensorflowtts: {
644
+ btnLabel: "TensorFlowTTS",
645
+ repoName: "TensorFlowTTS",
646
+ repoUrl: "https://github.com/TensorSpeech/TensorFlowTTS",
647
+ snippets: tensorflowtts
648
+ },
649
+ timm: {
650
+ btnLabel: "timm",
651
+ repoName: "pytorch-image-models",
652
+ repoUrl: "https://github.com/rwightman/pytorch-image-models",
653
+ docsUrl: "https://huggingface.co/docs/hub/timm",
654
+ snippets: timm
655
+ },
656
+ transformers: {
657
+ btnLabel: "Transformers",
658
+ repoName: "\u{1F917}/transformers",
659
+ repoUrl: "https://github.com/huggingface/transformers",
660
+ docsUrl: "https://huggingface.co/docs/hub/transformers",
661
+ snippets: transformers
662
+ },
663
+ "transformers.js": {
664
+ btnLabel: "Transformers.js",
665
+ repoName: "transformers.js",
666
+ repoUrl: "https://github.com/xenova/transformers.js",
667
+ docsUrl: "https://huggingface.co/docs/hub/transformers-js",
668
+ snippets: transformersJS
669
+ },
670
+ fasttext: {
671
+ btnLabel: "fastText",
672
+ repoName: "fastText",
673
+ repoUrl: "https://fasttext.cc/",
674
+ snippets: fasttext
675
+ },
676
+ "sample-factory": {
677
+ btnLabel: "sample-factory",
678
+ repoName: "sample-factory",
679
+ repoUrl: "https://github.com/alex-petrenko/sample-factory",
680
+ docsUrl: "https://huggingface.co/docs/hub/sample-factory",
681
+ snippets: sampleFactory
682
+ },
683
+ "stable-baselines3": {
684
+ btnLabel: "stable-baselines3",
685
+ repoName: "stable-baselines3",
686
+ repoUrl: "https://github.com/huggingface/huggingface_sb3",
687
+ docsUrl: "https://huggingface.co/docs/hub/stable-baselines3",
688
+ snippets: stableBaselines3
689
+ },
690
+ "ml-agents": {
691
+ btnLabel: "ml-agents",
692
+ repoName: "ml-agents",
693
+ repoUrl: "https://github.com/huggingface/ml-agents",
694
+ docsUrl: "https://huggingface.co/docs/hub/ml-agents",
695
+ snippets: mlAgents
696
+ },
697
+ pythae: {
698
+ btnLabel: "pythae",
699
+ repoName: "pythae",
700
+ repoUrl: "https://github.com/clementchadebec/benchmark_VAE",
701
+ snippets: pythae
702
+ }
703
+ };
704
+
705
+ // src/default-widget-inputs.ts
706
+ var MAPPING_EN = /* @__PURE__ */ new Map([
707
+ ["text-classification", [`I like you. I love you`]],
708
+ [
709
+ "token-classification",
710
+ [
711
+ `My name is Wolfgang and I live in Berlin`,
712
+ `My name is Sarah and I live in London`,
713
+ `My name is Clara and I live in Berkeley, California.`
714
+ ]
715
+ ],
716
+ [
717
+ "table-question-answering",
718
+ [
719
+ {
720
+ text: `How many stars does the transformers repository have?`,
721
+ table: {
722
+ Repository: ["Transformers", "Datasets", "Tokenizers"],
723
+ Stars: [36542, 4512, 3934],
724
+ Contributors: [651, 77, 34],
725
+ "Programming language": ["Python", "Python", "Rust, Python and NodeJS"]
726
+ }
727
+ }
728
+ ]
729
+ ],
730
+ [
731
+ "question-answering",
732
+ [
733
+ {
734
+ text: `Where do I live?`,
735
+ context: `My name is Wolfgang and I live in Berlin`
736
+ },
737
+ {
738
+ text: `Where do I live?`,
739
+ context: `My name is Sarah and I live in London`
740
+ },
741
+ {
742
+ text: `What's my name?`,
743
+ context: `My name is Clara and I live in Berkeley.`
744
+ },
745
+ {
746
+ text: `Which name is also used to describe the Amazon rainforest in English?`,
747
+ context: `The Amazon rainforest (Portuguese: Floresta Amaz\xF4nica or Amaz\xF4nia; Spanish: Selva Amaz\xF3nica, Amazon\xEDa or usually Amazonia; French: For\xEAt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain "Amazonas" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species.`
748
+ }
749
+ ]
750
+ ],
751
+ [
752
+ "zero-shot-classification",
753
+ [
754
+ {
755
+ text: "I have a problem with my iphone that needs to be resolved asap!!",
756
+ candidate_labels: "urgent, not urgent, phone, tablet, computer",
757
+ multi_class: true
758
+ },
759
+ {
760
+ text: "Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.",
761
+ candidate_labels: "mobile, website, billing, account access",
762
+ multi_class: false
763
+ },
764
+ {
765
+ text: "A new model offers an explanation for how the Galilean satellites formed around the solar system\u2019s largest world. Konstantin Batygin did not set out to solve one of the solar system\u2019s most puzzling mysteries when he went for a run up a hill in Nice, France. Dr. Batygin, a Caltech researcher, best known for his contributions to the search for the solar system\u2019s missing \u201CPlanet Nine,\u201D spotted a beer bottle. At a steep, 20 degree grade, he wondered why it wasn\u2019t rolling down the hill. He realized there was a breeze at his back holding the bottle in place. Then he had a thought that would only pop into the mind of a theoretical astrophysicist: \u201COh! This is how Europa formed.\u201D Europa is one of Jupiter\u2019s four large Galilean moons. And in a paper published Monday in the Astrophysical Journal, Dr. Batygin and a co-author, Alessandro Morbidelli, a planetary scientist at the C\xF4te d\u2019Azur Observatory in France, present a theory explaining how some moons form around gas giants like Jupiter and Saturn, suggesting that millimeter-sized grains of hail produced during the solar system\u2019s formation became trapped around these massive worlds, taking shape one at a time into the potentially habitable moons we know today.",
766
+ candidate_labels: "space & cosmos, scientific discovery, microbiology, robots, archeology",
767
+ multi_class: true
768
+ }
769
+ ]
770
+ ],
771
+ ["translation", [`My name is Wolfgang and I live in Berlin`, `My name is Sarah and I live in London`]],
772
+ [
773
+ "summarization",
774
+ [
775
+ `The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct.`
776
+ ]
777
+ ],
778
+ [
779
+ "conversational",
780
+ [
781
+ `Hey my name is Julien! How are you?`,
782
+ `Hey my name is Thomas! How are you?`,
783
+ `Hey my name is Mariama! How are you?`,
784
+ `Hey my name is Clara! How are you?`,
785
+ `Hey my name is Julien! How are you?`,
786
+ `Hi.`
787
+ ]
788
+ ],
789
+ [
790
+ "text-generation",
791
+ [
792
+ `My name is Julien and I like to`,
793
+ `My name is Thomas and my main`,
794
+ `My name is Mariama, my favorite`,
795
+ `My name is Clara and I am`,
796
+ `My name is Lewis and I like to`,
797
+ `My name is Merve and my favorite`,
798
+ `My name is Teven and I am`,
799
+ `Once upon a time,`
800
+ ]
801
+ ],
802
+ ["fill-mask", [`Paris is the <mask> of France.`, `The goal of life is <mask>.`]],
803
+ [
804
+ "sentence-similarity",
805
+ [
806
+ {
807
+ source_sentence: "That is a happy person",
808
+ sentences: ["That is a happy dog", "That is a very happy person", "Today is a sunny day"]
809
+ }
810
+ ]
811
+ ]
812
+ ]);
813
+ var MAPPING_ZH = /* @__PURE__ */ new Map([
814
+ ["text-classification", [`\u6211\u559C\u6B22\u4F60\u3002 \u6211\u7231\u4F60`]],
815
+ ["token-classification", [`\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`, `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`, `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u4F4F\u5728\u52A0\u5DDE\u4F2F\u514B\u5229\u3002`]],
816
+ [
817
+ "question-answering",
818
+ [
819
+ {
820
+ text: `\u6211\u4F4F\u5728\u54EA\u91CC\uFF1F`,
821
+ context: `\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`
822
+ },
823
+ {
824
+ text: `\u6211\u4F4F\u5728\u54EA\u91CC\uFF1F`,
825
+ context: `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`
826
+ },
827
+ {
828
+ text: `\u6211\u7684\u540D\u5B57\u662F\u4EC0\u4E48\uFF1F`,
829
+ context: `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u4F4F\u5728\u4F2F\u514B\u5229\u3002`
830
+ }
831
+ ]
832
+ ],
833
+ ["translation", [`\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`, `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`]],
834
+ [
835
+ "zero-shot-classification",
836
+ [
837
+ {
838
+ text: "\u623F\u95F4\u5E72\u51C0\u660E\u4EAE\uFF0C\u975E\u5E38\u4E0D\u9519",
839
+ candidate_labels: "\u8FD9\u662F\u4E00\u6761\u5DEE\u8BC4, \u8FD9\u662F\u4E00\u6761\u597D\u8BC4"
840
+ }
841
+ ]
842
+ ],
843
+ [
844
+ "summarization",
845
+ [
846
+ `\u8BE5\u5854\u9AD8324\u7C73\uFF081063\u82F1\u5C3A\uFF09\uFF0C\u4E0E\u4E00\u5E6281\u5C42\u7684\u5EFA\u7B51\u7269\u4E00\u6837\u9AD8\uFF0C\u662F\u5DF4\u9ECE\u6700\u9AD8\u7684\u5EFA\u7B51\u7269\u3002 \u5B83\u7684\u5E95\u5EA7\u662F\u65B9\u5F62\u7684\uFF0C\u6BCF\u8FB9\u957F125\u7C73\uFF08410\u82F1\u5C3A\uFF09\u3002 \u5728\u5EFA\u9020\u8FC7\u7A0B\u4E2D\uFF0C\u827E\u83F2\u5C14\u94C1\u5854\u8D85\u8FC7\u4E86\u534E\u76DB\u987F\u7EAA\u5FF5\u7891\uFF0C\u6210\u4E3A\u4E16\u754C\u4E0A\u6700\u9AD8\u7684\u4EBA\u9020\u7ED3\u6784\uFF0C\u5B83\u4FDD\u6301\u4E8641\u5E74\u7684\u5934\u8854\uFF0C\u76F4\u52301930\u5E74\u7EBD\u7EA6\u5E02\u7684\u514B\u83B1\u65AF\u52D2\u5927\u697C\u7AE3\u5DE5\u3002\u8FD9\u662F\u7B2C\u4E00\u4E2A\u5230\u8FBE300\u7C73\u9AD8\u5EA6\u7684\u7ED3\u6784\u3002 \u7531\u4E8E1957\u5E74\u5728\u5854\u9876\u589E\u52A0\u4E86\u5E7F\u64AD\u5929\u7EBF\uFF0C\u56E0\u6B64\u5B83\u73B0\u5728\u6BD4\u514B\u83B1\u65AF\u52D2\u5927\u53A6\u9AD85.2\u7C73\uFF0817\u82F1\u5C3A\uFF09\u3002 \u9664\u53D1\u5C04\u5668\u5916\uFF0C\u827E\u83F2\u5C14\u94C1\u5854\u662F\u6CD5\u56FD\u7B2C\u4E8C\u9AD8\u7684\u72EC\u7ACB\u5F0F\u5EFA\u7B51\uFF0C\u4EC5\u6B21\u4E8E\u7C73\u52B3\u9AD8\u67B6\u6865\u3002`
847
+ ]
848
+ ],
849
+ [
850
+ "text-generation",
851
+ [`\u6211\u53EB\u6731\u5229\u5B89\uFF0C\u6211\u559C\u6B22`, `\u6211\u53EB\u6258\u9A6C\u65AF\uFF0C\u6211\u7684\u4E3B\u8981`, `\u6211\u53EB\u739B\u4E3D\u4E9A\uFF0C\u6211\u6700\u559C\u6B22\u7684`, `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u662F`, `\u4ECE\u524D\uFF0C`]
852
+ ],
853
+ ["fill-mask", [`\u5DF4\u9ECE\u662F<mask>\u56FD\u7684\u9996\u90FD\u3002`, `\u751F\u6D3B\u7684\u771F\u8C1B\u662F<mask>\u3002`]],
854
+ [
855
+ "sentence-similarity",
856
+ [
857
+ {
858
+ source_sentence: "\u90A3\u662F \u500B\u5FEB\u6A02\u7684\u4EBA",
859
+ sentences: ["\u90A3\u662F \u689D\u5FEB\u6A02\u7684\u72D7", "\u90A3\u662F \u500B\u975E\u5E38\u5E78\u798F\u7684\u4EBA", "\u4ECA\u5929\u662F\u6674\u5929"]
860
+ }
861
+ ]
862
+ ]
863
+ ]);
864
+ var MAPPING_FR = /* @__PURE__ */ new Map([
865
+ ["text-classification", [`Je t'appr\xE9cie beaucoup. Je t'aime.`]],
866
+ ["token-classification", [`Mon nom est Wolfgang et je vis \xE0 Berlin`]],
867
+ [
868
+ "question-answering",
869
+ [
870
+ {
871
+ text: `O\xF9 est-ce que je vis?`,
872
+ context: `Mon nom est Wolfgang et je vis \xE0 Berlin`
873
+ }
874
+ ]
875
+ ],
876
+ ["translation", [`Mon nom est Wolfgang et je vis \xE0 Berlin`]],
877
+ [
878
+ "summarization",
879
+ [
880
+ `La tour fait 324 m\xE8tres (1,063 pieds) de haut, environ la m\xEAme hauteur qu'un immeuble de 81 \xE9tages, et est la plus haute structure de Paris. Sa base est carr\xE9e, mesurant 125 m\xE8tres (410 pieds) sur chaque c\xF4t\xE9. Durant sa construction, la tour Eiffel surpassa le Washington Monument pour devenir la plus haute structure construite par l'homme dans le monde, un titre qu'elle conserva pendant 41 ans jusqu'\xE0 l'ach\xE8vement du Chrysler Building \xE0 New-York City en 1930. Ce fut la premi\xE8re structure \xE0 atteindre une hauteur de 300 m\xE8tres. Avec l'ajout d'une antenne de radiodiffusion au sommet de la tour Eiffel en 1957, celle-ci redevint plus haute que le Chrysler Building de 5,2 m\xE8tres (17 pieds). En excluant les transmetteurs, elle est la seconde plus haute stucture autoportante de France apr\xE8s le viaduc de Millau.`
881
+ ]
882
+ ],
883
+ ["text-generation", [`Mon nom est Julien et j'aime`, `Mon nom est Thomas et mon principal`, `Il \xE9tait une fois`]],
884
+ ["fill-mask", [`Paris est la <mask> de la France.`]],
885
+ [
886
+ "sentence-similarity",
887
+ [
888
+ {
889
+ source_sentence: "C'est une personne heureuse",
890
+ sentences: [
891
+ "C'est un chien heureux",
892
+ "C'est une personne tr\xE8s heureuse",
893
+ "Aujourd'hui est une journ\xE9e ensoleill\xE9e"
894
+ ]
895
+ }
896
+ ]
897
+ ]
898
+ ]);
899
+ var MAPPING_ES = /* @__PURE__ */ new Map([
900
+ ["text-classification", [`Te quiero. Te amo.`]],
901
+ ["token-classification", [`Me llamo Wolfgang y vivo en Berlin`]],
902
+ [
903
+ "question-answering",
904
+ [
905
+ {
906
+ text: `\xBFD\xF3nde vivo?`,
907
+ context: `Me llamo Wolfgang y vivo en Berlin`
908
+ },
909
+ {
910
+ text: `\xBFQui\xE9n invent\xF3 el submarino?`,
911
+ context: `Isaac Peral fue un murciano que invent\xF3 el submarino`
912
+ },
913
+ {
914
+ text: `\xBFCu\xE1ntas personas hablan espa\xF1ol?`,
915
+ context: `El espa\xF1ol es el segundo idioma m\xE1s hablado del mundo con m\xE1s de 442 millones de hablantes`
916
+ }
917
+ ]
918
+ ],
919
+ [
920
+ "translation",
921
+ [
922
+ `Me llamo Wolfgang y vivo en Berlin`,
923
+ `Los ingredientes de una tortilla de patatas son: huevos, patatas y cebolla`
924
+ ]
925
+ ],
926
+ [
927
+ "summarization",
928
+ [
929
+ `La torre tiene 324 metros (1.063 pies) de altura, aproximadamente la misma altura que un edificio de 81 pisos y la estructura m\xE1s alta de Par\xEDs. Su base es cuadrada, mide 125 metros (410 pies) a cada lado. Durante su construcci\xF3n, la Torre Eiffel super\xF3 al Washington Monument para convertirse en la estructura artificial m\xE1s alta del mundo, un t\xEDtulo que mantuvo durante 41 a\xF1os hasta que el Chrysler Building en la ciudad de Nueva York se termin\xF3 en 1930. Fue la primera estructura en llegar Una altura de 300 metros. Debido a la adici\xF3n de una antena de transmisi\xF3n en la parte superior de la torre en 1957, ahora es m\xE1s alta que el Chrysler Building en 5,2 metros (17 pies). Excluyendo los transmisores, la Torre Eiffel es la segunda estructura independiente m\xE1s alta de Francia despu\xE9s del Viaducto de Millau.`
930
+ ]
931
+ ],
932
+ [
933
+ "text-generation",
934
+ [
935
+ `Me llamo Julien y me gusta`,
936
+ `Me llamo Thomas y mi principal`,
937
+ `Me llamo Manuel y trabajo en`,
938
+ `\xC9rase una vez,`,
939
+ `Si t\xFA me dices ven, `
940
+ ]
941
+ ],
942
+ ["fill-mask", [`Mi nombre es <mask> y vivo en Nueva York.`, `El espa\xF1ol es un idioma muy <mask> en el mundo.`]],
943
+ [
944
+ "sentence-similarity",
945
+ [
946
+ {
947
+ source_sentence: "Esa es una persona feliz",
948
+ sentences: ["Ese es un perro feliz", "Esa es una persona muy feliz", "Hoy es un d\xEDa soleado"]
949
+ }
950
+ ]
951
+ ]
952
+ ]);
953
+ var MAPPING_RU = /* @__PURE__ */ new Map([
954
+ ["text-classification", [`\u0422\u044B \u043C\u043D\u0435 \u043D\u0440\u0430\u0432\u0438\u0448\u044C\u0441\u044F. \u042F \u0442\u0435\u0431\u044F \u043B\u044E\u0431\u043B\u044E`]],
955
+ ["token-classification", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`]],
956
+ [
957
+ "question-answering",
958
+ [
959
+ {
960
+ text: `\u0413\u0434\u0435 \u0436\u0438\u0432\u0443?`,
961
+ context: `\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`
962
+ }
963
+ ]
964
+ ],
965
+ ["translation", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`]],
966
+ [
967
+ "summarization",
968
+ [
969
+ `\u0412\u044B\u0441\u043E\u0442\u0430 \u0431\u0430\u0448\u043D\u0438 \u0441\u043E\u0441\u0442\u0430\u0432\u043B\u044F\u0435\u0442 324 \u043C\u0435\u0442\u0440\u0430 (1063 \u0444\u0443\u0442\u0430), \u043F\u0440\u0438\u043C\u0435\u0440\u043D\u043E \u0442\u0430\u043A\u0430\u044F \u0436\u0435 \u0432\u044B\u0441\u043E\u0442\u0430, \u043A\u0430\u043A \u0443 81-\u044D\u0442\u0430\u0436\u043D\u043E\u0433\u043E \u0437\u0434\u0430\u043D\u0438\u044F, \u0438 \u0441\u0430\u043C\u043E\u0435 \u0432\u044B\u0441\u043E\u043A\u043E\u0435 \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435 \u0432 \u041F\u0430\u0440\u0438\u0436\u0435. \u0415\u0433\u043E \u043E\u0441\u043D\u043E\u0432\u0430\u043D\u0438\u0435 \u043A\u0432\u0430\u0434\u0440\u0430\u0442\u043D\u043E, \u0440\u0430\u0437\u043C\u0435\u0440\u043E\u043C 125 \u043C\u0435\u0442\u0440\u043E\u0432 (410 \u0444\u0443\u0442\u043E\u0432) \u0441 \u043B\u044E\u0431\u043E\u0439 \u0441\u0442\u043E\u0440\u043E\u043D\u044B. \u0412\u043E \u0432\u0440\u0435\u043C\u044F \u0441\u0442\u0440\u043E\u0438\u0442\u0435\u043B\u044C\u0441\u0442\u0432\u0430 \u042D\u0439\u0444\u0435\u043B\u0435\u0432\u0430 \u0431\u0430\u0448\u043D\u044F \u043F\u0440\u0435\u0432\u0437\u043E\u0448\u043B\u0430 \u043C\u043E\u043D\u0443\u043C\u0435\u043D\u0442 \u0412\u0430\u0448\u0438\u043D\u0433\u0442\u043E\u043D\u0430, \u0441\u0442\u0430\u0432 \u0441\u0430\u043C\u044B\u043C \u0432\u044B\u0441\u043E\u043A\u0438\u043C \u0438\u0441\u043A\u0443\u0441\u0441\u0442\u0432\u0435\u043D\u043D\u044B\u043C \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435\u043C \u0432 \u043C\u0438\u0440\u0435, \u0438 \u044D\u0442\u043E\u0442 \u0442\u0438\u0442\u0443\u043B \u043E\u043D\u0430 \u0443\u0434\u0435\u0440\u0436\u0438\u0432\u0430\u043B\u0430 \u0432 \u0442\u0435\u0447\u0435\u043D\u0438\u0435 41 \u0433\u043E\u0434\u0430 \u0434\u043E \u0437\u0430\u0432\u0435\u0440\u0448\u0435\u043D\u0438\u044F \u0441\u0442\u0440\u043E\u0438\u0442\u0435\u043B\u044C\u0441\u0442\u0432\u043E \u0437\u0434\u0430\u043D\u0438\u044F \u041A\u0440\u0430\u0439\u0441\u043B\u0435\u0440 \u0432 \u041D\u044C\u044E-\u0419\u043E\u0440\u043A\u0435 \u0432 1930 \u0433\u043E\u0434\u0443. \u042D\u0442\u043E \u043F\u0435\u0440\u0432\u043E\u0435 \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435 \u043A\u043E\u0442\u043E\u0440\u043E\u0435 \u0434\u043E\u0441\u0442\u0438\u0433\u043B\u043E \u0432\u044B\u0441\u043E\u0442\u044B 300 \u043C\u0435\u0442\u0440\u043E\u0432. \u0418\u0437-\u0437\u0430 \u0434\u043E\u0431\u0430\u0432\u043B\u0435\u043D\u0438\u044F \u0432\u0435\u0449\u0430\u0442\u0435\u043B\u044C\u043D\u043E\u0439 \u0430\u043D\u0442\u0435\u043D\u043D\u044B \u043D\u0430 \u0432\u0435\u0440\u0448\u0438\u043D\u0435 \u0431\u0430\u0448\u043D\u0438 \u0432 1957 \u0433\u043E\u0434\u0443 \u043E\u043D\u0430 \u0441\u0435\u0439\u0447\u0430\u0441 \u0432\u044B\u0448\u0435 \u0437\u0434\u0430\u043D\u0438\u044F \u041A\u0440\u0430\u0439\u0441\u043B\u0435\u0440 \u043D\u0430 5,2 \u043C\u0435\u0442\u0440\u0430 (17 \u0444\u0443\u0442\u043E\u0432). \u0417\u0430 \u0438\u0441\u043A\u043B\u044E\u0447\u0435\u043D\u0438\u0435\u043C \u043F\u0435\u0440\u0435\u0434\u0430\u0442\u0447\u0438\u043A\u043E\u0432, \u042D\u0439\u0444\u0435\u043B\u0435\u0432\u0430 \u0431\u0430\u0448\u043D\u044F \u044F\u0432\u043B\u044F\u0435\u0442\u0441\u044F \u0432\u0442\u043E\u0440\u043E\u0439 \u0441\u0430\u043C\u043E\u0439 \u0432\u044B\u0441\u043E\u043A\u043E\u0439 \u043E\u0442\u0434\u0435\u043B\u044C\u043D\u043E \u0441\u0442\u043E\u044F\u0449\u0435\u0439 \u0441\u0442\u0440\u0443\u043A\u0442\u0443\u0440\u043E\u0439 \u0432\u043E \u0424\u0440\u0430\u043D\u0446\u0438\u0438 \u043F\u043E\u0441\u043B\u0435 \u0432\u0438\u0430\u0434\u0443\u043A\u0430 \u041C\u0438\u0439\u043E.`
970
+ ]
971
+ ],
972
+ ["text-generation", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0416\u044E\u043B\u044C\u0435\u043D \u0438`, `\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0422\u043E\u043C\u0430\u0441 \u0438 \u043C\u043E\u0439 \u043E\u0441\u043D\u043E\u0432\u043D\u043E\u0439`, `\u041E\u0434\u043D\u0430\u0436\u0434\u044B`]],
973
+ ["fill-mask", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 <mask> \u0438 \u044F \u0438\u043D\u0436\u0435\u043D\u0435\u0440 \u0436\u0438\u0432\u0443\u0449\u0438\u0439 \u0432 \u041D\u044C\u044E-\u0419\u043E\u0440\u043A\u0435.`]],
974
+ [
975
+ "sentence-similarity",
976
+ [
977
+ {
978
+ source_sentence: "\u042D\u0442\u043E \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u044B\u0439 \u0447\u0435\u043B\u043E\u0432\u0435\u043A",
979
+ sentences: ["\u042D\u0442\u043E \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u0430\u044F \u0441\u043E\u0431\u0430\u043A\u0430", "\u042D\u0442\u043E \u043E\u0447\u0435\u043D\u044C \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u044B\u0439 \u0447\u0435\u043B\u043E\u0432\u0435\u043A", "\u0421\u0435\u0433\u043E\u0434\u043D\u044F \u0441\u043E\u043B\u043D\u0435\u0447\u043D\u044B\u0439 \u0434\u0435\u043D\u044C"]
980
+ }
981
+ ]
982
+ ]
983
+ ]);
984
+ var MAPPING_UK = /* @__PURE__ */ new Map([
985
