@huggingface/tasks 0.0.6 → 0.0.8

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (86) hide show
  1. package/README.md +16 -2
  2. package/dist/index.d.ts +381 -5
  3. package/dist/index.js +1986 -77
  4. package/dist/index.mjs +1985 -76
  5. package/package.json +2 -4
  6. package/src/default-widget-inputs.ts +718 -0
  7. package/src/index.ts +35 -4
  8. package/src/library-to-tasks.ts +47 -0
  9. package/src/library-ui-elements.ts +765 -0
  10. package/src/model-data.ts +239 -0
  11. package/src/pipelines.ts +39 -0
  12. package/src/snippets/curl.ts +63 -0
  13. package/src/snippets/index.ts +6 -0
  14. package/src/snippets/inputs.ts +144 -0
  15. package/src/snippets/js.ts +150 -0
  16. package/src/snippets/python.ts +155 -0
  17. package/src/{audio-classification → tasks/audio-classification}/about.md +2 -1
  18. package/src/{audio-classification → tasks/audio-classification}/data.ts +3 -3
  19. package/src/{audio-to-audio → tasks/audio-to-audio}/data.ts +1 -1
  20. package/src/{automatic-speech-recognition → tasks/automatic-speech-recognition}/about.md +3 -2
  21. package/src/{automatic-speech-recognition → tasks/automatic-speech-recognition}/data.ts +6 -6
  22. package/src/{conversational → tasks/conversational}/data.ts +1 -1
  23. package/src/{depth-estimation → tasks/depth-estimation}/data.ts +1 -1
  24. package/src/{document-question-answering → tasks/document-question-answering}/data.ts +1 -1
  25. package/src/{feature-extraction → tasks/feature-extraction}/data.ts +2 -7
  26. package/src/{fill-mask → tasks/fill-mask}/data.ts +1 -1
  27. package/src/{image-classification → tasks/image-classification}/data.ts +1 -1
  28. package/src/{image-segmentation → tasks/image-segmentation}/data.ts +1 -1
  29. package/src/{image-to-image → tasks/image-to-image}/about.md +8 -7
  30. package/src/{image-to-image → tasks/image-to-image}/data.ts +1 -1
  31. package/src/{image-to-text → tasks/image-to-text}/data.ts +1 -1
  32. package/src/{tasksData.ts → tasks/index.ts} +144 -15
  33. package/src/{object-detection → tasks/object-detection}/data.ts +1 -1
  34. package/src/{placeholder → tasks/placeholder}/data.ts +1 -1
  35. package/src/{question-answering → tasks/question-answering}/data.ts +1 -1
  36. package/src/{reinforcement-learning → tasks/reinforcement-learning}/data.ts +1 -1
  37. package/src/{sentence-similarity → tasks/sentence-similarity}/data.ts +1 -1
  38. package/src/{summarization → tasks/summarization}/data.ts +1 -1
  39. package/src/{table-question-answering → tasks/table-question-answering}/data.ts +1 -1
  40. package/src/{tabular-classification → tasks/tabular-classification}/data.ts +1 -1
  41. package/src/{tabular-regression → tasks/tabular-regression}/data.ts +1 -1
  42. package/src/{text-classification → tasks/text-classification}/data.ts +1 -1
  43. package/src/{text-generation → tasks/text-generation}/about.md +13 -3
  44. package/src/{text-generation → tasks/text-generation}/data.ts +2 -2
  45. package/src/{text-to-image → tasks/text-to-image}/data.ts +1 -1
  46. package/src/{text-to-speech → tasks/text-to-speech}/about.md +2 -1
  47. package/src/{text-to-speech → tasks/text-to-speech}/data.ts +4 -4
  48. package/src/{text-to-video → tasks/text-to-video}/data.ts +1 -1
  49. package/src/{token-classification → tasks/token-classification}/data.ts +1 -1
  50. package/src/{translation → tasks/translation}/data.ts +1 -1
  51. package/src/{unconditional-image-generation → tasks/unconditional-image-generation}/data.ts +1 -1
  52. package/src/{video-classification → tasks/video-classification}/about.md +8 -28
  53. package/src/{video-classification → tasks/video-classification}/data.ts +1 -1
  54. package/src/{visual-question-answering → tasks/visual-question-answering}/data.ts +1 -1
  55. package/src/{zero-shot-classification → tasks/zero-shot-classification}/data.ts +1 -1
  56. package/src/{zero-shot-image-classification → tasks/zero-shot-image-classification}/data.ts +1 -1
  57. package/src/Types.ts +0 -64
  58. package/src/const.ts +0 -59
  59. /package/src/{modelLibraries.ts → model-libraries.ts} +0 -0
  60. /package/src/{audio-to-audio → tasks/audio-to-audio}/about.md +0 -0
  61. /package/src/{conversational → tasks/conversational}/about.md +0 -0
  62. /package/src/{depth-estimation → tasks/depth-estimation}/about.md +0 -0
  63. /package/src/{document-question-answering → tasks/document-question-answering}/about.md +0 -0
  64. /package/src/{feature-extraction → tasks/feature-extraction}/about.md +0 -0
  65. /package/src/{fill-mask → tasks/fill-mask}/about.md +0 -0
  66. /package/src/{image-classification → tasks/image-classification}/about.md +0 -0
  67. /package/src/{image-segmentation → tasks/image-segmentation}/about.md +0 -0
  68. /package/src/{image-to-text → tasks/image-to-text}/about.md +0 -0
  69. /package/src/{object-detection → tasks/object-detection}/about.md +0 -0
  70. /package/src/{placeholder → tasks/placeholder}/about.md +0 -0
  71. /package/src/{question-answering → tasks/question-answering}/about.md +0 -0
  72. /package/src/{reinforcement-learning → tasks/reinforcement-learning}/about.md +0 -0
  73. /package/src/{sentence-similarity → tasks/sentence-similarity}/about.md +0 -0
  74. /package/src/{summarization → tasks/summarization}/about.md +0 -0
  75. /package/src/{table-question-answering → tasks/table-question-answering}/about.md +0 -0
  76. /package/src/{tabular-classification → tasks/tabular-classification}/about.md +0 -0
  77. /package/src/{tabular-regression → tasks/tabular-regression}/about.md +0 -0
  78. /package/src/{text-classification → tasks/text-classification}/about.md +0 -0
  79. /package/src/{text-to-image → tasks/text-to-image}/about.md +0 -0
  80. /package/src/{text-to-video → tasks/text-to-video}/about.md +0 -0
  81. /package/src/{token-classification → tasks/token-classification}/about.md +0 -0
  82. /package/src/{translation → tasks/translation}/about.md +0 -0
  83. /package/src/{unconditional-image-generation → tasks/unconditional-image-generation}/about.md +0 -0
  84. /package/src/{visual-question-answering → tasks/visual-question-answering}/about.md +0 -0
  85. /package/src/{zero-shot-classification → tasks/zero-shot-classification}/about.md +0 -0
  86. /package/src/{zero-shot-image-classification → tasks/zero-shot-image-classification}/about.md +0 -0
package/dist/index.js CHANGED
@@ -21,8 +21,12 @@ var __toCommonJS = (mod) => __copyProps(__defProp({}, "__esModule", { value: tru
21
21
  var src_exports = {};
22
22
  __export(src_exports, {
23
23
  ALL_DISPLAY_MODEL_LIBRARY_KEYS: () => ALL_DISPLAY_MODEL_LIBRARY_KEYS,
24
+ InferenceDisplayability: () => InferenceDisplayability,
25
+ LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS: () => LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS,
26
+ MAPPING_DEFAULT_WIDGET: () => MAPPING_DEFAULT_WIDGET,
24
27
  MODALITIES: () => MODALITIES,
25
28
  MODALITY_LABELS: () => MODALITY_LABELS,
29
+ MODEL_LIBRARIES_UI_ELEMENTS: () => MODEL_LIBRARIES_UI_ELEMENTS,
26
30
  ModelLibrary: () => ModelLibrary,
27
31
  OTHER_TAGS_SUGGESTIONS: () => OTHER_TAGS_SUGGESTIONS,
28
32
  PIPELINE_DATA: () => PIPELINE_DATA,
@@ -32,10 +36,1394 @@ __export(src_exports, {
32
36
  TAG_CUSTOM_CODE: () => TAG_CUSTOM_CODE,
33
37
  TAG_NFAA_CONTENT: () => TAG_NFAA_CONTENT,
34
38
  TAG_TEXT_GENERATION_INFERENCE: () => TAG_TEXT_GENERATION_INFERENCE,
35
- TASKS_DATA: () => TASKS_DATA
39
+ TASKS_DATA: () => TASKS_DATA,
40
+ TASKS_MODEL_LIBRARIES: () => TASKS_MODEL_LIBRARIES,
41
+ snippets: () => snippets_exports
36
42
  });
37
43
  module.exports = __toCommonJS(src_exports);
38
44
 
