@huggingface/tasks 0.0.6 → 0.0.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (86) hide show
  1. package/README.md +16 -2
  2. package/dist/index.d.ts +358 -5
  3. package/dist/index.js +1906 -72
  4. package/dist/index.mjs +1905 -71
  5. package/package.json +1 -1
  6. package/src/default-widget-inputs.ts +718 -0
  7. package/src/index.ts +35 -4
  8. package/src/library-to-tasks.ts +47 -0
  9. package/src/library-ui-elements.ts +765 -0
  10. package/src/model-data.ts +239 -0
  11. package/src/pipelines.ts +15 -0
  12. package/src/snippets/curl.ts +63 -0
  13. package/src/snippets/index.ts +6 -0
  14. package/src/snippets/inputs.ts +129 -0
  15. package/src/snippets/js.ts +150 -0
  16. package/src/snippets/python.ts +114 -0
  17. package/src/{audio-classification → tasks/audio-classification}/about.md +2 -1
  18. package/src/{audio-classification → tasks/audio-classification}/data.ts +3 -3
  19. package/src/{audio-to-audio → tasks/audio-to-audio}/data.ts +1 -1
  20. package/src/{automatic-speech-recognition → tasks/automatic-speech-recognition}/about.md +3 -2
  21. package/src/{automatic-speech-recognition → tasks/automatic-speech-recognition}/data.ts +6 -6
  22. package/src/{conversational → tasks/conversational}/data.ts +1 -1
  23. package/src/{depth-estimation → tasks/depth-estimation}/data.ts +1 -1
  24. package/src/{document-question-answering → tasks/document-question-answering}/data.ts +1 -1
  25. package/src/{feature-extraction → tasks/feature-extraction}/data.ts +2 -7
  26. package/src/{fill-mask → tasks/fill-mask}/data.ts +1 -1
  27. package/src/{image-classification → tasks/image-classification}/data.ts +1 -1
  28. package/src/{image-segmentation → tasks/image-segmentation}/data.ts +1 -1
  29. package/src/{image-to-image → tasks/image-to-image}/about.md +8 -7
  30. package/src/{image-to-image → tasks/image-to-image}/data.ts +1 -1
  31. package/src/{image-to-text → tasks/image-to-text}/data.ts +1 -1
  32. package/src/{tasksData.ts → tasks/index.ts} +140 -15
  33. package/src/{object-detection → tasks/object-detection}/data.ts +1 -1
  34. package/src/{placeholder → tasks/placeholder}/data.ts +1 -1
  35. package/src/{question-answering → tasks/question-answering}/data.ts +1 -1
  36. package/src/{reinforcement-learning → tasks/reinforcement-learning}/data.ts +1 -1
  37. package/src/{sentence-similarity → tasks/sentence-similarity}/data.ts +1 -1
  38. package/src/{summarization → tasks/summarization}/data.ts +1 -1
  39. package/src/{table-question-answering → tasks/table-question-answering}/data.ts +1 -1
  40. package/src/{tabular-classification → tasks/tabular-classification}/data.ts +1 -1
  41. package/src/{tabular-regression → tasks/tabular-regression}/data.ts +1 -1
  42. package/src/{text-classification → tasks/text-classification}/data.ts +1 -1
  43. package/src/{text-generation → tasks/text-generation}/about.md +3 -3
  44. package/src/{text-generation → tasks/text-generation}/data.ts +2 -2
  45. package/src/{text-to-image → tasks/text-to-image}/data.ts +1 -1
  46. package/src/{text-to-speech → tasks/text-to-speech}/about.md +2 -1
  47. package/src/{text-to-speech → tasks/text-to-speech}/data.ts +4 -4
  48. package/src/{text-to-video → tasks/text-to-video}/data.ts +1 -1
  49. package/src/{token-classification → tasks/token-classification}/data.ts +1 -1
  50. package/src/{translation → tasks/translation}/data.ts +1 -1
  51. package/src/{unconditional-image-generation → tasks/unconditional-image-generation}/data.ts +1 -1
  52. package/src/{video-classification → tasks/video-classification}/about.md +8 -28
  53. package/src/{video-classification → tasks/video-classification}/data.ts +1 -1
  54. package/src/{visual-question-answering → tasks/visual-question-answering}/data.ts +1 -1
  55. package/src/{zero-shot-classification → tasks/zero-shot-classification}/data.ts +1 -1
  56. package/src/{zero-shot-image-classification → tasks/zero-shot-image-classification}/data.ts +1 -1
  57. package/src/Types.ts +0 -64
  58. package/src/const.ts +0 -59
  59. /package/src/{modelLibraries.ts → model-libraries.ts} +0 -0
  60. /package/src/{audio-to-audio → tasks/audio-to-audio}/about.md +0 -0
  61. /package/src/{conversational → tasks/conversational}/about.md +0 -0
  62. /package/src/{depth-estimation → tasks/depth-estimation}/about.md +0 -0
  63. /package/src/{document-question-answering → tasks/document-question-answering}/about.md +0 -0
  64. /package/src/{feature-extraction → tasks/feature-extraction}/about.md +0 -0