+ ["translation", [`\u041C\u0435\u043D\u0435 \u0437\u0432\u0430\u0442\u0438 \u0412\u043E\u043B\u044C\u0444\u0491\u0430\u043D\u0491 \u0456 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0456\u043D\u0456.`]],
986
+ ["fill-mask", [`\u041C\u0435\u043D\u0435 \u0437\u0432\u0430\u0442\u0438 <mask>.`]]
987
+ ]);
988
+ var MAPPING_IT = /* @__PURE__ */ new Map([
989
+ ["text-classification", [`Mi piaci. Ti amo`]],
990
+ [
991
+ "token-classification",
992
+ [
993
+ `Mi chiamo Wolfgang e vivo a Berlino`,
994
+ `Mi chiamo Sarah e vivo a Londra`,
995
+ `Mi chiamo Clara e vivo a Berkeley in California.`
996
+ ]
997
+ ],
998
+ [
999
+ "question-answering",
1000
+ [
1001
+ {
1002
+ text: `Dove vivo?`,
1003
+ context: `Mi chiamo Wolfgang e vivo a Berlino`
1004
+ },
1005
+ {
1006
+ text: `Dove vivo?`,
1007
+ context: `Mi chiamo Sarah e vivo a Londra`
1008
+ },
1009
+ {
1010
+ text: `Come mio chiamo?`,
1011
+ context: `Mi chiamo Clara e vivo a Berkeley.`
1012
+ }
1013
+ ]
1014
+ ],
1015
+ ["translation", [`Mi chiamo Wolfgang e vivo a Berlino`, `Mi chiamo Sarah e vivo a Londra`]],
1016
+ [
1017
+ "summarization",
1018
+ [
1019
+ `La torre degli Asinelli \xE8 una delle cosiddette due torri di Bologna, simbolo della citt\xE0, situate in piazza di porta Ravegnana, all'incrocio tra le antiche strade San Donato (ora via Zamboni), San Vitale, Maggiore e Castiglione. Eretta, secondo la tradizione, fra il 1109 e il 1119 dal nobile Gherardo Asinelli, la torre \xE8 alta 97,20 metri, pende verso ovest per 2,23 metri e presenta all'interno una scalinata composta da 498 gradini. Ancora non si pu\xF2 dire con certezza quando e da chi fu costruita la torre degli Asinelli. Si presume che la torre debba il proprio nome a Gherardo Asinelli, il nobile cavaliere di fazione ghibellina al quale se ne attribuisce la costruzione, iniziata secondo una consolidata tradizione l'11 ottobre 1109 e terminata dieci anni dopo, nel 1119.`
1020
+ ]
1021
+ ],
1022
+ [
1023
+ "text-generation",
1024
+ [
1025
+ `Mi chiamo Loreto e mi piace`,
1026
+ `Mi chiamo Thomas e il mio principale`,
1027
+ `Mi chiamo Marianna, la mia cosa preferita`,
1028
+ `Mi chiamo Clara e sono`,
1029
+ `C'era una volta`
1030
+ ]
1031
+ ],
1032
+ ["fill-mask", [`Roma \xE8 la <mask> d'Italia.`, `Lo scopo della vita \xE8 <mask>.`]],
1033
+ [
1034
+ "sentence-similarity",
1035
+ [
1036
+ {
1037
+ source_sentence: "Questa \xE8 una persona felice",
1038
+ sentences: ["Questo \xE8 un cane felice", "Questa \xE8 una persona molto felice", "Oggi \xE8 una giornata di sole"]
1039
+ }
1040
+ ]
1041
+ ]
1042
+ ]);
1043
+ var MAPPING_FA = /* @__PURE__ */ new Map([
1044
+ [
1045
+ "text-classification",
1046
+ [`\u067E\u0631\u0648\u0698\u0647 \u0628\u0647 \u0645\u0648\u0642\u0639 \u062A\u062D\u0648\u06CC\u0644 \u0634\u062F \u0648 \u0647\u0645\u0647 \u0686\u06CC\u0632 \u062E\u0648\u0628 \u0628\u0648\u062F.`, `\u0633\u06CC\u0628\u200C\u0632\u0645\u06CC\u0646\u06CC \u0628\u06CC\u200C\u06A9\u06CC\u0641\u06CC\u062A \u0628\u0648\u062F.`, `\u0642\u06CC\u0645\u062A \u0648 \u06A9\u06CC\u0641\u06CC\u062A \u0639\u0627\u0644\u06CC`, `\u062E\u0648\u0628 \u0646\u0628\u0648\u062F \u0627\u0635\u0644\u0627`]
1047
+ ],
1048
+ [
1049
+ "token-classification",
1050
+ [
1051
+ `\u0627\u06CC\u0646 \u0633\u0631\u06CC\u0627\u0644 \u0628\u0647 \u0635\u0648\u0631\u062A \u0631\u0633\u0645\u06CC \u062F\u0631 \u062A\u0627\u0631\u06CC\u062E \u062F\u0647\u0645 \u0645\u06CC \u06F2\u06F0\u06F1\u06F1 \u062A\u0648\u0633\u0637 \u0634\u0628\u06A9\u0647 \u0641\u0627\u06A9\u0633 \u0628\u0631\u0627\u06CC \u067E\u062E\u0634 \u0631\u0632\u0631\u0648 \u0634\u062F.`,
1052
+ `\u062F\u0641\u062A\u0631 \u0645\u0631\u06A9\u0632\u06CC \u0634\u0631\u06A9\u062A \u067E\u0627\u0631\u0633\u200C\u0645\u06CC\u0646\u0648 \u062F\u0631 \u0634\u0647\u0631 \u0627\u0631\u0627\u06A9 \u062F\u0631 \u0627\u0633\u062A\u0627\u0646 \u0645\u0631\u06A9\u0632\u06CC \u0642\u0631\u0627\u0631 \u062F\u0627\u0631\u062F.`,
1053
+ `\u0648\u06CC \u062F\u0631 \u0633\u0627\u0644 \u06F2\u06F0\u06F1\u06F3 \u062F\u0631\u06AF\u0630\u0634\u062A \u0648 \u0645\u0633\u0626\u0648\u0644 \u062E\u0627\u06A9\u0633\u067E\u0627\u0631\u06CC \u0648 \u0627\u0642\u0648\u0627\u0645\u0634 \u0628\u0631\u0627\u06CC \u0627\u0648 \u0645\u0631\u0627\u0633\u0645 \u06CC\u0627\u062F\u0628\u0648\u062F \u06AF\u0631\u0641\u062A\u0646\u062F.`
1054
+ ]
1055
+ ],
1056
+ [
1057
+ "question-answering",
1058
+ [
1059
+ {
1060
+ text: `\u0645\u0646 \u06A9\u062C\u0627 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645\u061F`,
1061
+ context: `\u0646\u0627\u0645 \u0645\u0646 \u067E\u0698\u0645\u0627\u0646 \u0627\u0633\u062A \u0648 \u062F\u0631 \u06AF\u0631\u06AF\u0627\u0646 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645.`
1062
+ },
1063
+ {
1064
+ text: `\u0646\u0627\u0645\u0645 \u0686\u06CC\u0633\u062A \u0648 \u06A9\u062C\u0627 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0646\u0645\u061F`,
1065
+ context: `\u0627\u0633\u0645\u0645 \u0633\u0627\u0631\u0627 \u0627\u0633\u062A \u0648 \u062F\u0631 \u0622\u0641\u0631\u06CC\u0642\u0627\u06CC \u062C\u0646\u0648\u0628\u06CC \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645.`
1066
+ },
1067
+ {
1068
+ text: `\u0646\u0627\u0645 \u0645\u0646 \u0686\u06CC\u0633\u062A\u061F`,
1069
+ context: `\u0645\u0646 \u0645\u0631\u06CC\u0645 \u0647\u0633\u062A\u0645 \u0648 \u062F\u0631 \u062A\u0628\u0631\u06CC\u0632 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0646\u0645.`
1070
+ },
1071
+ {
1072
+ text: `\u0628\u06CC\u0634\u062A\u0631\u06CC\u0646 \u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644 \u0622\u0645\u0627\u0632\u0648\u0646 \u062F\u0631 \u06A9\u062F\u0627\u0645 \u06A9\u0634\u0648\u0631 \u0627\u0633\u062A\u061F`,
1073
+ context: [
1074
+ "\u0622\u0645\u0627\u0632\u0648\u0646 \u0646\u0627\u0645 \u0628\u0632\u0631\u06AF\u200C\u062A\u0631\u06CC\u0646 \u062C\u0646\u06AF\u0644 \u0628\u0627\u0631\u0627\u0646\u06CC \u062C\u0647\u0627\u0646 \u0627\u0633\u062A \u06A9\u0647 \u062F\u0631 \u0634\u0645\u0627\u0644 \u0622\u0645\u0631\u06CC\u06A9\u0627\u06CC \u062C\u0646\u0648\u0628\u06CC \u0642\u0631\u0627\u0631 \u06AF\u0631\u0641\u062A\u0647 \u0648 \u0628\u06CC\u0634\u062A\u0631 \u0622\u0646 \u062F\u0631 \u062E\u0627\u06A9 \u0628\u0631\u0632\u06CC\u0644 \u0648 \u067E\u0631\u0648",
1075
+ "\u062C\u0627\u06CC \u062F\u0627\u0631\u062F. \u0628\u06CC\u0634 \u0627\u0632 \u0646\u06CC\u0645\u06CC \u0627\u0632 \u0647\u0645\u0647 \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0628\u0627\u0631\u0627\u0646\u06CC \u0628\u0627\u0642\u06CC\u200C\u0645\u0627\u0646\u062F\u0647 \u062F\u0631 \u062C\u0647\u0627\u0646 \u062F\u0631 \u0622\u0645\u0627\u0632\u0648\u0646 \u0642\u0631\u0627\u0631 \u062F\u0627\u0631\u062F.",
1076
+ "\u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0622\u0645\u0627\u0632\u0648\u0646 \u06F5\u066B\u06F5 \u0645\u06CC\u0644\u06CC\u0648\u0646 \u06A9\u06CC\u0644\u0648\u0645\u062A\u0631 \u0645\u0631\u0628\u0639 \u0627\u0633\u062A \u06A9\u0647 \u0628\u06CC\u0646 \u06F9 \u06A9\u0634\u0648\u0631 \u062A\u0642\u0633\u06CC\u0645 \u0634\u062F\u0647\u200C\u0627\u0633\u062A."
1077
+ ].join("\n")
1078
+ }
1079
+ ]
1080
+ ],
1081
+ [
1082
+ "translation",
1083
+ [
1084
+ "\u0628\u06CC\u0634\u062A\u0631 \u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0622\u0645\u0627\u0632\u0648\u0646 \u062F\u0631 \u062D\u0648\u0636\u0647 \u0622\u0628\u0631\u06CC\u0632 \u0631\u0648\u062F \u0622\u0645\u0627\u0632\u0648\u0646 \u0648 \u06F1\u06F1\u06F0\u06F0 \u0634\u0627\u062E\u0647 \u0622\u0646 \u0648\u0627\u0642\u0639 \u0634\u062F\u0647\u200C\u0627\u0633\u062A.",
1085
+ "\u0645\u0631\u062F\u0645\u0627\u0646 \u0646\u064E\u0628\u064E\u0637\u06CC \u0627\u0632 \u0647\u0632\u0627\u0631\u0647\u200C\u0647\u0627\u06CC \u06CC\u06A9\u0645 \u0648 \u062F\u0648\u0645 \u067E\u06CC\u0634 \u0627\u0632 \u0645\u06CC\u0644\u0627\u062F \u062F\u0631 \u0627\u06CC\u0646 \u0645\u0646\u0637\u0642\u0647 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0631\u062F\u0646\u062F."
1086
+ ]
1087
+ ],
1088
+ [
1089
+ "summarization",
1090
+ [
1091
+ [
1092
+ "\u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u062B\u0631 \u062D\u06A9\u06CC\u0645 \u0627\u0628\u0648\u0627\u0644\u0642\u0627\u0633\u0645 \u0641\u0631\u062F\u0648\u0633\u06CC \u062A\u0648\u0633\u06CC\u060C \u062D\u0645\u0627\u0633\u0647\u200C\u0627\u06CC \u0645\u0646\u0638\u0648\u0645\u060C \u0628\u0631 \u062D\u0633\u0628 \u062F\u0633\u062A \u0646\u0648\u0634\u062A\u0647\u200C\u0647\u0627\u06CC ",
1093
+ "\u0645\u0648\u062C\u0648\u062F \u062F\u0631\u0628\u0631\u06AF\u06CC\u0631\u0646\u062F\u0647 \u0646\u0632\u062F\u06CC\u06A9 \u0628\u0647 \u06F5\u06F0\u066C\u06F0\u06F0\u06F0 \u0628\u06CC\u062A \u062A\u0627 \u0646\u0632\u062F\u06CC\u06A9 \u0628\u0647 \u06F6\u06F1\u066C\u06F0\u06F0\u06F0 \u0628\u06CC\u062A \u0648 \u06CC\u06A9\u06CC \u0627\u0632 ",
1094
+ "\u0628\u0632\u0631\u06AF\u200C\u062A\u0631\u06CC\u0646 \u0648 \u0628\u0631\u062C\u0633\u062A\u0647\u200C\u062A\u0631\u06CC\u0646 \u0633\u0631\u0648\u062F\u0647\u200C\u0647\u0627\u06CC \u062D\u0645\u0627\u0633\u06CC \u062C\u0647\u0627\u0646 \u0627\u0633\u062A \u06A9\u0647 \u0633\u0631\u0627\u06CC\u0634 \u0622\u0646 \u062F\u0633\u062A\u200C\u0622\u0648\u0631\u062F\u0650 ",
1095
+ "\u062F\u0633\u062A\u200C\u06A9\u0645 \u0633\u06CC \u0633\u0627\u0644 \u06A9\u0627\u0631\u0650 \u067E\u06CC\u0648\u0633\u062A\u0647\u0654 \u0627\u06CC\u0646 \u0633\u062E\u0646\u200C\u0633\u0631\u0627\u06CC \u0646\u0627\u0645\u062F\u0627\u0631 \u0627\u06CC\u0631\u0627\u0646\u06CC \u0627\u0633\u062A. \u0645\u0648\u0636\u0648\u0639 \u0627\u06CC\u0646 \u0634\u0627\u0647\u06A9\u0627\u0631 \u0627\u062F\u0628\u06CC\u060C",
1096
+ " \u0627\u0641\u0633\u0627\u0646\u0647\u200C\u0647\u0627 \u0648 \u062A\u0627\u0631\u06CC\u062E \u0627\u06CC\u0631\u0627\u0646 \u0627\u0632 \u0622\u063A\u0627\u0632 \u062A\u0627 \u062D\u0645\u0644\u0647\u0654 \u0639\u0631\u0628\u200C\u0647\u0627 \u0628\u0647 \u0627\u06CC\u0631\u0627\u0646 \u062F\u0631 \u0633\u062F\u0647\u0654 \u0647\u0641\u062A\u0645 \u0645\u06CC\u0644\u0627\u062F\u06CC \u0627\u0633\u062A",
1097
+ " (\u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u0632 \u0633\u0647 \u0628\u062E\u0634 \u0627\u0633\u0637\u0648\u0631\u0647\u060C \u067E\u0647\u0644\u0648\u0627\u0646\u06CC \u0648 \u062A\u0627\u0631\u06CC\u062E\u06CC \u062A\u0634\u06A9\u06CC\u0644 \u0634\u062F\u0647\u200C\u0627\u0633\u062A) \u06A9\u0647 \u062F\u0631 \u0686\u0647\u0627\u0631",
1098
+ " \u062F\u0648\u062F\u0645\u0627\u0646 \u067E\u0627\u062F\u0634\u0627\u0647\u06CC\u0650 \u067E\u06CC\u0634\u062F\u0627\u062F\u06CC\u0627\u0646\u060C \u06A9\u06CC\u0627\u0646\u06CC\u0627\u0646\u060C \u0627\u0634\u06A9\u0627\u0646\u06CC\u0627\u0646 \u0648 \u0633\u0627\u0633\u0627\u0646\u06CC\u0627\u0646 \u06AF\u0646\u062C\u0627\u0646\u062F\u0647 \u0645\u06CC\u200C\u0634\u0648\u062F.",
1099
+ " \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0628\u0631 \u0648\u0632\u0646 \xAB\u0641\u064E\u0639\u0648\u0644\u064F\u0646 \u0641\u0639\u0648\u0644\u0646 \u0641\u0639\u0648\u0644\u0646 \u0641\u064E\u0639\u064E\u0644\u0652\xBB\u060C \u062F\u0631 \u0628\u062D\u0631\u0650 \u0645\u064F\u062A\u064E\u0642\u0627\u0631\u0650\u0628\u0650 \u0645\u062B\u0645\u064E\u0651\u0646\u0650 \u0645\u062D\u0630\u0648\u0641 \u0646\u06AF\u0627\u0634\u062A\u0647 \u0634\u062F\u0647\u200C\u0627\u0633\u062A.",
1100
+ "\u0647\u0646\u06AF\u0627\u0645\u06CC \u06A9\u0647 \u0632\u0628\u0627\u0646 \u062F\u0627\u0646\u0634 \u0648 \u0627\u062F\u0628\u06CC\u0627\u062A \u062F\u0631 \u0627\u06CC\u0631\u0627\u0646 \u0632\u0628\u0627\u0646 \u0639\u0631\u0628\u06CC \u0628\u0648\u062F\u060C \u0641\u0631\u062F\u0648\u0633\u06CC\u060C \u0628\u0627 \u0633\u0631\u0648\u062F\u0646 \u0634\u0627\u0647\u0646\u0627\u0645\u0647",
1101
+ " \u0628\u0627 \u0648\u06CC\u0698\u06AF\u06CC\u200C\u0647\u0627\u06CC \u0647\u062F\u0641\u200C\u0645\u0646\u062F\u06CC \u06A9\u0647 \u062F\u0627\u0634\u062A\u060C \u0632\u0628\u0627\u0646 \u067E\u0627\u0631\u0633\u06CC \u0631\u0627 \u0632\u0646\u062F\u0647 \u0648 \u067E\u0627\u06CC\u062F\u0627\u0631 \u06A9\u0631\u062F. \u06CC\u06A9\u06CC \u0627\u0632 ",
1102
+ " \u0628\u0646\u200C\u0645\u0627\u06CC\u0647\u200C\u0647\u0627\u06CC \u0645\u0647\u0645\u06CC \u06A9\u0647 \u0641\u0631\u062F\u0648\u0633\u06CC \u0628\u0631\u0627\u06CC \u0633\u0631\u0648\u062F\u0646 \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u0632 \u0622\u0646 \u0627\u0633\u062A\u0641\u0627\u062F\u0647 \u06A9\u0631\u062F\u060C",
1103
+ " \u0634\u0627\u0647\u0646\u0627\u0645\u0647\u0654 \u0627\u0628\u0648\u0645\u0646\u0635\u0648\u0631\u06CC \u0628\u0648\u062F. \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0646\u0641\u0648\u0630 \u0628\u0633\u06CC\u0627\u0631\u06CC \u062F\u0631 \u062C\u0647\u062A\u200C\u06AF\u06CC\u0631\u06CC ",
1104
+ " \u0641\u0631\u0647\u0646\u06AF \u0641\u0627\u0631\u0633\u06CC \u0648 \u0646\u06CC\u0632 \u0628\u0627\u0632\u062A\u0627\u0628\u200C\u0647\u0627\u06CC \u0634\u06A9\u0648\u0647\u200C\u0645\u0646\u062F\u06CC \u062F\u0631 \u0627\u062F\u0628\u06CC\u0627\u062A \u062C\u0647\u0627\u0646 \u062F\u0627\u0634\u062A\u0647\u200C\u0627\u0633\u062A \u0648 \u0634\u0627\u0639\u0631\u0627\u0646 ",
1105
+ " \u0628\u0632\u0631\u06AF\u06CC \u0645\u0627\u0646\u0646\u062F \u06AF\u0648\u062A\u0647 \u0648 \u0648\u06CC\u06A9\u062A\u0648\u0631 \u0647\u0648\u06AF\u0648 \u0627\u0632 \u0622\u0646 \u0628\u0647 \u0646\u06CC\u06A9\u06CC \u06CC\u0627\u062F \u06A9\u0631\u062F\u0647\u200C\u0627\u0646\u062F."
1106
+ ].join("\n")
1107
+ ]
1108
+ ],
1109
+ ["text-generation", ["\u0627\u0633\u0645 \u0645\u0646 \u0646\u0627\u0632\u0646\u06CC\u0646 \u0627\u0633\u062A \u0648 \u0645\u0646", "\u0631\u0648\u0632\u06CC \u0631\u0648\u0632\u06AF\u0627\u0631\u06CC"]],
1110
+ [
1111
+ "fill-mask",
1112
+ [
1113
+ `\u0632\u0646\u062F\u06AF\u06CC \u06CC\u06A9 \u0633\u0648\u0627\u0644 \u0627\u0633\u062A \u0648 \u0627\u06CC\u0646 \u06A9\u0647 \u0686\u06AF\u0648\u0646\u0647 <mask> \u06A9\u0646\u06CC\u0645 \u067E\u0627\u0633\u062E \u0627\u06CC\u0646 \u0633\u0648\u0627\u0644!`,
1114
+ `\u0632\u0646\u062F\u06AF\u06CC \u0627\u0632 \u0645\u0631\u06AF \u067E\u0631\u0633\u06CC\u062F: \u0686\u0631\u0627 \u0647\u0645\u0647 \u0645\u0646 \u0631\u0627 <mask> \u062F\u0627\u0631\u0646\u062F \u0627\u0645\u0627 \u0627\u0632 \u062A\u0648 \u0645\u062A\u0646\u0641\u0631\u0646\u062F\u061F`
1115
+ ]
1116
+ ]
1117
+ ]);
1118
+ var MAPPING_AR = /* @__PURE__ */ new Map([
1119
+ ["text-classification", [`\u0623\u062D\u0628\u0643. \u0623\u0647\u0648\u0627\u0643`]],
1120
+ [
1121
+ "token-classification",
1122
+ [`\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u0631\u0644\u064A\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0645\u064A \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0627\u0644\u0642\u062F\u0633 \u0641\u064A \u0641\u0644\u0633\u0637\u064A\u0646.`]
1123
+ ],
1124
+ [
1125
+ "question-answering",
1126
+ [
1127
+ {
1128
+ text: `\u0623\u064A\u0646 \u0623\u0633\u0643\u0646\u061F`,
1129
+ context: `\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u064A\u0631\u0648\u062A`
1130
+ },
1131
+ {
1132
+ text: `\u0623\u064A\u0646 \u0623\u0633\u0643\u0646\u061F`,
1133
+ context: `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`
1134
+ },
1135
+ {
1136
+ text: `\u0645\u0627 \u0627\u0633\u0645\u064A\u061F`,
1137
+ context: `\u0627\u0633\u0645\u064A \u0633\u0639\u064A\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u062D\u064A\u0641\u0627.`
1138
+ },
1139
+ {
1140
+ text: `\u0645\u0627 \u0644\u0642\u0628 \u062E\u0627\u0644\u062F \u0628\u0646 \u0627\u0644\u0648\u0644\u064A\u062F \u0628\u0627\u0644\u0639\u0631\u0628\u064A\u0629\u061F`,
1141
+ context: `\u062E\u0627\u0644\u062F \u0628\u0646 \u0627\u0644\u0648\u0644\u064A\u062F \u0645\u0646 \u0623\u0628\u0637\u0627\u0644 \u0648\u0642\u0627\u062F\u0629 \u0627\u0644\u0641\u062A\u062D \u0627\u0644\u0625\u0633\u0644\u0627\u0645\u064A \u0648\u0642\u062F \u062A\u062D\u062F\u062B\u062A \u0639\u0646\u0647 \u0627\u0644\u0644\u063A\u0627\u062A \u0627\u0644\u0625\u0646\u062C\u0644\u064A\u0632\u064A\u0629 \u0648\u0627\u0644\u0641\u0631\u0646\u0633\u064A\u0629 \u0648\u0627\u0644\u0625\u0633\u0628\u0627\u0646\u064A\u0629 \u0648\u0644\u0642\u0628 \u0628\u0633\u064A\u0641 \u0627\u0644\u0644\u0647 \u0627\u0644\u0645\u0633\u0644\u0648\u0644.`
1142
+ }
1143
+ ]
1144
+ ],
1145
+ ["translation", [`\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u0631\u0644\u064A\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`]],
1146
+ [
1147
+ "summarization",
1148
+ [
1149
+ `\u062A\u0642\u0639 \u0627\u0644\u0623\u0647\u0631\u0627\u0645\u0627\u062A \u0641\u064A \u0627\u0644\u062C\u064A\u0632\u0629 \u0642\u0631\u0628 \u0627\u0644\u0642\u0627\u0647\u0631\u0629 \u0641\u064A \u0645\u0635\u0631 \u0648\u0642\u062F \u0628\u0646\u064A\u062A \u0645\u0646\u0630 \u0639\u062F\u0629 \u0642\u0631\u0648\u0646\u060C \u0648\u0642\u064A\u0644 \u0625\u0646\u0647\u0627 \u0643\u0627\u0646\u062A \u0642\u0628\u0648\u0631\u0627 \u0644\u0644\u0641\u0631\u0627\u0639\u0646\u0629 \u0648\u062A\u0645 \u0628\u0646\u0627\u0624\u0647\u0627 \u0628\u0639\u0645\u0644\u064A\u0629 \u0647\u0646\u062F\u0633\u064A\u0629 \u0631\u0627\u0626\u0639\u0629 \u0648\u0627\u0633\u062A\u0642\u062F\u0645\u062A \u062D\u062C\u0627\u0631\u062A\u0647\u0627 \u0645\u0646 \u062C\u0628\u0644 \u0627\u0644\u0645\u0642\u0637\u0645 \u0648\u062A\u0645 \u0646\u0642\u0644\u0647\u0627 \u0628\u0627\u0644\u0633\u0641\u0646 \u0623\u0648 \u0639\u0644\u0649 \u0627\u0644\u0631\u0645\u0644\u060C \u0648\u0645\u0627 \u062A\u0632\u0627\u0644 \u0634\u0627\u0645\u062E\u0629 \u0648\u064A\u0642\u0635\u062F\u0647\u0627 \u0627\u0644\u0633\u064A\u0627\u062D \u0645\u0646 \u0643\u0627\u0641\u0629 \u0623\u0631\u062C\u0627\u0621 \u0627\u0644\u0645\u0639\u0645\u0648\u0631\u0629.`
1150
+ ]
1151
+ ],
1152
+ [
1153
+ "text-generation",
1154
+ [
1155
+ `\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u062D\u0628 \u0623\u0646`,
1156
+ `\u062F\u0639 \u0627\u0644\u0645\u0643\u0627\u0631\u0645 \u0644\u0627 \u062A\u0631\u062D\u0644 \u0644\u0628\u063A\u064A\u062A\u0647\u0627 - \u0648\u0627\u0642\u0639\u062F \u0641\u0625\u0646\u0643 \u0623\u0646\u062A \u0627\u0644\u0637\u0627\u0639\u0645 \u0627\u0644\u0643\u0627\u0633\u064A.`,
1157
+ `\u0644\u0645\u0627\u0630\u0627 \u0646\u062D\u0646 \u0647\u0646\u0627\u061F`,
1158
+ `\u0627\u0644\u0642\u062F\u0633 \u0645\u062F\u064A\u0646\u0629 \u062A\u0627\u0631\u064A\u062E\u064A\u0629\u060C \u0628\u0646\u0627\u0647\u0627 \u0627\u0644\u0643\u0646\u0639\u0627\u0646\u064A\u0648\u0646 \u0641\u064A`,
1159
+ `\u0643\u0627\u0646 \u064A\u0627 \u0645\u0627 \u0643\u0627\u0646 \u0641\u064A \u0642\u062F\u064A\u0645 \u0627\u0644\u0632\u0645\u0627\u0646`
1160
+ ]
1161
+ ],
1162
+ ["fill-mask", [`\u0628\u0627\u0631\u064A\u0633 <mask> \u0641\u0631\u0646\u0633\u0627.`, `\u0641\u0644\u0633\u0641\u0629 \u0627\u0644\u062D\u064A\u0627\u0629 \u0647\u064A <mask>.`]],
1163
+ [
1164
+ "sentence-similarity",
1165
+ [
1166
+ {
1167
+ source_sentence: "\u0647\u0630\u0627 \u0634\u062E\u0635 \u0633\u0639\u064A\u062F",
1168
+ sentences: ["\u0647\u0630\u0627 \u0643\u0644\u0628 \u0633\u0639\u064A\u062F", "\u0647\u0630\u0627 \u0634\u062E\u0635 \u0633\u0639\u064A\u062F \u062C\u062F\u0627", "\u0627\u0644\u064A\u0648\u0645 \u0647\u0648 \u064A\u0648\u0645 \u0645\u0634\u0645\u0633"]
1169
+ }
1170
+ ]
1171
+ ]
1172
+ ]);
1173
+ var MAPPING_BN = /* @__PURE__ */ new Map([
1174
+ ["text-classification", [`\u09AC\u09BE\u0999\u09BE\u09B2\u09BF\u09B0 \u0998\u09B0\u09C7 \u0998\u09B0\u09C7 \u0986\u099C \u09A8\u09AC\u09BE\u09A8\u09CD\u09A8 \u0989\u09CE\u09B8\u09AC\u0964`]],
1175
+ [
1176
+ "token-classification",
1177
+ [`\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u099C\u09BE\u09B9\u09BF\u09A6 \u098F\u09AC\u0982 \u0986\u09AE\u09BF \u09A2\u09BE\u0995\u09BE\u09DF \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`, `\u09A4\u09BF\u09A8\u09BF \u0997\u09C1\u0997\u09B2\u09C7 \u099A\u09BE\u0995\u09B0\u09C0 \u0995\u09B0\u09C7\u09A8\u0964`, `\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B8\u09C1\u09B8\u09CD\u09AE\u09BF\u09A4\u09BE \u098F\u09AC\u0982 \u0986\u09AE\u09BF \u0995\u09B2\u0995\u09BE\u09A4\u09BE\u09DF \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`]