45
+ // src/library-to-tasks.ts
46
+ var LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS = {
47
+ "adapter-transformers": ["question-answering", "text-classification", "token-classification"],
48
+ allennlp: ["question-answering"],
49
+ asteroid: [
50
+ // "audio-source-separation",
51
+ "audio-to-audio"
52
+ ],
53
+ bertopic: ["text-classification"],
54
+ diffusers: ["image-to-image", "text-to-image"],
55
+ doctr: ["object-detection"],
56
+ espnet: ["text-to-speech", "automatic-speech-recognition"],
57
+ fairseq: ["text-to-speech", "audio-to-audio"],
58
+ fastai: ["image-classification"],
59
+ fasttext: ["feature-extraction", "text-classification"],
60
+ flair: ["token-classification"],
61
+ k2: ["automatic-speech-recognition"],
62
+ keras: ["image-classification"],
63
+ nemo: ["automatic-speech-recognition"],
64
+ open_clip: ["zero-shot-classification", "zero-shot-image-classification"],
65
+ paddlenlp: ["conversational", "fill-mask", "summarization", "zero-shot-classification"],
66
+ peft: ["text-generation"],
67
+ "pyannote-audio": ["automatic-speech-recognition"],
68
+ "sentence-transformers": ["feature-extraction", "sentence-similarity"],
69
+ sklearn: ["tabular-classification", "tabular-regression", "text-classification"],
70
+ spacy: ["token-classification", "text-classification", "sentence-similarity"],
71
+ "span-marker": ["token-classification"],
72
+ speechbrain: [
73
+ "audio-classification",
74
+ "audio-to-audio",
75
+ "automatic-speech-recognition",
76
+ "text-to-speech",
77
+ "text2text-generation"
78
+ ],
79
+ stanza: ["token-classification"],
80
+ timm: ["image-classification"],
81
+ mindspore: ["image-classification"]
82
+ };
83
+
84
+ // src/library-ui-elements.ts
85
+ function nameWithoutNamespace(modelId) {
86
+ const splitted = modelId.split("/");
87
+ return splitted.length === 1 ? splitted[0] : splitted[1];
88
+ }
89
+ var adapter_transformers = (model) => [
90
+ `from transformers import ${model.config?.adapter_transformers?.model_class}
91
+
92
+ model = ${model.config?.adapter_transformers?.model_class}.from_pretrained("${model.config?.adapter_transformers?.model_name}")
93
+ model.load_adapter("${model.id}", source="hf")`
94
+ ];
95
+ var allennlpUnknown = (model) => [
96
+ `import allennlp_models
97
+ from allennlp.predictors.predictor import Predictor
98
+
99
+ predictor = Predictor.from_path("hf://${model.id}")`
100
+ ];
101
+ var allennlpQuestionAnswering = (model) => [
102
+ `import allennlp_models
103
+ from allennlp.predictors.predictor import Predictor
104
+
105
+ predictor = Predictor.from_path("hf://${model.id}")
106
+ predictor_input = {"passage": "My name is Wolfgang and I live in Berlin", "question": "Where do I live?"}
107
+ predictions = predictor.predict_json(predictor_input)`
108
+ ];
109
+ var allennlp = (model) => {
110
+ if (model.tags?.includes("question-answering")) {
111
+ return allennlpQuestionAnswering(model);
112
+ }
113
+ return allennlpUnknown(model);
114
+ };
115
+ var asteroid = (model) => [
116
+ `from asteroid.models import BaseModel
117
+
118
+ model = BaseModel.from_pretrained("${model.id}")`
119
+ ];
120
+ function get_base_diffusers_model(model) {
121
+ return model.cardData?.base_model ?? "fill-in-base-model";
122
+ }
123
+ var bertopic = (model) => [
124
+ `from bertopic import BERTopic
125
+
126
+ model = BERTopic.load("${model.id}")`
127
+ ];
128
+ var diffusers_default = (model) => [
129
+ `from diffusers import DiffusionPipeline
130
+
131
+ pipeline = DiffusionPipeline.from_pretrained("${model.id}")`
132
+ ];
133
+ var diffusers_controlnet = (model) => [
134
+ `from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
135
+
136
+ controlnet = ControlNetModel.from_pretrained("${model.id}")
137
+ pipeline = StableDiffusionControlNetPipeline.from_pretrained(
138
+ "${get_base_diffusers_model(model)}", controlnet=controlnet
139
+ )`
140
+ ];
141
+ var diffusers_lora = (model) => [
142
+ `from diffusers import DiffusionPipeline
143
+
144
+ pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
145
+ pipeline.load_lora_weights("${model.id}")`
146
+ ];
147
+ var diffusers_textual_inversion = (model) => [
148
+ `from diffusers import DiffusionPipeline
149
+
150
+ pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
151
+ pipeline.load_textual_inversion("${model.id}")`
152
+ ];
153
+ var diffusers = (model) => {
154
+ if (model.tags?.includes("controlnet")) {
155
+ return diffusers_controlnet(model);
156
+ } else if (model.tags?.includes("lora")) {
157
+ return diffusers_lora(model);
158
+ } else if (model.tags?.includes("textual_inversion")) {
159
+ return diffusers_textual_inversion(model);
160
+ } else {
161
+ return diffusers_default(model);
162
+ }
163
+ };
164
+ var espnetTTS = (model) => [
165
+ `from espnet2.bin.tts_inference import Text2Speech
166
+
167
+ model = Text2Speech.from_pretrained("${model.id}")
168
+
169
+ speech, *_ = model("text to generate speech from")`
170
+ ];
171
+ var espnetASR = (model) => [
172
+ `from espnet2.bin.asr_inference import Speech2Text
173
+
174
+ model = Speech2Text.from_pretrained(
175
+ "${model.id}"
176
+ )
177
+
178
+ speech, rate = soundfile.read("speech.wav")
179
+ text, *_ = model(speech)[0]`
180
+ ];
181
+ var espnetUnknown = () => [`unknown model type (must be text-to-speech or automatic-speech-recognition)`];
182
+ var espnet = (model) => {
183
+ if (model.tags?.includes("text-to-speech")) {
184
+ return espnetTTS(model);
185
+ } else if (model.tags?.includes("automatic-speech-recognition")) {
186
+ return espnetASR(model);
187
+ }
188
+ return espnetUnknown();
189
+ };
190
+ var fairseq = (model) => [
191
+ `from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
192
+
193
+ models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
194
+ "${model.id}"
195
+ )`
196
+ ];
197
+ var flair = (model) => [
198
+ `from flair.models import SequenceTagger
199
+
200
+ tagger = SequenceTagger.load("${model.id}")`
201
+ ];
202
+ var keras = (model) => [
203
+ `from huggingface_hub import from_pretrained_keras
204
+
205
+ model = from_pretrained_keras("${model.id}")
206
+ `
207
+ ];
208
+ var open_clip = (model) => [
209
+ `import open_clip
210
+
211
+ model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:${model.id}')
212
+ tokenizer = open_clip.get_tokenizer('hf-hub:${model.id}')`
213
+ ];
214
+ var paddlenlp = (model) => {
215
+ if (model.config?.architectures?.[0]) {
216
+ const architecture = model.config.architectures[0];
217
+ return [
218
+ [
219
+ `from paddlenlp.transformers import AutoTokenizer, ${architecture}`,
220
+ "",
221
+ `tokenizer = AutoTokenizer.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`,
222
+ `model = ${architecture}.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`
223
+ ].join("\n")
224
+ ];
225
+ } else {
226
+ return [
227
+ [
228
+ `# \u26A0\uFE0F Type of model unknown`,
229
+ `from paddlenlp.transformers import AutoTokenizer, AutoModel`,
230
+ "",
231
+ `tokenizer = AutoTokenizer.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`,
232
+ `model = AutoModel.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`
233
+ ].join("\n")
234
+ ];
235
+ }
236
+ };
237
+ var pyannote_audio_pipeline = (model) => [
238
+ `from pyannote.audio import Pipeline
239
+
240
+ pipeline = Pipeline.from_pretrained("${model.id}")
241
+
242
+ # inference on the whole file
243
+ pipeline("file.wav")
244
+
245
+ # inference on an excerpt
246
+ from pyannote.core import Segment
247
+ excerpt = Segment(start=2.0, end=5.0)
248
+
249
+ from pyannote.audio import Audio
250
+ waveform, sample_rate = Audio().crop("file.wav", excerpt)
251
+ pipeline({"waveform": waveform, "sample_rate": sample_rate})`
252
+ ];
253
+ var pyannote_audio_model = (model) => [
254
+ `from pyannote.audio import Model, Inference
255
+
256
+ model = Model.from_pretrained("${model.id}")
257
+ inference = Inference(model)
258
+
259
+ # inference on the whole file
260
+ inference("file.wav")
261
+
262
+ # inference on an excerpt
263
+ from pyannote.core import Segment
264
+ excerpt = Segment(start=2.0, end=5.0)
265
+ inference.crop("file.wav", excerpt)`
266
+ ];
267
+ var pyannote_audio = (model) => {
268
+ if (model.tags?.includes("pyannote-audio-pipeline")) {
269
+ return pyannote_audio_pipeline(model);
270
+ }
271
+ return pyannote_audio_model(model);
272
+ };
273
+ var tensorflowttsTextToMel = (model) => [
274
+ `from tensorflow_tts.inference import AutoProcessor, TFAutoModel
275
+
276
+ processor = AutoProcessor.from_pretrained("${model.id}")
277
+ model = TFAutoModel.from_pretrained("${model.id}")
278
+ `
279
+ ];
280
+ var tensorflowttsMelToWav = (model) => [
281
+ `from tensorflow_tts.inference import TFAutoModel
282
+
283
+ model = TFAutoModel.from_pretrained("${model.id}")
284
+ audios = model.inference(mels)
285
+ `
286
+ ];
287
+ var tensorflowttsUnknown = (model) => [
288
+ `from tensorflow_tts.inference import TFAutoModel
289
+
290
+ model = TFAutoModel.from_pretrained("${model.id}")
291
+ `
292
+ ];
293
+ var tensorflowtts = (model) => {
294
+ if (model.tags?.includes("text-to-mel")) {
295
+ return tensorflowttsTextToMel(model);
296
+ } else if (model.tags?.includes("mel-to-wav")) {
297
+ return tensorflowttsMelToWav(model);
298
+ }
299
+ return tensorflowttsUnknown(model);
300
+ };
301
+ var timm = (model) => [
302
+ `import timm
303
+
304
+ model = timm.create_model("hf_hub:${model.id}", pretrained=True)`
305
+ ];
306
+ var skopsPickle = (model, modelFile) => {
307
+ return [
308
+ `import joblib
309
+ from skops.hub_utils import download
310
+ download("${model.id}", "path_to_folder")
311
+ model = joblib.load(
312
+ "${modelFile}"
313
+ )
314
+ # only load pickle files from sources you trust
315
+ # read more about it here https://skops.readthedocs.io/en/stable/persistence.html`
316
+ ];
317
+ };
318
+ var skopsFormat = (model, modelFile) => {
319
+ return [
320
+ `from skops.hub_utils import download
321
+ from skops.io import load
322
+ download("${model.id}", "path_to_folder")
323
+ # make sure model file is in skops format
324
+ # if model is a pickle file, make sure it's from a source you trust
325
+ model = load("path_to_folder/${modelFile}")`
326
+ ];
327
+ };
328
+ var skopsJobLib = (model) => {
329
+ return [
330
+ `from huggingface_hub import hf_hub_download
331
+ import joblib
332
+ model = joblib.load(
333
+ hf_hub_download("${model.id}", "sklearn_model.joblib")
334
+ )
335
+ # only load pickle files from sources you trust
336
+ # read more about it here https://skops.readthedocs.io/en/stable/persistence.html`
337
+ ];
338
+ };
339
+ var sklearn = (model) => {
340
+ if (model.tags?.includes("skops")) {
341
+ const skopsmodelFile = model.config?.sklearn?.filename;
342
+ const skopssaveFormat = model.config?.sklearn?.model_format;
343
+ if (!skopsmodelFile) {
344
+ return [`# \u26A0\uFE0F Model filename not specified in config.json`];
345
+ }
346
+ if (skopssaveFormat === "pickle") {
347
+ return skopsPickle(model, skopsmodelFile);
348
+ } else {
349
+ return skopsFormat(model, skopsmodelFile);
350
+ }
351
+ } else {
352
+ return skopsJobLib(model);
353
+ }
354
+ };
355
+ var fastai = (model) => [
356
+ `from huggingface_hub import from_pretrained_fastai
357
+
358
+ learn = from_pretrained_fastai("${model.id}")`
359
+ ];
360
+ var sampleFactory = (model) => [
361
+ `python -m sample_factory.huggingface.load_from_hub -r ${model.id} -d ./train_dir`
362
+ ];
363
+ var sentenceTransformers = (model) => [
364
+ `from sentence_transformers import SentenceTransformer
365
+
366
+ model = SentenceTransformer("${model.id}")`
367
+ ];
368
+ var spacy = (model) => [
369
+ `!pip install https://huggingface.co/${model.id}/resolve/main/${nameWithoutNamespace(model.id)}-any-py3-none-any.whl
370
+
371
+ # Using spacy.load().
372
+ import spacy
373
+ nlp = spacy.load("${nameWithoutNamespace(model.id)}")
374
+
375
+ # Importing as module.
376
+ import ${nameWithoutNamespace(model.id)}
377
+ nlp = ${nameWithoutNamespace(model.id)}.load()`
378
+ ];
379
+ var span_marker = (model) => [
380
+ `from span_marker import SpanMarkerModel
381
+
382
+ model = SpanMarkerModel.from_pretrained("${model.id}")`
383
+ ];
384
+ var stanza = (model) => [
385
+ `import stanza
386
+
387
+ stanza.download("${nameWithoutNamespace(model.id).replace("stanza-", "")}")
388
+ nlp = stanza.Pipeline("${nameWithoutNamespace(model.id).replace("stanza-", "")}")`
389
+ ];
390
+ var speechBrainMethod = (speechbrainInterface) => {
391
+ switch (speechbrainInterface) {
392
+ case "EncoderClassifier":
393
+ return "classify_file";
394
+ case "EncoderDecoderASR":
395
+ case "EncoderASR":
396
+ return "transcribe_file";
397
+ case "SpectralMaskEnhancement":
398
+ return "enhance_file";
399
+ case "SepformerSeparation":
400
+ return "separate_file";
401
+ default:
402
+ return void 0;
403
+ }
404
+ };
405
+ var speechbrain = (model) => {
406
+ const speechbrainInterface = model.config?.speechbrain?.interface;
407
+ if (speechbrainInterface === void 0) {
408
+ return [`# interface not specified in config.json`];
409
+ }
410
+ const speechbrainMethod = speechBrainMethod(speechbrainInterface);
411
+ if (speechbrainMethod === void 0) {
412
+ return [`# interface in config.json invalid`];
413
+ }
414
+ return [
415
+ `from speechbrain.pretrained import ${speechbrainInterface}
416
+ model = ${speechbrainInterface}.from_hparams(
417
+ "${model.id}"
418
+ )
419
+ model.${speechbrainMethod}("file.wav")`
420
+ ];
421
+ };
422
+ var transformers = (model) => {
423
+ const info = model.transformersInfo;
424
+ if (!info) {
425
+ return [`# \u26A0\uFE0F Type of model unknown`];
426
+ }
427
+ const remote_code_snippet = info.custom_class ? ", trust_remote_code=True" : "";
428
+ let autoSnippet;
429
+ if (info.processor) {
430
+ const varName = info.processor === "AutoTokenizer" ? "tokenizer" : info.processor === "AutoFeatureExtractor" ? "extractor" : "processor";
431
+ autoSnippet = [
432
+ "# Load model directly",
433
+ `from transformers import ${info.processor}, ${info.auto_model}`,
434
+ "",
435
+ `${varName} = ${info.processor}.from_pretrained("${model.id}"` + remote_code_snippet + ")",
436
+ `model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")"
437
+ ].join("\n");
438
+ } else {
439
+ autoSnippet = [
440
+ "# Load model directly",
441
+ `from transformers import ${info.auto_model}`,
442
+ `model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")"
443
+ ].join("\n");
444
+ }
445
+ if (model.pipeline_tag) {
446
+ const pipelineSnippet = [
447
+ "# Use a pipeline as a high-level helper",
448
+ "from transformers import pipeline",
449
+ "",
450
+ `pipe = pipeline("${model.pipeline_tag}", model="${model.id}"` + remote_code_snippet + ")"
451
+ ].join("\n");
452
+ return [pipelineSnippet, autoSnippet];
453
+ }
454
+ return [autoSnippet];
455
+ };
456
+ var transformersJS = (model) => {
457
+ if (!model.pipeline_tag) {
458
+ return [`// \u26A0\uFE0F Unknown pipeline tag`];
459
+ }
460
+ const libName = "@xenova/transformers";
461
+ return [
462
+ `// npm i ${libName}
463
+ import { pipeline } from '${libName}';
464
+
465
+ // Allocate pipeline
466
+ const pipe = await pipeline('${model.pipeline_tag}', '${model.id}');`
467
+ ];
468
+ };
469
+ var peftTask = (peftTaskType) => {
470
+ switch (peftTaskType) {
471
+ case "CAUSAL_LM":
472
+ return "CausalLM";
473
+ case "SEQ_2_SEQ_LM":
474
+ return "Seq2SeqLM";
475
+ case "TOKEN_CLS":
476
+ return "TokenClassification";
477
+ case "SEQ_CLS":
478
+ return "SequenceClassification";
479
+ default:
480
+ return void 0;
481
+ }
482
+ };
483
+ var peft = (model) => {
484
+ const { base_model_name: peftBaseModel, task_type: peftTaskType } = model.config?.peft ?? {};
485
+ const pefttask = peftTask(peftTaskType);
486
+ if (!pefttask) {
487
+ return [`Task type is invalid.`];
488
+ }
489
+ if (!peftBaseModel) {
490
+ return [`Base model is not found.`];
491
+ }
492
+ return [
493
+ `from peft import PeftModel, PeftConfig
494
+ from transformers import AutoModelFor${pefttask}
495
+
496
+ config = PeftConfig.from_pretrained("${model.id}")
497
+ model = AutoModelFor${pefttask}.from_pretrained("${peftBaseModel}")
498
+ model = PeftModel.from_pretrained(model, "${model.id}")`
499
+ ];
500
+ };
501
+ var fasttext = (model) => [
502
+ `from huggingface_hub import hf_hub_download
503
+ import fasttext
504
+
505
+ model = fasttext.load_model(hf_hub_download("${model.id}", "model.bin"))`
506
+ ];
507
+ var stableBaselines3 = (model) => [
508
+ `from huggingface_sb3 import load_from_hub
509
+ checkpoint = load_from_hub(
510
+ repo_id="${model.id}",
511
+ filename="{MODEL FILENAME}.zip",
512
+ )`
513
+ ];
514
+ var nemoDomainResolver = (domain, model) => {
515
+ switch (domain) {
516
+ case "ASR":
517
+ return [
518
+ `import nemo.collections.asr as nemo_asr
519
+ asr_model = nemo_asr.models.ASRModel.from_pretrained("${model.id}")
520
+
521
+ transcriptions = asr_model.transcribe(["file.wav"])`
522
+ ];
523
+ default:
524
+ return void 0;
525
+ }
526
+ };
527
+ var mlAgents = (model) => [`mlagents-load-from-hf --repo-id="${model.id}" --local-dir="./downloads"`];
528
+ var nemo = (model) => {
529
+ let command = void 0;
530
+ if (model.tags?.includes("automatic-speech-recognition")) {
531
+ command = nemoDomainResolver("ASR", model);
532
+ }
533
+ return command ?? [`# tag did not correspond to a valid NeMo domain.`];
534
+ };
535
+ var pythae = (model) => [
536
+ `from pythae.models import AutoModel
537
+
538
+ model = AutoModel.load_from_hf_hub("${model.id}")`
539
+ ];
540
+ var MODEL_LIBRARIES_UI_ELEMENTS = {
541
+ "adapter-transformers": {
542
+ btnLabel: "Adapter Transformers",
543
+ repoName: "adapter-transformers",
544
+ repoUrl: "https://github.com/Adapter-Hub/adapter-transformers",
545
+ docsUrl: "https://huggingface.co/docs/hub/adapter-transformers",
546
+ snippets: adapter_transformers
547
+ },
548
+ allennlp: {
549
+ btnLabel: "AllenNLP",
550
+ repoName: "AllenNLP",
551
+ repoUrl: "https://github.com/allenai/allennlp",
552
+ docsUrl: "https://huggingface.co/docs/hub/allennlp",
553
+ snippets: allennlp
554
+ },
555
+ asteroid: {
556
+ btnLabel: "Asteroid",
557
+ repoName: "Asteroid",
558
+ repoUrl: "https://github.com/asteroid-team/asteroid",
559
+ docsUrl: "https://huggingface.co/docs/hub/asteroid",
560
+ snippets: asteroid
561
+ },
562
+ bertopic: {
563
+ btnLabel: "BERTopic",
564
+ repoName: "BERTopic",
565
+ repoUrl: "https://github.com/MaartenGr/BERTopic",
566
+ snippets: bertopic
567
+ },
568
+ diffusers: {
569
+ btnLabel: "Diffusers",
570
+ repoName: "\u{1F917}/diffusers",
571
+ repoUrl: "https://github.com/huggingface/diffusers",
572
+ docsUrl: "https://huggingface.co/docs/hub/diffusers",
573
+ snippets: diffusers
574
+ },
575
+ espnet: {
576
+ btnLabel: "ESPnet",
577
+ repoName: "ESPnet",
578
+ repoUrl: "https://github.com/espnet/espnet",
579
+ docsUrl: "https://huggingface.co/docs/hub/espnet",
580
+ snippets: espnet
581
+ },
582
+ fairseq: {
583
+ btnLabel: "Fairseq",
584
+ repoName: "fairseq",
585
+ repoUrl: "https://github.com/pytorch/fairseq",
586
+ snippets: fairseq
587
+ },
588
+ flair: {
589
+ btnLabel: "Flair",
590
+ repoName: "Flair",
591
+ repoUrl: "https://github.com/flairNLP/flair",
592
+ docsUrl: "https://huggingface.co/docs/hub/flair",
593
+ snippets: flair
594
+ },
595
+ keras: {
596
+ btnLabel: "Keras",
597
+ repoName: "Keras",
598
+ repoUrl: "https://github.com/keras-team/keras",
599
+ docsUrl: "https://huggingface.co/docs/hub/keras",
600
+ snippets: keras
601
+ },
602
+ nemo: {
603
+ btnLabel: "NeMo",
604
+ repoName: "NeMo",
605
+ repoUrl: "https://github.com/NVIDIA/NeMo",
606
+ snippets: nemo
607
+ },
608
+ open_clip: {
609
+ btnLabel: "OpenCLIP",
610
+ repoName: "OpenCLIP",
611
+ repoUrl: "https://github.com/mlfoundations/open_clip",
612
+ snippets: open_clip
613
+ },
614
+ paddlenlp: {
615
+ btnLabel: "paddlenlp",
616
+ repoName: "PaddleNLP",
617
+ repoUrl: "https://github.com/PaddlePaddle/PaddleNLP",
618
+ docsUrl: "https://huggingface.co/docs/hub/paddlenlp",
619
+ snippets: paddlenlp
620
+ },
621
+ peft: {
622
+ btnLabel: "PEFT",
623
+ repoName: "PEFT",
624
+ repoUrl: "https://github.com/huggingface/peft",
625
+ snippets: peft
626
+ },
627
+ "pyannote-audio": {
628
+ btnLabel: "pyannote.audio",
629
+ repoName: "pyannote-audio",
630
+ repoUrl: "https://github.com/pyannote/pyannote-audio",
631
+ snippets: pyannote_audio
632
+ },
633
+ "sentence-transformers": {
634
+ btnLabel: "sentence-transformers",
635
+ repoName: "sentence-transformers",
636
+ repoUrl: "https://github.com/UKPLab/sentence-transformers",
637
+ docsUrl: "https://huggingface.co/docs/hub/sentence-transformers",
638
+ snippets: sentenceTransformers
639
+ },
640
+ sklearn: {
641
+ btnLabel: "Scikit-learn",
642
+ repoName: "Scikit-learn",
643
+ repoUrl: "https://github.com/scikit-learn/scikit-learn",
644
+ snippets: sklearn
645
+ },
646
+ fastai: {
647
+ btnLabel: "fastai",
648
+ repoName: "fastai",
649
+ repoUrl: "https://github.com/fastai/fastai",
650
+ docsUrl: "https://huggingface.co/docs/hub/fastai",
651
+ snippets: fastai
652
+ },
653
+ spacy: {
654
+ btnLabel: "spaCy",
655
+ repoName: "spaCy",
656
+ repoUrl: "https://github.com/explosion/spaCy",
657
+ docsUrl: "https://huggingface.co/docs/hub/spacy",
658
+ snippets: spacy
659
+ },
660
+ "span-marker": {
661
+ btnLabel: "SpanMarker",
662
+ repoName: "SpanMarkerNER",
663
+ repoUrl: "https://github.com/tomaarsen/SpanMarkerNER",
664
+ docsUrl: "https://huggingface.co/docs/hub/span_marker",
665
+ snippets: span_marker
666
+ },
667
+ speechbrain: {
668
+ btnLabel: "speechbrain",
669
+ repoName: "speechbrain",
670
+ repoUrl: "https://github.com/speechbrain/speechbrain",
671
+ docsUrl: "https://huggingface.co/docs/hub/speechbrain",
672
+ snippets: speechbrain
673
+ },
674
+ stanza: {
675
+ btnLabel: "Stanza",
676
+ repoName: "stanza",
677
+ repoUrl: "https://github.com/stanfordnlp/stanza",
678
+ docsUrl: "https://huggingface.co/docs/hub/stanza",
679
+ snippets: stanza
680
+ },
681
+ tensorflowtts: {
682
+ btnLabel: "TensorFlowTTS",
683
+ repoName: "TensorFlowTTS",
684
+ repoUrl: "https://github.com/TensorSpeech/TensorFlowTTS",
685
+ snippets: tensorflowtts
686
+ },
687
+ timm: {
688
+ btnLabel: "timm",
689
+ repoName: "pytorch-image-models",
690
+ repoUrl: "https://github.com/rwightman/pytorch-image-models",
691
+ docsUrl: "https://huggingface.co/docs/hub/timm",
692
+ snippets: timm
693
+ },
694
+ transformers: {
695
+ btnLabel: "Transformers",
696
+ repoName: "\u{1F917}/transformers",
697
+ repoUrl: "https://github.com/huggingface/transformers",
698
+ docsUrl: "https://huggingface.co/docs/hub/transformers",
699
+ snippets: transformers
700
+ },
701
+ "transformers.js": {
702
+ btnLabel: "Transformers.js",
703
+ repoName: "transformers.js",
704
+ repoUrl: "https://github.com/xenova/transformers.js",
705
+ docsUrl: "https://huggingface.co/docs/hub/transformers-js",
706
+ snippets: transformersJS
707
+ },
708
+ fasttext: {
709
+ btnLabel: "fastText",
710
+ repoName: "fastText",
711
+ repoUrl: "https://fasttext.cc/",
712
+ snippets: fasttext
713
+ },
714
+ "sample-factory": {
715
+ btnLabel: "sample-factory",
716
+ repoName: "sample-factory",
717
+ repoUrl: "https://github.com/alex-petrenko/sample-factory",
718
+ docsUrl: "https://huggingface.co/docs/hub/sample-factory",
719
+ snippets: sampleFactory
720
+ },
721
+ "stable-baselines3": {
722
+ btnLabel: "stable-baselines3",
723
+ repoName: "stable-baselines3",
724
+ repoUrl: "https://github.com/huggingface/huggingface_sb3",
725
+ docsUrl: "https://huggingface.co/docs/hub/stable-baselines3",
726
+ snippets: stableBaselines3
727
+ },
728
+ "ml-agents": {
729
+ btnLabel: "ml-agents",
730
+ repoName: "ml-agents",
731
+ repoUrl: "https://github.com/huggingface/ml-agents",
732
+ docsUrl: "https://huggingface.co/docs/hub/ml-agents",
733
+ snippets: mlAgents
734
+ },
735
+ pythae: {
736
+ btnLabel: "pythae",
737
+ repoName: "pythae",
738
+ repoUrl: "https://github.com/clementchadebec/benchmark_VAE",
739
+ snippets: pythae
740
+ }
741
+ };
742
+
743
+ // src/default-widget-inputs.ts
744
+ var MAPPING_EN = /* @__PURE__ */ new Map([
745
+ ["text-classification", [`I like you. I love you`]],
746
+ [
747
+ "token-classification",
748
+ [
749
+ `My name is Wolfgang and I live in Berlin`,
750
+ `My name is Sarah and I live in London`,
751
+ `My name is Clara and I live in Berkeley, California.`
752
+ ]
753
+ ],
754
+ [
755
+ "table-question-answering",
756
+ [
757
+ {
758
+ text: `How many stars does the transformers repository have?`,
759
+ table: {
760
+ Repository: ["Transformers", "Datasets", "Tokenizers"],
761
+ Stars: [36542, 4512, 3934],
762
+ Contributors: [651, 77, 34],
763
+ "Programming language": ["Python", "Python", "Rust, Python and NodeJS"]
764
+ }
765
+ }
766
+ ]
767
+ ],
768
+ [
769
+ "question-answering",
770
+ [
771
+ {
772
+ text: `Where do I live?`,
773
+ context: `My name is Wolfgang and I live in Berlin`
774
+ },
775
+ {
776
+ text: `Where do I live?`,
777
+ context: `My name is Sarah and I live in London`
778
+ },
779
+ {
780
+ text: `What's my name?`,
781
+ context: `My name is Clara and I live in Berkeley.`
782
+ },
783
+ {
784
+ text: `Which name is also used to describe the Amazon rainforest in English?`,
785
+ context: `The Amazon rainforest (Portuguese: Floresta Amaz\xF4nica or Amaz\xF4nia; Spanish: Selva Amaz\xF3nica, Amazon\xEDa or usually Amazonia; French: For\xEAt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain "Amazonas" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species.`