  65. /package/src/{fill-mask → tasks/fill-mask}/about.md +0 -0
  66. /package/src/{image-classification → tasks/image-classification}/about.md +0 -0
  67. /package/src/{image-segmentation → tasks/image-segmentation}/about.md +0 -0
  68. /package/src/{image-to-text → tasks/image-to-text}/about.md +0 -0
  69. /package/src/{object-detection → tasks/object-detection}/about.md +0 -0
  70. /package/src/{placeholder → tasks/placeholder}/about.md +0 -0
  71. /package/src/{question-answering → tasks/question-answering}/about.md +0 -0
  72. /package/src/{reinforcement-learning → tasks/reinforcement-learning}/about.md +0 -0
  73. /package/src/{sentence-similarity → tasks/sentence-similarity}/about.md +0 -0
  74. /package/src/{summarization → tasks/summarization}/about.md +0 -0
  75. /package/src/{table-question-answering → tasks/table-question-answering}/about.md +0 -0
  76. /package/src/{tabular-classification → tasks/tabular-classification}/about.md +0 -0
  77. /package/src/{tabular-regression → tasks/tabular-regression}/about.md +0 -0
  78. /package/src/{text-classification → tasks/text-classification}/about.md +0 -0
  79. /package/src/{text-to-image → tasks/text-to-image}/about.md +0 -0
  80. /package/src/{text-to-video → tasks/text-to-video}/about.md +0 -0
  81. /package/src/{token-classification → tasks/token-classification}/about.md +0 -0
  82. /package/src/{translation → tasks/translation}/about.md +0 -0
  83. /package/src/{unconditional-image-generation → tasks/unconditional-image-generation}/about.md +0 -0
  84. /package/src/{visual-question-answering → tasks/visual-question-answering}/about.md +0 -0
  85. /package/src/{zero-shot-classification → tasks/zero-shot-classification}/about.md +0 -0
  86. /package/src/{zero-shot-image-classification → tasks/zero-shot-image-classification}/about.md +0 -0
package/dist/index.mjs CHANGED
@@ -1,3 +1,1391 @@
1
+ var __defProp = Object.defineProperty;
2
+ var __export = (target, all) => {
3
+ for (var name in all)
4
+ __defProp(target, name, { get: all[name], enumerable: true });
5
+ };
6
+
7
+ // src/library-to-tasks.ts
8
+ var LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS = {
9
+ "adapter-transformers": ["question-answering", "text-classification", "token-classification"],
10
+ allennlp: ["question-answering"],
11
+ asteroid: [
12
+ // "audio-source-separation",
13
+ "audio-to-audio"
14
+ ],
15
+ bertopic: ["text-classification"],
16
+ diffusers: ["image-to-image", "text-to-image"],
17
+ doctr: ["object-detection"],
18
+ espnet: ["text-to-speech", "automatic-speech-recognition"],
19
+ fairseq: ["text-to-speech", "audio-to-audio"],
20
+ fastai: ["image-classification"],
21
+ fasttext: ["feature-extraction", "text-classification"],
22
+ flair: ["token-classification"],
23
+ k2: ["automatic-speech-recognition"],
24
+ keras: ["image-classification"],
25
+ nemo: ["automatic-speech-recognition"],
26
+ open_clip: ["zero-shot-classification", "zero-shot-image-classification"],
27
+ paddlenlp: ["conversational", "fill-mask", "summarization", "zero-shot-classification"],
28
+ peft: ["text-generation"],
29
+ "pyannote-audio": ["automatic-speech-recognition"],
30
+ "sentence-transformers": ["feature-extraction", "sentence-similarity"],
31
+ sklearn: ["tabular-classification", "tabular-regression", "text-classification"],
32
+ spacy: ["token-classification", "text-classification", "sentence-similarity"],
33
+ "span-marker": ["token-classification"],
34
+ speechbrain: [
35
+ "audio-classification",
36
+ "audio-to-audio",
37
+ "automatic-speech-recognition",
38
+ "text-to-speech",
39
+ "text2text-generation"
40
+ ],
41
+ stanza: ["token-classification"],
42
+ timm: ["image-classification"],
43
+ mindspore: ["image-classification"]
44
+ };
45
+
46
+ // src/library-ui-elements.ts
47
+ function nameWithoutNamespace(modelId) {
48
+ const splitted = modelId.split("/");
49
+ return splitted.length === 1 ? splitted[0] : splitted[1];
50
+ }
51
+ var adapter_transformers = (model) => [
52
+ `from transformers import ${model.config?.adapter_transformers?.model_class}
53
+
54
+ model = ${model.config?.adapter_transformers?.model_class}.from_pretrained("${model.config?.adapter_transformers?.model_name}")
55
+ model.load_adapter("${model.id}", source="hf")`
56
+ ];
57
+ var allennlpUnknown = (model) => [
58
+ `import allennlp_models
59
+ from allennlp.predictors.predictor import Predictor
60
+
61
+ predictor = Predictor.from_path("hf://${model.id}")`
62
+ ];
63
+ var allennlpQuestionAnswering = (model) => [