1178
+ ],
1179
+ ["translation", [`\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u099C\u09BE\u09B9\u09BF\u09A6, \u0986\u09AE\u09BF \u09B0\u0982\u09AA\u09C1\u09B0\u09C7 \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`, `\u0986\u09AA\u09A8\u09BF \u0995\u09C0 \u0986\u099C\u0995\u09C7 \u09AC\u09BE\u09B8\u09BE\u09DF \u0986\u09B8\u09AC\u09C7\u09A8?`]],
1180
+ [
1181
+ "summarization",
1182
+ [
1183
+ `\u2018\u0987\u0995\u09CB\u09A8\u09AE\u09BF\u09B8\u09CD\u099F\u2019 \u09B2\u09BF\u0996\u09C7\u099B\u09C7, \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u099A\u09BE\u09B0 \u09AE\u09BE\u09B8 \u09B8\u09CD\u09A5\u09BE\u09DF\u09C0 \u09B9\u0993\u09DF\u09BE\u09B0 \u0996\u09AC\u09B0\u099F\u09BF \u09A6\u09C1\u0987 \u0995\u09BE\u09B0\u09A3\u09C7 \u0986\u09A8\u09A8\u09CD\u09A6\u09C7\u09B0\u0964 \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF \u09AF\u09A4 \u09A6\u09BF\u09A8 \u09AA\u09B0\u09CD\u09AF\u09A8\u09CD\u09A4 \u09B6\u09B0\u09C0\u09B0\u09C7 \u099F\u09BF\u0995\u09AC\u09C7, \u09A4\u09A4 \u09A6\u09BF\u09A8 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3 \u09A5\u09C7\u0995\u09C7 \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BF\u09A4 \u09A5\u09BE\u0995\u09BE \u09B8\u09AE\u09CD\u09AD\u09AC\u0964 \u0985\u09B0\u09CD\u09A5\u09BE\u09CE, \u098F\u09AE\u09A8 \u098F\u0995 \u099F\u09BF\u0995\u09BE\u09B0 \u09AA\u09CD\u09B0\u09DF\u09CB\u099C\u09A8 \u09B9\u09AC\u09C7, \u09AF\u09BE \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u0989\u09A4\u09CD\u09AA\u09BE\u09A6\u09A8\u0995\u09C7 \u09AA\u09CD\u09B0\u09B0\u09CB\u099A\u09BF\u09A4 \u0995\u09B0\u09A4\u09C7 \u09AA\u09BE\u09B0\u09C7 \u098F\u09AC\u0982 \u09A6\u09C0\u09B0\u09CD\u0998\u09B8\u09CD\u09A5\u09BE\u09DF\u09C0 \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BE \u09A6\u09BF\u09A4\u09C7 \u09AA\u09BE\u09B0\u09C7\u0964 \u098F\u0997\u09C1\u09B2\u09CB \u0996\u09C1\u0981\u099C\u09C7 \u09AC\u09C7\u09B0 \u0995\u09B0\u09BE\u0993 \u09B8\u09B9\u099C\u0964 \u098F\u099F\u09BF \u0986\u09AD\u09BE\u09B8 \u09A6\u09C7\u09DF, \u09AC\u09CD\u09AF\u09BE\u09AA\u0995 \u09B9\u09BE\u09B0\u09C7 \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3 \u09AB\u09B2\u09BE\u09AB\u09B2 \u09AE\u09CB\u099F\u09BE\u09AE\u09C1\u099F\u09BF \u09A8\u09BF\u09B0\u09CD\u09AD\u09C1\u09B2 \u09B9\u0993\u09DF\u09BE \u0989\u099A\u09BF\u09A4\u0964 \u09A6\u09CD\u09AC\u09BF\u09A4\u09C0\u09DF \u0986\u09B0\u09C7\u0995\u099F\u09BF \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B0 \u09A8\u09C7\u09A4\u09C3\u09A4\u09CD\u09AC \u09A6\u09BF\u09DF\u09C7\u099B\u09C7\u09A8 \u09AF\u09C1\u0995\u09CD\u09A4\u09B0\u09BE\u099C\u09CD\u09AF\u09C7\u09B0 \u09AE\u09C7\u09A1\u09BF\u0995\u09C7\u09B2 \u09B0\u09BF\u09B8\u09BE\u09B0\u09CD\u099A \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2\u09C7\u09B0 (\u098F\u09AE\u0986\u09B0\u09B8\u09BF) \u0987\u09AE\u09BF\u0989\u09A8\u09CB\u09B2\u099C\u09BF\u09B8\u09CD\u099F \u09A4\u09BE\u0993 \u09A6\u0982\u0964 \u09A4\u09BF\u09A8\u09BF \u099F\u09BF-\u09B8\u09C7\u09B2 \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3\u09C7 \u0995\u09BE\u099C \u0995\u09B0\u09C7\u099B\u09C7\u09A8\u0964 \u099F\u09BF-\u09B8\u09C7\u09B2 \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3\u09C7\u09B0 \u09AA\u09CD\u09B0\u0995\u09CD\u09B0\u09BF\u09DF\u09BE \u0985\u09AC\u09B6\u09CD\u09AF \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u09AE\u09A4\u09CB \u098F\u09A4 \u0986\u09B2\u09CB\u099A\u09BF\u09A4 \u09A8\u09DF\u0964 \u09A4\u09AC\u09C7 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3\u09C7\u09B0 \u09AC\u09BF\u09B0\u09C1\u09A6\u09CD\u09A7\u09C7 \u09B2\u09DC\u09BE\u0987 \u098F\u09AC\u0982 \u09A6\u09C0\u09B0\u09CD\u0998\u09AE\u09C7\u09DF\u09BE\u09A6\u09BF \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BE\u09DF \u09B8\u09AE\u09BE\u09A8 \u0997\u09C1\u09B0\u09C1\u09A4\u09CD\u09AC\u09AA\u09C2\u09B0\u09CD\u09A3 \u09AD\u09C2\u09AE\u09BF\u0995\u09BE \u09AA\u09BE\u09B2\u09A8 \u0995\u09B0\u09C7\u0964 \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B8\u0982\u0995\u09CD\u09B0\u09BE\u09A8\u09CD\u09A4 \u09A8\u09BF\u09AC\u09A8\u09CD\u09A7 \u09AA\u09CD\u09B0\u0995\u09BE\u09B6\u09BF\u09A4 \u09B9\u09DF\u09C7\u099B\u09C7 \u2018\u09A8\u09C7\u099A\u09BE\u09B0 \u0987\u09AE\u09BF\u0989\u09A8\u09CB\u09B2\u099C\u09BF\u2019 \u09B8\u09BE\u09AE\u09DF\u09BF\u0995\u09C0\u09A4\u09C7\u0964 \u09A4\u09BE\u0981\u09B0\u09BE \u09AC\u09B2\u099B\u09C7\u09A8, \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u0995\u09CB\u09AD\u09BF\u09A1-\u09E7\u09EF \u09AE\u09C3\u09A6\u09C1 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3\u09C7\u09B0 \u09B6\u09BF\u0995\u09BE\u09B0 \u09E8\u09EE \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09B0 \u09B0\u0995\u09CD\u09A4\u09C7\u09B0 \u09A8\u09AE\u09C1\u09A8\u09BE, \u09E7\u09EA \u099C\u09A8 \u0997\u09C1\u09B0\u09C1\u09A4\u09B0 \u0985\u09B8\u09C1\u09B8\u09CD\u09A5 \u0993 \u09E7\u09EC \u099C\u09A8 \u09B8\u09C1\u09B8\u09CD\u09A5 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09B0 \u09B0\u0995\u09CD\u09A4\u09C7\u09B0 \u09A8\u09AE\u09C1\u09A8\u09BE \u09AA\u09B0\u09C0\u0995\u09CD\u09B7\u09BE \u0995\u09B0\u09C7\u099B\u09C7\u09A8\u0964 \u0997\u09AC\u09C7\u09B7\u09A3\u09BE \u09A8\u09BF\u09AC\u09A8\u09CD\u09A7\u09C7 \u09AC\u09B2\u09BE \u09B9\u09DF, \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09BF\u09A4 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09A6\u09C7\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u099F\u09BF-\u09B8\u09C7\u09B2\u09C7\u09B0 \u09A4\u09C0\u09AC\u09CD\u09B0 \u09AA\u09CD\u09B0\u09A4\u09BF\u0995\u09CD\u09B0\u09BF\u09DF\u09BE \u09A4\u09BE\u0981\u09B0\u09BE \u09A6\u09C7\u0996\u09C7\u099B\u09C7\u09A8\u0964 \u098F \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u09AE\u09C3\u09A6\u09C1 \u0993 \u0997\u09C1\u09B0\u09C1\u09A4\u09B0 \u0985\u09B8\u09C1\u09B8\u09CD\u09A5 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09A6\u09C7\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u09AA\u09CD\u09B0\u09A4\u09BF\u0995\u09CD\u09B0\u09BF\u09DF\u09BE\u09B0 \u09AD\u09BF\u09A8\u09CD\u09A8\u09A4\u09BE \u09AA\u09BE\u0993\u09DF\u09BE \u0997\u09C7\u099B\u09C7\u0964`
1184
+ ]
1185
+ ],
1186
+ ["text-generation", [`\u0986\u09AE\u09BF \u09B0\u09A4\u09A8 \u098F\u09AC\u0982 \u0986\u09AE\u09BF`, `\u09A4\u09C1\u09AE\u09BF \u09AF\u09A6\u09BF \u099A\u09BE\u0993 \u09A4\u09AC\u09C7`, `\u09AE\u09BF\u09A5\u09BF\u09B2\u09BE \u0986\u099C\u0995\u09C7 \u09AC\u09A1\u09CD\u09A1`]],
1187
+ ["fill-mask", [`\u0986\u09AE\u09BF \u09AC\u09BE\u0982\u09B2\u09BE\u09DF <mask> \u0997\u09BE\u0987\u0964`, `\u0986\u09AE\u09BF <mask> \u0996\u09C1\u09AC \u09AD\u09BE\u09B2\u09CB\u09AC\u09BE\u09B8\u09BF\u0964 `]],
1188
+ [
1189
+ "question-answering",
1190
+ [
1191
+ {
1192
+ text: `\u09AA\u09CD\u09B0\u09A5\u09AE \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0995\u09CB\u09A5\u09BE\u09DF \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09DF ?`,
1193
+ context: `\u09AA\u09CD\u09B0\u09A5\u09AE \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AF\u09BC \u09E7\u09EF\u09EE\u09EA \u09B8\u09BE\u09B2\u09C7 \u09B8\u0982\u09AF\u09C1\u0995\u09CD\u09A4 \u0986\u09B0\u09AC \u0986\u09AE\u09BF\u09B0\u09BE\u09A4 \u098F\u09B0 \u09B6\u09BE\u09B0\u099C\u09BE\u09B9 \u09A4\u09C7 \u09AF\u09C7\u0996\u09BE\u09A8\u09C7 \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2\u09C7\u09B0 \u09AE\u09C2\u09B2 \u0985\u09AB\u09BF\u09B8 \u099B\u09BF\u09B2 (\u09E7\u09EF\u09EF\u09EB \u09AA\u09B0\u09CD\u09AF\u09A8\u09CD\u09A4)\u0964 \u09AD\u09BE\u09B0\u09A4 \u09B6\u09CD\u09B0\u09C0\u09B2\u0999\u09CD\u0995\u09BE\u09B0 \u09B8\u09BE\u09A5\u09C7 \u0986\u09A8\u09CD\u09A4\u09B0\u09BF\u0995\u09A4\u09BE\u09B9\u09C0\u09A8 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u09B8\u09AE\u09CD\u09AA\u09B0\u09CD\u0995\u09C7\u09B0 \u0995\u09BE\u09B0\u09A3\u09C7 \u09E7\u09EF\u09EE\u09EC \u09B8\u09BE\u09B2\u09C7\u09B0 \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u09AC\u09B0\u09CD\u099C\u09A8 \u0995\u09B0\u09C7\u0964 \u09E7\u09EF\u09EF\u09E9 \u09B8\u09BE\u09B2\u09C7 \u09AD\u09BE\u09B0\u09A4 \u0993 \u09AA\u09BE\u0995\u09BF\u09B8\u09CD\u09A4\u09BE\u09A8 \u098F\u09B0 \u09AE\u09A7\u09CD\u09AF\u09C7 \u09B0\u09BE\u099C\u09A8\u09C8\u09A4\u09BF\u0995 \u0985\u09B8\u09CD\u09A5\u09BF\u09B0\u09A4\u09BE\u09B0 \u0995\u09BE\u09B0\u09A3\u09C7 \u098F\u099F\u09BF \u09AC\u09BE\u09A4\u09BF\u09B2 \u09B9\u09AF\u09BC\u09C7 \u09AF\u09BE\u09AF\u09BC\u0964 \u09B6\u09CD\u09B0\u09C0\u09B2\u0999\u09CD\u0995\u09BE \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA \u09B6\u09C1\u09B0\u09C1 \u09A5\u09C7\u0995\u09C7 \u0985\u0982\u09B6 \u0997\u09CD\u09B0\u09B9\u09A3 \u0995\u09B0\u09C7 \u0986\u09B8\u099B\u09C7\u0964 \u0986\u09A8\u09CD\u09A4\u09B0\u09CD\u099C\u09BE\u09A4\u09BF\u0995 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2 \u09A8\u09BF\u09AF\u09BC\u09AE \u0995\u09B0\u09C7 \u09A6\u09BF\u09AF\u09BC\u09C7\u099B\u09C7 \u09AF\u09C7 \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA\u09C7\u09B0 \u09B8\u0995\u09B2 \u0996\u09C7\u09B2\u09BE \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AC\u09C7 \u0985\u09AB\u09BF\u09B8\u09BF\u09AF\u09BC\u09BE\u09B2 \u098F\u0995\u09A6\u09BF\u09A8\u09C7\u09B0 \u0986\u09A8\u09CD\u09A4\u09B0\u09CD\u099C\u09BE\u09A4\u09BF\u0995 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u09B9\u09BF\u09B8\u09C7\u09AC\u09C7\u0964 \u098F\u09B8\u09BF\u09B8\u09BF \u0998\u09CB\u09B7\u09A8\u09BE \u0985\u09A8\u09C1\u09AF\u09BE\u09AF\u09BC\u09C0 \u09AA\u09CD\u09B0\u09A4\u09BF \u09A6\u09C1\u0987 \u09AC\u099B\u09B0 \u09AA\u09B0 \u09AA\u09B0 \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AF\u09BC \u09E8\u09E6\u09E6\u09EE \u09B8\u09BE\u09B2 \u09A5\u09C7\u0995\u09C7\u0964`
1194
+ },
1195
+ {
1196
+ text: `\u09AD\u09BE\u09B0\u09A4\u09C0\u09AF\u09BC \u09AC\u09BE\u0999\u09BE\u09B2\u09BF \u0995\u09A5\u09BE\u09B8\u09BE\u09B9\u09BF\u09A4\u09CD\u09AF\u09BF\u0995 \u09AE\u09B9\u09BE\u09B6\u09CD\u09AC\u09C7\u09A4\u09BE \u09A6\u09C7\u09AC\u09C0\u09B0 \u09AE\u09C3\u09A4\u09CD\u09AF\u09C1 \u0995\u09AC\u09C7 \u09B9\u09DF ?`,
1197
+ context: `\u09E8\u09E6\u09E7\u09EC \u09B8\u09BE\u09B2\u09C7\u09B0 \u09E8\u09E9 \u099C\u09C1\u09B2\u09BE\u0987 \u09B9\u09C3\u09A6\u09B0\u09CB\u0997\u09C7 \u0986\u0995\u09CD\u09B0\u09BE\u09A8\u09CD\u09A4 \u09B9\u09AF\u09BC\u09C7 \u09AE\u09B9\u09BE\u09B6\u09CD\u09AC\u09C7\u09A4\u09BE \u09A6\u09C7\u09AC\u09C0 \u0995\u09B2\u0995\u09BE\u09A4\u09BE\u09B0 \u09AC\u09C7\u09B2 \u09AD\u09BF\u0989 \u0995\u09CD\u09B2\u09BF\u09A8\u09BF\u0995\u09C7 \u09AD\u09B0\u09CD\u09A4\u09BF \u09B9\u09A8\u0964 \u09B8\u09C7\u0987 \u09AC\u099B\u09B0\u0987 \u09E8\u09EE \u099C\u09C1\u09B2\u09BE\u0987 \u098F\u0995\u09BE\u09A7\u09BF\u0995 \u0985\u0999\u09CD\u0997 \u09AC\u09BF\u0995\u09B2 \u09B9\u09AF\u09BC\u09C7 \u09A4\u09BE\u0981\u09B0 \u09AE\u09C3\u09A4\u09CD\u09AF\u09C1 \u0998\u099F\u09C7\u0964 \u09A4\u09BF\u09A8\u09BF \u09AE\u09A7\u09C1\u09AE\u09C7\u09B9, \u09B8\u09C7\u09AA\u09CD\u099F\u09BF\u09B8\u09C7\u09AE\u09BF\u09AF\u09BC\u09BE \u0993 \u09AE\u09C2\u09A4\u09CD\u09B0 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3 \u09B0\u09CB\u0997\u09C7\u0993 \u09AD\u09C1\u0997\u099B\u09BF\u09B2\u09C7\u09A8\u0964`
1198
+ },
1199
+ {
1200
+ text: `\u09AE\u09BE\u09B8\u09CD\u099F\u09BE\u09B0\u09A6\u09BE \u09B8\u09C2\u09B0\u09CD\u09AF\u0995\u09C1\u09AE\u09BE\u09B0 \u09B8\u09C7\u09A8\u09C7\u09B0 \u09AC\u09BE\u09AC\u09BE\u09B0 \u09A8\u09BE\u09AE \u0995\u09C0 \u099B\u09BF\u09B2 ?`,
1201
+ context: `\u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u09E7\u09EE\u09EF\u09EA \u09B8\u09BE\u09B2\u09C7\u09B0 \u09E8\u09E8 \u09AE\u09BE\u09B0\u09CD\u099A \u099A\u099F\u09CD\u099F\u0997\u09CD\u09B0\u09BE\u09AE\u09C7\u09B0 \u09B0\u09BE\u0989\u099C\u09BE\u09A8 \u09A5\u09BE\u09A8\u09BE\u09B0 \u09A8\u09CB\u09AF\u09BC\u09BE\u09AA\u09BE\u09A1\u09BC\u09BE\u09AF\u09BC \u0985\u09B0\u09CD\u09A5\u09A8\u09C8\u09A4\u09BF\u0995 \u09AD\u09BE\u09AC\u09C7 \u0985\u09B8\u09CD\u09AC\u099A\u09CD\u099B\u09B2 \u09AA\u09B0\u09BF\u09AC\u09BE\u09B0\u09C7 \u099C\u09A8\u09CD\u09AE\u0997\u09CD\u09B0\u09B9\u09A3 \u0995\u09B0\u09C7\u09A8\u0964 \u09A4\u09BE\u0981\u09B0 \u09AA\u09BF\u09A4\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B0\u09BE\u099C\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8 \u098F\u09AC\u0982 \u09AE\u09BE\u09A4\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B6\u09B6\u09C0 \u09AC\u09BE\u09B2\u09BE \u09B8\u09C7\u09A8\u0964 \u09B0\u09BE\u099C\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8\u09C7\u09B0 \u09A6\u09C1\u0987 \u099B\u09C7\u09B2\u09C7 \u0986\u09B0 \u099A\u09BE\u09B0 \u09AE\u09C7\u09AF\u09BC\u09C7\u0964 \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u09A4\u09BE\u0981\u09A6\u09C7\u09B0 \u09AA\u09B0\u09BF\u09AC\u09BE\u09B0\u09C7\u09B0 \u099A\u09A4\u09C1\u09B0\u09CD\u09A5 \u09B8\u09A8\u09CD\u09A4\u09BE\u09A8\u0964 \u09A6\u09C1\u0987 \u099B\u09C7\u09B2\u09C7\u09B0 \u09A8\u09BE\u09AE \u09B8\u09C2\u09B0\u09CD\u09AF \u0993 \u0995\u09AE\u09B2\u0964 \u099A\u09BE\u09B0 \u09AE\u09C7\u09AF\u09BC\u09C7\u09B0 \u09A8\u09BE\u09AE \u09AC\u09B0\u09A6\u09BE\u09B8\u09C1\u09A8\u09CD\u09A6\u09B0\u09C0, \u09B8\u09BE\u09AC\u09BF\u09A4\u09CD\u09B0\u09C0, \u09AD\u09BE\u09A8\u09C1\u09AE\u09A4\u09C0 \u0993 \u09AA\u09CD\u09B0\u09AE\u09BF\u09B2\u09BE\u0964 \u09B6\u09C8\u09B6\u09AC\u09C7 \u09AA\u09BF\u09A4\u09BE \u09AE\u09BE\u09A4\u09BE\u0995\u09C7 \u09B9\u09BE\u09B0\u09BE\u09A8\u09CB \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u0995\u09BE\u0995\u09BE \u0997\u09CC\u09B0\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8\u09C7\u09B0 \u0995\u09BE\u099B\u09C7 \u09AE\u09BE\u09A8\u09C1\u09B7 \u09B9\u09AF\u09BC\u09C7\u099B\u09C7\u09A8\u0964 \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u099B\u09C7\u09B2\u09C7\u09AC\u09C7\u09B2\u09BE \u09A5\u09C7\u0995\u09C7\u0987 \u0996\u09C1\u09AC \u09AE\u09A8\u09CB\u09AF\u09CB\u0997\u09C0 \u09AD\u09BE\u09B2 \u099B\u09BE\u09A4\u09CD\u09B0 \u099B\u09BF\u09B2\u09C7\u09A8 \u098F\u09AC\u0982 \u09A7\u09B0\u09CD\u09AE\u09AD\u09BE\u09AC\u09BE\u09AA\u09A8\u09CD\u09A8 \u0997\u09AE\u09CD\u09AD\u09C0\u09B0 \u09AA\u09CD\u09B0\u0995\u09C3\u09A4\u09BF\u09B0 \u099B\u09BF\u09B2\u09C7\u09A8\u0964`
1202
+ }
1203
+ ]
1204
+ ],
1205
+ [
1206
+ "sentence-similarity",
1207
+ [
1208
+ {
1209
+ source_sentence: "\u09B8\u09C7 \u098F\u0995\u099C\u09A8 \u09B8\u09C1\u0996\u09C0 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF",
1210
+ sentences: ["\u09B8\u09C7 \u09B9\u09CD\u09AF\u09BE\u09AA\u09BF \u0995\u09C1\u0995\u09C1\u09B0", "\u09B8\u09C7 \u0996\u09C1\u09AC \u09B8\u09C1\u0996\u09C0 \u09AE\u09BE\u09A8\u09C1\u09B7", "\u0986\u099C \u098F\u0995\u099F\u09BF \u09B0\u09CC\u09A6\u09CD\u09B0\u09CB\u099C\u09CD\u099C\u09CD\u09AC\u09B2 \u09A6\u09BF\u09A8"]
1211
+ }
1212
+ ]
1213
+ ]
1214
+ ]);
1215
+ var MAPPING_MN = /* @__PURE__ */ new Map([
1216
+ ["text-classification", [`\u0411\u0438 \u0447\u0430\u043C\u0434 \u0445\u0430\u0439\u0440\u0442\u0430\u0439`]],
1217
+ [
1218
+ "token-classification",
1219
+ [
1220
+ `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`,
1221
+ `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`,
1222
+ `\u041C\u0430\u043D\u0430\u0439 \u0443\u043B\u0441 \u0442\u0430\u0432\u0430\u043D \u0445\u043E\u0448\u0443\u0443 \u043C\u0430\u043B\u0442\u0430\u0439.`
1223
+ ]
1224
+ ],
1225
+ [
1226
+ "question-answering",
1227
+ [
1228
+ {
1229
+ text: `\u0422\u0430 \u0445\u0430\u0430\u043D\u0430 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433 \u0432\u044D?`,
1230
+ context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`
1231
+ },
1232
+ {
1233
+ text: `\u0422\u0430\u043D\u044B\u0433 \u0445\u044D\u043D \u0433\u044D\u0434\u044D\u0433 \u0432\u044D?`,
1234
+ context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`
1235
+ },
1236
+ {
1237
+ text: `\u041C\u0438\u043D\u0438\u0439 \u043D\u044D\u0440\u0438\u0439\u0433 \u0445\u044D\u043D \u0433\u044D\u0434\u044D\u0433 \u0432\u044D?`,
1238
+ context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`
1239
+ }
1240
+ ]
1241
+ ],
1242
+ ["translation", [`\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`, `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`]],
1243
+ [
1244
+ "summarization",
1245
+ [
1246
+ `\u041C\u043E\u043D\u0433\u043E\u043B \u0423\u043B\u0441 (1992 \u043E\u043D\u043E\u043E\u0441 \u0445\u043E\u0439\u0448) \u2014 \u0434\u043E\u0440\u043D\u043E \u0431\u043E\u043B\u043E\u043D \u0442\u04E9\u0432 \u0410\u0437\u0438\u0434 \u043E\u0440\u0448\u0434\u043E\u0433 \u0431\u04AF\u0440\u044D\u043D \u044D\u0440\u0445\u0442 \u0443\u043B\u0441. \u0425\u043E\u0439\u0434 \u0442\u0430\u043B\u0430\u0430\u0440\u0430\u0430 \u041E\u0440\u043E\u0441, \u0431\u0443\u0441\u0430\u0434 \u0442\u0430\u043B\u0430\u0430\u0440\u0430\u0430 \u0425\u044F\u0442\u0430\u0434 \u0443\u043B\u0441\u0442\u0430\u0439 \u0445\u0438\u043B\u043B\u044D\u0434\u044D\u0433 \u0434\u0430\u043B\u0430\u0439\u0434 \u0433\u0430\u0440\u0446\u0433\u04AF\u0439 \u043E\u0440\u043E\u043D. \u041D\u0438\u0439\u0441\u043B\u044D\u043B \u2014 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440 \u0445\u043E\u0442. \u0410\u043B\u0442\u0430\u0439\u043D \u043D\u0443\u0440\u0443\u0443\u043D\u0430\u0430\u0441 \u0425\u044F\u043D\u0433\u0430\u043D, \u0421\u043E\u0451\u043D\u043E\u043E\u0441 \u0413\u043E\u0432\u044C \u0445\u04AF\u0440\u0441\u044D\u043D 1 \u0441\u0430\u044F 566 \u043C\u044F\u043D\u0433\u0430\u043D \u043A\u043C2 \u0443\u0443\u0434\u0430\u043C \u043D\u0443\u0442\u0430\u0433\u0442\u0430\u0439, \u0434\u044D\u043B\u0445\u0438\u0439\u0434 \u043D\u0443\u0442\u0430\u0433 \u0434\u044D\u0432\u0441\u0433\u044D\u0440\u0438\u0439\u043D \u0445\u044D\u043C\u0436\u044D\u044D\u0433\u044D\u044D\u0440 19-\u0440\u0442 \u0436\u0430\u0433\u0441\u0434\u0430\u0433. 2015 \u043E\u043D\u044B \u044D\u0445\u044D\u043D\u0434 \u041C\u043E\u043D\u0433\u043E\u043B \u0423\u043B\u0441\u044B\u043D \u0445\u04AF\u043D \u0430\u043C 3 \u0441\u0430\u044F \u0445\u04AF\u0440\u0441\u044D\u043D (135-\u0440 \u043E\u043B\u043E\u043D). \u04AE\u043D\u0434\u0441\u044D\u043D\u0434\u044D\u044D \u043C\u043E\u043D\u0433\u043E\u043B \u04AF\u043D\u0434\u044D\u0441\u0442\u044D\u043D (95 \u0445\u0443\u0432\u044C), \u043C\u04E9\u043D \u0445\u0430\u0441\u0430\u0433, \u0442\u0443\u0432\u0430 \u0445\u04AF\u043D \u0431\u0430\u0439\u043D\u0430. 16-\u0440 \u0437\u0443\u0443\u043D\u0430\u0430\u0441 \u0445\u043E\u0439\u0448 \u0431\u0443\u0434\u0434\u044B\u043D \u0448\u0430\u0448\u0438\u043D, 20-\u0440 \u0437\u0443\u0443\u043D\u0430\u0430\u0441 \u0448\u0430\u0448\u0438\u043D\u0433\u04AF\u0439 \u0431\u0430\u0439\u0434\u0430\u043B \u0434\u044D\u043B\u0433\u044D\u0440\u0441\u044D\u043D \u0431\u0430 \u0430\u043B\u0431\u0430\u043D \u0445\u044D\u0440\u044D\u0433\u0442 \u043C\u043E\u043D\u0433\u043E\u043B \u0445\u044D\u043B\u044D\u044D\u0440 \u0445\u0430\u0440\u0438\u043B\u0446\u0430\u043D\u0430.`
1247
+ ]
1248
+ ],
1249
+ [
1250
+ "text-generation",
1251
+ [`\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438`, `\u0425\u0430\u043C\u0433\u0438\u0439\u043D \u0441\u0430\u0439\u043D \u0434\u0443\u0443\u0447\u0438\u043D \u0431\u043E\u043B`, `\u041C\u0438\u043D\u0438\u0439 \u0434\u0443\u0440\u0442\u0430\u0439 \u0445\u0430\u043C\u0442\u043B\u0430\u0433 \u0431\u043E\u043B`, `\u042D\u0440\u0442 \u0443\u0440\u044C\u0434\u044B\u043D \u0446\u0430\u0433\u0442`]
1252
+ ],
1253
+ ["fill-mask", [`\u041C\u043E\u043D\u0433\u043E\u043B \u0443\u043B\u0441\u044B\u043D <mask> \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440 \u0445\u043E\u0442\u043E\u043E\u0441 \u044F\u0440\u044C\u0436 \u0431\u0430\u0439\u043D\u0430.`, `\u041C\u0438\u043D\u0438\u0439 \u0430\u043C\u044C\u0434\u0440\u0430\u043B\u044B\u043D \u0437\u043E\u0440\u0438\u043B\u0433\u043E \u0431\u043E\u043B <mask>.`]],
1254
+ [
1255
+ "automatic-speech-recognition",
1256
+ [
1257
+ {
1258
+ label: `Common Voice Train Example`,
1259
+ src: `https://cdn-media.huggingface.co/common_voice/train/common_voice_mn_18577472.wav`
1260
+ },
1261
+ {
1262
+ label: `Common Voice Test Example`,
1263