786
+ }
787
+ ]
788
+ ],
789
+ [
790
+ "zero-shot-classification",
791
+ [
792
+ {
793
+ text: "I have a problem with my iphone that needs to be resolved asap!!",
794
+ candidate_labels: "urgent, not urgent, phone, tablet, computer",
795
+ multi_class: true
796
+ },
797
+ {
798
+ text: "Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.",
799
+ candidate_labels: "mobile, website, billing, account access",
800
+ multi_class: false
801
+ },
802
+ {
803
+ text: "A new model offers an explanation for how the Galilean satellites formed around the solar system\u2019s largest world. Konstantin Batygin did not set out to solve one of the solar system\u2019s most puzzling mysteries when he went for a run up a hill in Nice, France. Dr. Batygin, a Caltech researcher, best known for his contributions to the search for the solar system\u2019s missing \u201CPlanet Nine,\u201D spotted a beer bottle. At a steep, 20 degree grade, he wondered why it wasn\u2019t rolling down the hill. He realized there was a breeze at his back holding the bottle in place. Then he had a thought that would only pop into the mind of a theoretical astrophysicist: \u201COh! This is how Europa formed.\u201D Europa is one of Jupiter\u2019s four large Galilean moons. And in a paper published Monday in the Astrophysical Journal, Dr. Batygin and a co-author, Alessandro Morbidelli, a planetary scientist at the C\xF4te d\u2019Azur Observatory in France, present a theory explaining how some moons form around gas giants like Jupiter and Saturn, suggesting that millimeter-sized grains of hail produced during the solar system\u2019s formation became trapped around these massive worlds, taking shape one at a time into the potentially habitable moons we know today.",
804
+ candidate_labels: "space & cosmos, scientific discovery, microbiology, robots, archeology",
805
+ multi_class: true
806
+ }
807
+ ]
808
+ ],
809
+ ["translation", [`My name is Wolfgang and I live in Berlin`, `My name is Sarah and I live in London`]],
810
+ [
811
+ "summarization",
812
+ [
813
+ `The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct.`
814
+ ]
815
+ ],
816
+ [
817
+ "conversational",
818
+ [
819
+ `Hey my name is Julien! How are you?`,
820
+ `Hey my name is Thomas! How are you?`,
821
+ `Hey my name is Mariama! How are you?`,
822
+ `Hey my name is Clara! How are you?`,
823
+ `Hey my name is Julien! How are you?`,
824
+ `Hi.`
825
+ ]
826
+ ],
827
+ [
828
+ "text-generation",
829
+ [
830
+ `My name is Julien and I like to`,
831
+ `My name is Thomas and my main`,
832
+ `My name is Mariama, my favorite`,
833
+ `My name is Clara and I am`,
834
+ `My name is Lewis and I like to`,
835
+ `My name is Merve and my favorite`,
836
+ `My name is Teven and I am`,
837
+ `Once upon a time,`
838
+ ]
839
+ ],
840
+ ["fill-mask", [`Paris is the <mask> of France.`, `The goal of life is <mask>.`]],
841
+ [
842
+ "sentence-similarity",
843
+ [
844
+ {
845
+ source_sentence: "That is a happy person",
846
+ sentences: ["That is a happy dog", "That is a very happy person", "Today is a sunny day"]
847
+ }
848
+ ]
849
+ ]
850
+ ]);
851
+ var MAPPING_ZH = /* @__PURE__ */ new Map([
852
+ ["text-classification", [`\u6211\u559C\u6B22\u4F60\u3002 \u6211\u7231\u4F60`]],
853
+ ["token-classification", [`\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`, `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`, `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u4F4F\u5728\u52A0\u5DDE\u4F2F\u514B\u5229\u3002`]],
854
+ [
855
+ "question-answering",
856
+ [
857
+ {
858
+ text: `\u6211\u4F4F\u5728\u54EA\u91CC\uFF1F`,
859
+ context: `\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`
860
+ },
861
+ {
862
+ text: `\u6211\u4F4F\u5728\u54EA\u91CC\uFF1F`,
863
+ context: `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`
864
+ },
865
+ {
866
+ text: `\u6211\u7684\u540D\u5B57\u662F\u4EC0\u4E48\uFF1F`,
867
+ context: `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u4F4F\u5728\u4F2F\u514B\u5229\u3002`
868
+ }
869
+ ]
870
+ ],
871
+ ["translation", [`\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`, `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`]],
872
+ [
873
+ "zero-shot-classification",
874
+ [
875
+ {
876
+ text: "\u623F\u95F4\u5E72\u51C0\u660E\u4EAE\uFF0C\u975E\u5E38\u4E0D\u9519",
877
+ candidate_labels: "\u8FD9\u662F\u4E00\u6761\u5DEE\u8BC4, \u8FD9\u662F\u4E00\u6761\u597D\u8BC4"
878
+ }
879
+ ]
880
+ ],
881
+ [
882
+ "summarization",
883
+ [
884
+ `\u8BE5\u5854\u9AD8324\u7C73\uFF081063\u82F1\u5C3A\uFF09\uFF0C\u4E0E\u4E00\u5E6281\u5C42\u7684\u5EFA\u7B51\u7269\u4E00\u6837\u9AD8\uFF0C\u662F\u5DF4\u9ECE\u6700\u9AD8\u7684\u5EFA\u7B51\u7269\u3002 \u5B83\u7684\u5E95\u5EA7\u662F\u65B9\u5F62\u7684\uFF0C\u6BCF\u8FB9\u957F125\u7C73\uFF08410\u82F1\u5C3A\uFF09\u3002 \u5728\u5EFA\u9020\u8FC7\u7A0B\u4E2D\uFF0C\u827E\u83F2\u5C14\u94C1\u5854\u8D85\u8FC7\u4E86\u534E\u76DB\u987F\u7EAA\u5FF5\u7891\uFF0C\u6210\u4E3A\u4E16\u754C\u4E0A\u6700\u9AD8\u7684\u4EBA\u9020\u7ED3\u6784\uFF0C\u5B83\u4FDD\u6301\u4E8641\u5E74\u7684\u5934\u8854\uFF0C\u76F4\u52301930\u5E74\u7EBD\u7EA6\u5E02\u7684\u514B\u83B1\u65AF\u52D2\u5927\u697C\u7AE3\u5DE5\u3002\u8FD9\u662F\u7B2C\u4E00\u4E2A\u5230\u8FBE300\u7C73\u9AD8\u5EA6\u7684\u7ED3\u6784\u3002 \u7531\u4E8E1957\u5E74\u5728\u5854\u9876\u589E\u52A0\u4E86\u5E7F\u64AD\u5929\u7EBF\uFF0C\u56E0\u6B64\u5B83\u73B0\u5728\u6BD4\u514B\u83B1\u65AF\u52D2\u5927\u53A6\u9AD85.2\u7C73\uFF0817\u82F1\u5C3A\uFF09\u3002 \u9664\u53D1\u5C04\u5668\u5916\uFF0C\u827E\u83F2\u5C14\u94C1\u5854\u662F\u6CD5\u56FD\u7B2C\u4E8C\u9AD8\u7684\u72EC\u7ACB\u5F0F\u5EFA\u7B51\uFF0C\u4EC5\u6B21\u4E8E\u7C73\u52B3\u9AD8\u67B6\u6865\u3002`
885
+ ]
886
+ ],
887
+ [
888
+ "text-generation",
889
+ [`\u6211\u53EB\u6731\u5229\u5B89\uFF0C\u6211\u559C\u6B22`, `\u6211\u53EB\u6258\u9A6C\u65AF\uFF0C\u6211\u7684\u4E3B\u8981`, `\u6211\u53EB\u739B\u4E3D\u4E9A\uFF0C\u6211\u6700\u559C\u6B22\u7684`, `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u662F`, `\u4ECE\u524D\uFF0C`]
890
+ ],
891
+ ["fill-mask", [`\u5DF4\u9ECE\u662F<mask>\u56FD\u7684\u9996\u90FD\u3002`, `\u751F\u6D3B\u7684\u771F\u8C1B\u662F<mask>\u3002`]],
892
+ [
893
+ "sentence-similarity",
894
+ [
895
+ {
896
+ source_sentence: "\u90A3\u662F \u500B\u5FEB\u6A02\u7684\u4EBA",
897
+ sentences: ["\u90A3\u662F \u689D\u5FEB\u6A02\u7684\u72D7", "\u90A3\u662F \u500B\u975E\u5E38\u5E78\u798F\u7684\u4EBA", "\u4ECA\u5929\u662F\u6674\u5929"]
898
+ }
899
+ ]
900
+ ]
901
+ ]);
902
+ var MAPPING_FR = /* @__PURE__ */ new Map([
903
+ ["text-classification", [`Je t'appr\xE9cie beaucoup. Je t'aime.`]],
904
+ ["token-classification", [`Mon nom est Wolfgang et je vis \xE0 Berlin`]],
905
+ [
906
+ "question-answering",
907
+ [
908
+ {
909
+ text: `O\xF9 est-ce que je vis?`,
910
+ context: `Mon nom est Wolfgang et je vis \xE0 Berlin`
911
+ }
912
+ ]
913
+ ],
914
+ ["translation", [`Mon nom est Wolfgang et je vis \xE0 Berlin`]],
915
+ [
916
+ "summarization",
917
+ [
918
+ `La tour fait 324 m\xE8tres (1,063 pieds) de haut, environ la m\xEAme hauteur qu'un immeuble de 81 \xE9tages, et est la plus haute structure de Paris. Sa base est carr\xE9e, mesurant 125 m\xE8tres (410 pieds) sur chaque c\xF4t\xE9. Durant sa construction, la tour Eiffel surpassa le Washington Monument pour devenir la plus haute structure construite par l'homme dans le monde, un titre qu'elle conserva pendant 41 ans jusqu'\xE0 l'ach\xE8vement du Chrysler Building \xE0 New-York City en 1930. Ce fut la premi\xE8re structure \xE0 atteindre une hauteur de 300 m\xE8tres. Avec l'ajout d'une antenne de radiodiffusion au sommet de la tour Eiffel en 1957, celle-ci redevint plus haute que le Chrysler Building de 5,2 m\xE8tres (17 pieds). En excluant les transmetteurs, elle est la seconde plus haute stucture autoportante de France apr\xE8s le viaduc de Millau.`
919
+ ]
920
+ ],
921
+ ["text-generation", [`Mon nom est Julien et j'aime`, `Mon nom est Thomas et mon principal`, `Il \xE9tait une fois`]],
922
+ ["fill-mask", [`Paris est la <mask> de la France.`]],
923
+ [
924
+ "sentence-similarity",
925
+ [
926
+ {
927
+ source_sentence: "C'est une personne heureuse",
928
+ sentences: [
929
+ "C'est un chien heureux",
930
+ "C'est une personne tr\xE8s heureuse",
931
+ "Aujourd'hui est une journ\xE9e ensoleill\xE9e"
932
+ ]
933
+ }
934
+ ]
935
+ ]
936
+ ]);
937
+ var MAPPING_ES = /* @__PURE__ */ new Map([
938
+ ["text-classification", [`Te quiero. Te amo.`]],
939
+ ["token-classification", [`Me llamo Wolfgang y vivo en Berlin`]],
940
+ [
941
+ "question-answering",
942
+ [
943
+ {
944
+ text: `\xBFD\xF3nde vivo?`,
945
+ context: `Me llamo Wolfgang y vivo en Berlin`
946
+ },
947
+ {
948
+ text: `\xBFQui\xE9n invent\xF3 el submarino?`,
949
+ context: `Isaac Peral fue un murciano que invent\xF3 el submarino`
950
+ },
951
+ {
952
+ text: `\xBFCu\xE1ntas personas hablan espa\xF1ol?`,
953
+ context: `El espa\xF1ol es el segundo idioma m\xE1s hablado del mundo con m\xE1s de 442 millones de hablantes`
954
+ }
955
+ ]
956
+ ],
957
+ [
958
+ "translation",
959
+ [
960
+ `Me llamo Wolfgang y vivo en Berlin`,
961
+ `Los ingredientes de una tortilla de patatas son: huevos, patatas y cebolla`
962
+ ]
963
+ ],
964
+ [
965
+ "summarization",
966
+ [
967
+ `La torre tiene 324 metros (1.063 pies) de altura, aproximadamente la misma altura que un edificio de 81 pisos y la estructura m\xE1s alta de Par\xEDs. Su base es cuadrada, mide 125 metros (410 pies) a cada lado. Durante su construcci\xF3n, la Torre Eiffel super\xF3 al Washington Monument para convertirse en la estructura artificial m\xE1s alta del mundo, un t\xEDtulo que mantuvo durante 41 a\xF1os hasta que el Chrysler Building en la ciudad de Nueva York se termin\xF3 en 1930. Fue la primera estructura en llegar Una altura de 300 metros. Debido a la adici\xF3n de una antena de transmisi\xF3n en la parte superior de la torre en 1957, ahora es m\xE1s alta que el Chrysler Building en 5,2 metros (17 pies). Excluyendo los transmisores, la Torre Eiffel es la segunda estructura independiente m\xE1s alta de Francia despu\xE9s del Viaducto de Millau.`
968
+ ]
969
+ ],
970
+ [
971
+ "text-generation",
972
+ [
973
+ `Me llamo Julien y me gusta`,
974
+ `Me llamo Thomas y mi principal`,
975
+ `Me llamo Manuel y trabajo en`,
976
+ `\xC9rase una vez,`,
977
+ `Si t\xFA me dices ven, `
978
+ ]
979
+ ],
980
+ ["fill-mask", [`Mi nombre es <mask> y vivo en Nueva York.`, `El espa\xF1ol es un idioma muy <mask> en el mundo.`]],
981
+ [
982
+ "sentence-similarity",
983
+ [
984
+ {
985
+ source_sentence: "Esa es una persona feliz",
986
+ sentences: ["Ese es un perro feliz", "Esa es una persona muy feliz", "Hoy es un d\xEDa soleado"]
987
+ }
988
+ ]
989
+ ]
990
+ ]);
991
+ var MAPPING_RU = /* @__PURE__ */ new Map([
992
+ ["text-classification", [`\u0422\u044B \u043C\u043D\u0435 \u043D\u0440\u0430\u0432\u0438\u0448\u044C\u0441\u044F. \u042F \u0442\u0435\u0431\u044F \u043B\u044E\u0431\u043B\u044E`]],
993
+ ["token-classification", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`]],
994
+ [
995
+ "question-answering",
996
+ [
997
+ {
998
+ text: `\u0413\u0434\u0435 \u0436\u0438\u0432\u0443?`,
999
+ context: `\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`
1000
+ }
1001
+ ]
1002
+ ],
1003
+ ["translation", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`]],
1004
+ [
1005
+ "summarization",
1006
+ [
1007
+ `\u0412\u044B\u0441\u043E\u0442\u0430 \u0431\u0430\u0448\u043D\u0438 \u0441\u043E\u0441\u0442\u0430\u0432\u043B\u044F\u0435\u0442 324 \u043C\u0435\u0442\u0440\u0430 (1063 \u0444\u0443\u0442\u0430), \u043F\u0440\u0438\u043C\u0435\u0440\u043D\u043E \u0442\u0430\u043A\u0430\u044F \u0436\u0435 \u0432\u044B\u0441\u043E\u0442\u0430, \u043A\u0430\u043A \u0443 81-\u044D\u0442\u0430\u0436\u043D\u043E\u0433\u043E \u0437\u0434\u0430\u043D\u0438\u044F, \u0438 \u0441\u0430\u043C\u043E\u0435 \u0432\u044B\u0441\u043E\u043A\u043E\u0435 \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435 \u0432 \u041F\u0430\u0440\u0438\u0436\u0435. \u0415\u0433\u043E \u043E\u0441\u043D\u043E\u0432\u0430\u043D\u0438\u0435 \u043A\u0432\u0430\u0434\u0440\u0430\u0442\u043D\u043E, \u0440\u0430\u0437\u043C\u0435\u0440\u043E\u043C 125 \u043C\u0435\u0442\u0440\u043E\u0432 (410 \u0444\u0443\u0442\u043E\u0432) \u0441 \u043B\u044E\u0431\u043E\u0439 \u0441\u0442\u043E\u0440\u043E\u043D\u044B. \u0412\u043E \u0432\u0440\u0435\u043C\u044F \u0441\u0442\u0440\u043E\u0438\u0442\u0435\u043B\u044C\u0441\u0442\u0432\u0430 \u042D\u0439\u0444\u0435\u043B\u0435\u0432\u0430 \u0431\u0430\u0448\u043D\u044F \u043F\u0440\u0435\u0432\u0437\u043E\u0448\u043B\u0430 \u043C\u043E\u043D\u0443\u043C\u0435\u043D\u0442 \u0412\u0430\u0448\u0438\u043D\u0433\u0442\u043E\u043D\u0430, \u0441\u0442\u0430\u0432 \u0441\u0430\u043C\u044B\u043C \u0432\u044B\u0441\u043E\u043A\u0438\u043C \u0438\u0441\u043A\u0443\u0441\u0441\u0442\u0432\u0435\u043D\u043D\u044B\u043C \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435\u043C \u0432 \u043C\u0438\u0440\u0435, \u0438 \u044D\u0442\u043E\u0442 \u0442\u0438\u0442\u0443\u043B \u043E\u043D\u0430 \u0443\u0434\u0435\u0440\u0436\u0438\u0432\u0430\u043B\u0430 \u0432 \u0442\u0435\u0447\u0435\u043D\u0438\u0435 41 \u0433\u043E\u0434\u0430 \u0434\u043E \u0437\u0430\u0432\u0435\u0440\u0448\u0435\u043D\u0438\u044F \u0441\u0442\u0440\u043E\u0438\u0442\u0435\u043B\u044C\u0441\u0442\u0432\u043E \u0437\u0434\u0430\u043D\u0438\u044F \u041A\u0440\u0430\u0439\u0441\u043B\u0435\u0440 \u0432 \u041D\u044C\u044E-\u0419\u043E\u0440\u043A\u0435 \u0432 1930 \u0433\u043E\u0434\u0443. \u042D\u0442\u043E \u043F\u0435\u0440\u0432\u043E\u0435 \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435 \u043A\u043E\u0442\u043E\u0440\u043E\u0435 \u0434\u043E\u0441\u0442\u0438\u0433\u043B\u043E \u0432\u044B\u0441\u043E\u0442\u044B 300 \u043C\u0435\u0442\u0440\u043E\u0432. \u0418\u0437-\u0437\u0430 \u0434\u043E\u0431\u0430\u0432\u043B\u0435\u043D\u0438\u044F \u0432\u0435\u0449\u0430\u0442\u0435\u043B\u044C\u043D\u043E\u0439 \u0430\u043D\u0442\u0435\u043D\u043D\u044B \u043D\u0430 \u0432\u0435\u0440\u0448\u0438\u043D\u0435 \u0431\u0430\u0448\u043D\u0438 \u0432 1957 \u0433\u043E\u0434\u0443 \u043E\u043D\u0430 \u0441\u0435\u0439\u0447\u0430\u0441 \u0432\u044B\u0448\u0435 \u0437\u0434\u0430\u043D\u0438\u044F \u041A\u0440\u0430\u0439\u0441\u043B\u0435\u0440 \u043D\u0430 5,2 \u043C\u0435\u0442\u0440\u0430 (17 \u0444\u0443\u0442\u043E\u0432). \u0417\u0430 \u0438\u0441\u043A\u043B\u044E\u0447\u0435\u043D\u0438\u0435\u043C \u043F\u0435\u0440\u0435\u0434\u0430\u0442\u0447\u0438\u043A\u043E\u0432, \u042D\u0439\u0444\u0435\u043B\u0435\u0432\u0430 \u0431\u0430\u0448\u043D\u044F \u044F\u0432\u043B\u044F\u0435\u0442\u0441\u044F \u0432\u0442\u043E\u0440\u043E\u0439 \u0441\u0430\u043C\u043E\u0439 \u0432\u044B\u0441\u043E\u043A\u043E\u0439 \u043E\u0442\u0434\u0435\u043B\u044C\u043D\u043E \u0441\u0442\u043E\u044F\u0449\u0435\u0439 \u0441\u0442\u0440\u0443\u043A\u0442\u0443\u0440\u043E\u0439 \u0432\u043E \u0424\u0440\u0430\u043D\u0446\u0438\u0438 \u043F\u043E\u0441\u043B\u0435 \u0432\u0438\u0430\u0434\u0443\u043A\u0430 \u041C\u0438\u0439\u043E.`
1008
+ ]
1009
+ ],
1010
+ ["text-generation", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0416\u044E\u043B\u044C\u0435\u043D \u0438`, `\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0422\u043E\u043C\u0430\u0441 \u0438 \u043C\u043E\u0439 \u043E\u0441\u043D\u043E\u0432\u043D\u043E\u0439`, `\u041E\u0434\u043D\u0430\u0436\u0434\u044B`]],
1011
+ ["fill-mask", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 <mask> \u0438 \u044F \u0438\u043D\u0436\u0435\u043D\u0435\u0440 \u0436\u0438\u0432\u0443\u0449\u0438\u0439 \u0432 \u041D\u044C\u044E-\u0419\u043E\u0440\u043A\u0435.`]],
1012
+ [
1013
+ "sentence-similarity",
1014
+ [
1015
+ {
1016
+ source_sentence: "\u042D\u0442\u043E \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u044B\u0439 \u0447\u0435\u043B\u043E\u0432\u0435\u043A",
1017
+ sentences: ["\u042D\u0442\u043E \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u0430\u044F \u0441\u043E\u0431\u0430\u043A\u0430", "\u042D\u0442\u043E \u043E\u0447\u0435\u043D\u044C \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u044B\u0439 \u0447\u0435\u043B\u043E\u0432\u0435\u043A", "\u0421\u0435\u0433\u043E\u0434\u043D\u044F \u0441\u043E\u043B\u043D\u0435\u0447\u043D\u044B\u0439 \u0434\u0435\u043D\u044C"]
1018
+ }
1019
+ ]
1020
+ ]
1021
+ ]);
1022
+ var MAPPING_UK = /* @__PURE__ */ new Map([
1023
+ ["translation", [`\u041C\u0435\u043D\u0435 \u0437\u0432\u0430\u0442\u0438 \u0412\u043E\u043B\u044C\u0444\u0491\u0430\u043D\u0491 \u0456 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0456\u043D\u0456.`]],
1024
+ ["fill-mask", [`\u041C\u0435\u043D\u0435 \u0437\u0432\u0430\u0442\u0438 <mask>.`]]
1025
+ ]);
1026
+ var MAPPING_IT = /* @__PURE__ */ new Map([
1027
+ ["text-classification", [`Mi piaci. Ti amo`]],
1028
+ [
1029
+ "token-classification",
1030
+ [
1031
+ `Mi chiamo Wolfgang e vivo a Berlino`,
1032
+ `Mi chiamo Sarah e vivo a Londra`,
1033
+ `Mi chiamo Clara e vivo a Berkeley in California.`
1034
+ ]
1035
+ ],
1036
+ [
1037
+ "question-answering",
1038
+ [
1039
+ {
1040
+ text: `Dove vivo?`,
1041
+ context: `Mi chiamo Wolfgang e vivo a Berlino`
1042
+ },
1043
+ {
1044
+ text: `Dove vivo?`,
1045
+ context: `Mi chiamo Sarah e vivo a Londra`
1046
+ },
1047
+ {
1048
+ text: `Come mio chiamo?`,
1049
+ context: `Mi chiamo Clara e vivo a Berkeley.`
1050
+ }
1051
+ ]
1052
+ ],
1053
+ ["translation", [`Mi chiamo Wolfgang e vivo a Berlino`, `Mi chiamo Sarah e vivo a Londra`]],
1054
+ [
1055
+ "summarization",
1056
+ [
1057
+ `La torre degli Asinelli \xE8 una delle cosiddette due torri di Bologna, simbolo della citt\xE0, situate in piazza di porta Ravegnana, all'incrocio tra le antiche strade San Donato (ora via Zamboni), San Vitale, Maggiore e Castiglione. Eretta, secondo la tradizione, fra il 1109 e il 1119 dal nobile Gherardo Asinelli, la torre \xE8 alta 97,20 metri, pende verso ovest per 2,23 metri e presenta all'interno una scalinata composta da 498 gradini. Ancora non si pu\xF2 dire con certezza quando e da chi fu costruita la torre degli Asinelli. Si presume che la torre debba il proprio nome a Gherardo Asinelli, il nobile cavaliere di fazione ghibellina al quale se ne attribuisce la costruzione, iniziata secondo una consolidata tradizione l'11 ottobre 1109 e terminata dieci anni dopo, nel 1119.`
1058
+ ]
1059
+ ],
1060
+ [
1061
+ "text-generation",
1062
+ [
1063
+ `Mi chiamo Loreto e mi piace`,
1064
+ `Mi chiamo Thomas e il mio principale`,
1065
+ `Mi chiamo Marianna, la mia cosa preferita`,
1066
+ `Mi chiamo Clara e sono`,
1067
+ `C'era una volta`
1068
+ ]
1069
+ ],
1070
+ ["fill-mask", [`Roma \xE8 la <mask> d'Italia.`, `Lo scopo della vita \xE8 <mask>.`]],
1071
+ [
1072
+ "sentence-similarity",
1073
+ [
1074
+ {
1075
+ source_sentence: "Questa \xE8 una persona felice",
1076
+ sentences: ["Questo \xE8 un cane felice", "Questa \xE8 una persona molto felice", "Oggi \xE8 una giornata di sole"]
1077
+ }
1078
+ ]
1079
+ ]
1080
+ ]);
1081
+ var MAPPING_FA = /* @__PURE__ */ new Map([
1082
+ [
1083
+ "text-classification",
1084
+ [`\u067E\u0631\u0648\u0698\u0647 \u0628\u0647 \u0645\u0648\u0642\u0639 \u062A\u062D\u0648\u06CC\u0644 \u0634\u062F \u0648 \u0647\u0645\u0647 \u0686\u06CC\u0632 \u062E\u0648\u0628 \u0628\u0648\u062F.`, `\u0633\u06CC\u0628\u200C\u0632\u0645\u06CC\u0646\u06CC \u0628\u06CC\u200C\u06A9\u06CC\u0641\u06CC\u062A \u0628\u0648\u062F.`, `\u0642\u06CC\u0645\u062A \u0648 \u06A9\u06CC\u0641\u06CC\u062A \u0639\u0627\u0644\u06CC`, `\u062E\u0648\u0628 \u0646\u0628\u0648\u062F \u0627\u0635\u0644\u0627`]
1085
+ ],
1086
+ [
1087
+ "token-classification",
1088
+ [
1089
+ `\u0627\u06CC\u0646 \u0633\u0631\u06CC\u0627\u0644 \u0628\u0647 \u0635\u0648\u0631\u062A \u0631\u0633\u0645\u06CC \u062F\u0631 \u062A\u0627\u0631\u06CC\u062E \u062F\u0647\u0645 \u0645\u06CC \u06F2\u06F0\u06F1\u06F1 \u062A\u0648\u0633\u0637 \u0634\u0628\u06A9\u0647 \u0641\u0627\u06A9\u0633 \u0628\u0631\u0627\u06CC \u067E\u062E\u0634 \u0631\u0632\u0631\u0648 \u0634\u062F.`,
1090
+ `\u062F\u0641\u062A\u0631 \u0645\u0631\u06A9\u0632\u06CC \u0634\u0631\u06A9\u062A \u067E\u0627\u0631\u0633\u200C\u0645\u06CC\u0646\u0648 \u062F\u0631 \u0634\u0647\u0631 \u0627\u0631\u0627\u06A9 \u062F\u0631 \u0627\u0633\u062A\u0627\u0646 \u0645\u0631\u06A9\u0632\u06CC \u0642\u0631\u0627\u0631 \u062F\u0627\u0631\u062F.`,
1091
+ `\u0648\u06CC \u062F\u0631 \u0633\u0627\u0644 \u06F2\u06F0\u06F1\u06F3 \u062F\u0631\u06AF\u0630\u0634\u062A \u0648 \u0645\u0633\u0626\u0648\u0644 \u062E\u0627\u06A9\u0633\u067E\u0627\u0631\u06CC \u0648 \u0627\u0642\u0648\u0627\u0645\u0634 \u0628\u0631\u0627\u06CC \u0627\u0648 \u0645\u0631\u0627\u0633\u0645 \u06CC\u0627\u062F\u0628\u0648\u062F \u06AF\u0631\u0641\u062A\u0646\u062F.`
1092
+ ]
1093
+ ],
1094
+ [
1095
+ "question-answering",
1096
+ [
1097
+ {
1098
+ text: `\u0645\u0646 \u06A9\u062C\u0627 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645\u061F`,
1099
+ context: `\u0646\u0627\u0645 \u0645\u0646 \u067E\u0698\u0645\u0627\u0646 \u0627\u0633\u062A \u0648 \u062F\u0631 \u06AF\u0631\u06AF\u0627\u0646 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645.`
1100
+ },
1101
+ {
1102
+ text: `\u0646\u0627\u0645\u0645 \u0686\u06CC\u0633\u062A \u0648 \u06A9\u062C\u0627 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0646\u0645\u061F`,
1103
+ context: `\u0627\u0633\u0645\u0645 \u0633\u0627\u0631\u0627 \u0627\u0633\u062A \u0648 \u062F\u0631 \u0622\u0641\u0631\u06CC\u0642\u0627\u06CC \u062C\u0646\u0648\u0628\u06CC \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645.`
1104
+ },
1105
+ {
1106
+ text: `\u0646\u0627\u0645 \u0645\u0646 \u0686\u06CC\u0633\u062A\u061F`,
1107
+ context: `\u0645\u0646 \u0645\u0631\u06CC\u0645 \u0647\u0633\u062A\u0645 \u0648 \u062F\u0631 \u062A\u0628\u0631\u06CC\u0632 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0646\u0645.`
1108
+ },
1109
+ {
1110
+ text: `\u0628\u06CC\u0634\u062A\u0631\u06CC\u0646 \u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644 \u0622\u0645\u0627\u0632\u0648\u0646 \u062F\u0631 \u06A9\u062F\u0627\u0645 \u06A9\u0634\u0648\u0631 \u0627\u0633\u062A\u061F`,
1111
+ context: [
1112
+ "\u0622\u0645\u0627\u0632\u0648\u0646 \u0646\u0627\u0645 \u0628\u0632\u0631\u06AF\u200C\u062A\u0631\u06CC\u0646 \u062C\u0646\u06AF\u0644 \u0628\u0627\u0631\u0627\u0646\u06CC \u062C\u0647\u0627\u0646 \u0627\u0633\u062A \u06A9\u0647 \u062F\u0631 \u0634\u0645\u0627\u0644 \u0622\u0645\u0631\u06CC\u06A9\u0627\u06CC \u062C\u0646\u0648\u0628\u06CC \u0642\u0631\u0627\u0631 \u06AF\u0631\u0641\u062A\u0647 \u0648 \u0628\u06CC\u0634\u062A\u0631 \u0622\u0646 \u062F\u0631 \u062E\u0627\u06A9 \u0628\u0631\u0632\u06CC\u0644 \u0648 \u067E\u0631\u0648",
1113
+ "\u062C\u0627\u06CC \u062F\u0627\u0631\u062F. \u0628\u06CC\u0634 \u0627\u0632 \u0646\u06CC\u0645\u06CC \u0627\u0632 \u0647\u0645\u0647 \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0628\u0627\u0631\u0627\u0646\u06CC \u0628\u0627\u0642\u06CC\u200C\u0645\u0627\u0646\u062F\u0647 \u062F\u0631 \u062C\u0647\u0627\u0646 \u062F\u0631 \u0622\u0645\u0627\u0632\u0648\u0646 \u0642\u0631\u0627\u0631 \u062F\u0627\u0631\u062F.",
1114
+ "\u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0622\u0645\u0627\u0632\u0648\u0646 \u06F5\u066B\u06F5 \u0645\u06CC\u0644\u06CC\u0648\u0646 \u06A9\u06CC\u0644\u0648\u0645\u062A\u0631 \u0645\u0631\u0628\u0639 \u0627\u0633\u062A \u06A9\u0647 \u0628\u06CC\u0646 \u06F9 \u06A9\u0634\u0648\u0631 \u062A\u0642\u0633\u06CC\u0645 \u0634\u062F\u0647\u200C\u0627\u0633\u062A."
1115
+ ].join("\n")
1116
+ }
1117
+ ]
1118
+ ],
1119
+ [
1120
+ "translation",
1121
+ [
1122
+ "\u0628\u06CC\u0634\u062A\u0631 \u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0622\u0645\u0627\u0632\u0648\u0646 \u062F\u0631 \u062D\u0648\u0636\u0647 \u0622\u0628\u0631\u06CC\u0632 \u0631\u0648\u062F \u0622\u0645\u0627\u0632\u0648\u0646 \u0648 \u06F1\u06F1\u06F0\u06F0 \u0634\u0627\u062E\u0647 \u0622\u0646 \u0648\u0627\u0642\u0639 \u0634\u062F\u0647\u200C\u0627\u0633\u062A.",
1123
+ "\u0645\u0631\u062F\u0645\u0627\u0646 \u0646\u064E\u0628\u064E\u0637\u06CC \u0627\u0632 \u0647\u0632\u0627\u0631\u0647\u200C\u0647\u0627\u06CC \u06CC\u06A9\u0645 \u0648 \u062F\u0648\u0645 \u067E\u06CC\u0634 \u0627\u0632 \u0645\u06CC\u0644\u0627\u062F \u062F\u0631 \u0627\u06CC\u0646 \u0645\u0646\u0637\u0642\u0647 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0631\u062F\u0646\u062F."
1124
+ ]
1125
+ ],
1126
+ [
1127
+ "summarization",
1128
+ [
1129
+ [
1130
+ "\u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u062B\u0631 \u062D\u06A9\u06CC\u0645 \u0627\u0628\u0648\u0627\u0644\u0642\u0627\u0633\u0645 \u0641\u0631\u062F\u0648\u0633\u06CC \u062A\u0648\u0633\u06CC\u060C \u062D\u0645\u0627\u0633\u0647\u200C\u0627\u06CC \u0645\u0646\u0638\u0648\u0645\u060C \u0628\u0631 \u062D\u0633\u0628 \u062F\u0633\u062A \u0646\u0648\u0634\u062A\u0647\u200C\u0647\u0627\u06CC ",
1131
+ "\u0645\u0648\u062C\u0648\u062F \u062F\u0631\u0628\u0631\u06AF\u06CC\u0631\u0646\u062F\u0647 \u0646\u0632\u062F\u06CC\u06A9 \u0628\u0647 \u06F5\u06F0\u066C\u06F0\u06F0\u06F0 \u0628\u06CC\u062A \u062A\u0627 \u0646\u0632\u062F\u06CC\u06A9 \u0628\u0647 \u06F6\u06F1\u066C\u06F0\u06F0\u06F0 \u0628\u06CC\u062A \u0648 \u06CC\u06A9\u06CC \u0627\u0632 ",
1132
+ "\u0628\u0632\u0631\u06AF\u200C\u062A\u0631\u06CC\u0646 \u0648 \u0628\u0631\u062C\u0633\u062A\u0647\u200C\u062A\u0631\u06CC\u0646 \u0633\u0631\u0648\u062F\u0647\u200C\u0647\u0627\u06CC \u062D\u0645\u0627\u0633\u06CC \u062C\u0647\u0627\u0646 \u0627\u0633\u062A \u06A9\u0647 \u0633\u0631\u0627\u06CC\u0634 \u0622\u0646 \u062F\u0633\u062A\u200C\u0622\u0648\u0631\u062F\u0650 ",
1133
+ "\u062F\u0633\u062A\u200C\u06A9\u0645 \u0633\u06CC \u0633\u0627\u0644 \u06A9\u0627\u0631\u0650 \u067E\u06CC\u0648\u0633\u062A\u0647\u0654 \u0627\u06CC\u0646 \u0633\u062E\u0646\u200C\u0633\u0631\u0627\u06CC \u0646\u0627\u0645\u062F\u0627\u0631 \u0627\u06CC\u0631\u0627\u0646\u06CC \u0627\u0633\u062A. \u0645\u0648\u0636\u0648\u0639 \u0627\u06CC\u0646 \u0634\u0627\u0647\u06A9\u0627\u0631 \u0627\u062F\u0628\u06CC\u060C",
1134
+ " \u0627\u0641\u0633\u0627\u0646\u0647\u200C\u0647\u0627 \u0648 \u062A\u0627\u0631\u06CC\u062E \u0627\u06CC\u0631\u0627\u0646 \u0627\u0632 \u0622\u063A\u0627\u0632 \u062A\u0627 \u062D\u0645\u0644\u0647\u0654 \u0639\u0631\u0628\u200C\u0647\u0627 \u0628\u0647 \u0627\u06CC\u0631\u0627\u0646 \u062F\u0631 \u0633\u062F\u0647\u0654 \u0647\u0641\u062A\u0645 \u0645\u06CC\u0644\u0627\u062F\u06CC \u0627\u0633\u062A",
1135
+ " (\u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u0632 \u0633\u0647 \u0628\u062E\u0634 \u0627\u0633\u0637\u0648\u0631\u0647\u060C \u067E\u0647\u0644\u0648\u0627\u0646\u06CC \u0648 \u062A\u0627\u0631\u06CC\u062E\u06CC \u062A\u0634\u06A9\u06CC\u0644 \u0634\u062F\u0647\u200C\u0627\u0633\u062A) \u06A9\u0647 \u062F\u0631 \u0686\u0647\u0627\u0631",
1136
+ " \u062F\u0648\u062F\u0645\u0627\u0646 \u067E\u0627\u062F\u0634\u0627\u0647\u06CC\u0650 \u067E\u06CC\u0634\u062F\u0627\u062F\u06CC\u0627\u0646\u060C \u06A9\u06CC\u0627\u0646\u06CC\u0627\u0646\u060C \u0627\u0634\u06A9\u0627\u0646\u06CC\u0627\u0646 \u0648 \u0633\u0627\u0633\u0627\u0646\u06CC\u0627\u0646 \u06AF\u0646\u062C\u0627\u0646\u062F\u0647 \u0645\u06CC\u200C\u0634\u0648\u062F.",
1137
+ " \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0628\u0631 \u0648\u0632\u0646 \xAB\u0641\u064E\u0639\u0648\u0644\u064F\u0646 \u0641\u0639\u0648\u0644\u0646 \u0641\u0639\u0648\u0644\u0646 \u0641\u064E\u0639\u064E\u0644\u0652\xBB\u060C \u062F\u0631 \u0628\u062D\u0631\u0650 \u0645\u064F\u062A\u064E\u0642\u0627\u0631\u0650\u0628\u0650 \u0645\u062B\u0645\u064E\u0651\u0646\u0650 \u0645\u062D\u0630\u0648\u0641 \u0646\u06AF\u0627\u0634\u062A\u0647 \u0634\u062F\u0647\u200C\u0627\u0633\u062A.",
1138
+ "\u0647\u0646\u06AF\u0627\u0645\u06CC \u06A9\u0647 \u0632\u0628\u0627\u0646 \u062F\u0627\u0646\u0634 \u0648 \u0627\u062F\u0628\u06CC\u0627\u062A \u062F\u0631 \u0627\u06CC\u0631\u0627\u0646 \u0632\u0628\u0627\u0646 \u0639\u0631\u0628\u06CC \u0628\u0648\u062F\u060C \u0641\u0631\u062F\u0648\u0633\u06CC\u060C \u0628\u0627 \u0633\u0631\u0648\u062F\u0646 \u0634\u0627\u0647\u0646\u0627\u0645\u0647",
1139
+ " \u0628\u0627 \u0648\u06CC\u0698\u06AF\u06CC\u200C\u0647\u0627\u06CC \u0647\u062F\u0641\u200C\u0645\u0646\u062F\u06CC \u06A9\u0647 \u062F\u0627\u0634\u062A\u060C \u0632\u0628\u0627\u0646 \u067E\u0627\u0631\u0633\u06CC \u0631\u0627 \u0632\u0646\u062F\u0647 \u0648 \u067E\u0627\u06CC\u062F\u0627\u0631 \u06A9\u0631\u062F. \u06CC\u06A9\u06CC \u0627\u0632 ",
1140
+ " \u0628\u0646\u200C\u0645\u0627\u06CC\u0647\u200C\u0647\u0627\u06CC \u0645\u0647\u0645\u06CC \u06A9\u0647 \u0641\u0631\u062F\u0648\u0633\u06CC \u0628\u0631\u0627\u06CC \u0633\u0631\u0648\u062F\u0646 \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u0632 \u0622\u0646 \u0627\u0633\u062A\u0641\u0627\u062F\u0647 \u06A9\u0631\u062F\u060C",
1141
+ " \u0634\u0627\u0647\u0646\u0627\u0645\u0647\u0654 \u0627\u0628\u0648\u0645\u0646\u0635\u0648\u0631\u06CC \u0628\u0648\u062F. \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0646\u0641\u0648\u0630 \u0628\u0633\u06CC\u0627\u0631\u06CC \u062F\u0631 \u062C\u0647\u062A\u200C\u06AF\u06CC\u0631\u06CC ",
1142
+ " \u0641\u0631\u0647\u0646\u06AF \u0641\u0627\u0631\u0633\u06CC \u0648 \u0646\u06CC\u0632 \u0628\u0627\u0632\u062A\u0627\u0628\u200C\u0647\u0627\u06CC \u0634\u06A9\u0648\u0647\u200C\u0645\u0646\u062F\u06CC \u062F\u0631 \u0627\u062F\u0628\u06CC\u0627\u062A \u062C\u0647\u0627\u0646 \u062F\u0627\u0634\u062A\u0647\u200C\u0627\u0633\u062A \u0648 \u0634\u0627\u0639\u0631\u0627\u0646 ",
1143
+ " \u0628\u0632\u0631\u06AF\u06CC \u0645\u0627\u0646\u0646\u062F \u06AF\u0648\u062A\u0647 \u0648 \u0648\u06CC\u06A9\u062A\u0648\u0631 \u0647\u0648\u06AF\u0648 \u0627\u0632 \u0622\u0646 \u0628\u0647 \u0646\u06CC\u06A9\u06CC \u06CC\u0627\u062F \u06A9\u0631\u062F\u0647\u200C\u0627\u0646\u062F."
1144
+ ].join("\n")
1145
+ ]
1146
+ ],
1147
+ ["text-generation", ["\u0627\u0633\u0645 \u0645\u0646 \u0646\u0627\u0632\u0646\u06CC\u0646 \u0627\u0633\u062A \u0648 \u0645\u0646", "\u0631\u0648\u0632\u06CC \u0631\u0648\u0632\u06AF\u0627\u0631\u06CC"]],
1148
+ [
1149
+ "fill-mask",
1150
+ [
1151
+ `\u0632\u0646\u062F\u06AF\u06CC \u06CC\u06A9 \u0633\u0648\u0627\u0644 \u0627\u0633\u062A \u0648 \u0627\u06CC\u0646 \u06A9\u0647 \u0686\u06AF\u0648\u0646\u0647 <mask> \u06A9\u0646\u06CC\u0645 \u067E\u0627\u0633\u062E \u0627\u06CC\u0646 \u0633\u0648\u0627\u0644!`,
1152
+ `\u0632\u0646\u062F\u06AF\u06CC \u0627\u0632 \u0645\u0631\u06AF \u067E\u0631\u0633\u06CC\u062F: \u0686\u0631\u0627 \u0647\u0645\u0647 \u0645\u0646 \u0631\u0627 <mask> \u062F\u0627\u0631\u0646\u062F \u0627\u0645\u0627 \u0627\u0632 \u062A\u0648 \u0645\u062A\u0646\u0641\u0631\u0646\u062F\u061F`
1153
+ ]
1154
+ ]
1155
+ ]);
1156
+ var MAPPING_AR = /* @__PURE__ */ new Map([
1157
+ ["text-classification", [`\u0623\u062D\u0628\u0643. \u0623\u0647\u0648\u0627\u0643`]],
1158
+ [
1159
+ "token-classification",
1160
+ [`\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u0631\u0644\u064A\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0645\u064A \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0627\u0644\u0642\u062F\u0633 \u0641\u064A \u0641\u0644\u0633\u0637\u064A\u0646.`]
1161
+ ],
1162
+ [
1163
+ "question-answering",
1164
+ [
1165
+ {
1166
+ text: `\u0623\u064A\u0646 \u0623\u0633\u0643\u0646\u061F`,
1167
+ context: `\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u064A\u0631\u0648\u062A`
1168
+ },
1169
+ {
1170
+ text: `\u0623\u064A\u0646 \u0623\u0633\u0643\u0646\u061F`,
1171
+ context: `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`
1172
+ },
1173
+ {
1174
+ text: `\u0645\u0627 \u0627\u0633\u0645\u064A\u061F`,
1175
+ context: `\u0627\u0633\u0645\u064A \u0633\u0639\u064A\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u062D\u064A\u0641\u0627.`
1176
+ },
1177
+ {
1178
+ text: `\u0645\u0627 \u0644\u0642\u0628 \u062E\u0627\u0644\u062F \u0628\u0646 \u0627\u0644\u0648\u0644\u064A\u062F \u0628\u0627\u0644\u0639\u0631\u0628\u064A\u0629\u061F`,
1179
+ context: `\u062E\u0627\u0644\u062F \u0628\u0646 \u0627\u0644\u0648\u0644\u064A\u062F \u0645\u0646 \u0623\u0628\u0637\u0627\u0644 \u0648\u0642\u0627\u062F\u0629 \u0627\u0644\u0641\u062A\u062D \u0627\u0644\u0625\u0633\u0644\u0627\u0645\u064A \u0648\u0642\u062F \u062A\u062D\u062F\u062B\u062A \u0639\u0646\u0647 \u0627\u0644\u0644\u063A\u0627\u062A \u0627\u0644\u0625\u0646\u062C\u0644\u064A\u0632\u064A\u0629 \u0648\u0627\u0644\u0641\u0631\u0646\u0633\u064A\u0629 \u0648\u0627\u0644\u0625\u0633\u0628\u0627\u0646\u064A\u0629 \u0648\u0644\u0642\u0628 \u0628\u0633\u064A\u0641 \u0627\u0644\u0644\u0647 \u0627\u0644\u0645\u0633\u0644\u0648\u0644.`
1180
+ }
1181
+ ]
1182
+ ],
1183
+ ["translation", [`\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u0631\u0644\u064A\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`]],
1184
+ [
1185
+ "summarization",
1186
+ [
1187
+ `\u062A\u0642\u0639 \u0627\u0644\u0623\u0647\u0631\u0627\u0645\u0627\u062A \u0641\u064A \u0627\u0644\u062C\u064A\u0632\u0629 \u0642\u0631\u0628 \u0627\u0644\u0642\u0627\u0647\u0631\u0629 \u0641\u064A \u0645\u0635\u0631 \u0648\u0642\u062F \u0628\u0646\u064A\u062A \u0645\u0646\u0630 \u0639\u062F\u0629 \u0642\u0631\u0648\u0646\u060C \u0648\u0642\u064A\u0644 \u0625\u0646\u0647\u0627 \u0643\u0627\u0646\u062A \u0642\u0628\u0648\u0631\u0627 \u0644\u0644\u0641\u0631\u0627\u0639\u0646\u0629 \u0648\u062A\u0645 \u0628\u0646\u0627\u0624\u0647\u0627 \u0628\u0639\u0645\u0644\u064A\u0629 \u0647\u0646\u062F\u0633\u064A\u0629 \u0631\u0627\u0626\u0639\u0629 \u0648\u0627\u0633\u062A\u0642\u062F\u0645\u062A \u062D\u062C\u0627\u0631\u062A\u0647\u0627 \u0645\u0646 \u062C\u0628\u0644 \u0627\u0644\u0645\u0642\u0637\u0645 \u0648\u062A\u0645 \u0646\u0642\u0644\u0647\u0627 \u0628\u0627\u0644\u0633\u0641\u0646 \u0623\u0648 \u0639\u0644\u0649 \u0627\u0644\u0631\u0645\u0644\u060C \u0648\u0645\u0627 \u062A\u0632\u0627\u0644 \u0634\u0627\u0645\u062E\u0629 \u0648\u064A\u0642\u0635\u062F\u0647\u0627 \u0627\u0644\u0633\u064A\u0627\u062D \u0645\u0646 \u0643\u0627\u0641\u0629 \u0623\u0631\u062C\u0627\u0621 \u0627\u0644\u0645\u0639\u0645\u0648\u0631\u0629.`
1188
+ ]
1189
+ ],
1190
+ [
1191
+ "text-generation",
1192
+ [
1193
+ `\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u062D\u0628 \u0623\u0646`,
1194
+ `\u062F\u0639 \u0627\u0644\u0645\u0643\u0627\u0631\u0645 \u0644\u0627 \u062A\u0631\u062D\u0644 \u0644\u0628\u063A\u064A\u062A\u0647\u0627 - \u0648\u0627\u0642\u0639\u062F \u0641\u0625\u0646\u0643 \u0623\u0646\u062A \u0627\u0644\u0637\u0627\u0639\u0645 \u0627\u0644\u0643\u0627\u0633\u064A.`,
1195
+ `\u0644\u0645\u0627\u0630\u0627 \u0646\u062D\u0646 \u0647\u0646\u0627\u061F`,
1196
+ `\u0627\u0644\u0642\u062F\u0633 \u0645\u062F\u064A\u0646\u0629 \u062A\u0627\u0631\u064A\u062E\u064A\u0629\u060C \u0628\u0646\u0627\u0647\u0627 \u0627\u0644\u0643\u0646\u0639\u0627\u0646\u064A\u0648\u0646 \u0641\u064A`,
1197
+ `\u0643\u0627\u0646 \u064A\u0627 \u0645\u0627 \u0643\u0627\u0646 \u0641\u064A \u0642\u062F\u064A\u0645 \u0627\u0644\u0632\u0645\u0627\u0646`
1198
+ ]
1199
+ ],
1200
+ ["fill-mask", [`\u0628\u0627\u0631\u064A\u0633 <mask> \u0641\u0631\u0646\u0633\u0627.`, `\u0641\u0644\u0633\u0641\u0629 \u0627\u0644\u062D\u064A\u0627\u0629 \u0647\u064A <mask>.`]],
1201
+ [
1202
+ "sentence-similarity",
1203
+ [
1204
+ {
1205
+ source_sentence: "\u0647\u0630\u0627 \u0634\u062E\u0635 \u0633\u0639\u064A\u062F",
1206
+ sentences: ["\u0647\u0630\u0627 \u0643\u0644\u0628 \u0633\u0639\u064A\u062F", "\u0647\u0630\u0627 \u0634\u062E\u0635 \u0633\u0639\u064A\u062F \u062C\u062F\u0627", "\u0627\u0644\u064A\u0648\u0645 \u0647\u0648 \u064A\u0648\u0645 \u0645\u0634\u0645\u0633"]
1207
+ }
1208
+ ]
1209
+ ]
1210
+ ]);
1211
+ var MAPPING_BN = /* @__PURE__ */ new Map([
1212
+ ["text-classification", [`\u09AC\u09BE\u0999\u09BE\u09B2\u09BF\u09B0 \u0998\u09B0\u09C7 \u0998\u09B0\u09C7 \u0986\u099C \u09A8\u09AC\u09BE\u09A8\u09CD\u09A8 \u0989\u09CE\u09B8\u09AC\u0964`]],
1213
+ [
1214
+ "token-classification",
1215
+ [`\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u099C\u09BE\u09B9\u09BF\u09A6 \u098F\u09AC\u0982 \u0986\u09AE\u09BF \u09A2\u09BE\u0995\u09BE\u09DF \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`, `\u09A4\u09BF\u09A8\u09BF \u0997\u09C1\u0997\u09B2\u09C7 \u099A\u09BE\u0995\u09B0\u09C0 \u0995\u09B0\u09C7\u09A8\u0964`, `\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B8\u09C1\u09B8\u09CD\u09AE\u09BF\u09A4\u09BE \u098F\u09AC\u0982 \u0986\u09AE\u09BF \u0995\u09B2\u0995\u09BE\u09A4\u09BE\u09DF \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`]
1216
+ ],
1217
+ ["translation", [`\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u099C\u09BE\u09B9\u09BF\u09A6, \u0986\u09AE\u09BF \u09B0\u0982\u09AA\u09C1\u09B0\u09C7 \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`, `\u0986\u09AA\u09A8\u09BF \u0995\u09C0 \u0986\u099C\u0995\u09C7 \u09AC\u09BE\u09B8\u09BE\u09DF \u0986\u09B8\u09AC\u09C7\u09A8?`]],
1218
+ [
1219
+ "summarization",
1220
+ [
1221
+ `\u2018\u0987\u0995\u09CB\u09A8\u09AE\u09BF\u09B8\u09CD\u099F\u2019 \u09B2\u09BF\u0996\u09C7\u099B\u09C7, \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u099A\u09BE\u09B0 \u09AE\u09BE\u09B8 \u09B8\u09CD\u09A5\u09BE\u09DF\u09C0 \u09B9\u0993\u09DF\u09BE\u09B0 \u0996\u09AC\u09B0\u099F\u09BF \u09A6\u09C1\u0987 \u0995\u09BE\u09B0\u09A3\u09C7 \u0986\u09A8\u09A8\u09CD\u09A6\u09C7\u09B0\u0964 \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF \u09AF\u09A4 \u09A6\u09BF\u09A8 \u09AA\u09B0\u09CD\u09AF\u09A8\u09CD\u09A4 \u09B6\u09B0\u09C0\u09B0\u09C7 \u099F\u09BF\u0995\u09AC\u09C7, \u09A4\u09A4 \u09A6\u09BF\u09A8 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3 \u09A5\u09C7\u0995\u09C7 \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BF\u09A4 \u09A5\u09BE\u0995\u09BE \u09B8\u09AE\u09CD\u09AD\u09AC\u0964 \u0985\u09B0\u09CD\u09A5\u09BE\u09CE, \u098F\u09AE\u09A8 \u098F\u0995 \u099F\u09BF\u0995\u09BE\u09B0 \u09AA\u09CD\u09B0\u09DF\u09CB\u099C\u09A8 \u09B9\u09AC\u09C7, \u09AF\u09BE \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u0989\u09A4\u09CD\u09AA\u09BE\u09A6\u09A8\u0995\u09C7 \u09AA\u09CD\u09B0\u09B0\u09CB\u099A\u09BF\u09A4 \u0995\u09B0\u09A4\u09C7 \u09AA\u09BE\u09B0\u09C7 \u098F\u09AC\u0982 \u09A6\u09C0\u09B0\u09CD\u0998\u09B8\u09CD\u09A5\u09BE\u09DF\u09C0 \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BE \u09A6\u09BF\u09A4\u09C7 \u09AA\u09BE\u09B0\u09C7\u0964 \u098F\u0997\u09C1\u09B2\u09CB \u0996\u09C1\u0981\u099C\u09C7 \u09AC\u09C7\u09B0 \u0995\u09B0\u09BE\u0993 \u09B8\u09B9\u099C\u0964 \u098F\u099F\u09BF \u0986\u09AD\u09BE\u09B8 \u09A6\u09C7\u09DF, \u09AC\u09CD\u09AF\u09BE\u09AA\u0995 \u09B9\u09BE\u09B0\u09C7 \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3 \u09AB\u09B2\u09BE\u09AB\u09B2 \u09AE\u09CB\u099F\u09BE\u09AE\u09C1\u099F\u09BF \u09A8\u09BF\u09B0\u09CD\u09AD\u09C1\u09B2 \u09B9\u0993\u09DF\u09BE \u0989\u099A\u09BF\u09A4\u0964 \u09A6\u09CD\u09AC\u09BF\u09A4\u09C0\u09DF \u0986\u09B0\u09C7\u0995\u099F\u09BF \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B0 \u09A8\u09C7\u09A4\u09C3\u09A4\u09CD\u09AC \u09A6\u09BF\u09DF\u09C7\u099B\u09C7\u09A8 \u09AF\u09C1\u0995\u09CD\u09A4\u09B0\u09BE\u099C\u09CD\u09AF\u09C7\u09B0 \u09AE\u09C7\u09A1\u09BF\u0995\u09C7\u09B2 \u09B0\u09BF\u09B8\u09BE\u09B0\u09CD\u099A \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2\u09C7\u09B0 (\u098F\u09AE\u0986\u09B0\u09B8\u09BF) \u0987\u09AE\u09BF\u0989\u09A8\u09CB\u09B2\u099C\u09BF\u09B8\u09CD\u099F \u09A4\u09BE\u0993 \u09A6\u0982\u0964 \u09A4\u09BF\u09A8\u09BF \u099F\u09BF-\u09B8\u09C7\u09B2 \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3\u09C7 \u0995\u09BE\u099C \u0995\u09B0\u09C7\u099B\u09C7\u09A8\u0964 \u099F\u09BF-\u09B8\u09C7\u09B2 \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3\u09C7\u09B0 \u09AA\u09CD\u09B0\u0995\u09CD\u09B0\u09BF\u09DF\u09BE \u0985\u09AC\u09B6\u09CD\u09AF \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u09AE\u09A4\u09CB \u098F\u09A4 \u0986\u09B2\u09CB\u099A\u09BF\u09A4 \u09A8\u09DF\u0964 \u09A4\u09AC\u09C7 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3\u09C7\u09B0 \u09AC\u09BF\u09B0\u09C1\u09A6\u09CD\u09A7\u09C7 \u09B2\u09DC\u09BE\u0987 \u098F\u09AC\u0982 \u09A6\u09C0\u09B0\u09CD\u0998\u09AE\u09C7\u09DF\u09BE\u09A6\u09BF \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BE\u09DF \u09B8\u09AE\u09BE\u09A8 \u0997\u09C1\u09B0\u09C1\u09A4\u09CD\u09AC\u09AA\u09C2\u09B0\u09CD\u09A3 \u09AD\u09C2\u09AE\u09BF\u0995\u09BE \u09AA\u09BE\u09B2\u09A8 \u0995\u09B0\u09C7\u0964 \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B8\u0982\u0995\u09CD\u09B0\u09BE\u09A8\u09CD\u09A4 \u09A8\u09BF\u09AC\u09A8\u09CD\u09A7 \u09AA\u09CD\u09B0\u0995\u09BE\u09B6\u09BF\u09A4 \u09B9\u09DF\u09C7\u099B\u09C7 \u2018\u09A8\u09C7\u099A\u09BE\u09B0 \u0987\u09AE\u09BF\u0989\u09A8\u09CB\u09B2\u099C\u09BF\u2019 \u09B8\u09BE\u09AE\u09DF\u09BF\u0995\u09C0\u09A4\u09C7\u0964 \u09A4\u09BE\u0981\u09B0\u09BE \u09AC\u09B2\u099B\u09C7\u09A8, \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u0995\u09CB\u09AD\u09BF\u09A1-\u09E7\u09EF \u09AE\u09C3\u09A6\u09C1 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3\u09C7\u09B0 \u09B6\u09BF\u0995\u09BE\u09B0 \u09E8\u09EE \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09B0 \u09B0\u0995\u09CD\u09A4\u09C7\u09B0 \u09A8\u09AE\u09C1\u09A8\u09BE, \u09E7\u09EA \u099C\u09A8 \u0997\u09C1\u09B0\u09C1\u09A4\u09B0 \u0985\u09B8\u09C1\u09B8\u09CD\u09A5 \u0993 \u09E7\u09EC \u099C\u09A8 \u09B8\u09C1\u09B8\u09CD\u09A5 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09B0 \u09B0\u0995\u09CD\u09A4\u09C7\u09B0 \u09A8\u09AE\u09C1\u09A8\u09BE \u09AA\u09B0\u09C0\u0995\u09CD\u09B7\u09BE \u0995\u09B0\u09C7\u099B\u09C7\u09A8\u0964 \u0997\u09AC\u09C7\u09B7\u09A3\u09BE \u09A8\u09BF\u09AC\u09A8\u09CD\u09A7\u09C7 \u09AC\u09B2\u09BE \u09B9\u09DF, \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09BF\u09A4 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09A6\u09C7\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u099F\u09BF-\u09B8\u09C7\u09B2\u09C7\u09B0 \u09A4\u09C0\u09AC\u09CD\u09B0 \u09AA\u09CD\u09B0\u09A4\u09BF\u0995\u09CD\u09B0\u09BF\u09DF\u09BE \u09A4\u09BE\u0981\u09B0\u09BE \u09A6\u09C7\u0996\u09C7\u099B\u09C7\u09A8\u0964 \u098F \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u09AE\u09C3\u09A6\u09C1 \u0993 \u0997\u09C1\u09B0\u09C1\u09A4\u09B0 \u0985\u09B8\u09C1\u09B8\u09CD\u09A5 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09A6\u09C7\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u09AA\u09CD\u09B0\u09A4\u09BF\u0995\u09CD\u09B0\u09BF\u09DF\u09BE\u09B0 \u09AD\u09BF\u09A8\u09CD\u09A8\u09A4\u09BE \u09AA\u09BE\u0993\u09DF\u09BE \u0997\u09C7\u099B\u09C7\u0964`
1222
+ ]
1223
+ ],
1224
+ ["text-generation", [`\u0986\u09AE\u09BF \u09B0\u09A4\u09A8 \u098F\u09AC\u0982 \u0986\u09AE\u09BF`, `\u09A4\u09C1\u09AE\u09BF \u09AF\u09A6\u09BF \u099A\u09BE\u0993 \u09A4\u09AC\u09C7`, `\u09AE\u09BF\u09A5\u09BF\u09B2\u09BE \u0986\u099C\u0995\u09C7 \u09AC\u09A1\u09CD\u09A1`]],
1225
+ ["fill-mask", [`\u0986\u09AE\u09BF \u09AC\u09BE\u0982\u09B2\u09BE\u09DF <mask> \u0997\u09BE\u0987\u0964`, `\u0986\u09AE\u09BF <mask> \u0996\u09C1\u09AC \u09AD\u09BE\u09B2\u09CB\u09AC\u09BE\u09B8\u09BF\u0964 `]],
1226
+ [
1227
+ "question-answering",
1228
+ [
1229
+ {
1230
+ text: `\u09AA\u09CD\u09B0\u09A5\u09AE \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0995\u09CB\u09A5\u09BE\u09DF \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09DF ?`,
1231
+ context: `\u09AA\u09CD\u09B0\u09A5\u09AE \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AF\u09BC \u09E7\u09EF\u09EE\u09EA \u09B8\u09BE\u09B2\u09C7 \u09B8\u0982\u09AF\u09C1\u0995\u09CD\u09A4 \u0986\u09B0\u09AC \u0986\u09AE\u09BF\u09B0\u09BE\u09A4 \u098F\u09B0 \u09B6\u09BE\u09B0\u099C\u09BE\u09B9 \u09A4\u09C7 \u09AF\u09C7\u0996\u09BE\u09A8\u09C7 \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2\u09C7\u09B0 \u09AE\u09C2\u09B2 \u0985\u09AB\u09BF\u09B8 \u099B\u09BF\u09B2 (\u09E7\u09EF\u09EF\u09EB \u09AA\u09B0\u09CD\u09AF\u09A8\u09CD\u09A4)\u0964 \u09AD\u09BE\u09B0\u09A4 \u09B6\u09CD\u09B0\u09C0\u09B2\u0999\u09CD\u0995\u09BE\u09B0 \u09B8\u09BE\u09A5\u09C7 \u0986\u09A8\u09CD\u09A4\u09B0\u09BF\u0995\u09A4\u09BE\u09B9\u09C0\u09A8 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u09B8\u09AE\u09CD\u09AA\u09B0\u09CD\u0995\u09C7\u09B0 \u0995\u09BE\u09B0\u09A3\u09C7 \u09E7\u09EF\u09EE\u09EC \u09B8\u09BE\u09B2\u09C7\u09B0 \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u09AC\u09B0\u09CD\u099C\u09A8 \u0995\u09B0\u09C7\u0964 \u09E7\u09EF\u09EF\u09E9 \u09B8\u09BE\u09B2\u09C7 \u09AD\u09BE\u09B0\u09A4 \u0993 \u09AA\u09BE\u0995\u09BF\u09B8\u09CD\u09A4\u09BE\u09A8 \u098F\u09B0 \u09AE\u09A7\u09CD\u09AF\u09C7 \u09B0\u09BE\u099C\u09A8\u09C8\u09A4\u09BF\u0995 \u0985\u09B8\u09CD\u09A5\u09BF\u09B0\u09A4\u09BE\u09B0 \u0995\u09BE\u09B0\u09A3\u09C7 \u098F\u099F\u09BF \u09AC\u09BE\u09A4\u09BF\u09B2 \u09B9\u09AF\u09BC\u09C7 \u09AF\u09BE\u09AF\u09BC\u0964 \u09B6\u09CD\u09B0\u09C0\u09B2\u0999\u09CD\u0995\u09BE \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA \u09B6\u09C1\u09B0\u09C1 \u09A5\u09C7\u0995\u09C7 \u0985\u0982\u09B6 \u0997\u09CD\u09B0\u09B9\u09A3 \u0995\u09B0\u09C7 \u0986\u09B8\u099B\u09C7\u0964 \u0986\u09A8\u09CD\u09A4\u09B0\u09CD\u099C\u09BE\u09A4\u09BF\u0995 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2 \u09A8\u09BF\u09AF\u09BC\u09AE \u0995\u09B0\u09C7 \u09A6\u09BF\u09AF\u09BC\u09C7\u099B\u09C7 \u09AF\u09C7 \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA\u09C7\u09B0 \u09B8\u0995\u09B2 \u0996\u09C7\u09B2\u09BE \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AC\u09C7 \u0985\u09AB\u09BF\u09B8\u09BF\u09AF\u09BC\u09BE\u09B2 \u098F\u0995\u09A6\u09BF\u09A8\u09C7\u09B0 \u0986\u09A8\u09CD\u09A4\u09B0\u09CD\u099C\u09BE\u09A4\u09BF\u0995 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u09B9\u09BF\u09B8\u09C7\u09AC\u09C7\u0964 \u098F\u09B8\u09BF\u09B8\u09BF \u0998\u09CB\u09B7\u09A8\u09BE \u0985\u09A8\u09C1\u09AF\u09BE\u09AF\u09BC\u09C0 \u09AA\u09CD\u09B0\u09A4\u09BF \u09A6\u09C1\u0987 \u09AC\u099B\u09B0 \u09AA\u09B0 \u09AA\u09B0 \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AF\u09BC \u09E8\u09E6\u09E6\u09EE \u09B8\u09BE\u09B2 \u09A5\u09C7\u0995\u09C7\u0964`
1232
+ },
1233
+ {
1234
+ text: `\u09AD\u09BE\u09B0\u09A4\u09C0\u09AF\u09BC \u09AC\u09BE\u0999\u09BE\u09B2\u09BF \u0995\u09A5\u09BE\u09B8\u09BE\u09B9\u09BF\u09A4\u09CD\u09AF\u09BF\u0995 \u09AE\u09B9\u09BE\u09B6\u09CD\u09AC\u09C7\u09A4\u09BE \u09A6\u09C7\u09AC\u09C0\u09B0 \u09AE\u09C3\u09A4\u09CD\u09AF\u09C1 \u0995\u09AC\u09C7 \u09B9\u09DF ?`,
1235
+ context: `\u09E8\u09E6\u09E7\u09EC \u09B8\u09BE\u09B2\u09C7\u09B0 \u09E8\u09E9 \u099C\u09C1\u09B2\u09BE\u0987 \u09B9\u09C3\u09A6\u09B0\u09CB\u0997\u09C7 \u0986\u0995\u09CD\u09B0\u09BE\u09A8\u09CD\u09A4 \u09B9\u09AF\u09BC\u09C7 \u09AE\u09B9\u09BE\u09B6\u09CD\u09AC\u09C7\u09A4\u09BE \u09A6\u09C7\u09AC\u09C0 \u0995\u09B2\u0995\u09BE\u09A4\u09BE\u09B0 \u09AC\u09C7\u09B2 \u09AD\u09BF\u0989 \u0995\u09CD\u09B2\u09BF\u09A8\u09BF\u0995\u09C7 \u09AD\u09B0\u09CD\u09A4\u09BF \u09B9\u09A8\u0964 \u09B8\u09C7\u0987 \u09AC\u099B\u09B0\u0987 \u09E8\u09EE \u099C\u09C1\u09B2\u09BE\u0987 \u098F\u0995\u09BE\u09A7\u09BF\u0995 \u0985\u0999\u09CD\u0997 \u09AC\u09BF\u0995\u09B2 \u09B9\u09AF\u09BC\u09C7 \u09A4\u09BE\u0981\u09B0 \u09AE\u09C3\u09A4\u09CD\u09AF\u09C1 \u0998\u099F\u09C7\u0964 \u09A4\u09BF\u09A8\u09BF \u09AE\u09A7\u09C1\u09AE\u09C7\u09B9, \u09B8\u09C7\u09AA\u09CD\u099F\u09BF\u09B8\u09C7\u09AE\u09BF\u09AF\u09BC\u09BE \u0993 \u09AE\u09C2\u09A4\u09CD\u09B0 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3 \u09B0\u09CB\u0997\u09C7\u0993 \u09AD\u09C1\u0997\u099B\u09BF\u09B2\u09C7\u09A8\u0964`
1236
+ },
1237
+ {
1238
+ text: `\u09AE\u09BE\u09B8\u09CD\u099F\u09BE\u09B0\u09A6\u09BE \u09B8\u09C2\u09B0\u09CD\u09AF\u0995\u09C1\u09AE\u09BE\u09B0 \u09B8\u09C7\u09A8\u09C7\u09B0 \u09AC\u09BE\u09AC\u09BE\u09B0 \u09A8\u09BE\u09AE \u0995\u09C0 \u099B\u09BF\u09B2 ?`,
1239
+ context: `\u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u09E7\u09EE\u09EF\u09EA \u09B8\u09BE\u09B2\u09C7\u09B0 \u09E8\u09E8 \u09AE\u09BE\u09B0\u09CD\u099A \u099A\u099F\u09CD\u099F\u0997\u09CD\u09B0\u09BE\u09AE\u09C7\u09B0 \u09B0\u09BE\u0989\u099C\u09BE\u09A8 \u09A5\u09BE\u09A8\u09BE\u09B0 \u09A8\u09CB\u09AF\u09BC\u09BE\u09AA\u09BE\u09A1\u09BC\u09BE\u09AF\u09BC \u0985\u09B0\u09CD\u09A5\u09A8\u09C8\u09A4\u09BF\u0995 \u09AD\u09BE\u09AC\u09C7 \u0985\u09B8\u09CD\u09AC\u099A\u09CD\u099B\u09B2 \u09AA\u09B0\u09BF\u09AC\u09BE\u09B0\u09C7 \u099C\u09A8\u09CD\u09AE\u0997\u09CD\u09B0\u09B9\u09A3 \u0995\u09B0\u09C7\u09A8\u0964 \u09A4\u09BE\u0981\u09B0 \u09AA\u09BF\u09A4\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B0\u09BE\u099C\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8 \u098F\u09AC\u0982 \u09AE\u09BE\u09A4\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B6\u09B6\u09C0 \u09AC\u09BE\u09B2\u09BE \u09B8\u09C7\u09A8\u0964 \u09B0\u09BE\u099C\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8\u09C7\u09B0 \u09A6\u09C1\u0987 \u099B\u09C7\u09B2\u09C7 \u0986\u09B0 \u099A\u09BE\u09B0 \u09AE\u09C7\u09AF\u09BC\u09C7\u0964 \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u09A4\u09BE\u0981\u09A6\u09C7\u09B0 \u09AA\u09B0\u09BF\u09AC\u09BE\u09B0\u09C7\u09B0 \u099A\u09A4\u09C1\u09B0\u09CD\u09A5 \u09B8\u09A8\u09CD\u09A4\u09BE\u09A8\u0964 \u09A6\u09C1\u0987 \u099B\u09C7\u09B2\u09C7\u09B0 \u09A8\u09BE\u09AE \u09B8\u09C2\u09B0\u09CD\u09AF \u0993 \u0995\u09AE\u09B2\u0964 \u099A\u09BE\u09B0 \u09AE\u09C7\u09AF\u09BC\u09C7\u09B0 \u09A8\u09BE\u09AE \u09AC\u09B0\u09A6\u09BE\u09B8\u09C1\u09A8\u09CD\u09A6\u09B0\u09C0, \u09B8\u09BE\u09AC\u09BF\u09A4\u09CD\u09B0\u09C0, \u09AD\u09BE\u09A8\u09C1\u09AE\u09A4\u09C0 \u0993 \u09AA\u09CD\u09B0\u09AE\u09BF\u09B2\u09BE\u0964 \u09B6\u09C8\u09B6\u09AC\u09C7 \u09AA\u09BF\u09A4\u09BE \u09AE\u09BE\u09A4\u09BE\u0995\u09C7 \u09B9\u09BE\u09B0\u09BE\u09A8\u09CB \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u0995\u09BE\u0995\u09BE \u0997\u09CC\u09B0\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8\u09C7\u09B0 \u0995\u09BE\u099B\u09C7 \u09AE\u09BE\u09A8\u09C1\u09B7 \u09B9\u09AF\u09BC\u09C7\u099B\u09C7\u09A8\u0964 \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u099B\u09C7\u09B2\u09C7\u09AC\u09C7\u09B2\u09BE \u09A5\u09C7\u0995\u09C7\u0987 \u0996\u09C1\u09AC \u09AE\u09A8\u09CB\u09AF\u09CB\u0997\u09C0 \u09AD\u09BE\u09B2 \u099B\u09BE\u09A4\u09CD\u09B0 \u099B\u09BF\u09B2\u09C7\u09A8 \u098F\u09AC\u0982 \u09A7\u09B0\u09CD\u09AE\u09AD\u09BE\u09AC\u09BE\u09AA\u09A8\u09CD\u09A8 \u0997\u09AE\u09CD\u09AD\u09C0\u09B0 \u09AA\u09CD\u09B0\u0995\u09C3\u09A4\u09BF\u09B0 \u099B\u09BF\u09B2\u09C7\u09A8\u0964`
1240
+ }
1241
+ ]
1242
+ ],
1243
+ [
1244
+ "sentence-similarity",
1245
+ [
1246
+ {
1247
+ source_sentence: "\u09B8\u09C7 \u098F\u0995\u099C\u09A8 \u09B8\u09C1\u0996\u09C0 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF",
1248