+ src: `https://cdn-media.huggingface.co/common_voice/test/common_voice_mn_18577346.wav`
1264
+ }
1265
+ ]
1266
+ ],
1267
+ [
1268
+ "text-to-speech",
1269
+ [
1270
+ `\u0411\u0438 \u041C\u043E\u043D\u0433\u043E\u043B \u0443\u043B\u0441\u044B\u043D \u0438\u0440\u0433\u044D\u043D.`,
1271
+ `\u042D\u043D\u044D\u0445\u04AF\u04AF \u0436\u0438\u0448\u044D\u044D \u043D\u044C \u0446\u0430\u0430\u043D\u0430\u0430 \u044F\u043C\u0430\u0440 \u0447 \u0443\u0442\u0433\u0430 \u0430\u0433\u0443\u0443\u043B\u0430\u0430\u0433\u04AF\u0439 \u0431\u043E\u043B\u043D\u043E`,
1272
+ `\u0421\u0430\u0440 \u0448\u0438\u043D\u044D\u0434\u044D\u044D \u0441\u0430\u0439\u0445\u0430\u043D \u0448\u0438\u043D\u044D\u043B\u044D\u0436 \u0431\u0430\u0439\u043D\u0430 \u0443\u0443?`
1273
+ ]
1274
+ ],
1275
+ [
1276
+ "sentence-similarity",
1277
+ [
1278
+ {
1279
+ source_sentence: "\u042D\u043D\u044D \u0431\u043E\u043B \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u0445\u04AF\u043D \u044E\u043C",
1280
+ sentences: ["\u042D\u043D\u044D \u0431\u043E\u043B \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u043D\u043E\u0445\u043E\u0439 \u044E\u043C", "\u042D\u043D\u044D \u0431\u043E\u043B \u043C\u0430\u0448 \u0438\u0445 \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u0445\u04AF\u043D \u044E\u043C", "\u04E8\u043D\u04E9\u04E9\u0434\u04E9\u0440 \u043D\u0430\u0440\u043B\u0430\u0433 \u04E9\u0434\u04E9\u0440 \u0431\u0430\u0439\u043D\u0430"]
1281
+ }
1282
+ ]
1283
+ ]
1284
+ ]);
1285
+ var MAPPING_SI = /* @__PURE__ */ new Map([
1286
+ ["translation", [`\u0DC3\u0DD2\u0D82\u0DC4\u0DBD \u0D89\u0DAD\u0DCF \u0D85\u0DBD\u0D82\u0D9A\u0DCF\u0DBB \u0DB7\u0DCF\u0DC2\u0DCF\u0DC0\u0D9A\u0DD2.`, `\u0DB8\u0DD9\u0DB8 \u0DAD\u0DCF\u0D9A\u0DCA\u0DC2\u0DAB\u0DBA \u0DB7\u0DCF\u0DC0\u0DD2\u0DAD\u0DCF \u0D9A\u0DBB\u0DB1 \u0D94\u0DB6\u0DA7 \u0DC3\u0DCA\u0DAD\u0DD6\u0DAD\u0DD2\u0DBA\u0DD2.`]],
1287
+ ["fill-mask", [`\u0DB8\u0DB8 \u0D9C\u0DD9\u0DAF\u0DBB <mask>.`, `<mask> \u0D89\u0D9C\u0DD9\u0DB1\u0DD3\u0DB8\u0DA7 \u0D9C\u0DD2\u0DBA\u0DCF\u0DBA.`]]
1288
+ ]);
1289
+ var MAPPING_DE = /* @__PURE__ */ new Map([
1290
+ [
1291
+ "question-answering",
1292
+ [
1293
+ {
1294
+ text: `Wo wohne ich?`,
1295
+ context: `Mein Name ist Wolfgang und ich lebe in Berlin`
1296
+ },
1297
+ {
1298
+ text: `Welcher Name wird auch verwendet, um den Amazonas-Regenwald auf Englisch zu beschreiben?`,
1299
+ context: `Der Amazonas-Regenwald, auf Englisch auch als Amazonien oder Amazonas-Dschungel bekannt, ist ein feuchter Laubwald, der den gr\xF6\xDFten Teil des Amazonas-Beckens S\xFCdamerikas bedeckt. Dieses Becken umfasst 7.000.000 Quadratkilometer (2.700.000 Quadratmeilen), von denen 5.500.000 Quadratkilometer (2.100.000 Quadratmeilen) vom Regenwald bedeckt sind. Diese Region umfasst Gebiete von neun Nationen. Der gr\xF6\xDFte Teil des Waldes befindet sich in Brasilien mit 60% des Regenwaldes, gefolgt von Peru mit 13%, Kolumbien mit 10% und geringen Mengen in Venezuela, Ecuador, Bolivien, Guyana, Suriname und Franz\xF6sisch-Guayana. Staaten oder Abteilungen in vier Nationen enthalten "Amazonas" in ihren Namen. Der Amazonas repr\xE4sentiert mehr als die H\xE4lfte der verbleibenden Regenw\xE4lder des Planeten und umfasst den gr\xF6\xDFten und artenreichsten tropischen Regenwald der Welt mit gesch\xE4tzten 390 Milliarden Einzelb\xE4umen, die in 16.000 Arten unterteilt sind.`
1300
+ }
1301
+ ]
1302
+ ],
1303
+ [
1304
+ "sentence-similarity",
1305
+ [
1306
+ {
1307
+ source_sentence: "Das ist eine gl\xFCckliche Person",
1308
+ sentences: [
1309
+ "Das ist ein gl\xFCcklicher Hund",
1310
+ "Das ist eine sehr gl\xFCckliche Person",
1311
+ "Heute ist ein sonniger Tag"
1312
+ ]
1313
+ }
1314
+ ]
1315
+ ]
1316
+ ]);
1317
+ var MAPPING_DV = /* @__PURE__ */ new Map([
1318
+ ["text-classification", [`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078E\u07A6\u0794\u07A7\u0788\u07AD. \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078D\u07AF\u0784\u07A8\u0788\u07AD`]],
1319
+ [
1320
+ "token-classification",
1321
+ [
1322
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`,
1323
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`,
1324
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0787\u07A8\u079D\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u078A\u07AD\u078B\u07AB\u060C \u0787\u07A6\u0787\u07B0\u0791\u07AB\u078E\u07A6`
1325
+ ]
1326
+ ],
1327
+ [
1328
+ "question-answering",
1329
+ [
1330
+ {
1331
+ text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u078C\u07A7\u0786\u07AA\u061F`,
1332
+ context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`
1333
+ },
1334
+ {
1335
+ text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u078C\u07A7\u0786\u07AA\u061F`,
1336
+ context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`
1337
+ },
1338
+ {
1339
+ text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0786\u07AE\u0784\u07A7\u061F`,
1340
+ context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0787\u07A8\u079D\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u078A\u07AD\u078B\u07AB\u078E\u07A6`
1341
+ },
1342
+ {
1343
+ text: `\u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0790\u07A8\u078A\u07A6\u0786\u07AE\u0781\u07B0\u078B\u07A8\u0782\u07AA\u0789\u07A6\u0781\u07B0 \u0787\u07A8\u0782\u078E\u07A8\u0783\u07AD\u0790\u07A8 \u0784\u07A6\u0780\u07AA\u0782\u07B0 \u0784\u07AD\u0782\u07AA\u0782\u07B0\u0786\u07AA\u0783\u07A7\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u0782\u07A6\u0789\u07AC\u0787\u07B0\u061F`,
1344
+ context: `\u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 (\u0795\u07AF\u0797\u07AA\u0796\u07A9\u0792\u07B0: \u078A\u07B0\u078D\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07A7 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0786\u07A7 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0787\u07A7\u061B \u0790\u07B0\u0795\u07AC\u0782\u07A8\u079D\u07B0: \u0790\u07AC\u078D\u07B0\u0788\u07A7 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0786\u07A7, \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0787\u07A7 \u0782\u07AB\u0782\u07A9 \u0787\u07A7\u0782\u07B0\u0789\u07AA\u0786\u07AE\u0781\u07B0 \u0787\u07AC\u0789\u07A6\u0792\u07AF\u0782\u07A8\u0787\u07A7\u061B \u078A\u07B0\u0783\u07AC\u0782\u07B0\u0797\u07B0: \u078A\u07AE\u0783\u07AD \u0787\u07AC\u0789\u07AC\u0792\u07AE\u0782\u07A8\u0787\u07AC\u0782\u07B0\u061B \u0791\u07A6\u0797\u07B0: \u0787\u07AC\u0789\u07AC\u0792\u07AF\u0782\u07B0\u0783\u07AD\u078E\u07AC\u0788\u07A6\u0787\u07AA\u0791\u07B0)\u060C \u0787\u07A8\u078E\u07A8\u0783\u07AD\u0790\u07A8 \u0784\u07A6\u0780\u07AA\u0782\u07B0 \u0784\u07AA\u0782\u07A7 \u0787\u07AC\u0789\u07AC\u0792\u07AF\u0782\u07A8\u0787\u07A7 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u078B\u07A6 \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0796\u07A6\u0782\u07B0\u078E\u07A6\u078D\u07B0 \u0787\u07A6\u0786\u07A9, \u0790\u07A6\u0787\u07AA\u078C\u07AA \u0787\u07AC\u0789\u07AC\u0783\u07A8\u0786\u07A7\u078E\u07AC \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0784\u07AD\u0790\u07A8\u0782\u07B0 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07AC \u0784\u07AE\u0791\u07AA\u0784\u07A6\u0787\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07A8\u0789\u07AC\u0782\u07AD \u0789\u07AE\u0787\u07A8\u0790\u07B0\u0793\u07B0 \u0784\u07AE\u0783\u07AF\u0791\u07B0\u078D\u07A9\u078A\u07B0 \u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07AC\u0787\u07AC\u0786\u07AC\u0788\u07AC. \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0784\u07AD\u0790\u07A8\u0782\u07B0 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07AC \u0784\u07AE\u0791\u07AA \u0789\u07A8\u0782\u07A6\u0786\u07A9 7 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0786\u07A8\u078D\u07AF\u0789\u07A9\u0793\u07A6\u0783 (2.7 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0789\u07A6\u0787\u07A8\u078D\u07B0(. \u0789\u07A9\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 5.5 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0786\u07A8\u078D\u07AF\u0789\u07A9\u0793\u07A6\u0783 (2.1 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0789\u07A6\u0787\u07A8\u078D\u07B0) \u0787\u07A6\u0786\u07A9 \u0789\u07A8 \u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07AC\u0788\u07AC. \u0789\u07A8 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07A6\u0787\u07A8 9 \u078E\u07A6\u0787\u07AA\u0789\u07A6\u0786\u07A6\u0781\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07A7 \u0793\u07AC\u0783\u07A8\u0793\u07A6\u0783\u07A9 \u0780\u07A8\u0789\u07AC\u0782\u07AC\u0787\u07AC\u0788\u07AC. 60% \u0787\u07A7\u0787\u07A8\u0787\u07AC\u0786\u07AC \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0784\u07AE\u0791\u07AA \u0784\u07A6\u0787\u07AC\u0787\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07A6\u0782\u07A9 \u0784\u07B0\u0783\u07AC\u0792\u07A8\u078D\u07B0\u0787\u07A6\u0781\u07AC\u0788\u07AC. \u0787\u07AD\u078E\u07AC \u078A\u07A6\u0780\u07AA\u078C\u07AA\u0782\u07B0 13% \u0787\u07A7\u0787\u07AC\u0786\u07AA \u0795\u07AC\u0783\u07AB \u0787\u07A7\u0787\u07A8 10% \u0787\u07A7\u0787\u07AC\u0786\u07AA \u0786\u07AE\u078D\u07A6\u0789\u07B0\u0784\u07A8\u0787\u07A7 \u0787\u07A6\u078B\u07A8 \u0786\u07AA\u0791\u07A6 \u0784\u07A6\u0787\u07AC\u0787\u07B0 \u0780\u07A8\u0789\u07AC\u0782\u07AD \u078E\u07AE\u078C\u07AA\u0782\u07B0 \u0788\u07AC\u0782\u07AC\u0792\u07AA\u0787\u07AC\u078D\u07A7, \u0787\u07AC\u0786\u07B0\u0787\u07A6\u0791\u07AF, \u0784\u07AE\u078D\u07A8\u0788\u07A8\u0787\u07A7, \u078E\u07AA\u0794\u07A7\u0782\u07A7, \u0790\u07AA\u0783\u07A8\u0782\u07A7\u0789\u07B0 \u0787\u07A6\u078B\u07A8 \u078A\u07B0\u0783\u07AC\u0782\u07B0\u0797\u07B0 \u078E\u07B0\u0787\u07A7\u0782\u07A7 \u0787\u07A6\u0781\u07B0 \u0788\u07AC\u0790\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07A9\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 4 \u078E\u07A6\u0787\u07AA\u0789\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8 "\u0787\u07AC\u0789\u07AC\u0792\u07AE\u0782\u07A7\u0790\u07B0" \u0780\u07A8\u0789\u07A6\u0782\u07A6\u0787\u07A8\u078E\u07AC\u0782\u07B0 \u0790\u07B0\u0793\u07AD\u0793\u07B0 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u0791\u07A8\u0795\u07A7\u0793\u07B0\u0789\u07A6\u0782\u07B0\u0793\u07B0 \u0787\u07A6\u0786\u07A6\u0781\u07B0 \u0782\u07A6\u0782\u07B0\u078B\u07A9\u078A\u07A6\u0787\u07A8\u0788\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07AA\u0785\u07A8 \u078B\u07AA\u0782\u07A8\u0794\u07AD\u078E\u07A6\u0787\u07A8 \u0784\u07A7\u0786\u07A9 \u0780\u07AA\u0783\u07A8 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 \u078B\u07AC\u0784\u07A6\u0787\u07A8\u0786\u07AA\u0785\u07A6 \u0787\u07AC\u0787\u07B0\u0784\u07A6\u0794\u07A6\u0781\u07B0\u0788\u07AA\u0783\u07AC\u0784\u07AE\u0791\u07AA\u0788\u07A6\u0783\u07AC\u0787\u07B0 \u0787\u07AC\u0789\u07AD\u0792\u07AE\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0780\u07A8\u0787\u07B0\u0790\u07A7\u0786\u07AA\u0783\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07A8\u0787\u07A9 \u0789\u07AA\u0785\u07A8 \u078B\u07AA\u0782\u07A8\u0794\u07AC\u0787\u07A8\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AE \u0784\u07AE\u0791\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0784\u07A6\u0787\u07AE\u0791\u07A6\u0787\u07A8\u0788\u07A6\u0783\u0790\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0793\u07B0\u0783\u07AC\u0786\u07B0\u0793\u07AC\u0788\u07AC. \u078D\u07A6\u078A\u07A7\u0786\u07AA\u0783\u07AC\u0788\u07AD \u078E\u07AE\u078C\u07AA\u0782\u07B0 16 \u0780\u07A7\u0790\u07B0 \u0790\u07B0\u0795\u07A9\u079D\u07A9\u0790\u07B0\u0787\u07A6\u0781\u07B0 \u0784\u07AC\u0780\u07A8\u078E\u07AC\u0782\u07B0\u0788\u07A7 390 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0788\u07A6\u0787\u07B0\u078C\u07A6\u0783\u07AA\u078E\u07AC \u078E\u07A6\u0790\u07B0 \u0789\u07A8\u078C\u07A7\u078E\u07A6\u0787\u07A8 \u0780\u07A8\u0789\u07AC\u0782\u07AC\u0787\u07AC\u0788\u07AC`
1345
+ }
1346
+ ]
1347
+ ],
1348
+ [
1349
+ "translation",
1350
+ [
1351
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`,
1352
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`
1353
+ ]
1354
+ ],
1355
+ [
1356
+ "summarization",
1357
+ [
1358
+ `\u0793\u07A6\u0788\u07A6\u0783\u07AA\u078E\u07AC \u0787\u07AA\u0790\u07B0\u0789\u07A8\u0782\u07A6\u0786\u07A9 324 \u0789\u07A9\u0793\u07A6\u0783\u07AA\u060C \u0787\u07AC\u0787\u07A9 \u078E\u07A7\u078C\u07B0\u078E\u07A6\u0782\u0791\u07A6\u0786\u07A6\u0781\u07B0 81 \u0784\u07AA\u0783\u07A9\u078E\u07AC \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07A6\u0786\u07A7\u0787\u07A8 \u0787\u07AC\u0787\u07B0\u0788\u07A6\u0783\u07AC\u0788\u07AC. \u0787\u07AC\u0787\u07A9 \u0795\u07AC\u0783\u07A8\u0790\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07AA\u0783\u07A8 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07AC\u0788\u07AC. \u0787\u07AD\u078E\u07AC \u0780\u07A6\u078C\u07A6\u0783\u07AC\u0790\u07B0\u0786\u07A6\u0782\u07A6\u0781\u07B0 \u0780\u07AA\u0783\u07A8 \u0784\u07AA\u0791\u07AA\u078E\u07AC \u078B\u07A8\u078E\u07AA\u0789\u07A8\u0782\u07A6\u0786\u07A9 \u0786\u07AE\u0782\u07B0\u0789\u07AC \u078A\u07A6\u0783\u07A7\u078C\u07A6\u0786\u07AA\u0782\u07B0 125 \u0789\u07A9\u0793\u07A6\u0783\u07AC\u0788\u07AC. (410 \u078A\u07AB\u0793\u07AA) \u0787\u07A6\u0787\u07A8\u078A\u07A8\u078D\u07B0 \u0793\u07A6\u0788\u07A6\u0783\u07AA \u0784\u07A8\u0782\u07A7\u0786\u07AA\u0783\u07A8 \u0787\u07A8\u0783\u07AA\u060C \u0788\u07AE\u079D\u07A8\u0782\u07B0\u078E\u07B0\u0793\u07A6\u0782\u07B0 \u0789\u07AE\u0782\u07A8\u0787\u07AA\u0789\u07AC\u0782\u07B0\u0793\u07B0\u078E\u07AC \u0787\u07AA\u0790\u07B0\u0789\u07A8\u0782\u07B0 \u078A\u07A6\u0780\u07A6\u0782\u07A6\u0787\u07A6\u0785\u07A7 \u078E\u07AE\u0790\u07B0\u060C \u078B\u07AA\u0782\u07A8\u0794\u07AD\u078E\u07A6\u0787\u07A8 \u0789\u07A9\u0780\u07AA\u0782\u07B0 \u0787\u07AA\u078A\u07AC\u0787\u07B0\u078B\u07A8 \u078C\u07A6\u0782\u07B0\u078C\u07A6\u0782\u07AA\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u078C\u07A6\u0782\u07AA\u078E\u07AC \u078D\u07A6\u078E\u07A6\u0784\u07AA \u078D\u07A8\u0784\u07AA\u0782\u07AC\u0788\u07AC. \u0787\u07A6\u078B\u07A8 1930 \u078E\u07A6\u0787\u07A8 \u0782\u07A8\u0787\u07AA \u0794\u07AF\u0786\u07B0\u078E\u07AC \u0786\u07B0\u0783\u07A6\u0787\u07A8\u0790\u07B0\u078D\u07A6\u0783 \u0784\u07A8\u078D\u07B0\u0791\u07A8\u0782\u07B0\u078E\u07B0 \u0784\u07A8\u0782\u07A7\u0786\u07AA\u0783\u07AA\u0789\u07A7\u0787\u07A8 \u0780\u07A6\u0789\u07A6\u0787\u07A6\u0781\u07B0 41 \u0787\u07A6\u0780\u07A6\u0783\u07AA \u0788\u07A6\u0782\u07B0\u078B\u07AC\u0782\u07B0 \u0789\u07A8\u078D\u07A6\u078E\u07A6\u0784\u07AA \u0780\u07A8\u078A\u07AC\u0780\u07AC\u0787\u07B0\u0793\u07A8\u0787\u07AC\u0788\u07AC. \u0789\u07A8\u0787\u07A9 300 \u0789\u07A9\u0793\u07A6\u0783\u07A6\u0781\u07B0 \u0788\u07AA\u0783\u07AC \u0787\u07AA\u0790\u07B0\u0786\u07AE\u0781\u07B0 \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07B0\u0786\u07AA\u0783\u07AC\u0788\u07AA\u0782\u07AA \u078A\u07AA\u0783\u07A6\u078C\u07A6\u0789\u07A6 \u078C\u07A6\u0782\u07AC\u0788\u07AC. 1957 \u078E\u07A6\u0787\u07A8 \u0793\u07A6\u0788\u07A6\u0783\u07AA\u078E\u07AC \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0789\u07A6\u078C\u07A9\u078E\u07A6\u0787\u07A8 \u0780\u07A6\u0783\u07AA\u0786\u07AA\u0783\u07AC\u0788\u07AA\u0782\u07AA \u0784\u07B0\u0783\u07AF\u0791\u07B0\u0786\u07A7\u0790\u07B0\u0793\u07A8\u0782\u07B0\u078E \u0787\u07AD\u0783\u07A8\u0787\u07A6\u078D\u07B0\u078E\u07AC \u0790\u07A6\u0784\u07A6\u0784\u07AA\u0782\u07B0 \u0789\u07A8\u0780\u07A7\u0783\u07AA \u0789\u07A8 \u0793\u07A6\u0788\u07A6\u0783\u07AA \u0786\u07B0\u0783\u07A6\u0787\u07A8\u0790\u07B0\u078D\u07A6\u0783 \u0784\u07A8\u078D\u07B0\u0791\u07A8\u0782\u07B0\u078E\u0787\u07A6\u0781\u07B0 \u0788\u07AA\u0783\u07AC 5.2 \u0789\u07A9\u0793\u07A6\u0783 (17 \u078A\u07AB\u0793\u07AA) \u0787\u07AA\u0780\u07AC\u0788\u07AC. \u0789\u07A8 \u0793\u07B0\u0783\u07A7\u0782\u07B0\u0790\u07B0\u0789\u07A8\u0793\u07A6\u0783\u07AA \u0782\u07AA\u078D\u07A7\u060C \u0787\u07A6\u0787\u07A8\u078A\u07A8\u078D\u07B0 \u0793\u07A6\u0788\u07A6\u0783\u07A6\u0786\u07A9\u060C \u0789\u07A8\u078D\u07A7\u0787\u07AA \u0788\u07A8\u0787\u07A7\u0791\u07A6\u0786\u07B0\u0793\u07A6\u0781\u07B0 \u078A\u07A6\u0780\u07AA \u078A\u07B0\u0783\u07A7\u0782\u07B0\u0790\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07AA\u0783\u07A8 2 \u0788\u07A6\u0782\u07A6\u0787\u07A6\u0781\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u078A\u07B0\u0783\u07A9\u0790\u07B0\u0793\u07AD\u0782\u07B0\u0791\u07A8\u0782\u07B0\u078E \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07AC\u0788\u07AC`
1359
+ ]
1360
+ ],
1361
+ [
1362
+ "text-generation",
1363
+ [
1364
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0794\u07AB\u0790\u07AA\u078A\u07B0 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0789\u07A6\u0787\u07A8\u078E\u07A6\u0782\u0791\u07AA`,
1365
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0789\u07A6\u0783\u07A8\u0787\u07A6\u0789\u07B0\u060C \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u078E\u07A6\u0794\u07A7\u0788\u07A7`,
1366
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u078A\u07A7\u078C\u07AA\u0789\u07A6\u078C\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0`,
1367
+ `\u060C\u0787\u07AC\u0787\u07B0 \u0792\u07A6\u0789\u07A7\u0782\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8`
1368
+ ]
1369
+ ],
1370
+ ["fill-mask", [`.<mask> \u0789\u07A7\u078D\u07AC \u0787\u07A6\u0786\u07A9 \u078B\u07A8\u0788\u07AC\u0780\u07A8\u0783\u07A7\u0787\u07B0\u0796\u07AD\u078E\u07AC`, `\u078E\u07A6\u0783\u07AA\u078B\u07A8\u0794\u07A6\u0787\u07A6\u0786\u07A9 \u078B\u07A8\u0788\u07AC\u0780\u07A8\u0782\u07B0\u078E\u07AC \u0789\u07AC\u078B\u07AA\u078E\u07A6\u0787\u07A8 <mask> \u0786\u07AC\u0787\u07AA\u0789\u07AC\u0787\u07B0.`]]
1371
+ ]);
1372
+ var MAPPING_DEFAULT_WIDGET = /* @__PURE__ */ new Map([
1373
+ ["en", MAPPING_EN],
1374
+ ["zh", MAPPING_ZH],
1375
+ ["fr", MAPPING_FR],
1376
+ ["es", MAPPING_ES],
1377
+ ["ru", MAPPING_RU],
1378
+ ["uk", MAPPING_UK],
1379
+ ["it", MAPPING_IT],
1380
+ ["fa", MAPPING_FA],
1381
+ ["ar", MAPPING_AR],
1382
+ ["bn", MAPPING_BN],
1383
+ ["mn", MAPPING_MN],
1384
+ ["si", MAPPING_SI],
1385
+ ["de", MAPPING_DE],
1386
+ ["dv", MAPPING_DV]
1387
+ ]);
1388
+
1
1389
  // src/pipelines.ts
2
1390
  var MODALITIES = ["cv", "nlp", "audio", "tabular", "multimodal", "rl", "other"];
3
1391
  var MODALITY_LABELS = {
@@ -375,9 +1763,28 @@ var PIPELINE_DATA = {
375
1763
  },
376
1764
  "image-to-image": {
377
1765
  name: "Image-to-Image",
1766
+ subtasks: [
1767
+ {
1768
+ type: "image-inpainting",
1769
+ name: "Image Inpainting"
1770
+ },
1771
+ {
1772
+ type: "image-colorization",
1773
+ name: "Image Colorization"
1774
+ },
1775
+ {
1776
+ type: "super-resolution",
1777
+ name: "Super Resolution"
1778
+ }
1779
+ ],
378
1780
  modality: "cv",
379
1781
  color: "indigo"
380
1782
  },
1783
+ "image-to-video": {
1784
+ name: "Image-to-Video",
1785
+ modality: "multimodal",
1786
+ color: "indigo"
1787
+ },
381
1788
  "unconditional-image-generation": {
382
1789
  name: "Unconditional Image Generation",
383
1790
  modality: "cv",
@@ -546,6 +1953,26 @@ var PIPELINE_DATA = {
546
1953
  modality: "multimodal",
547
1954
  color: "green"
548
1955
  },
1956
+ "mask-generation": {
1957
+ name: "Mask Generation",
1958
+ modality: "cv",
1959
+ color: "indigo"
1960
+ },
1961
+ "zero-shot-object-detection": {
1962
+ name: "Zero-Shot Object Detection",
1963
+ modality: "cv",
1964
+ color: "yellow"
1965
+ },
1966
+ "text-to-3d": {
1967
+ name: "Text-to-3D",
1968
+ modality: "multimodal",
1969
+ color: "yellow"
1970
+ },
1971
+ "image-to-3d": {
1972
+ name: "Image-to-3D",
1973
+ modality: "multimodal",
1974
+ color: "green"
1975
+ },
549
1976
  other: {
550
1977
  name: "Other",
551
1978
  modality: "other",
@@ -558,7 +1985,7 @@ var PIPELINE_TYPES = Object.keys(PIPELINE_DATA);
558
1985
  var SUBTASK_TYPES = Object.values(PIPELINE_DATA).flatMap((data) => "subtasks" in data ? data.subtasks : []).map((s) => s.type);
559
1986
  var PIPELINE_TYPES_SET = new Set(PIPELINE_TYPES);
560
1987
 