+ sentences: ["\u09B8\u09C7 \u09B9\u09CD\u09AF\u09BE\u09AA\u09BF \u0995\u09C1\u0995\u09C1\u09B0", "\u09B8\u09C7 \u0996\u09C1\u09AC \u09B8\u09C1\u0996\u09C0 \u09AE\u09BE\u09A8\u09C1\u09B7", "\u0986\u099C \u098F\u0995\u099F\u09BF \u09B0\u09CC\u09A6\u09CD\u09B0\u09CB\u099C\u09CD\u099C\u09CD\u09AC\u09B2 \u09A6\u09BF\u09A8"]
1249
+ }
1250
+ ]
1251
+ ]
1252
+ ]);
1253
+ var MAPPING_MN = /* @__PURE__ */ new Map([
1254
+ ["text-classification", [`\u0411\u0438 \u0447\u0430\u043C\u0434 \u0445\u0430\u0439\u0440\u0442\u0430\u0439`]],
1255
+ [
1256
+ "token-classification",
1257
+ [
1258
+ `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`,
1259
+ `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`,
1260
+ `\u041C\u0430\u043D\u0430\u0439 \u0443\u043B\u0441 \u0442\u0430\u0432\u0430\u043D \u0445\u043E\u0448\u0443\u0443 \u043C\u0430\u043B\u0442\u0430\u0439.`
1261
+ ]
1262
+ ],
1263
+ [
1264
+ "question-answering",
1265
+ [
1266
+ {
1267
+ text: `\u0422\u0430 \u0445\u0430\u0430\u043D\u0430 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433 \u0432\u044D?`,
1268
+ context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`
1269
+ },
1270
+ {
1271
+ text: `\u0422\u0430\u043D\u044B\u0433 \u0445\u044D\u043D \u0433\u044D\u0434\u044D\u0433 \u0432\u044D?`,
1272
+ context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`
1273
+ },
1274
+ {
1275
+ text: `\u041C\u0438\u043D\u0438\u0439 \u043D\u044D\u0440\u0438\u0439\u0433 \u0445\u044D\u043D \u0433\u044D\u0434\u044D\u0433 \u0432\u044D?`,
1276
+ context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`
1277
+ }
1278
+ ]
1279
+ ],
1280
+ ["translation", [`\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`, `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`]],
1281
+ [
1282
+ "summarization",
1283
+ [
1284
+ `\u041C\u043E\u043D\u0433\u043E\u043B \u0423\u043B\u0441 (1992 \u043E\u043D\u043E\u043E\u0441 \u0445\u043E\u0439\u0448) \u2014 \u0434\u043E\u0440\u043D\u043E \u0431\u043E\u043B\u043E\u043D \u0442\u04E9\u0432 \u0410\u0437\u0438\u0434 \u043E\u0440\u0448\u0434\u043E\u0433 \u0431\u04AF\u0440\u044D\u043D \u044D\u0440\u0445\u0442 \u0443\u043B\u0441. \u0425\u043E\u0439\u0434 \u0442\u0430\u043B\u0430\u0430\u0440\u0430\u0430 \u041E\u0440\u043E\u0441, \u0431\u0443\u0441\u0430\u0434 \u0442\u0430\u043B\u0430\u0430\u0440\u0430\u0430 \u0425\u044F\u0442\u0430\u0434 \u0443\u043B\u0441\u0442\u0430\u0439 \u0445\u0438\u043B\u043B\u044D\u0434\u044D\u0433 \u0434\u0430\u043B\u0430\u0439\u0434 \u0433\u0430\u0440\u0446\u0433\u04AF\u0439 \u043E\u0440\u043E\u043D. \u041D\u0438\u0439\u0441\u043B\u044D\u043B \u2014 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440 \u0445\u043E\u0442. \u0410\u043B\u0442\u0430\u0439\u043D \u043D\u0443\u0440\u0443\u0443\u043D\u0430\u0430\u0441 \u0425\u044F\u043D\u0433\u0430\u043D, \u0421\u043E\u0451\u043D\u043E\u043E\u0441 \u0413\u043E\u0432\u044C \u0445\u04AF\u0440\u0441\u044D\u043D 1 \u0441\u0430\u044F 566 \u043C\u044F\u043D\u0433\u0430\u043D \u043A\u043C2 \u0443\u0443\u0434\u0430\u043C \u043D\u0443\u0442\u0430\u0433\u0442\u0430\u0439, \u0434\u044D\u043B\u0445\u0438\u0439\u0434 \u043D\u0443\u0442\u0430\u0433 \u0434\u044D\u0432\u0441\u0433\u044D\u0440\u0438\u0439\u043D \u0445\u044D\u043C\u0436\u044D\u044D\u0433\u044D\u044D\u0440 19-\u0440\u0442 \u0436\u0430\u0433\u0441\u0434\u0430\u0433. 2015 \u043E\u043D\u044B \u044D\u0445\u044D\u043D\u0434 \u041C\u043E\u043D\u0433\u043E\u043B \u0423\u043B\u0441\u044B\u043D \u0445\u04AF\u043D \u0430\u043C 3 \u0441\u0430\u044F \u0445\u04AF\u0440\u0441\u044D\u043D (135-\u0440 \u043E\u043B\u043E\u043D). \u04AE\u043D\u0434\u0441\u044D\u043D\u0434\u044D\u044D \u043C\u043E\u043D\u0433\u043E\u043B \u04AF\u043D\u0434\u044D\u0441\u0442\u044D\u043D (95 \u0445\u0443\u0432\u044C), \u043C\u04E9\u043D \u0445\u0430\u0441\u0430\u0433, \u0442\u0443\u0432\u0430 \u0445\u04AF\u043D \u0431\u0430\u0439\u043D\u0430. 16-\u0440 \u0437\u0443\u0443\u043D\u0430\u0430\u0441 \u0445\u043E\u0439\u0448 \u0431\u0443\u0434\u0434\u044B\u043D \u0448\u0430\u0448\u0438\u043D, 20-\u0440 \u0437\u0443\u0443\u043D\u0430\u0430\u0441 \u0448\u0430\u0448\u0438\u043D\u0433\u04AF\u0439 \u0431\u0430\u0439\u0434\u0430\u043B \u0434\u044D\u043B\u0433\u044D\u0440\u0441\u044D\u043D \u0431\u0430 \u0430\u043B\u0431\u0430\u043D \u0445\u044D\u0440\u044D\u0433\u0442 \u043C\u043E\u043D\u0433\u043E\u043B \u0445\u044D\u043B\u044D\u044D\u0440 \u0445\u0430\u0440\u0438\u043B\u0446\u0430\u043D\u0430.`
1285
+ ]
1286
+ ],
1287
+ [
1288
+ "text-generation",
1289
+ [`\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438`, `\u0425\u0430\u043C\u0433\u0438\u0439\u043D \u0441\u0430\u0439\u043D \u0434\u0443\u0443\u0447\u0438\u043D \u0431\u043E\u043B`, `\u041C\u0438\u043D\u0438\u0439 \u0434\u0443\u0440\u0442\u0430\u0439 \u0445\u0430\u043C\u0442\u043B\u0430\u0433 \u0431\u043E\u043B`, `\u042D\u0440\u0442 \u0443\u0440\u044C\u0434\u044B\u043D \u0446\u0430\u0433\u0442`]
1290
+ ],
1291
+ ["fill-mask", [`\u041C\u043E\u043D\u0433\u043E\u043B \u0443\u043B\u0441\u044B\u043D <mask> \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440 \u0445\u043E\u0442\u043E\u043E\u0441 \u044F\u0440\u044C\u0436 \u0431\u0430\u0439\u043D\u0430.`, `\u041C\u0438\u043D\u0438\u0439 \u0430\u043C\u044C\u0434\u0440\u0430\u043B\u044B\u043D \u0437\u043E\u0440\u0438\u043B\u0433\u043E \u0431\u043E\u043B <mask>.`]],
1292
+ [
1293
+ "automatic-speech-recognition",
1294
+ [
1295
+ {
1296
+ label: `Common Voice Train Example`,
1297
+ src: `https://cdn-media.huggingface.co/common_voice/train/common_voice_mn_18577472.wav`
1298
+ },
1299
+ {
1300
+ label: `Common Voice Test Example`,
1301
+ src: `https://cdn-media.huggingface.co/common_voice/test/common_voice_mn_18577346.wav`
1302
+ }
1303
+ ]
1304
+ ],
1305
+ [
1306
+ "text-to-speech",
1307
+ [
1308
+ `\u0411\u0438 \u041C\u043E\u043D\u0433\u043E\u043B \u0443\u043B\u0441\u044B\u043D \u0438\u0440\u0433\u044D\u043D.`,
1309
+ `\u042D\u043D\u044D\u0445\u04AF\u04AF \u0436\u0438\u0448\u044D\u044D \u043D\u044C \u0446\u0430\u0430\u043D\u0430\u0430 \u044F\u043C\u0430\u0440 \u0447 \u0443\u0442\u0433\u0430 \u0430\u0433\u0443\u0443\u043B\u0430\u0430\u0433\u04AF\u0439 \u0431\u043E\u043B\u043D\u043E`,
1310
+ `\u0421\u0430\u0440 \u0448\u0438\u043D\u044D\u0434\u044D\u044D \u0441\u0430\u0439\u0445\u0430\u043D \u0448\u0438\u043D\u044D\u043B\u044D\u0436 \u0431\u0430\u0439\u043D\u0430 \u0443\u0443?`
1311
+ ]
1312
+ ],
1313
+ [
1314
+ "sentence-similarity",
1315
+ [
1316
+ {
1317
+ source_sentence: "\u042D\u043D\u044D \u0431\u043E\u043B \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u0445\u04AF\u043D \u044E\u043C",
1318
+ sentences: ["\u042D\u043D\u044D \u0431\u043E\u043B \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u043D\u043E\u0445\u043E\u0439 \u044E\u043C", "\u042D\u043D\u044D \u0431\u043E\u043B \u043C\u0430\u0448 \u0438\u0445 \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u0445\u04AF\u043D \u044E\u043C", "\u04E8\u043D\u04E9\u04E9\u0434\u04E9\u0440 \u043D\u0430\u0440\u043B\u0430\u0433 \u04E9\u0434\u04E9\u0440 \u0431\u0430\u0439\u043D\u0430"]
1319
+ }
1320
+ ]
1321
+ ]
1322
+ ]);
1323
+ var MAPPING_SI = /* @__PURE__ */ new Map([
1324
+ ["translation", [`\u0DC3\u0DD2\u0D82\u0DC4\u0DBD \u0D89\u0DAD\u0DCF \u0D85\u0DBD\u0D82\u0D9A\u0DCF\u0DBB \u0DB7\u0DCF\u0DC2\u0DCF\u0DC0\u0D9A\u0DD2.`, `\u0DB8\u0DD9\u0DB8 \u0DAD\u0DCF\u0D9A\u0DCA\u0DC2\u0DAB\u0DBA \u0DB7\u0DCF\u0DC0\u0DD2\u0DAD\u0DCF \u0D9A\u0DBB\u0DB1 \u0D94\u0DB6\u0DA7 \u0DC3\u0DCA\u0DAD\u0DD6\u0DAD\u0DD2\u0DBA\u0DD2.`]],
1325
+ ["fill-mask", [`\u0DB8\u0DB8 \u0D9C\u0DD9\u0DAF\u0DBB <mask>.`, `<mask> \u0D89\u0D9C\u0DD9\u0DB1\u0DD3\u0DB8\u0DA7 \u0D9C\u0DD2\u0DBA\u0DCF\u0DBA.`]]
1326
+ ]);
1327
+ var MAPPING_DE = /* @__PURE__ */ new Map([
1328
+ [
1329
+ "question-answering",
1330
+ [
1331
+ {
1332
+ text: `Wo wohne ich?`,
1333
+ context: `Mein Name ist Wolfgang und ich lebe in Berlin`
1334
+ },
1335
+ {
1336
+ text: `Welcher Name wird auch verwendet, um den Amazonas-Regenwald auf Englisch zu beschreiben?`,
1337
+ context: `Der Amazonas-Regenwald, auf Englisch auch als Amazonien oder Amazonas-Dschungel bekannt, ist ein feuchter Laubwald, der den gr\xF6\xDFten Teil des Amazonas-Beckens S\xFCdamerikas bedeckt. Dieses Becken umfasst 7.000.000 Quadratkilometer (2.700.000 Quadratmeilen), von denen 5.500.000 Quadratkilometer (2.100.000 Quadratmeilen) vom Regenwald bedeckt sind. Diese Region umfasst Gebiete von neun Nationen. Der gr\xF6\xDFte Teil des Waldes befindet sich in Brasilien mit 60% des Regenwaldes, gefolgt von Peru mit 13%, Kolumbien mit 10% und geringen Mengen in Venezuela, Ecuador, Bolivien, Guyana, Suriname und Franz\xF6sisch-Guayana. Staaten oder Abteilungen in vier Nationen enthalten "Amazonas" in ihren Namen. Der Amazonas repr\xE4sentiert mehr als die H\xE4lfte der verbleibenden Regenw\xE4lder des Planeten und umfasst den gr\xF6\xDFten und artenreichsten tropischen Regenwald der Welt mit gesch\xE4tzten 390 Milliarden Einzelb\xE4umen, die in 16.000 Arten unterteilt sind.`
1338
+ }
1339
+ ]
1340
+ ],
1341
+ [
1342
+ "sentence-similarity",
1343
+ [
1344
+ {
1345
+ source_sentence: "Das ist eine gl\xFCckliche Person",
1346
+ sentences: [
1347
+ "Das ist ein gl\xFCcklicher Hund",
1348
+ "Das ist eine sehr gl\xFCckliche Person",
1349
+ "Heute ist ein sonniger Tag"
1350
+ ]
1351
+ }
1352
+ ]
1353
+ ]
1354
+ ]);
1355
+ var MAPPING_DV = /* @__PURE__ */ new Map([
1356
+ ["text-classification", [`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078E\u07A6\u0794\u07A7\u0788\u07AD. \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078D\u07AF\u0784\u07A8\u0788\u07AD`]],
1357
+ [
1358
+ "token-classification",
1359
+ [
1360
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`,
1361
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`,
1362
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0787\u07A8\u079D\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u078A\u07AD\u078B\u07AB\u060C \u0787\u07A6\u0787\u07B0\u0791\u07AB\u078E\u07A6`
1363
+ ]
1364
+ ],
1365
+ [
1366
+ "question-answering",
1367
+ [
1368
+ {
1369
+ text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u078C\u07A7\u0786\u07AA\u061F`,
1370
+ context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`
1371
+ },
1372
+ {
1373
+ text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u078C\u07A7\u0786\u07AA\u061F`,
1374
+ context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`
1375
+ },
1376
+ {
1377
+ text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0786\u07AE\u0784\u07A7\u061F`,
1378
+ context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0787\u07A8\u079D\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u078A\u07AD\u078B\u07AB\u078E\u07A6`
1379
+ },
1380
+ {
1381
+ text: `\u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0790\u07A8\u078A\u07A6\u0786\u07AE\u0781\u07B0\u078B\u07A8\u0782\u07AA\u0789\u07A6\u0781\u07B0 \u0787\u07A8\u0782\u078E\u07A8\u0783\u07AD\u0790\u07A8 \u0784\u07A6\u0780\u07AA\u0782\u07B0 \u0784\u07AD\u0782\u07AA\u0782\u07B0\u0786\u07AA\u0783\u07A7\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u0782\u07A6\u0789\u07AC\u0787\u07B0\u061F`,
1382
+ context: `\u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 (\u0795\u07AF\u0797\u07AA\u0796\u07A9\u0792\u07B0: \u078A\u07B0\u078D\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07A7 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0786\u07A7 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0787\u07A7\u061B \u0790\u07B0\u0795\u07AC\u0782\u07A8\u079D\u07B0: \u0790\u07AC\u078D\u07B0\u0788\u07A7 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0786\u07A7, \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0787\u07A7 \u0782\u07AB\u0782\u07A9 \u0787\u07A7\u0782\u07B0\u0789\u07AA\u0786\u07AE\u0781\u07B0 \u0787\u07AC\u0789\u07A6\u0792\u07AF\u0782\u07A8\u0787\u07A7\u061B \u078A\u07B0\u0783\u07AC\u0782\u07B0\u0797\u07B0: \u078A\u07AE\u0783\u07AD \u0787\u07AC\u0789\u07AC\u0792\u07AE\u0782\u07A8\u0787\u07AC\u0782\u07B0\u061B \u0791\u07A6\u0797\u07B0: \u0787\u07AC\u0789\u07AC\u0792\u07AF\u0782\u07B0\u0783\u07AD\u078E\u07AC\u0788\u07A6\u0787\u07AA\u0791\u07B0)\u060C \u0787\u07A8\u078E\u07A8\u0783\u07AD\u0790\u07A8 \u0784\u07A6\u0780\u07AA\u0782\u07B0 \u0784\u07AA\u0782\u07A7 \u0787\u07AC\u0789\u07AC\u0792\u07AF\u0782\u07A8\u0787\u07A7 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u078B\u07A6 \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0796\u07A6\u0782\u07B0\u078E\u07A6\u078D\u07B0 \u0787\u07A6\u0786\u07A9, \u0790\u07A6\u0787\u07AA\u078C\u07AA \u0787\u07AC\u0789\u07AC\u0783\u07A8\u0786\u07A7\u078E\u07AC \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0784\u07AD\u0790\u07A8\u0782\u07B0 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07AC \u0784\u07AE\u0791\u07AA\u0784\u07A6\u0787\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07A8\u0789\u07AC\u0782\u07AD \u0789\u07AE\u0787\u07A8\u0790\u07B0\u0793\u07B0 \u0784\u07AE\u0783\u07AF\u0791\u07B0\u078D\u07A9\u078A\u07B0 \u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07AC\u0787\u07AC\u0786\u07AC\u0788\u07AC. \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0784\u07AD\u0790\u07A8\u0782\u07B0 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07AC \u0784\u07AE\u0791\u07AA \u0789\u07A8\u0782\u07A6\u0786\u07A9 7 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0786\u07A8\u078D\u07AF\u0789\u07A9\u0793\u07A6\u0783 (2.7 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0789\u07A6\u0787\u07A8\u078D\u07B0(. \u0789\u07A9\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 5.5 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0786\u07A8\u078D\u07AF\u0789\u07A9\u0793\u07A6\u0783 (2.1 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0789\u07A6\u0787\u07A8\u078D\u07B0) \u0787\u07A6\u0786\u07A9 \u0789\u07A8 \u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07AC\u0788\u07AC. \u0789\u07A8 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07A6\u0787\u07A8 9 \u078E\u07A6\u0787\u07AA\u0789\u07A6\u0786\u07A6\u0781\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07A7 \u0793\u07AC\u0783\u07A8\u0793\u07A6\u0783\u07A9 \u0780\u07A8\u0789\u07AC\u0782\u07AC\u0787\u07AC\u0788\u07AC. 60% \u0787\u07A7\u0787\u07A8\u0787\u07AC\u0786\u07AC \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0784\u07AE\u0791\u07AA \u0784\u07A6\u0787\u07AC\u0787\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07A6\u0782\u07A9 \u0784\u07B0\u0783\u07AC\u0792\u07A8\u078D\u07B0\u0787\u07A6\u0781\u07AC\u0788\u07AC. \u0787\u07AD\u078E\u07AC \u078A\u07A6\u0780\u07AA\u078C\u07AA\u0782\u07B0 13% \u0787\u07A7\u0787\u07AC\u0786\u07AA \u0795\u07AC\u0783\u07AB \u0787\u07A7\u0787\u07A8 10% \u0787\u07A7\u0787\u07AC\u0786\u07AA \u0786\u07AE\u078D\u07A6\u0789\u07B0\u0784\u07A8\u0787\u07A7 \u0787\u07A6\u078B\u07A8 \u0786\u07AA\u0791\u07A6 \u0784\u07A6\u0787\u07AC\u0787\u07B0 \u0780\u07A8\u0789\u07AC\u0782\u07AD \u078E\u07AE\u078C\u07AA\u0782\u07B0 \u0788\u07AC\u0782\u07AC\u0792\u07AA\u0787\u07AC\u078D\u07A7, \u0787\u07AC\u0786\u07B0\u0787\u07A6\u0791\u07AF, \u0784\u07AE\u078D\u07A8\u0788\u07A8\u0787\u07A7, \u078E\u07AA\u0794\u07A7\u0782\u07A7, \u0790\u07AA\u0783\u07A8\u0782\u07A7\u0789\u07B0 \u0787\u07A6\u078B\u07A8 \u078A\u07B0\u0783\u07AC\u0782\u07B0\u0797\u07B0 \u078E\u07B0\u0787\u07A7\u0782\u07A7 \u0787\u07A6\u0781\u07B0 \u0788\u07AC\u0790\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07A9\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 4 \u078E\u07A6\u0787\u07AA\u0789\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8 "\u0787\u07AC\u0789\u07AC\u0792\u07AE\u0782\u07A7\u0790\u07B0" \u0780\u07A8\u0789\u07A6\u0782\u07A6\u0787\u07A8\u078E\u07AC\u0782\u07B0 \u0790\u07B0\u0793\u07AD\u0793\u07B0 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u0791\u07A8\u0795\u07A7\u0793\u07B0\u0789\u07A6\u0782\u07B0\u0793\u07B0 \u0787\u07A6\u0786\u07A6\u0781\u07B0 \u0782\u07A6\u0782\u07B0\u078B\u07A9\u078A\u07A6\u0787\u07A8\u0788\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07AA\u0785\u07A8 \u078B\u07AA\u0782\u07A8\u0794\u07AD\u078E\u07A6\u0787\u07A8 \u0784\u07A7\u0786\u07A9 \u0780\u07AA\u0783\u07A8 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 \u078B\u07AC\u0784\u07A6\u0787\u07A8\u0786\u07AA\u0785\u07A6 \u0787\u07AC\u0787\u07B0\u0784\u07A6\u0794\u07A6\u0781\u07B0\u0788\u07AA\u0783\u07AC\u0784\u07AE\u0791\u07AA\u0788\u07A6\u0783\u07AC\u0787\u07B0 \u0787\u07AC\u0789\u07AD\u0792\u07AE\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0780\u07A8\u0787\u07B0\u0790\u07A7\u0786\u07AA\u0783\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07A8\u0787\u07A9 \u0789\u07AA\u0785\u07A8 \u078B\u07AA\u0782\u07A8\u0794\u07AC\u0787\u07A8\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AE \u0784\u07AE\u0791\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0784\u07A6\u0787\u07AE\u0791\u07A6\u0787\u07A8\u0788\u07A6\u0783\u0790\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0793\u07B0\u0783\u07AC\u0786\u07B0\u0793\u07AC\u0788\u07AC. \u078D\u07A6\u078A\u07A7\u0786\u07AA\u0783\u07AC\u0788\u07AD \u078E\u07AE\u078C\u07AA\u0782\u07B0 16 \u0780\u07A7\u0790\u07B0 \u0790\u07B0\u0795\u07A9\u079D\u07A9\u0790\u07B0\u0787\u07A6\u0781\u07B0 \u0784\u07AC\u0780\u07A8\u078E\u07AC\u0782\u07B0\u0788\u07A7 390 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0788\u07A6\u0787\u07B0\u078C\u07A6\u0783\u07AA\u078E\u07AC \u078E\u07A6\u0790\u07B0 \u0789\u07A8\u078C\u07A7\u078E\u07A6\u0787\u07A8 \u0780\u07A8\u0789\u07AC\u0782\u07AC\u0787\u07AC\u0788\u07AC`
1383
+ }
1384
+ ]
1385
+ ],
1386
+ [
1387
+ "translation",
1388
+ [
1389
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`,
1390
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`
1391
+ ]
1392
+ ],
1393
+ [
1394
+ "summarization",
1395
+ [
1396
+ `\u0793\u07A6\u0788\u07A6\u0783\u07AA\u078E\u07AC \u0787\u07AA\u0790\u07B0\u0789\u07A8\u0782\u07A6\u0786\u07A9 324 \u0789\u07A9\u0793\u07A6\u0783\u07AA\u060C \u0787\u07AC\u0787\u07A9 \u078E\u07A7\u078C\u07B0\u078E\u07A6\u0782\u0791\u07A6\u0786\u07A6\u0781\u07B0 81 \u0784\u07AA\u0783\u07A9\u078E\u07AC \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07A6\u0786\u07A7\u0787\u07A8 \u0787\u07AC\u0787\u07B0\u0788\u07A6\u0783\u07AC\u0788\u07AC. \u0787\u07AC\u0787\u07A9 \u0795\u07AC\u0783\u07A8\u0790\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07AA\u0783\u07A8 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07AC\u0788\u07AC. \u0787\u07AD\u078E\u07AC \u0780\u07A6\u078C\u07A6\u0783\u07AC\u0790\u07B0\u0786\u07A6\u0782\u07A6\u0781\u07B0 \u0780\u07AA\u0783\u07A8 \u0784\u07AA\u0791\u07AA\u078E\u07AC \u078B\u07A8\u078E\u07AA\u0789\u07A8\u0782\u07A6\u0786\u07A9 \u0786\u07AE\u0782\u07B0\u0789\u07AC \u078A\u07A6\u0783\u07A7\u078C\u07A6\u0786\u07AA\u0782\u07B0 125 \u0789\u07A9\u0793\u07A6\u0783\u07AC\u0788\u07AC. (410 \u078A\u07AB\u0793\u07AA) \u0787\u07A6\u0787\u07A8\u078A\u07A8\u078D\u07B0 \u0793\u07A6\u0788\u07A6\u0783\u07AA \u0784\u07A8\u0782\u07A7\u0786\u07AA\u0783\u07A8 \u0787\u07A8\u0783\u07AA\u060C \u0788\u07AE\u079D\u07A8\u0782\u07B0\u078E\u07B0\u0793\u07A6\u0782\u07B0 \u0789\u07AE\u0782\u07A8\u0787\u07AA\u0789\u07AC\u0782\u07B0\u0793\u07B0\u078E\u07AC \u0787\u07AA\u0790\u07B0\u0789\u07A8\u0782\u07B0 \u078A\u07A6\u0780\u07A6\u0782\u07A6\u0787\u07A6\u0785\u07A7 \u078E\u07AE\u0790\u07B0\u060C \u078B\u07AA\u0782\u07A8\u0794\u07AD\u078E\u07A6\u0787\u07A8 \u0789\u07A9\u0780\u07AA\u0782\u07B0 \u0787\u07AA\u078A\u07AC\u0787\u07B0\u078B\u07A8 \u078C\u07A6\u0782\u07B0\u078C\u07A6\u0782\u07AA\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u078C\u07A6\u0782\u07AA\u078E\u07AC \u078D\u07A6\u078E\u07A6\u0784\u07AA \u078D\u07A8\u0784\u07AA\u0782\u07AC\u0788\u07AC. \u0787\u07A6\u078B\u07A8 1930 \u078E\u07A6\u0787\u07A8 \u0782\u07A8\u0787\u07AA \u0794\u07AF\u0786\u07B0\u078E\u07AC \u0786\u07B0\u0783\u07A6\u0787\u07A8\u0790\u07B0\u078D\u07A6\u0783 \u0784\u07A8\u078D\u07B0\u0791\u07A8\u0782\u07B0\u078E\u07B0 \u0784\u07A8\u0782\u07A7\u0786\u07AA\u0783\u07AA\u0789\u07A7\u0787\u07A8 \u0780\u07A6\u0789\u07A6\u0787\u07A6\u0781\u07B0 41 \u0787\u07A6\u0780\u07A6\u0783\u07AA \u0788\u07A6\u0782\u07B0\u078B\u07AC\u0782\u07B0 \u0789\u07A8\u078D\u07A6\u078E\u07A6\u0784\u07AA \u0780\u07A8\u078A\u07AC\u0780\u07AC\u0787\u07B0\u0793\u07A8\u0787\u07AC\u0788\u07AC. \u0789\u07A8\u0787\u07A9 300 \u0789\u07A9\u0793\u07A6\u0783\u07A6\u0781\u07B0 \u0788\u07AA\u0783\u07AC \u0787\u07AA\u0790\u07B0\u0786\u07AE\u0781\u07B0 \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07B0\u0786\u07AA\u0783\u07AC\u0788\u07AA\u0782\u07AA \u078A\u07AA\u0783\u07A6\u078C\u07A6\u0789\u07A6 \u078C\u07A6\u0782\u07AC\u0788\u07AC. 1957 \u078E\u07A6\u0787\u07A8 \u0793\u07A6\u0788\u07A6\u0783\u07AA\u078E\u07AC \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0789\u07A6\u078C\u07A9\u078E\u07A6\u0787\u07A8 \u0780\u07A6\u0783\u07AA\u0786\u07AA\u0783\u07AC\u0788\u07AA\u0782\u07AA \u0784\u07B0\u0783\u07AF\u0791\u07B0\u0786\u07A7\u0790\u07B0\u0793\u07A8\u0782\u07B0\u078E \u0787\u07AD\u0783\u07A8\u0787\u07A6\u078D\u07B0\u078E\u07AC \u0790\u07A6\u0784\u07A6\u0784\u07AA\u0782\u07B0 \u0789\u07A8\u0780\u07A7\u0783\u07AA \u0789\u07A8 \u0793\u07A6\u0788\u07A6\u0783\u07AA \u0786\u07B0\u0783\u07A6\u0787\u07A8\u0790\u07B0\u078D\u07A6\u0783 \u0784\u07A8\u078D\u07B0\u0791\u07A8\u0782\u07B0\u078E\u0787\u07A6\u0781\u07B0 \u0788\u07AA\u0783\u07AC 5.2 \u0789\u07A9\u0793\u07A6\u0783 (17 \u078A\u07AB\u0793\u07AA) \u0787\u07AA\u0780\u07AC\u0788\u07AC. \u0789\u07A8 \u0793\u07B0\u0783\u07A7\u0782\u07B0\u0790\u07B0\u0789\u07A8\u0793\u07A6\u0783\u07AA \u0782\u07AA\u078D\u07A7\u060C \u0787\u07A6\u0787\u07A8\u078A\u07A8\u078D\u07B0 \u0793\u07A6\u0788\u07A6\u0783\u07A6\u0786\u07A9\u060C \u0789\u07A8\u078D\u07A7\u0787\u07AA \u0788\u07A8\u0787\u07A7\u0791\u07A6\u0786\u07B0\u0793\u07A6\u0781\u07B0 \u078A\u07A6\u0780\u07AA \u078A\u07B0\u0783\u07A7\u0782\u07B0\u0790\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07AA\u0783\u07A8 2 \u0788\u07A6\u0782\u07A6\u0787\u07A6\u0781\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u078A\u07B0\u0783\u07A9\u0790\u07B0\u0793\u07AD\u0782\u07B0\u0791\u07A8\u0782\u07B0\u078E \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07AC\u0788\u07AC`
1397
+ ]
1398
+ ],
1399
+ [
1400
+ "text-generation",
1401
+ [
1402
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0794\u07AB\u0790\u07AA\u078A\u07B0 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0789\u07A6\u0787\u07A8\u078E\u07A6\u0782\u0791\u07AA`,
1403
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0789\u07A6\u0783\u07A8\u0787\u07A6\u0789\u07B0\u060C \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u078E\u07A6\u0794\u07A7\u0788\u07A7`,
1404
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u078A\u07A7\u078C\u07AA\u0789\u07A6\u078C\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0`,
1405
+ `\u060C\u0787\u07AC\u0787\u07B0 \u0792\u07A6\u0789\u07A7\u0782\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8`
1406
+ ]
1407
+ ],
1408
+ ["fill-mask", [`.<mask> \u0789\u07A7\u078D\u07AC \u0787\u07A6\u0786\u07A9 \u078B\u07A8\u0788\u07AC\u0780\u07A8\u0783\u07A7\u0787\u07B0\u0796\u07AD\u078E\u07AC`, `\u078E\u07A6\u0783\u07AA\u078B\u07A8\u0794\u07A6\u0787\u07A6\u0786\u07A9 \u078B\u07A8\u0788\u07AC\u0780\u07A8\u0782\u07B0\u078E\u07AC \u0789\u07AC\u078B\u07AA\u078E\u07A6\u0787\u07A8 <mask> \u0786\u07AC\u0787\u07AA\u0789\u07AC\u0787\u07B0.`]]
1409
+ ]);
1410
+ var MAPPING_DEFAULT_WIDGET = /* @__PURE__ */ new Map([
1411
+ ["en", MAPPING_EN],
1412
+ ["zh", MAPPING_ZH],
1413
+ ["fr", MAPPING_FR],
1414
+ ["es", MAPPING_ES],
1415
+ ["ru", MAPPING_RU],
1416
+ ["uk", MAPPING_UK],
1417
+ ["it", MAPPING_IT],
1418
+ ["fa", MAPPING_FA],
1419
+ ["ar", MAPPING_AR],
1420
+ ["bn", MAPPING_BN],
1421
+ ["mn", MAPPING_MN],
1422
+ ["si", MAPPING_SI],
1423
+ ["de", MAPPING_DE],
1424
+ ["dv", MAPPING_DV]
1425
+ ]);
1426
+
39
1427
  // src/pipelines.ts
40
1428
  var MODALITIES = ["cv", "nlp", "audio", "tabular", "multimodal", "rl", "other"];
41
1429
  var MODALITY_LABELS = {
@@ -413,9 +1801,28 @@ var PIPELINE_DATA = {
413
1801
  },
414
1802
  "image-to-image": {
415
1803
  name: "Image-to-Image",
1804
+ subtasks: [
1805
+ {
1806
+ type: "image-inpainting",
1807
+ name: "Image Inpainting"
1808
+ },
1809
+ {
1810
+ type: "image-colorization",
1811
+ name: "Image Colorization"
1812
+ },
1813
+ {
1814
+ type: "super-resolution",
1815
+ name: "Super Resolution"
1816
+ }
1817
+ ],
416
1818
  modality: "cv",
417
1819
  color: "indigo"
418
1820
  },
1821
+ "image-to-video": {
1822
+ name: "Image-to-Video",
1823
+ modality: "multimodal",
1824
+ color: "indigo"
1825
+ },
419
1826
  "unconditional-image-generation": {
420
1827
  name: "Unconditional Image Generation",
421
1828
  modality: "cv",
@@ -584,6 +1991,26 @@ var PIPELINE_DATA = {
584
1991
  modality: "multimodal",
585
1992
  color: "green"
586
1993
  },
1994
+ "mask-generation": {
1995
+ name: "Mask Generation",
1996
+ modality: "cv",
1997
+ color: "indigo"
1998
+ },
1999
+ "zero-shot-object-detection": {
2000
+ name: "Zero-Shot Object Detection",
2001
+ modality: "cv",
2002
+ color: "yellow"
2003
+ },
2004
+ "text-to-3d": {
2005
+ name: "Text-to-3D",
2006
+ modality: "multimodal",
2007
+ color: "yellow"
2008
+ },
2009
+ "image-to-3d": {
2010
+ name: "Image-to-3D",
2011
+ modality: "multimodal",
2012
+ color: "green"
2013
+ },
587
2014
  other: {
588
2015
  name: "Other",
589
2016
  modality: "other",
@@ -596,7 +2023,7 @@ var PIPELINE_TYPES = Object.keys(PIPELINE_DATA);
596
2023
  var SUBTASK_TYPES = Object.values(PIPELINE_DATA).flatMap((data) => "subtasks" in data ? data.subtasks : []).map((s) => s.type);
597
2024
  var PIPELINE_TYPES_SET = new Set(PIPELINE_TYPES);
598
2025
 
599
- // src/audio-classification/data.ts
2026
+ // src/tasks/audio-classification/data.ts
600
2027
  var taskData = {
601
2028
  datasets: [
602
2029
  {
@@ -661,8 +2088,8 @@ var taskData = {
661
2088
  ],
662
2089
  spaces: [
663
2090
  {
664
- description: "An application that can predict the language spoken in a given audio.",
665
- id: "akhaliq/Speechbrain-audio-classification"
2091
+ description: "An application that can classify music into different genre.",
2092
+ id: "kurianbenoy/audioclassification"
666
2093
  }
667
2094
  ],
668
2095
  summary: "Audio classification is the task of assigning a label or class to a given audio. It can be used for recognizing which command a user is giving or the emotion of a statement, as well as identifying a speaker.",
@@ -671,7 +2098,7 @@ var taskData = {
671
2098
  };
672
2099
  var data_default = taskData;
673
2100
 
674
- // src/audio-to-audio/data.ts
2101
+ // src/tasks/audio-to-audio/data.ts
675
2102
  var taskData2 = {
676
2103
  datasets: [
677
2104
  {
@@ -733,7 +2160,7 @@ var taskData2 = {
733
2160
  };
734
2161
  var data_default2 = taskData2;
735
2162
 
736
- // src/automatic-speech-recognition/data.ts
2163
+ // src/tasks/automatic-speech-recognition/data.ts
737
2164
  var taskData3 = {
738
2165
  datasets: [
739
2166
  {
@@ -778,7 +2205,7 @@ var taskData3 = {
778
2205
  models: [
779
2206
  {
780
2207
  description: "A powerful ASR model by OpenAI.",
781
- id: "openai/whisper-large-v2"
2208
+ id: "openai/whisper-large-v3"
782
2209
  },
783
2210
  {
784
2211
  description: "A good generic ASR model by MetaAI.",
@@ -792,24 +2219,24 @@ var taskData3 = {
792
2219
  spaces: [
793
2220
  {
794
2221
  description: "A powerful general-purpose speech recognition application.",
795
- id: "openai/whisper"
2222
+ id: "hf-audio/whisper-large-v3"
796
2223
  },
797
2224
  {
798
2225
  description: "Fastest speech recognition application.",
799
2226
  id: "sanchit-gandhi/whisper-jax"
800
2227
  },
801
2228
  {
802
- description: "An application that transcribes speeches in YouTube videos.",
803
- id: "jeffistyping/Youtube-Whisperer"
2229
+ description: "A high quality speech and text translation model by Meta.",
2230
+ id: "facebook/seamless_m4t"
804
2231
  }
805
2232
  ],
806
2233
  summary: "Automatic Speech Recognition (ASR), also known as Speech to Text (STT), is the task of transcribing a given audio to text. It has many applications, such as voice user interfaces.",
807
- widgetModels: ["openai/whisper-large-v2"],
2234
+ widgetModels: ["openai/whisper-large-v3"],
808
2235
  youtubeId: "TksaY_FDgnk"
809
2236
  };
810
2237
  var data_default3 = taskData3;
811
2238
 