561
- // src/audio-classification/data.ts
1988
+ // src/tasks/audio-classification/data.ts
562
1989
  var taskData = {
563
1990
  datasets: [
564
1991
  {
@@ -623,8 +2050,8 @@ var taskData = {
623
2050
  ],
624
2051
  spaces: [
625
2052
  {
626
- description: "An application that can predict the language spoken in a given audio.",
627
- id: "akhaliq/Speechbrain-audio-classification"
2053
+ description: "An application that can classify music into different genre.",
2054
+ id: "kurianbenoy/audioclassification"
628
2055
  }
629
2056
  ],
630
2057
  summary: "Audio classification is the task of assigning a label or class to a given audio. It can be used for recognizing which command a user is giving or the emotion of a statement, as well as identifying a speaker.",
@@ -633,7 +2060,7 @@ var taskData = {
633
2060
  };
634
2061
  var data_default = taskData;
635
2062
 
636
- // src/audio-to-audio/data.ts
2063
+ // src/tasks/audio-to-audio/data.ts
637
2064
  var taskData2 = {
638
2065
  datasets: [
639
2066
  {
@@ -695,7 +2122,7 @@ var taskData2 = {
695
2122
  };
696
2123
  var data_default2 = taskData2;
697
2124
 
698
- // src/automatic-speech-recognition/data.ts
2125
+ // src/tasks/automatic-speech-recognition/data.ts
699
2126
  var taskData3 = {
700
2127
  datasets: [
701
2128
  {
@@ -740,7 +2167,7 @@ var taskData3 = {
740
2167
  models: [
741
2168
  {
742
2169
  description: "A powerful ASR model by OpenAI.",
743
- id: "openai/whisper-large-v2"
2170
+ id: "openai/whisper-large-v3"
744
2171
  },
745
2172
  {
746
2173
  description: "A good generic ASR model by MetaAI.",
@@ -754,24 +2181,24 @@ var taskData3 = {
754
2181
  spaces: [
755
2182
  {
756
2183
  description: "A powerful general-purpose speech recognition application.",
757
- id: "openai/whisper"
2184
+ id: "hf-audio/whisper-large-v3"
758
2185
  },
759
2186
  {
760
2187
  description: "Fastest speech recognition application.",
761
2188
  id: "sanchit-gandhi/whisper-jax"
762
2189
  },
763
2190
  {
764
- description: "An application that transcribes speeches in YouTube videos.",
765
- id: "jeffistyping/Youtube-Whisperer"
2191
+ description: "A high quality speech and text translation model by Meta.",
2192
+ id: "facebook/seamless_m4t"
766
2193
  }
767
2194
  ],
768
2195
  summary: "Automatic Speech Recognition (ASR), also known as Speech to Text (STT), is the task of transcribing a given audio to text. It has many applications, such as voice user interfaces.",
769
- widgetModels: ["openai/whisper-large-v2"],
2196
+ widgetModels: ["openai/whisper-large-v3"],
770
2197
  youtubeId: "TksaY_FDgnk"
771
2198
  };
772
2199
  var data_default3 = taskData3;
773
2200
 