812
- // src/conversational/data.ts
2239
+ // src/tasks/conversational/data.ts
813
2240
  var taskData4 = {
814
2241
  datasets: [
815
2242
  {
@@ -869,7 +2296,7 @@ var taskData4 = {
869
2296
  };
870
2297
  var data_default4 = taskData4;
871
2298
 
872
- // src/document-question-answering/data.ts
2299
+ // src/tasks/document-question-answering/data.ts
873
2300
  var taskData5 = {
874
2301
  datasets: [
875
2302
  {
@@ -934,7 +2361,7 @@ var taskData5 = {
934
2361
  };
935
2362
  var data_default5 = taskData5;
936
2363
 
937
- // src/feature-extraction/data.ts
2364
+ // src/tasks/feature-extraction/data.ts
938
2365
  var taskData6 = {
939
2366
  datasets: [
940
2367
  {
@@ -963,12 +2390,7 @@ var taskData6 = {
963
2390
  }
964
2391
  ]
965
2392
  },
966
- metrics: [
967
- {
968
- description: "",
969
- id: ""
970
- }
971
- ],
2393
+ metrics: [],
972
2394
  models: [
973
2395
  {
974
2396
  description: "A powerful feature extraction model for natural language processing tasks.",
@@ -985,7 +2407,7 @@ var taskData6 = {
985
2407
  };
986
2408
  var data_default6 = taskData6;
987
2409
 
988
- // src/fill-mask/data.ts
2410
+ // src/tasks/fill-mask/data.ts
989
2411
  var taskData7 = {
990
2412
  datasets: [
991
2413
  {
@@ -1060,7 +2482,7 @@ var taskData7 = {
1060
2482
  };
1061
2483
  var data_default7 = taskData7;
1062
2484
 
1063
- // src/image-classification/data.ts
2485
+ // src/tasks/image-classification/data.ts
1064
2486
  var taskData8 = {
1065
2487
  datasets: [
1066
2488
  {
@@ -1146,7 +2568,7 @@ var taskData8 = {
1146
2568
  };
1147
2569
  var data_default8 = taskData8;
1148
2570
 
1149
- // src/image-to-image/data.ts
2571
+ // src/tasks/image-to-image/data.ts
1150
2572
  var taskData9 = {
1151
2573
  datasets: [
1152
2574
  {
@@ -1241,7 +2663,7 @@ var taskData9 = {
1241
2663
  };
1242
2664
  var data_default9 = taskData9;
1243
2665
 
1244
- // src/image-to-text/data.ts
2666
+ // src/tasks/image-to-text/data.ts
1245
2667
  var taskData10 = {
1246
2668
  datasets: [
1247
2669
  {
@@ -1325,7 +2747,7 @@ var taskData10 = {
1325
2747
  };
1326
2748
  var data_default10 = taskData10;
1327
2749
 
1328
- // src/image-segmentation/data.ts
2750
+ // src/tasks/image-segmentation/data.ts
1329
2751
  var taskData11 = {
1330
2752
  datasets: [
1331
2753
  {
@@ -1420,7 +2842,7 @@ var taskData11 = {
1420
2842
  };
1421
2843
  var data_default11 = taskData11;
1422
2844
 
1423
- // src/object-detection/data.ts
2845
+ // src/tasks/object-detection/data.ts
1424
2846
  var taskData12 = {
1425
2847
  datasets: [
1426
2848
  {
@@ -1492,7 +2914,7 @@ var taskData12 = {
1492
2914
  };
1493
2915
  var data_default12 = taskData12;
1494
2916
 
1495
- // src/depth-estimation/data.ts
2917
+ // src/tasks/depth-estimation/data.ts
1496
2918
  var taskData13 = {
1497
2919
  datasets: [
1498
2920
  {
@@ -1543,7 +2965,7 @@ var taskData13 = {
1543
2965
  };
1544
2966
  var data_default13 = taskData13;
1545
2967
 
1546
- // src/placeholder/data.ts
2968
+ // src/tasks/placeholder/data.ts
1547
2969
  var taskData14 = {
1548
2970
  datasets: [],
1549
2971
  demo: {
@@ -1560,7 +2982,7 @@ var taskData14 = {
1560
2982
  };
1561
2983
  var data_default14 = taskData14;
1562
2984
 
1563
- // src/reinforcement-learning/data.ts
2985
+ // src/tasks/reinforcement-learning/data.ts
1564
2986
  var taskData15 = {
1565
2987
  datasets: [
1566
2988
  {
@@ -1629,7 +3051,7 @@ var taskData15 = {
1629
3051
  };
1630
3052
  var data_default15 = taskData15;
1631
3053
 
1632
- // src/question-answering/data.ts
3054
+ // src/tasks/question-answering/data.ts
1633
3055
  var taskData16 = {
1634
3056
  datasets: [
1635
3057
  {
@@ -1696,7 +3118,7 @@ var taskData16 = {
1696
3118
  };
1697
3119
  var data_default16 = taskData16;
1698
3120
 
1699
- // src/sentence-similarity/data.ts
3121
+ // src/tasks/sentence-similarity/data.ts
1700
3122
  var taskData17 = {
1701
3123
  datasets: [
1702
3124
  {
@@ -1791,7 +3213,7 @@ var taskData17 = {
1791
3213
  };
1792
3214
  var data_default17 = taskData17;
1793
3215
 
1794
- // src/summarization/data.ts
3216
+ // src/tasks/summarization/data.ts
1795
3217
  var taskData18 = {
1796
3218
  datasets: [
1797
3219
  {
@@ -1859,7 +3281,7 @@ var taskData18 = {
1859
3281
  };
1860
3282
  var data_default18 = taskData18;
1861
3283
 
1862
- // src/table-question-answering/data.ts
3284
+ // src/tasks/table-question-answering/data.ts
1863
3285
  var taskData19 = {
1864
3286
  datasets: [
1865
3287
  {
@@ -1913,7 +3335,7 @@ var taskData19 = {
1913
3335
  };
1914
3336
  var data_default19 = taskData19;
1915
3337
 
1916
- // src/tabular-classification/data.ts
3338
+ // src/tasks/tabular-classification/data.ts
1917
3339
  var taskData20 = {
1918
3340
  datasets: [
1919
3341
  {
@@ -1980,7 +3402,7 @@ var taskData20 = {
1980
3402
  };
1981
3403
  var data_default20 = taskData20;
1982
3404
 
1983
- // src/tabular-regression/data.ts
3405
+ // src/tasks/tabular-regression/data.ts
1984
3406
  var taskData21 = {
1985
3407
  datasets: [
1986
3408
  {
@@ -2035,7 +3457,7 @@ var taskData21 = {
2035
3457
  };
2036
3458
  var data_default21 = taskData21;
2037
3459
 
2038
- // src/text-to-image/data.ts
3460
+ // src/tasks/text-to-image/data.ts
2039
3461
  var taskData22 = {
2040
3462
  datasets: [
2041
3463
  {
@@ -2122,7 +3544,7 @@ var taskData22 = {
2122
3544
  };
2123
3545
  var data_default22 = taskData22;
2124
3546
 
2125
- // src/text-to-speech/data.ts
3547
+ // src/tasks/text-to-speech/data.ts
2126
3548
  var taskData23 = {
2127
3549
  datasets: [
2128
3550
  {
@@ -2175,8 +3597,8 @@ var taskData23 = {
2175
3597
  id: "suno/bark"
2176
3598
  },
2177
3599
  {
2178
- description: "An application that contains multiple speech synthesis models for various languages and accents.",
2179
- id: "coqui/CoquiTTS"
3600
+ description: "XTTS is a Voice generation model that lets you clone voices into different languages.",
3601
+ id: "coqui/xtts"
2180
3602
  },
2181
3603
  {
2182
3604
  description: "An application that synthesizes speech for various speaker types.",
@@ -2184,12 +3606,12 @@ var taskData23 = {
2184
3606
  }
2185
3607
  ],
2186
3608
  summary: "Text-to-Speech (TTS) is the task of generating natural sounding speech given text input. TTS models can be extended to have a single model that generates speech for multiple speakers and multiple languages.",
2187
- widgetModels: ["microsoft/speecht5_tts"],
3609
+ widgetModels: ["suno/bark"],
2188
3610
  youtubeId: "NW62DpzJ274"
2189
3611
  };
2190
3612
  var data_default23 = taskData23;
2191
3613
 
2192
- // src/token-classification/data.ts
3614
+ // src/tasks/token-classification/data.ts
2193
3615
  var taskData24 = {
2194
3616
  datasets: [
2195
3617
  {
@@ -2268,7 +3690,7 @@ var taskData24 = {
2268
3690
  };
2269
3691
  var data_default24 = taskData24;
2270
3692
 
2271
- // src/translation/data.ts
3693
+ // src/tasks/translation/data.ts
2272
3694
  var taskData25 = {
2273
3695
  datasets: [
2274
3696
  {
@@ -2332,7 +3754,7 @@ var taskData25 = {
2332
3754
  };
2333
3755
  var data_default25 = taskData25;
2334
3756
 
2335
- // src/text-classification/data.ts
3757
+ // src/tasks/text-classification/data.ts
2336
3758
  var taskData26 = {
2337
3759
  datasets: [
2338
3760
  {
@@ -2420,7 +3842,7 @@ var taskData26 = {
2420
3842
  };
2421
3843
  var data_default26 = taskData26;
2422
3844
 
2423
- // src/text-generation/data.ts
3845
+ // src/tasks/text-generation/data.ts
2424
3846
  var taskData27 = {
2425
3847
  datasets: [
2426
3848
  {
@@ -2535,12 +3957,12 @@ var taskData27 = {
2535
3957
  }
2536
3958
  ],
2537
3959
  summary: "Generating text is the task of producing new text. These models can, for example, fill in incomplete text or paraphrase.",
2538
- widgetModels: ["tiiuae/falcon-7b-instruct"],
3960
+ widgetModels: ["HuggingFaceH4/zephyr-7b-beta"],
2539
3961
  youtubeId: "Vpjb1lu0MDk"
2540
3962
  };
2541
3963
  var data_default27 = taskData27;
2542
3964
 
2543
- // src/text-to-video/data.ts
3965
+ // src/tasks/text-to-video/data.ts
2544
3966
  var taskData28 = {
2545
3967
  datasets: [
2546
3968
  {
@@ -2635,7 +4057,7 @@ var taskData28 = {
2635
4057
  };
2636
4058
  var data_default28 = taskData28;
2637
4059
 
2638
- // src/unconditional-image-generation/data.ts
4060
+ // src/tasks/unconditional-image-generation/data.ts
2639
4061
  var taskData29 = {
2640
4062
  datasets: [
2641
4063
  {
@@ -2700,7 +4122,7 @@ var taskData29 = {
2700
4122
  };
2701
4123
  var data_default29 = taskData29;
2702
4124
 
2703
- // src/video-classification/data.ts
4125
+ // src/tasks/video-classification/data.ts
2704
4126
  var taskData30 = {
2705
4127
  datasets: [
2706
4128
  {
@@ -2782,7 +4204,7 @@ var taskData30 = {
2782
4204
  };
2783
4205
  var data_default30 = taskData30;
2784
4206
 
2785
- // src/visual-question-answering/data.ts
4207
+ // src/tasks/visual-question-answering/data.ts
2786
4208
  var taskData31 = {
2787
4209
  datasets: [
2788
4210
  {
@@ -2871,7 +4293,7 @@ var taskData31 = {
2871
4293
  };
2872
4294
  var data_default31 = taskData31;
2873
4295
 
2874
- // src/zero-shot-classification/data.ts
4296
+ // src/tasks/zero-shot-classification/data.ts
2875
4297
  var taskData32 = {
2876
4298
  datasets: [
2877
4299
  {
@@ -2933,7 +4355,7 @@ var taskData32 = {
2933
4355
  };
2934
4356
  var data_default32 = taskData32;
2935
4357
 
2936
- // src/zero-shot-image-classification/data.ts
4358
+ // src/tasks/zero-shot-image-classification/data.ts
2937
4359
  var taskData33 = {
2938
4360
  datasets: [
2939
4361
  {
@@ -3006,22 +4428,24 @@ var taskData33 = {
3006
4428
  };
3007
4429
  var data_default33 = taskData33;
3008
4430
 
3009
- // src/const.ts
4431
+ // src/tasks/index.ts
3010
4432
  var TASKS_MODEL_LIBRARIES = {
3011
- "audio-classification": ["speechbrain", "transformers"],
4433
+ "audio-classification": ["speechbrain", "transformers", "transformers.js"],
3012
4434
  "audio-to-audio": ["asteroid", "speechbrain"],
3013
4435
  "automatic-speech-recognition": ["espnet", "nemo", "speechbrain", "transformers", "transformers.js"],
3014
4436
  conversational: ["transformers"],
3015
- "depth-estimation": ["transformers"],
3016
- "document-question-answering": ["transformers"],
4437
+ "depth-estimation": ["transformers", "transformers.js"],
4438
+ "document-question-answering": ["transformers", "transformers.js"],
3017
4439
  "feature-extraction": ["sentence-transformers", "transformers", "transformers.js"],
3018
4440
  "fill-mask": ["transformers", "transformers.js"],
3019
4441
  "graph-ml": ["transformers"],
3020
4442
  "image-classification": ["keras", "timm", "transformers", "transformers.js"],
3021
4443
  "image-segmentation": ["transformers", "transformers.js"],
3022
- "image-to-image": [],
4444
+ "image-to-image": ["diffusers", "transformers.js"],
3023
4445
  "image-to-text": ["transformers.js"],
3024
- "video-classification": [],
4446
+ "image-to-video": ["diffusers"],
4447
+ "video-classification": ["transformers"],
4448
+ "mask-generation": ["transformers"],
3025
4449
  "multiple-choice": ["transformers"],
3026
4450
  "object-detection": ["transformers", "transformers.js"],
3027
4451
  other: [],
@@ -3038,10 +4462,10 @@ var TASKS_MODEL_LIBRARIES = {
3038
4462
  "text-classification": ["adapter-transformers", "spacy", "transformers", "transformers.js"],
3039
4463
  "text-generation": ["transformers", "transformers.js"],
3040
4464
  "text-retrieval": [],
3041
- "text-to-image": [],
3042
- "text-to-speech": ["espnet", "tensorflowtts", "transformers"],
3043
- "text-to-audio": ["transformers"],
3044
- "text-to-video": [],
4465
+ "text-to-image": ["diffusers"],
4466
+ "text-to-speech": ["espnet", "tensorflowtts", "transformers", "transformers.js"],
4467
+ "text-to-audio": ["transformers", "transformers.js"],
4468
+ "text-to-video": ["diffusers"],
3045
4469
  "text2text-generation": ["transformers", "transformers.js"],
3046
4470
  "time-series-forecasting": [],
3047
4471
  "token-classification": [
@@ -3054,14 +4478,23 @@ var TASKS_MODEL_LIBRARIES = {
3054
4478
  "transformers.js"
3055
4479
  ],
3056
4480
  translation: ["transformers", "transformers.js"],
3057
- "unconditional-image-generation": [],
3058
- "visual-question-answering": [],
4481
+ "unconditional-image-generation": ["diffusers"],
4482
+ "visual-question-answering": ["transformers", "transformers.js"],
3059
4483
  "voice-activity-detection": [],
3060
4484
  "zero-shot-classification": ["transformers", "transformers.js"],
3061
- "zero-shot-image-classification": ["transformers.js"]
4485
+ "zero-shot-image-classification": ["transformers", "transformers.js"],
4486
+ "zero-shot-object-detection": ["transformers", "transformers.js"],
4487
+ "text-to-3d": [],
4488
+ "image-to-3d": []
3062
4489
  };
3063
-
3064
- // src/tasksData.ts
4490
+ function getData(type, partialTaskData = data_default14) {
4491
+ return {
4492
+ ...partialTaskData,
4493
+ id: type,
4494
+ label: PIPELINE_DATA[type].name,
4495
+ libraries: TASKS_MODEL_LIBRARIES[type]
4496
+ };
4497
+ }
3065
4498
  var TASKS_DATA = {
3066
4499
  "audio-classification": getData("audio-classification", data_default),
3067
4500
  "audio-to-audio": getData("audio-to-audio", data_default2),
@@ -3076,6 +4509,8 @@ var TASKS_DATA = {
3076
4509
  "image-segmentation": getData("image-segmentation", data_default11),
3077
4510
  "image-to-image": getData("image-to-image", data_default9),
3078
4511
  "image-to-text": getData("image-to-text", data_default10),
4512
+ "image-to-video": void 0,
4513
+ "mask-generation": getData("mask-generation", data_default14),
3079
4514
  "multiple-choice": void 0,
3080
4515
  "object-detection": getData("object-detection", data_default12),
3081
4516
  "video-classification": getData("video-classification", data_default30),
@@ -3105,18 +4540,13 @@ var TASKS_DATA = {
3105
4540
  "visual-question-answering": getData("visual-question-answering", data_default31),
3106
4541
  "voice-activity-detection": void 0,
3107
4542
  "zero-shot-classification": getData("zero-shot-classification", data_default32),
3108
- "zero-shot-image-classification": getData("zero-shot-image-classification", data_default33)
4543
+ "zero-shot-image-classification": getData("zero-shot-image-classification", data_default33),
4544
+ "zero-shot-object-detection": getData("zero-shot-object-detection", data_default14),
4545
+ "text-to-3d": getData("text-to-3d", data_default14),
4546
+ "image-to-3d": getData("image-to-3d", data_default14)
3109
4547
  };
3110
- function getData(type, partialTaskData = data_default14) {
3111
- return {
3112
- ...partialTaskData,
3113
- id: type,
3114
- label: PIPELINE_DATA[type].name,
3115
- libraries: TASKS_MODEL_LIBRARIES[type]
3116
- };
3117
- }
3118
4548
 
3119
- // src/modelLibraries.ts
4549
+ // src/model-libraries.ts
3120
4550
  var ModelLibrary = /* @__PURE__ */ ((ModelLibrary2) => {
3121
4551
  ModelLibrary2["adapter-transformers"] = "Adapter Transformers";
3122
4552
  ModelLibrary2["allennlp"] = "allenNLP";
@@ -3157,6 +4587,17 @@ var ALL_DISPLAY_MODEL_LIBRARY_KEYS = Object.keys(ModelLibrary).filter(
3157
4587
  (k) => !["doctr", "k2", "mindspore", "tensorflowtts"].includes(k)
3158
4588
  );
3159
4589
 