774
- // src/conversational/data.ts
2201
+ // src/tasks/conversational/data.ts
775
2202
  var taskData4 = {
776
2203
  datasets: [
777
2204
  {
@@ -831,7 +2258,7 @@ var taskData4 = {
831
2258
  };
832
2259
  var data_default4 = taskData4;
833
2260
 
834
- // src/document-question-answering/data.ts
2261
+ // src/tasks/document-question-answering/data.ts
835
2262
  var taskData5 = {
836
2263
  datasets: [
837
2264
  {
@@ -896,7 +2323,7 @@ var taskData5 = {
896
2323
  };
897
2324
  var data_default5 = taskData5;
898
2325
 
899
- // src/feature-extraction/data.ts
2326
+ // src/tasks/feature-extraction/data.ts
900
2327
  var taskData6 = {
901
2328
  datasets: [
902
2329
  {
@@ -925,12 +2352,7 @@ var taskData6 = {
925
2352
  }
926
2353
  ]
927
2354
  },
928
- metrics: [
929
- {
930
- description: "",
931
- id: ""
932
- }
933
- ],
2355
+ metrics: [],
934
2356
  models: [
935
2357
  {
936
2358
  description: "A powerful feature extraction model for natural language processing tasks.",
@@ -947,7 +2369,7 @@ var taskData6 = {
947
2369
  };
948
2370
  var data_default6 = taskData6;
949
2371
 
950
- // src/fill-mask/data.ts
2372
+ // src/tasks/fill-mask/data.ts
951
2373
  var taskData7 = {
952
2374
  datasets: [
953
2375
  {
@@ -1022,7 +2444,7 @@ var taskData7 = {
1022
2444
  };
1023
2445
  var data_default7 = taskData7;
1024
2446
 
1025
- // src/image-classification/data.ts
2447
+ // src/tasks/image-classification/data.ts
1026
2448
  var taskData8 = {
1027
2449
  datasets: [
1028
2450
  {
@@ -1108,7 +2530,7 @@ var taskData8 = {
1108
2530
  };
1109
2531
  var data_default8 = taskData8;
1110
2532
 
1111
- // src/image-to-image/data.ts
2533
+ // src/tasks/image-to-image/data.ts
1112
2534
  var taskData9 = {
1113
2535
  datasets: [
1114
2536
  {
@@ -1203,7 +2625,7 @@ var taskData9 = {
1203
2625
  };
1204
2626
  var data_default9 = taskData9;
1205
2627
 
1206
- // src/image-to-text/data.ts
2628
+ // src/tasks/image-to-text/data.ts
1207
2629
  var taskData10 = {
1208
2630
  datasets: [
1209
2631
  {
@@ -1287,7 +2709,7 @@ var taskData10 = {
1287
2709
  };
1288
2710
  var data_default10 = taskData10;
1289
2711
 
1290
- // src/image-segmentation/data.ts
2712
+ // src/tasks/image-segmentation/data.ts
1291
2713
  var taskData11 = {
1292
2714
  datasets: [
1293
2715
  {
@@ -1382,7 +2804,7 @@ var taskData11 = {
1382
2804
  };
1383
2805
  var data_default11 = taskData11;
1384
2806
 
1385
- // src/object-detection/data.ts
2807
+ // src/tasks/object-detection/data.ts
1386
2808
  var taskData12 = {
1387
2809
  datasets: [
1388
2810
  {
@@ -1454,7 +2876,7 @@ var taskData12 = {
1454
2876
  };
1455
2877
  var data_default12 = taskData12;
1456
2878
 
1457
- // src/depth-estimation/data.ts
2879
+ // src/tasks/depth-estimation/data.ts
1458
2880
  var taskData13 = {
1459
2881
  datasets: [
1460
2882
  {
@@ -1505,7 +2927,7 @@ var taskData13 = {
1505
2927
  };
1506
2928
  var data_default13 = taskData13;
1507
2929
 
1508
- // src/placeholder/data.ts
2930
+ // src/tasks/placeholder/data.ts
1509
2931
  var taskData14 = {
1510
2932
  datasets: [],
1511
2933
  demo: {
@@ -1522,7 +2944,7 @@ var taskData14 = {
1522
2944
  };
1523
2945
  var data_default14 = taskData14;
1524
2946
 
1525
- // src/reinforcement-learning/data.ts
2947
+ // src/tasks/reinforcement-learning/data.ts
1526
2948
  var taskData15 = {
1527
2949
  datasets: [
1528
2950
  {
@@ -1591,7 +3013,7 @@ var taskData15 = {
1591
3013
  };
1592
3014
  var data_default15 = taskData15;
1593
3015
 
1594
- // src/question-answering/data.ts
3016
+ // src/tasks/question-answering/data.ts
1595
3017
  var taskData16 = {
1596
3018
  datasets: [
1597
3019
  {
@@ -1658,7 +3080,7 @@ var taskData16 = {
1658
3080
  };
1659
3081
  var data_default16 = taskData16;
1660
3082
 
1661
- // src/sentence-similarity/data.ts
3083
+ // src/tasks/sentence-similarity/data.ts
1662
3084
  var taskData17 = {
1663
3085
  datasets: [
1664
3086
  {
@@ -1753,7 +3175,7 @@ var taskData17 = {
1753
3175
  };
1754
3176
  var data_default17 = taskData17;
1755
3177
 
1756
- // src/summarization/data.ts
3178
+ // src/tasks/summarization/data.ts
1757
3179
  var taskData18 = {
1758
3180
  datasets: [
1759
3181
  {
@@ -1821,7 +3243,7 @@ var taskData18 = {
1821
3243
  };
1822
3244
  var data_default18 = taskData18;
1823
3245
 
1824
- // src/table-question-answering/data.ts
3246
+ // src/tasks/table-question-answering/data.ts
1825
3247
  var taskData19 = {
1826
3248
  datasets: [
1827
3249
  {
@@ -1875,7 +3297,7 @@ var taskData19 = {
1875
3297
  };
1876
3298
  var data_default19 = taskData19;
1877
3299
 
1878
- // src/tabular-classification/data.ts
3300
+ // src/tasks/tabular-classification/data.ts
1879
3301
  var taskData20 = {
1880
3302
  datasets: [
1881
3303
  {
@@ -1942,7 +3364,7 @@ var taskData20 = {
1942
3364
  };
1943
3365
  var data_default20 = taskData20;
1944
3366
 
1945
- // src/tabular-regression/data.ts
3367
+ // src/tasks/tabular-regression/data.ts
1946
3368
  var taskData21 = {
1947
3369
  datasets: [
1948
3370
  {
@@ -1997,7 +3419,7 @@ var taskData21 = {
1997
3419
  };
1998
3420
  var data_default21 = taskData21;
1999
3421
 
2000
- // src/text-to-image/data.ts
3422
+ // src/tasks/text-to-image/data.ts
2001
3423
  var taskData22 = {
2002
3424
  datasets: [
2003
3425
  {
@@ -2084,7 +3506,7 @@ var taskData22 = {
2084
3506
  };
2085
3507
  var data_default22 = taskData22;
2086
3508
 
2087
- // src/text-to-speech/data.ts
3509
+ // src/tasks/text-to-speech/data.ts
2088
3510
  var taskData23 = {
2089
3511
  datasets: [
2090
3512
  {
@@ -2137,8 +3559,8 @@ var taskData23 = {
2137
3559
  id: "suno/bark"
2138
3560
  },
2139
3561
  {
2140
- description: "An application that contains multiple speech synthesis models for various languages and accents.",
2141
- id: "coqui/CoquiTTS"
3562
+ description: "XTTS is a Voice generation model that lets you clone voices into different languages.",
3563
+ id: "coqui/xtts"
2142
3564
  },
2143
3565
  {
2144
3566
  description: "An application that synthesizes speech for various speaker types.",
@@ -2146,12 +3568,12 @@ var taskData23 = {
2146
3568
  }
2147
3569
  ],
2148
3570
  summary: "Text-to-Speech (TTS) is the task of generating natural sounding speech given text input. TTS models can be extended to have a single model that generates speech for multiple speakers and multiple languages.",
2149
- widgetModels: ["microsoft/speecht5_tts"],
3571
+ widgetModels: ["suno/bark"],
2150
3572
  youtubeId: "NW62DpzJ274"
2151
3573
  };
2152
3574
  var data_default23 = taskData23;
2153
3575
 
2154
- // src/token-classification/data.ts
3576
+ // src/tasks/token-classification/data.ts
2155
3577
  var taskData24 = {
2156
3578
  datasets: [
2157
3579
  {
@@ -2230,7 +3652,7 @@ var taskData24 = {
2230
3652
  };
2231
3653
  var data_default24 = taskData24;
2232
3654
 
2233
- // src/translation/data.ts
3655
+ // src/tasks/translation/data.ts
2234
3656
  var taskData25 = {
2235
3657
  datasets: [
2236
3658
  {
@@ -2294,7 +3716,7 @@ var taskData25 = {
2294
3716
  };
2295
3717
  var data_default25 = taskData25;
2296
3718
 
2297
- // src/text-classification/data.ts
3719
+ // src/tasks/text-classification/data.ts
2298
3720
  var taskData26 = {
2299
3721
  datasets: [
2300
3722
  {
@@ -2382,7 +3804,7 @@ var taskData26 = {
2382
3804
  };
2383
3805
  var data_default26 = taskData26;
2384
3806
 
2385
- // src/text-generation/data.ts
3807
+ // src/tasks/text-generation/data.ts
2386
3808
  var taskData27 = {
2387
3809
  datasets: [
2388
3810
  {
@@ -2497,12 +3919,12 @@ var taskData27 = {
2497
3919
  }
2498
3920
  ],
2499
3921
  summary: "Generating text is the task of producing new text. These models can, for example, fill in incomplete text or paraphrase.",
2500
- widgetModels: ["tiiuae/falcon-7b-instruct"],
3922
+ widgetModels: ["HuggingFaceH4/zephyr-7b-beta"],
2501
3923
  youtubeId: "Vpjb1lu0MDk"
2502
3924
  };
2503
3925
  var data_default27 = taskData27;
2504
3926
 
2505
- // src/text-to-video/data.ts
3927
+ // src/tasks/text-to-video/data.ts
2506
3928
  var taskData28 = {
2507
3929
  datasets: [
2508
3930
  {
@@ -2597,7 +4019,7 @@ var taskData28 = {
2597
4019
  };
2598
4020
  var data_default28 = taskData28;
2599
4021
 
2600
- // src/unconditional-image-generation/data.ts
4022
+ // src/tasks/unconditional-image-generation/data.ts
2601
4023
  var taskData29 = {
2602
4024
  datasets: [
2603
4025
  {
@@ -2662,7 +4084,7 @@ var taskData29 = {
2662
4084
  };
2663
4085
  var data_default29 = taskData29;
2664
4086
 
2665
- // src/video-classification/data.ts
4087
+ // src/tasks/video-classification/data.ts
2666
4088
  var taskData30 = {
2667
4089
  datasets: [
2668
4090
  {
@@ -2744,7 +4166,7 @@ var taskData30 = {
2744
4166
  };
2745
4167
  var data_default30 = taskData30;
2746
4168
 
2747
- // src/visual-question-answering/data.ts
4169
+ // src/tasks/visual-question-answering/data.ts
2748
4170
  var taskData31 = {
2749
4171
  datasets: [
2750
4172
  {
@@ -2833,7 +4255,7 @@ var taskData31 = {
2833
4255
  };
2834
4256
  var data_default31 = taskData31;
2835
4257
 
2836
- // src/zero-shot-classification/data.ts
4258
+ // src/tasks/zero-shot-classification/data.ts
2837
4259
  var taskData32 = {
2838
4260
  datasets: [
2839
4261
  {
@@ -2895,7 +4317,7 @@ var taskData32 = {
2895
4317
  };
2896
4318
  var data_default32 = taskData32;
2897
4319
 
2898
- // src/zero-shot-image-classification/data.ts
4320
+ // src/tasks/zero-shot-image-classification/data.ts
2899
4321
  var taskData33 = {
2900
4322
  datasets: [
2901
4323
  {
@@ -2968,22 +4390,24 @@ var taskData33 = {
2968
4390
  };
2969
4391
  var data_default33 = taskData33;
2970
4392
 
2971
- // src/const.ts
4393
+ // src/tasks/index.ts
2972
4394
  var TASKS_MODEL_LIBRARIES = {
2973
- "audio-classification": ["speechbrain", "transformers"],
4395
+ "audio-classification": ["speechbrain", "transformers", "transformers.js"],
2974
4396
  "audio-to-audio": ["asteroid", "speechbrain"],
2975
4397
  "automatic-speech-recognition": ["espnet", "nemo", "speechbrain", "transformers", "transformers.js"],
2976
4398
  conversational: ["transformers"],
2977
- "depth-estimation": ["transformers"],
2978
- "document-question-answering": ["transformers"],
4399
+ "depth-estimation": ["transformers", "transformers.js"],
4400
+ "document-question-answering": ["transformers", "transformers.js"],
2979
4401
  "feature-extraction": ["sentence-transformers", "transformers", "transformers.js"],
2980
4402
  "fill-mask": ["transformers", "transformers.js"],
2981
4403
  "graph-ml": ["transformers"],
2982
4404
  "image-classification": ["keras", "timm", "transformers", "transformers.js"],
2983
4405
  "image-segmentation": ["transformers", "transformers.js"],
2984
- "image-to-image": [],
4406
+ "image-to-image": ["diffusers", "transformers.js"],
2985
4407
  "image-to-text": ["transformers.js"],
2986
- "video-classification": [],
4408
+ "image-to-video": ["diffusers"],
4409
+ "video-classification": ["transformers"],
4410
+ "mask-generation": ["transformers"],
2987
4411
  "multiple-choice": ["transformers"],
2988
4412
  "object-detection": ["transformers", "transformers.js"],
2989
4413
  other: [],
@@ -3000,10 +4424,10 @@ var TASKS_MODEL_LIBRARIES = {
3000
4424
  "text-classification": ["adapter-transformers", "spacy", "transformers", "transformers.js"],
3001
4425
  "text-generation": ["transformers", "transformers.js"],
3002
4426
  "text-retrieval": [],
3003
- "text-to-image": [],
3004
- "text-to-speech": ["espnet", "tensorflowtts", "transformers"],
3005
- "text-to-audio": ["transformers"],
3006
- "text-to-video": [],
4427
+ "text-to-image": ["diffusers"],
4428
+ "text-to-speech": ["espnet", "tensorflowtts", "transformers", "transformers.js"],
4429
+ "text-to-audio": ["transformers", "transformers.js"],
4430
+ "text-to-video": ["diffusers"],
3007
4431
  "text2text-generation": ["transformers", "transformers.js"],
3008
4432
  "time-series-forecasting": [],
3009
4433
  "token-classification": [
@@ -3016,14 +4440,23 @@ var TASKS_MODEL_LIBRARIES = {
3016
4440
  "transformers.js"
3017
4441
  ],
3018
4442
  translation: ["transformers", "transformers.js"],
3019
- "unconditional-image-generation": [],
3020
- "visual-question-answering": [],
4443
+ "unconditional-image-generation": ["diffusers"],
4444
+ "visual-question-answering": ["transformers", "transformers.js"],
3021
4445
  "voice-activity-detection": [],
3022
4446
  "zero-shot-classification": ["transformers", "transformers.js"],
3023
- "zero-shot-image-classification": ["transformers.js"]
4447
+ "zero-shot-image-classification": ["transformers", "transformers.js"],
4448
+ "zero-shot-object-detection": ["transformers", "transformers.js"],
4449
+ "text-to-3d": [],
4450
+ "image-to-3d": []
3024
4451
  };
3025
-
3026
- // src/tasksData.ts
4452
+ function getData(type, partialTaskData = data_default14) {
4453
+ return {
4454
+ ...partialTaskData,
4455
+ id: type,
4456
+ label: PIPELINE_DATA[type].name,
4457
+ libraries: TASKS_MODEL_LIBRARIES[type]
4458
+ };
4459
+ }
3027
4460
  var TASKS_DATA = {
3028
4461
  "audio-classification": getData("audio-classification", data_default),
3029
4462
  "audio-to-audio": getData("audio-to-audio", data_default2),
@@ -3038,6 +4471,8 @@ var TASKS_DATA = {
3038
4471
  "image-segmentation": getData("image-segmentation", data_default11),
3039
4472
  "image-to-image": getData("image-to-image", data_default9),
3040
4473
  "image-to-text": getData("image-to-text", data_default10),
4474
+ "image-to-video": void 0,
4475
+ "mask-generation": getData("mask-generation", data_default14),
3041
4476
  "multiple-choice": void 0,
3042
4477
  "object-detection": getData("object-detection", data_default12),
3043
4478
  "video-classification": getData("video-classification", data_default30),
@@ -3067,18 +4502,13 @@ var TASKS_DATA = {
3067
4502
  "visual-question-answering": getData("visual-question-answering", data_default31),
3068
4503
  "voice-activity-detection": void 0,
3069
4504
  "zero-shot-classification": getData("zero-shot-classification", data_default32),
3070
- "zero-shot-image-classification": getData("zero-shot-image-classification", data_default33)
4505
+ "zero-shot-image-classification": getData("zero-shot-image-classification", data_default33),
4506
+ "zero-shot-object-detection": getData("zero-shot-object-detection", data_default14),
4507
+ "text-to-3d": getData("text-to-3d", data_default14),
4508
+ "image-to-3d": getData("image-to-3d", data_default14)
3071
4509
  };
3072
- function getData(type, partialTaskData = data_default14) {
3073
- return {
3074
- ...partialTaskData,
3075
- id: type,
3076
- label: PIPELINE_DATA[type].name,
3077
- libraries: TASKS_MODEL_LIBRARIES[type]
3078
- };
3079
- }
3080
4510
 
3081
- // src/modelLibraries.ts
4511
+ // src/model-libraries.ts
3082
4512
  var ModelLibrary = /* @__PURE__ */ ((ModelLibrary2) => {
3083
4513
  ModelLibrary2["adapter-transformers"] = "Adapter Transformers";
3084
4514
  ModelLibrary2["allennlp"] = "allenNLP";
@@ -3119,6 +4549,17 @@ var ALL_DISPLAY_MODEL_LIBRARY_KEYS = Object.keys(ModelLibrary).filter(
3119
4549
  (k) => !["doctr", "k2", "mindspore", "tensorflowtts"].includes(k)
3120
4550
  );
3121
4551
 