4590
+ // src/model-data.ts
4591
+ var InferenceDisplayability = /* @__PURE__ */ ((InferenceDisplayability2) => {
4592
+ InferenceDisplayability2["Yes"] = "Yes";
4593
+ InferenceDisplayability2["ExplicitOptOut"] = "ExplicitOptOut";
4594
+ InferenceDisplayability2["CustomCode"] = "CustomCode";
4595
+ InferenceDisplayability2["LibraryNotDetected"] = "LibraryNotDetected";
4596
+ InferenceDisplayability2["PipelineNotDetected"] = "PipelineNotDetected";
4597
+ InferenceDisplayability2["PipelineLibraryPairNotSupported"] = "PipelineLibraryPairNotSupported";
4598
+ return InferenceDisplayability2;
4599
+ })(InferenceDisplayability || {});
4600
+
3160
4601
  // src/tags.ts
3161
4602
  var TAG_NFAA_CONTENT = "not-for-all-audiences";
3162
4603
  var OTHER_TAGS_SUGGESTIONS = [
@@ -3173,11 +4614,477 @@ var OTHER_TAGS_SUGGESTIONS = [
3173
4614
  ];
3174
4615
  var TAG_TEXT_GENERATION_INFERENCE = "text-generation-inference";
3175
4616
  var TAG_CUSTOM_CODE = "custom_code";
4617
+
4618
+ // src/snippets/index.ts
4619
+ var snippets_exports = {};
4620
+ __export(snippets_exports, {
4621
+ curl: () => curl_exports,
4622
+ inputs: () => inputs_exports,
4623
+ js: () => js_exports,
4624
+ python: () => python_exports
4625
+ });
4626
+
4627
+ // src/snippets/inputs.ts
4628
+ var inputs_exports = {};
4629
+ __export(inputs_exports, {
4630
+ getModelInputSnippet: () => getModelInputSnippet
4631
+ });
4632
+ var inputsZeroShotClassification = () => `"Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!"`;
4633
+ var inputsTranslation = () => `"\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435"`;
4634
+ var inputsSummarization = () => `"The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct."`;
4635
+ var inputsConversational = () => `{
4636
+ "past_user_inputs": ["Which movie is the best ?"],
4637
+ "generated_responses": ["It is Die Hard for sure."],
4638
+ "text": "Can you explain why ?"
4639
+ }`;
4640
+ var inputsTableQuestionAnswering = () => `{
4641
+ "query": "How many stars does the transformers repository have?",
4642
+ "table": {
4643
+ "Repository": ["Transformers", "Datasets", "Tokenizers"],
4644
+ "Stars": ["36542", "4512", "3934"],
4645
+ "Contributors": ["651", "77", "34"],
4646
+ "Programming language": [
4647
+ "Python",
4648
+ "Python",
4649
+ "Rust, Python and NodeJS"
4650
+ ]
4651
+ }
4652
+ }`;
4653
+ var inputsVisualQuestionAnswering = () => `{
4654
+ "image": "cat.png",
4655
+ "question": "What is in this image?"
4656
+ }`;
4657
+ var inputsQuestionAnswering = () => `{
4658
+ "question": "What is my name?",
4659
+ "context": "My name is Clara and I live in Berkeley."
4660
+ }`;
4661
+ var inputsTextClassification = () => `"I like you. I love you"`;
4662
+ var inputsTokenClassification = () => `"My name is Sarah Jessica Parker but you can call me Jessica"`;
4663
+ var inputsTextGeneration = () => `"Can you please let us know more details about your "`;
4664
+ var inputsText2TextGeneration = () => `"The answer to the universe is"`;
4665
+ var inputsFillMask = (model) => `"The answer to the universe is ${model.mask_token}."`;
4666
+ var inputsSentenceSimilarity = () => `{
4667
+ "source_sentence": "That is a happy person",
4668
+ "sentences": [
4669
+ "That is a happy dog",
4670
+ "That is a very happy person",
4671
+ "Today is a sunny day"
4672
+ ]
4673
+ }`;
4674
+ var inputsFeatureExtraction = () => `"Today is a sunny day and I will get some ice cream."`;
4675
+ var inputsImageClassification = () => `"cats.jpg"`;
4676
+ var inputsImageToText = () => `"cats.jpg"`;
4677
+ var inputsImageSegmentation = () => `"cats.jpg"`;
4678
+ var inputsObjectDetection = () => `"cats.jpg"`;
4679
+ var inputsAudioToAudio = () => `"sample1.flac"`;
4680
+ var inputsAudioClassification = () => `"sample1.flac"`;
4681
+ var inputsTextToImage = () => `"Astronaut riding a horse"`;
4682
+ var inputsTextToSpeech = () => `"The answer to the universe is 42"`;
4683
+ var inputsTextToAudio = () => `"liquid drum and bass, atmospheric synths, airy sounds"`;
4684
+ var inputsAutomaticSpeechRecognition = () => `"sample1.flac"`;
4685
+ var inputsTabularPrediction = () => `'{"Height":[11.52,12.48],"Length1":[23.2,24.0],"Length2":[25.4,26.3],"Species": ["Bream","Bream"]}'`;
4686
+ var inputsZeroShotImageClassification = () => `"cats.jpg"`;
4687
+ var modelInputSnippets = {
4688
+ "audio-to-audio": inputsAudioToAudio,
4689
+ "audio-classification": inputsAudioClassification,
4690
+ "automatic-speech-recognition": inputsAutomaticSpeechRecognition,
4691
+ conversational: inputsConversational,
4692
+ "document-question-answering": inputsVisualQuestionAnswering,
4693
+ "feature-extraction": inputsFeatureExtraction,
4694
+ "fill-mask": inputsFillMask,
4695
+ "image-classification": inputsImageClassification,
4696
+ "image-to-text": inputsImageToText,
4697
+ "image-segmentation": inputsImageSegmentation,
4698
+ "object-detection": inputsObjectDetection,
4699
+ "question-answering": inputsQuestionAnswering,
4700
+ "sentence-similarity": inputsSentenceSimilarity,
4701
+ summarization: inputsSummarization,
4702
+ "table-question-answering": inputsTableQuestionAnswering,
4703
+ "tabular-regression": inputsTabularPrediction,
4704
+ "tabular-classification": inputsTabularPrediction,
4705
+ "text-classification": inputsTextClassification,
4706
+ "text-generation": inputsTextGeneration,
4707
+ "text-to-image": inputsTextToImage,
4708
+ "text-to-speech": inputsTextToSpeech,
4709
+ "text-to-audio": inputsTextToAudio,
4710
+ "text2text-generation": inputsText2TextGeneration,
4711
+ "token-classification": inputsTokenClassification,
4712
+ translation: inputsTranslation,
4713
+ "zero-shot-classification": inputsZeroShotClassification,
4714
+ "zero-shot-image-classification": inputsZeroShotImageClassification
4715
+ };
4716
+ function getModelInputSnippet(model, noWrap = false, noQuotes = false) {
4717
+ if (model.pipeline_tag) {
4718
+ const inputs = modelInputSnippets[model.pipeline_tag];
4719
+ if (inputs) {
4720
+ let result = inputs(model);
4721
+ if (noWrap) {
4722
+ result = result.replace(/(?:(?:\r?\n|\r)\t*)|\t+/g, " ");
4723
+ }
4724
+ if (noQuotes) {
4725
+ const REGEX_QUOTES = /^"(.+)"$/s;
4726
+ const match = result.match(REGEX_QUOTES);
4727
+ result = match ? match[1] : result;
4728
+ }
4729
+ return result;
4730
+ }
4731
+ }
4732
+ return "No input example has been defined for this model task.";
4733
+ }
4734
+
4735
+ // src/snippets/curl.ts
4736
+ var curl_exports = {};
4737
+ __export(curl_exports, {
4738
+ curlSnippets: () => curlSnippets,
4739
+ getCurlInferenceSnippet: () => getCurlInferenceSnippet,
4740
+ hasCurlInferenceSnippet: () => hasCurlInferenceSnippet,
4741
+ snippetBasic: () => snippetBasic,
4742
+ snippetFile: () => snippetFile,
4743
+ snippetZeroShotClassification: () => snippetZeroShotClassification
4744
+ });
4745
+ var snippetBasic = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
4746
+ -X POST \\
4747
+ -d '{"inputs": ${getModelInputSnippet(model, true)}}' \\
4748
+ -H 'Content-Type: application/json' \\
4749
+ -H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
4750
+ `;
4751
+ var snippetZeroShotClassification = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
4752
+ -X POST \\
4753
+ -d '{"inputs": ${getModelInputSnippet(model, true)}, "parameters": {"candidate_labels": ["refund", "legal", "faq"]}}' \\
4754
+ -H 'Content-Type: application/json' \\
4755
+ -H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
4756
+ `;
4757
+ var snippetFile = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
4758
+ -X POST \\
4759
+ --data-binary '@${getModelInputSnippet(model, true, true)}' \\
4760
+ -H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
4761
+ `;
4762
+ var curlSnippets = {
4763
+ // Same order as in js/src/lib/interfaces/Types.ts
4764
+ "text-classification": snippetBasic,
4765
+ "token-classification": snippetBasic,
4766
+ "table-question-answering": snippetBasic,
4767
+ "question-answering": snippetBasic,
4768
+ "zero-shot-classification": snippetZeroShotClassification,
4769
+ translation: snippetBasic,
4770
+ summarization: snippetBasic,
4771
+ conversational: snippetBasic,
4772
+ "feature-extraction": snippetBasic,
4773
+ "text-generation": snippetBasic,
4774
+ "text2text-generation": snippetBasic,
4775
+ "fill-mask": snippetBasic,
4776
+ "sentence-similarity": snippetBasic,
4777
+ "automatic-speech-recognition": snippetFile,
4778
+ "text-to-image": snippetBasic,
4779
+ "text-to-speech": snippetBasic,
4780
+ "text-to-audio": snippetBasic,
4781
+ "audio-to-audio": snippetFile,
4782
+ "audio-classification": snippetFile,
4783
+ "image-classification": snippetFile,
4784
+ "image-to-text": snippetFile,
4785
+ "object-detection": snippetFile,
4786
+ "image-segmentation": snippetFile
4787
+ };
4788
+ function getCurlInferenceSnippet(model, accessToken) {
4789
+ return model.pipeline_tag && model.pipeline_tag in curlSnippets ? curlSnippets[model.pipeline_tag]?.(model, accessToken) ?? "" : "";
4790
+ }
4791
+ function hasCurlInferenceSnippet(model) {
4792
+ return !!model.pipeline_tag && model.pipeline_tag in curlSnippets;
4793
+ }
4794
+
4795
+ // src/snippets/python.ts
4796
+ var python_exports = {};
4797
+ __export(python_exports, {
4798
+ getPythonInferenceSnippet: () => getPythonInferenceSnippet,
4799
+ hasPythonInferenceSnippet: () => hasPythonInferenceSnippet,
4800
+ pythonSnippets: () => pythonSnippets,
4801
+ snippetBasic: () => snippetBasic2,
4802
+ snippetDocumentQuestionAnswering: () => snippetDocumentQuestionAnswering,
4803
+ snippetFile: () => snippetFile2,
4804
+ snippetTabular: () => snippetTabular,
4805
+ snippetTextToAudio: () => snippetTextToAudio,
4806
+ snippetTextToImage: () => snippetTextToImage,
4807
+ snippetZeroShotClassification: () => snippetZeroShotClassification2,
4808
+ snippetZeroShotImageClassification: () => snippetZeroShotImageClassification
4809
+ });
4810
+ var snippetZeroShotClassification2 = (model) => `def query(payload):
4811
+ response = requests.post(API_URL, headers=headers, json=payload)
4812
+ return response.json()
4813
+
4814
+ output = query({
4815
+ "inputs": ${getModelInputSnippet(model)},
4816
+ "parameters": {"candidate_labels": ["refund", "legal", "faq"]},
4817
+ })`;
4818
+ var snippetZeroShotImageClassification = (model) => `def query(data):
4819
+ with open(data["image_path"], "rb") as f:
4820
+ img = f.read()
4821
+ payload={
4822
+ "parameters": data["parameters"],
4823
+ "inputs": base64.b64encode(img).decode("utf-8")
4824
+ }
4825
+ response = requests.post(API_URL, headers=headers, json=payload)
4826
+ return response.json()
4827
+
4828
+ output = query({
4829
+ "image_path": ${getModelInputSnippet(model)},
4830
+ "parameters": {"candidate_labels": ["cat", "dog", "llama"]},
4831
+ })`;
4832
+ var snippetBasic2 = (model) => `def query(payload):
4833
+ response = requests.post(API_URL, headers=headers, json=payload)
4834
+ return response.json()
4835
+
4836
+ output = query({
4837
+ "inputs": ${getModelInputSnippet(model)},
4838
+ })`;
4839
+ var snippetFile2 = (model) => `def query(filename):
4840
+ with open(filename, "rb") as f:
4841
+ data = f.read()
4842
+ response = requests.post(API_URL, headers=headers, data=data)
4843
+ return response.json()
4844
+
4845
+ output = query(${getModelInputSnippet(model)})`;
4846
+ var snippetTextToImage = (model) => `def query(payload):
4847
+ response = requests.post(API_URL, headers=headers, json=payload)
4848
+ return response.content
4849
+ image_bytes = query({
4850
+ "inputs": ${getModelInputSnippet(model)},
4851
+ })
4852
+ # You can access the image with PIL.Image for example
4853
+ import io
4854
+ from PIL import Image
4855
+ image = Image.open(io.BytesIO(image_bytes))`;
4856
+ var snippetTabular = (model) => `def query(payload):
4857
+ response = requests.post(API_URL, headers=headers, json=payload)
4858
+ return response.content
4859
+ response = query({
4860
+ "inputs": {"data": ${getModelInputSnippet(model)}},
4861
+ })`;
4862
+ var snippetTextToAudio = (model) => {
4863
+ if (model.library_name === "transformers") {
4864
+ return `def query(payload):
4865
+ response = requests.post(API_URL, headers=headers, json=payload)
4866
+ return response.content
4867
+
4868
+ audio_bytes = query({
4869
+ "inputs": ${getModelInputSnippet(model)},
4870
+ })
4871
+ # You can access the audio with IPython.display for example
4872
+ from IPython.display import Audio
4873
+ Audio(audio_bytes)`;
4874
+ } else {
4875
+ return `def query(payload):
4876
+ response = requests.post(API_URL, headers=headers, json=payload)
4877
+ return response.json()
4878
+
4879
+ audio, sampling_rate = query({
4880
+ "inputs": ${getModelInputSnippet(model)},
4881
+ })
4882
+ # You can access the audio with IPython.display for example
4883
+ from IPython.display import Audio
4884
+ Audio(audio, rate=sampling_rate)`;
4885
+ }
4886
+ };
4887
+ var snippetDocumentQuestionAnswering = (model) => `def query(payload):
4888
+ with open(payload["image"], "rb") as f:
4889
+ img = f.read()
4890
+ payload["image"] = base64.b64encode(img).decode("utf-8")
4891
+ response = requests.post(API_URL, headers=headers, json=payload)
4892
+ return response.json()
4893
+
4894
+ output = query({
4895
+ "inputs": ${getModelInputSnippet(model)},
4896
+ })`;
4897
+ var pythonSnippets = {
4898
+ // Same order as in tasks/src/pipelines.ts
4899
+ "text-classification": snippetBasic2,
4900
+ "token-classification": snippetBasic2,
4901
+ "table-question-answering": snippetBasic2,
4902
+ "question-answering": snippetBasic2,
4903
+ "zero-shot-classification": snippetZeroShotClassification2,
4904
+ translation: snippetBasic2,
4905
+ summarization: snippetBasic2,
4906
+ conversational: snippetBasic2,
4907
+ "feature-extraction": snippetBasic2,
4908
+ "text-generation": snippetBasic2,
4909
+ "text2text-generation": snippetBasic2,
4910
+ "fill-mask": snippetBasic2,
4911
+ "sentence-similarity": snippetBasic2,
4912
+ "automatic-speech-recognition": snippetFile2,
4913
+ "text-to-image": snippetTextToImage,
4914
+ "text-to-speech": snippetTextToAudio,
4915
+ "text-to-audio": snippetTextToAudio,
4916
+ "audio-to-audio": snippetFile2,
4917
+ "audio-classification": snippetFile2,
4918
+ "image-classification": snippetFile2,
4919
+ "tabular-regression": snippetTabular,
4920
+ "tabular-classification": snippetTabular,
4921
+ "object-detection": snippetFile2,
4922
+ "image-segmentation": snippetFile2,
4923
+ "document-question-answering": snippetDocumentQuestionAnswering,
4924
+ "image-to-text": snippetFile2,
4925
+ "zero-shot-image-classification": snippetZeroShotImageClassification
4926
+ };
4927
+ function getPythonInferenceSnippet(model, accessToken) {
4928
+ const body = model.pipeline_tag && model.pipeline_tag in pythonSnippets ? pythonSnippets[model.pipeline_tag]?.(model) ?? "" : "";
4929
+ return `import requests
4930
+
4931
+ API_URL = "https://api-inference.huggingface.co/models/${model.id}"
4932
+ headers = {"Authorization": ${accessToken ? `"Bearer ${accessToken}"` : `f"Bearer {API_TOKEN}"`}}
4933
+
4934
+ ${body}`;
4935
+ }
4936
+ function hasPythonInferenceSnippet(model) {
4937
+ return !!model.pipeline_tag && model.pipeline_tag in pythonSnippets;
4938
+ }
4939
+
4940
+ // src/snippets/js.ts
4941
+ var js_exports = {};
4942
+ __export(js_exports, {
4943
+ getJsInferenceSnippet: () => getJsInferenceSnippet,
4944
+ hasJsInferenceSnippet: () => hasJsInferenceSnippet,
4945
+ jsSnippets: () => jsSnippets,
4946
+ snippetBasic: () => snippetBasic3,
4947
+ snippetFile: () => snippetFile3,
4948
+ snippetTextToAudio: () => snippetTextToAudio2,
4949
+ snippetTextToImage: () => snippetTextToImage2,
4950
+ snippetZeroShotClassification: () => snippetZeroShotClassification3
4951
+ });
4952
+ var snippetBasic3 = (model, accessToken) => `async function query(data) {
4953
+ const response = await fetch(
4954
+ "https://api-inference.huggingface.co/models/${model.id}",
4955
+ {
4956
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4957
+ method: "POST",
4958
+ body: JSON.stringify(data),
4959
+ }
4960
+ );
4961
+ const result = await response.json();
4962
+ return result;
4963
+ }
4964
+
4965
+ query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
4966
+ console.log(JSON.stringify(response));
4967
+ });`;
4968
+ var snippetZeroShotClassification3 = (model, accessToken) => `async function query(data) {
4969
+ const response = await fetch(
4970
+ "https://api-inference.huggingface.co/models/${model.id}",
4971
+ {
4972
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4973
+ method: "POST",
4974
+ body: JSON.stringify(data),
4975
+ }
4976
+ );
4977
+ const result = await response.json();
4978
+ return result;
4979
+ }
4980
+
4981
+ query({"inputs": ${getModelInputSnippet(
4982
+ model
4983
+ )}, "parameters": {"candidate_labels": ["refund", "legal", "faq"]}}).then((response) => {
4984
+ console.log(JSON.stringify(response));
4985
+ });`;
4986
+ var snippetTextToImage2 = (model, accessToken) => `async function query(data) {
4987
+ const response = await fetch(
4988
+ "https://api-inference.huggingface.co/models/${model.id}",
4989
+ {
4990
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4991
+ method: "POST",
4992
+ body: JSON.stringify(data),
4993
+ }
4994
+ );
4995
+ const result = await response.blob();
4996
+ return result;
4997
+ }
4998
+ query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
4999
+ // Use image
5000
+ });`;
5001
+ var snippetTextToAudio2 = (model, accessToken) => {
5002
+ const commonSnippet = `async function query(data) {
5003
+ const response = await fetch(
5004
+ "https://api-inference.huggingface.co/models/${model.id}",
5005
+ {
5006
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
5007
+ method: "POST",
5008
+ body: JSON.stringify(data),
5009
+ }
5010
+ );`;
5011
+ if (model.library_name === "transformers") {
5012
+ return commonSnippet + `
5013
+ const result = await response.blob();
5014
+ return result;
5015
+ }
5016
+ query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
5017
+ // Returns a byte object of the Audio wavform. Use it directly!
5018
+ });`;
5019
+ } else {
5020
+ return commonSnippet + `
5021
+ const result = await response.json();
5022
+ return result;
5023
+ }
5024
+
5025
+ query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
5026
+ console.log(JSON.stringify(response));
5027
+ });`;
5028
+ }
5029
+ };
5030
+ var snippetFile3 = (model, accessToken) => `async function query(filename) {
5031
+ const data = fs.readFileSync(filename);
5032
+ const response = await fetch(
5033
+ "https://api-inference.huggingface.co/models/${model.id}",
5034
+ {
5035
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
5036
+ method: "POST",
5037
+ body: data,
5038
+ }
5039
+ );
5040
+ const result = await response.json();
5041
+ return result;
5042
+ }
5043
+
5044
+ query(${getModelInputSnippet(model)}).then((response) => {
5045
+ console.log(JSON.stringify(response));
5046
+ });`;
5047
+ var jsSnippets = {
5048
+ // Same order as in js/src/lib/interfaces/Types.ts
5049
+ "text-classification": snippetBasic3,
5050
+ "token-classification": snippetBasic3,
5051
+ "table-question-answering": snippetBasic3,
5052
+ "question-answering": snippetBasic3,
5053
+ "zero-shot-classification": snippetZeroShotClassification3,
5054
+ translation: snippetBasic3,
5055
+ summarization: snippetBasic3,
5056
+ conversational: snippetBasic3,
5057
+ "feature-extraction": snippetBasic3,
5058
+ "text-generation": snippetBasic3,
5059
+ "text2text-generation": snippetBasic3,
5060
+ "fill-mask": snippetBasic3,
5061
+ "sentence-similarity": snippetBasic3,
5062
+ "automatic-speech-recognition": snippetFile3,
5063
+ "text-to-image": snippetTextToImage2,
5064
+ "text-to-speech": snippetTextToAudio2,
5065
+ "text-to-audio": snippetTextToAudio2,
5066
+ "audio-to-audio": snippetFile3,
5067
+ "audio-classification": snippetFile3,
5068
+ "image-classification": snippetFile3,
5069
+ "image-to-text": snippetFile3,
5070
+ "object-detection": snippetFile3,
5071
+ "image-segmentation": snippetFile3
5072
+ };
5073
+ function getJsInferenceSnippet(model, accessToken) {
5074
+ return model.pipeline_tag && model.pipeline_tag in jsSnippets ? jsSnippets[model.pipeline_tag]?.(model, accessToken) ?? "" : "";
5075
+ }
5076
+ function hasJsInferenceSnippet(model) {
5077
+ return !!model.pipeline_tag && model.pipeline_tag in jsSnippets;
5078
+ }
3176
5079
  // Annotate the CommonJS export names for ESM import in node:
3177
5080
  0 && (module.exports = {
3178
5081
  ALL_DISPLAY_MODEL_LIBRARY_KEYS,
5082
+ InferenceDisplayability,
5083
+ LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS,
5084
+ MAPPING_DEFAULT_WIDGET,
3179
5085
  MODALITIES,
3180
5086
  MODALITY_LABELS,
5087
+ MODEL_LIBRARIES_UI_ELEMENTS,
3181
5088
  ModelLibrary,
3182
5089
  OTHER_TAGS_SUGGESTIONS,
3183
5090
  PIPELINE_DATA,
@@ -3187,5 +5094,7 @@ var TAG_CUSTOM_CODE = "custom_code";
3187
5094
  TAG_CUSTOM_CODE,
3188
5095
  TAG_NFAA_CONTENT,
3189
5096
  TAG_TEXT_GENERATION_INFERENCE,
3190
- TASKS_DATA
5097
+ TASKS_DATA,
5098
+ TASKS_MODEL_LIBRARIES,
5099
+ snippets
3191
5100
  });