4552
+ // src/model-data.ts
4553
+ var InferenceDisplayability = /* @__PURE__ */ ((InferenceDisplayability2) => {
4554
+ InferenceDisplayability2["Yes"] = "Yes";
4555
+ InferenceDisplayability2["ExplicitOptOut"] = "ExplicitOptOut";
4556
+ InferenceDisplayability2["CustomCode"] = "CustomCode";
4557
+ InferenceDisplayability2["LibraryNotDetected"] = "LibraryNotDetected";
4558
+ InferenceDisplayability2["PipelineNotDetected"] = "PipelineNotDetected";
4559
+ InferenceDisplayability2["PipelineLibraryPairNotSupported"] = "PipelineLibraryPairNotSupported";
4560
+ return InferenceDisplayability2;
4561
+ })(InferenceDisplayability || {});
4562
+
3122
4563
  // src/tags.ts
3123
4564
  var TAG_NFAA_CONTENT = "not-for-all-audiences";
3124
4565
  var OTHER_TAGS_SUGGESTIONS = [
@@ -3135,10 +4576,476 @@ var OTHER_TAGS_SUGGESTIONS = [
3135
4576
  ];
3136
4577
  var TAG_TEXT_GENERATION_INFERENCE = "text-generation-inference";
3137
4578
  var TAG_CUSTOM_CODE = "custom_code";
4579
+
4580
+ // src/snippets/index.ts
4581
+ var snippets_exports = {};
4582
+ __export(snippets_exports, {
4583
+ curl: () => curl_exports,
4584
+ inputs: () => inputs_exports,
4585
+ js: () => js_exports,
4586
+ python: () => python_exports
4587
+ });
4588
+
4589
+ // src/snippets/inputs.ts
4590
+ var inputs_exports = {};
4591
+ __export(inputs_exports, {
4592
+ getModelInputSnippet: () => getModelInputSnippet
4593
+ });
4594
+ var inputsZeroShotClassification = () => `"Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!"`;
4595
+ var inputsTranslation = () => `"\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435"`;
4596
+ var inputsSummarization = () => `"The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct."`;
4597
+ var inputsConversational = () => `{
4598
+ "past_user_inputs": ["Which movie is the best ?"],
4599
+ "generated_responses": ["It is Die Hard for sure."],
4600
+ "text": "Can you explain why ?"
4601
+ }`;
4602
+ var inputsTableQuestionAnswering = () => `{
4603
+ "query": "How many stars does the transformers repository have?",
4604
+ "table": {
4605
+ "Repository": ["Transformers", "Datasets", "Tokenizers"],
4606
+ "Stars": ["36542", "4512", "3934"],
4607
+ "Contributors": ["651", "77", "34"],
4608
+ "Programming language": [
4609
+ "Python",
4610
+ "Python",
4611
+ "Rust, Python and NodeJS"
4612
+ ]
4613
+ }
4614
+ }`;
4615
+ var inputsVisualQuestionAnswering = () => `{
4616
+ "image": "cat.png",
4617
+ "question": "What is in this image?"
4618
+ }`;
4619
+ var inputsQuestionAnswering = () => `{
4620
+ "question": "What is my name?",
4621
+ "context": "My name is Clara and I live in Berkeley."
4622
+ }`;
4623
+ var inputsTextClassification = () => `"I like you. I love you"`;
4624
+ var inputsTokenClassification = () => `"My name is Sarah Jessica Parker but you can call me Jessica"`;
4625
+ var inputsTextGeneration = () => `"Can you please let us know more details about your "`;
4626
+ var inputsText2TextGeneration = () => `"The answer to the universe is"`;
4627
+ var inputsFillMask = (model) => `"The answer to the universe is ${model.mask_token}."`;
4628
+ var inputsSentenceSimilarity = () => `{
4629
+ "source_sentence": "That is a happy person",
4630
+ "sentences": [
4631
+ "That is a happy dog",
4632
+ "That is a very happy person",
4633
+ "Today is a sunny day"
4634
+ ]
4635
+ }`;
4636
+ var inputsFeatureExtraction = () => `"Today is a sunny day and I will get some ice cream."`;
4637
+ var inputsImageClassification = () => `"cats.jpg"`;
4638
+ var inputsImageToText = () => `"cats.jpg"`;
4639
+ var inputsImageSegmentation = () => `"cats.jpg"`;
4640
+ var inputsObjectDetection = () => `"cats.jpg"`;
4641
+ var inputsAudioToAudio = () => `"sample1.flac"`;
4642
+ var inputsAudioClassification = () => `"sample1.flac"`;
4643
+ var inputsTextToImage = () => `"Astronaut riding a horse"`;
4644
+ var inputsTextToSpeech = () => `"The answer to the universe is 42"`;
4645
+ var inputsTextToAudio = () => `"liquid drum and bass, atmospheric synths, airy sounds"`;
4646
+ var inputsAutomaticSpeechRecognition = () => `"sample1.flac"`;
4647
+ var inputsTabularPrediction = () => `'{"Height":[11.52,12.48],"Length1":[23.2,24.0],"Length2":[25.4,26.3],"Species": ["Bream","Bream"]}'`;
4648
+ var inputsZeroShotImageClassification = () => `"cats.jpg"`;
4649
+ var modelInputSnippets = {
4650
+ "audio-to-audio": inputsAudioToAudio,
4651
+ "audio-classification": inputsAudioClassification,
4652
+ "automatic-speech-recognition": inputsAutomaticSpeechRecognition,
4653
+ conversational: inputsConversational,
4654
+ "document-question-answering": inputsVisualQuestionAnswering,
4655
+ "feature-extraction": inputsFeatureExtraction,
4656
+ "fill-mask": inputsFillMask,
4657
+ "image-classification": inputsImageClassification,
4658
+ "image-to-text": inputsImageToText,
4659
+ "image-segmentation": inputsImageSegmentation,
4660
+ "object-detection": inputsObjectDetection,
4661
+ "question-answering": inputsQuestionAnswering,
4662
+ "sentence-similarity": inputsSentenceSimilarity,
4663
+ summarization: inputsSummarization,
4664
+ "table-question-answering": inputsTableQuestionAnswering,
4665
+ "tabular-regression": inputsTabularPrediction,
4666
+ "tabular-classification": inputsTabularPrediction,
4667
+ "text-classification": inputsTextClassification,
4668
+ "text-generation": inputsTextGeneration,
4669
+ "text-to-image": inputsTextToImage,
4670
+ "text-to-speech": inputsTextToSpeech,
4671
+ "text-to-audio": inputsTextToAudio,
4672
+ "text2text-generation": inputsText2TextGeneration,
4673
+ "token-classification": inputsTokenClassification,
4674
+ translation: inputsTranslation,
4675
+ "zero-shot-classification": inputsZeroShotClassification,
4676
+ "zero-shot-image-classification": inputsZeroShotImageClassification
4677
+ };
4678
+ function getModelInputSnippet(model, noWrap = false, noQuotes = false) {
4679
+ if (model.pipeline_tag) {
4680
+ const inputs = modelInputSnippets[model.pipeline_tag];
4681
+ if (inputs) {
4682
+ let result = inputs(model);
4683
+ if (noWrap) {
4684
+ result = result.replace(/(?:(?:\r?\n|\r)\t*)|\t+/g, " ");
4685
+ }
4686
+ if (noQuotes) {
4687
+ const REGEX_QUOTES = /^"(.+)"$/s;
4688
+ const match = result.match(REGEX_QUOTES);
4689
+ result = match ? match[1] : result;
4690
+ }
4691
+ return result;
4692
+ }
4693
+ }
4694
+ return "No input example has been defined for this model task.";
4695
+ }
4696
+
4697
+ // src/snippets/curl.ts
4698
+ var curl_exports = {};
4699
+ __export(curl_exports, {
4700
+ curlSnippets: () => curlSnippets,
4701
+ getCurlInferenceSnippet: () => getCurlInferenceSnippet,
4702
+ hasCurlInferenceSnippet: () => hasCurlInferenceSnippet,
4703
+ snippetBasic: () => snippetBasic,
4704
+ snippetFile: () => snippetFile,
4705
+ snippetZeroShotClassification: () => snippetZeroShotClassification
4706
+ });
4707
+ var snippetBasic = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
4708
+ -X POST \\
4709
+ -d '{"inputs": ${getModelInputSnippet(model, true)}}' \\
4710
+ -H 'Content-Type: application/json' \\
4711
+ -H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
4712
+ `;
4713
+ var snippetZeroShotClassification = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
4714
+ -X POST \\
4715
+ -d '{"inputs": ${getModelInputSnippet(model, true)}, "parameters": {"candidate_labels": ["refund", "legal", "faq"]}}' \\
4716
+ -H 'Content-Type: application/json' \\
4717
+ -H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
4718
+ `;
4719
+ var snippetFile = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
4720
+ -X POST \\
4721
+ --data-binary '@${getModelInputSnippet(model, true, true)}' \\
4722
+ -H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
4723
+ `;
4724
+ var curlSnippets = {
4725
+ // Same order as in js/src/lib/interfaces/Types.ts
4726
+ "text-classification": snippetBasic,
4727
+ "token-classification": snippetBasic,
4728
+ "table-question-answering": snippetBasic,
4729
+ "question-answering": snippetBasic,
4730
+ "zero-shot-classification": snippetZeroShotClassification,
4731
+ translation: snippetBasic,
4732
+ summarization: snippetBasic,
4733
+ conversational: snippetBasic,
4734
+ "feature-extraction": snippetBasic,
4735
+ "text-generation": snippetBasic,
4736
+ "text2text-generation": snippetBasic,
4737
+ "fill-mask": snippetBasic,
4738
+ "sentence-similarity": snippetBasic,
4739
+ "automatic-speech-recognition": snippetFile,
4740
+ "text-to-image": snippetBasic,
4741
+ "text-to-speech": snippetBasic,
4742
+ "text-to-audio": snippetBasic,
4743
+ "audio-to-audio": snippetFile,
4744
+ "audio-classification": snippetFile,
4745
+ "image-classification": snippetFile,
4746
+ "image-to-text": snippetFile,
4747
+ "object-detection": snippetFile,
4748
+ "image-segmentation": snippetFile
4749
+ };
4750
+ function getCurlInferenceSnippet(model, accessToken) {
4751
+ return model.pipeline_tag && model.pipeline_tag in curlSnippets ? curlSnippets[model.pipeline_tag]?.(model, accessToken) ?? "" : "";
4752
+ }
4753
+ function hasCurlInferenceSnippet(model) {
4754
+ return !!model.pipeline_tag && model.pipeline_tag in curlSnippets;
4755
+ }
4756
+
4757
+ // src/snippets/python.ts
4758
+ var python_exports = {};
4759
+ __export(python_exports, {
4760
+ getPythonInferenceSnippet: () => getPythonInferenceSnippet,
4761
+ hasPythonInferenceSnippet: () => hasPythonInferenceSnippet,
4762
+ pythonSnippets: () => pythonSnippets,
4763
+ snippetBasic: () => snippetBasic2,
4764
+ snippetDocumentQuestionAnswering: () => snippetDocumentQuestionAnswering,
4765
+ snippetFile: () => snippetFile2,
4766
+ snippetTabular: () => snippetTabular,
4767
+ snippetTextToAudio: () => snippetTextToAudio,
4768
+ snippetTextToImage: () => snippetTextToImage,
4769
+ snippetZeroShotClassification: () => snippetZeroShotClassification2,
4770
+ snippetZeroShotImageClassification: () => snippetZeroShotImageClassification
4771
+ });
4772
+ var snippetZeroShotClassification2 = (model) => `def query(payload):
4773
+ response = requests.post(API_URL, headers=headers, json=payload)
4774
+ return response.json()
4775
+
4776
+ output = query({
4777
+ "inputs": ${getModelInputSnippet(model)},
4778
+ "parameters": {"candidate_labels": ["refund", "legal", "faq"]},
4779
+ })`;
4780
+ var snippetZeroShotImageClassification = (model) => `def query(data):
4781
+ with open(data["image_path"], "rb") as f:
4782
+ img = f.read()
4783
+ payload={
4784
+ "parameters": data["parameters"],
4785
+ "inputs": base64.b64encode(img).decode("utf-8")
4786
+ }
4787
+ response = requests.post(API_URL, headers=headers, json=payload)
4788
+ return response.json()
4789
+
4790
+ output = query({
4791
+ "image_path": ${getModelInputSnippet(model)},
4792
+ "parameters": {"candidate_labels": ["cat", "dog", "llama"]},
4793
+ })`;
4794
+ var snippetBasic2 = (model) => `def query(payload):
4795
+ response = requests.post(API_URL, headers=headers, json=payload)
4796
+ return response.json()
4797
+
4798
+ output = query({
4799
+ "inputs": ${getModelInputSnippet(model)},
4800
+ })`;
4801
+ var snippetFile2 = (model) => `def query(filename):
4802
+ with open(filename, "rb") as f:
4803
+ data = f.read()
4804
+ response = requests.post(API_URL, headers=headers, data=data)
4805
+ return response.json()
4806
+
4807
+ output = query(${getModelInputSnippet(model)})`;
4808
+ var snippetTextToImage = (model) => `def query(payload):
4809
+ response = requests.post(API_URL, headers=headers, json=payload)
4810
+ return response.content
4811
+ image_bytes = query({
4812
+ "inputs": ${getModelInputSnippet(model)},
4813
+ })
4814
+ # You can access the image with PIL.Image for example
4815
+ import io
4816
+ from PIL import Image
4817
+ image = Image.open(io.BytesIO(image_bytes))`;
4818
+ var snippetTabular = (model) => `def query(payload):
4819
+ response = requests.post(API_URL, headers=headers, json=payload)
4820
+ return response.content
4821
+ response = query({
4822
+ "inputs": {"data": ${getModelInputSnippet(model)}},
4823
+ })`;
4824
+ var snippetTextToAudio = (model) => {
4825
+ if (model.library_name === "transformers") {
4826
+ return `def query(payload):
4827
+ response = requests.post(API_URL, headers=headers, json=payload)
4828
+ return response.content
4829
+
4830
+ audio_bytes = query({
4831
+ "inputs": ${getModelInputSnippet(model)},
4832
+ })
4833
+ # You can access the audio with IPython.display for example
4834
+ from IPython.display import Audio
4835
+ Audio(audio_bytes)`;
4836
+ } else {
4837
+ return `def query(payload):
4838
+ response = requests.post(API_URL, headers=headers, json=payload)
4839
+ return response.json()
4840
+
4841
+ audio, sampling_rate = query({
4842
+ "inputs": ${getModelInputSnippet(model)},
4843
+ })
4844
+ # You can access the audio with IPython.display for example
4845
+ from IPython.display import Audio
4846
+ Audio(audio, rate=sampling_rate)`;
4847
+ }
4848
+ };
4849
+ var snippetDocumentQuestionAnswering = (model) => `def query(payload):
4850
+ with open(payload["image"], "rb") as f:
4851
+ img = f.read()
4852
+ payload["image"] = base64.b64encode(img).decode("utf-8")
4853
+ response = requests.post(API_URL, headers=headers, json=payload)
4854
+ return response.json()
4855
+
4856
+ output = query({
4857
+ "inputs": ${getModelInputSnippet(model)},
4858
+ })`;
4859
+ var pythonSnippets = {
4860
+ // Same order as in tasks/src/pipelines.ts
4861
+ "text-classification": snippetBasic2,
4862
+ "token-classification": snippetBasic2,
4863
+ "table-question-answering": snippetBasic2,
4864
+ "question-answering": snippetBasic2,
4865
+ "zero-shot-classification": snippetZeroShotClassification2,
4866
+ translation: snippetBasic2,
4867
+ summarization: snippetBasic2,
4868
+ conversational: snippetBasic2,
4869
+ "feature-extraction": snippetBasic2,
4870
+ "text-generation": snippetBasic2,
4871
+ "text2text-generation": snippetBasic2,
4872
+ "fill-mask": snippetBasic2,
4873
+ "sentence-similarity": snippetBasic2,
4874
+ "automatic-speech-recognition": snippetFile2,
4875
+ "text-to-image": snippetTextToImage,
4876
+ "text-to-speech": snippetTextToAudio,
4877
+ "text-to-audio": snippetTextToAudio,
4878
+ "audio-to-audio": snippetFile2,
4879
+ "audio-classification": snippetFile2,
4880
+ "image-classification": snippetFile2,
4881
+ "tabular-regression": snippetTabular,
4882
+ "tabular-classification": snippetTabular,
4883
+ "object-detection": snippetFile2,
4884
+ "image-segmentation": snippetFile2,
4885
+ "document-question-answering": snippetDocumentQuestionAnswering,
4886
+ "image-to-text": snippetFile2,
4887
+ "zero-shot-image-classification": snippetZeroShotImageClassification
4888
+ };
4889
+ function getPythonInferenceSnippet(model, accessToken) {
4890
+ const body = model.pipeline_tag && model.pipeline_tag in pythonSnippets ? pythonSnippets[model.pipeline_tag]?.(model) ?? "" : "";
4891
+ return `import requests
4892
+
4893
+ API_URL = "https://api-inference.huggingface.co/models/${model.id}"
4894
+ headers = {"Authorization": ${accessToken ? `"Bearer ${accessToken}"` : `f"Bearer {API_TOKEN}"`}}
4895
+
4896
+ ${body}`;
4897
+ }
4898
+ function hasPythonInferenceSnippet(model) {
4899
+ return !!model.pipeline_tag && model.pipeline_tag in pythonSnippets;
4900
+ }
4901
+
4902
+ // src/snippets/js.ts
4903
+ var js_exports = {};
4904
+ __export(js_exports, {
4905
+ getJsInferenceSnippet: () => getJsInferenceSnippet,
4906
+ hasJsInferenceSnippet: () => hasJsInferenceSnippet,
4907
+ jsSnippets: () => jsSnippets,
4908
+ snippetBasic: () => snippetBasic3,
4909
+ snippetFile: () => snippetFile3,
4910
+ snippetTextToAudio: () => snippetTextToAudio2,
4911
+ snippetTextToImage: () => snippetTextToImage2,
4912
+ snippetZeroShotClassification: () => snippetZeroShotClassification3
4913
+ });
4914
+ var snippetBasic3 = (model, accessToken) => `async function query(data) {
4915
+ const response = await fetch(
4916
+ "https://api-inference.huggingface.co/models/${model.id}",
4917
+ {
4918
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4919
+ method: "POST",
4920
+ body: JSON.stringify(data),
4921
+ }
4922
+ );
4923
+ const result = await response.json();
4924
+ return result;
4925
+ }
4926
+
4927
+ query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
4928
+ console.log(JSON.stringify(response));
4929
+ });`;
4930
+ var snippetZeroShotClassification3 = (model, accessToken) => `async function query(data) {
4931
+ const response = await fetch(
4932
+ "https://api-inference.huggingface.co/models/${model.id}",
4933
+ {
4934
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4935
+ method: "POST",
4936
+ body: JSON.stringify(data),
4937
+ }
4938
+ );
4939
+ const result = await response.json();
4940
+ return result;
4941
+ }
4942
+
4943
+ query({"inputs": ${getModelInputSnippet(
4944
+ model
4945
+ )}, "parameters": {"candidate_labels": ["refund", "legal", "faq"]}}).then((response) => {
4946
+ console.log(JSON.stringify(response));
4947
+ });`;
4948
+ var snippetTextToImage2 = (model, accessToken) => `async function query(data) {
4949
+ const response = await fetch(
4950
+ "https://api-inference.huggingface.co/models/${model.id}",
4951
+ {
4952
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4953
+ method: "POST",
4954
+ body: JSON.stringify(data),
4955
+ }
4956
+ );
4957
+ const result = await response.blob();
4958
+ return result;
4959
+ }
4960
+ query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
4961
+ // Use image
4962
+ });`;
4963
+ var snippetTextToAudio2 = (model, accessToken) => {
4964
+ const commonSnippet = `async function query(data) {
4965
+ const response = await fetch(
4966
+ "https://api-inference.huggingface.co/models/${model.id}",
4967
+ {
4968
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4969
+ method: "POST",
4970
+ body: JSON.stringify(data),
4971
+ }
4972
+ );`;
4973
+ if (model.library_name === "transformers") {
4974
+ return commonSnippet + `
4975
+ const result = await response.blob();
4976
+ return result;
4977
+ }
4978
+ query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
4979
+ // Returns a byte object of the Audio wavform. Use it directly!
4980
+ });`;
4981
+ } else {
4982
+ return commonSnippet + `
4983
+ const result = await response.json();
4984
+ return result;
4985
+ }
4986
+
4987
+ query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
4988
+ console.log(JSON.stringify(response));
4989
+ });`;
4990
+ }
4991
+ };
4992
+ var snippetFile3 = (model, accessToken) => `async function query(filename) {
4993
+ const data = fs.readFileSync(filename);
4994
+ const response = await fetch(
4995
+ "https://api-inference.huggingface.co/models/${model.id}",
4996
+ {
4997
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4998
+ method: "POST",
4999
+ body: data,
5000
+ }
5001
+ );
5002
+ const result = await response.json();
5003
+ return result;
5004
+ }
5005
+
5006
+ query(${getModelInputSnippet(model)}).then((response) => {
5007
+ console.log(JSON.stringify(response));
5008
+ });`;
5009
+ var jsSnippets = {
5010
+ // Same order as in js/src/lib/interfaces/Types.ts
5011
+ "text-classification": snippetBasic3,
5012
+ "token-classification": snippetBasic3,
5013
+ "table-question-answering": snippetBasic3,
5014
+ "question-answering": snippetBasic3,
5015
+ "zero-shot-classification": snippetZeroShotClassification3,
5016
+ translation: snippetBasic3,
5017
+ summarization: snippetBasic3,
5018
+ conversational: snippetBasic3,
5019
+ "feature-extraction": snippetBasic3,
5020
+ "text-generation": snippetBasic3,
5021
+ "text2text-generation": snippetBasic3,
5022
+ "fill-mask": snippetBasic3,
5023
+ "sentence-similarity": snippetBasic3,
5024
+ "automatic-speech-recognition": snippetFile3,
5025
+ "text-to-image": snippetTextToImage2,
5026
+ "text-to-speech": snippetTextToAudio2,
5027
+ "text-to-audio": snippetTextToAudio2,
5028
+ "audio-to-audio": snippetFile3,
5029
+ "audio-classification": snippetFile3,
5030
+ "image-classification": snippetFile3,
5031
+ "image-to-text": snippetFile3,
5032
+ "object-detection": snippetFile3,
5033
+ "image-segmentation": snippetFile3
5034
+ };
5035
+ function getJsInferenceSnippet(model, accessToken) {
5036
+ return model.pipeline_tag && model.pipeline_tag in jsSnippets ? jsSnippets[model.pipeline_tag]?.(model, accessToken) ?? "" : "";
5037
+ }
5038
+ function hasJsInferenceSnippet(model) {
5039
+ return !!model.pipeline_tag && model.pipeline_tag in jsSnippets;
5040
+ }
3138
5041
  export {
3139
5042
  ALL_DISPLAY_MODEL_LIBRARY_KEYS,
5043
+ InferenceDisplayability,
5044
+ LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS,
5045
+ MAPPING_DEFAULT_WIDGET,
3140
5046
  MODALITIES,
3141
5047
  MODALITY_LABELS,
5048
+ MODEL_LIBRARIES_UI_ELEMENTS,
3142
5049
  ModelLibrary,
3143
5050
  OTHER_TAGS_SUGGESTIONS,
3144
5051
  PIPELINE_DATA,
@@ -3148,5 +5055,7 @@ export {
3148
5055
  TAG_CUSTOM_CODE,
3149
5056
  TAG_NFAA_CONTENT,
3150
5057
  TAG_TEXT_GENERATION_INFERENCE,
3151
- TASKS_DATA
5058
+ TASKS_DATA,
5059
+ TASKS_MODEL_LIBRARIES,
5060
+ snippets_exports as snippets
3152
5061
  };