64
+ `import allennlp_models
65
+ from allennlp.predictors.predictor import Predictor
66
+
67
+ predictor = Predictor.from_path("hf://${model.id}")
68
+ predictor_input = {"passage": "My name is Wolfgang and I live in Berlin", "question": "Where do I live?"}
69
+ predictions = predictor.predict_json(predictor_input)`
70
+ ];
71
+ var allennlp = (model) => {
72
+ if (model.tags?.includes("question-answering")) {
73
+ return allennlpQuestionAnswering(model);
74
+ }
75
+ return allennlpUnknown(model);
76
+ };
77
+ var asteroid = (model) => [
78
+ `from asteroid.models import BaseModel
79
+
80
+ model = BaseModel.from_pretrained("${model.id}")`
81
+ ];
82
+ function get_base_diffusers_model(model) {
83
+ return model.cardData?.base_model ?? "fill-in-base-model";
84
+ }
85
+ var bertopic = (model) => [
86
+ `from bertopic import BERTopic
87
+
88
+ model = BERTopic.load("${model.id}")`
89
+ ];
90
+ var diffusers_default = (model) => [
91
+ `from diffusers import DiffusionPipeline
92
+
93
+ pipeline = DiffusionPipeline.from_pretrained("${model.id}")`
94
+ ];
95
+ var diffusers_controlnet = (model) => [
96
+ `from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
97
+
98
+ controlnet = ControlNetModel.from_pretrained("${model.id}")
99
+ pipeline = StableDiffusionControlNetPipeline.from_pretrained(
100
+ "${get_base_diffusers_model(model)}", controlnet=controlnet
101
+ )`
102
+ ];
103
+ var diffusers_lora = (model) => [
104
+ `from diffusers import DiffusionPipeline
105
+
106
+ pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
107
+ pipeline.load_lora_weights("${model.id}")`
108
+ ];
109
+ var diffusers_textual_inversion = (model) => [
110
+ `from diffusers import DiffusionPipeline
111
+
112
+ pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
113
+ pipeline.load_textual_inversion("${model.id}")`
114
+ ];
115
+ var diffusers = (model) => {
116
+ if (model.tags?.includes("controlnet")) {
117
+ return diffusers_controlnet(model);
118
+ } else if (model.tags?.includes("lora")) {
119
+ return diffusers_lora(model);
120
+ } else if (model.tags?.includes("textual_inversion")) {
121
+ return diffusers_textual_inversion(model);
122
+ } else {
123
+ return diffusers_default(model);
124
+ }
125
+ };
126
+ var espnetTTS = (model) => [
127
+ `from espnet2.bin.tts_inference import Text2Speech
128
+
129
+ model = Text2Speech.from_pretrained("${model.id}")
130
+
131
+ speech, *_ = model("text to generate speech from")`
132
+ ];
133
+ var espnetASR = (model) => [
134
+ `from espnet2.bin.asr_inference import Speech2Text
135
+
136
+ model = Speech2Text.from_pretrained(
137
+ "${model.id}"
138
+ )
139
+
140
+ speech, rate = soundfile.read("speech.wav")
141
+ text, *_ = model(speech)[0]`
142
+ ];
143
+ var espnetUnknown = () => [`unknown model type (must be text-to-speech or automatic-speech-recognition)`];
144
+ var espnet = (model) => {
145
+ if (model.tags?.includes("text-to-speech")) {
146
+ return espnetTTS(model);
147
+ } else if (model.tags?.includes("automatic-speech-recognition")) {
148
+ return espnetASR(model);
149
+ }
150
+ return espnetUnknown();
151
+ };
152
+ var fairseq = (model) => [
153
+ `from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
154
+
155
+ models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
156
+ "${model.id}"
157
+ )`
158
+ ];
159
+ var flair = (model) => [
160
+ `from flair.models import SequenceTagger
161
+
162
+ tagger = SequenceTagger.load("${model.id}")`
163
+ ];
164
+ var keras = (model) => [
165
+ `from huggingface_hub import from_pretrained_keras
166
+
167
+ model = from_pretrained_keras("${model.id}")
168
+ `
169
+ ];
170
+ var open_clip = (model) => [
171
+ `import open_clip
172
+
173
+ model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:${model.id}')
174
+ tokenizer = open_clip.get_tokenizer('hf-hub:${model.id}')`
175
+ ];
176
+ var paddlenlp = (model) => {
177
+ if (model.config?.architectures?.[0]) {
178
+ const architecture = model.config.architectures[0];
179
+ return [
180
+ [
181
+ `from paddlenlp.transformers import AutoTokenizer, ${architecture}`,
182
+ "",
183
+ `tokenizer = AutoTokenizer.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`,
184
+ `model = ${architecture}.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`
185
+ ].join("\n")
186
+ ];
187
+ } else {
188
+ return [
189
+ [
190
+ `# \u26A0\uFE0F Type of model unknown`,
191
+ `from paddlenlp.transformers import AutoTokenizer, AutoModel`,
192
+ "",
193
+ `tokenizer = AutoTokenizer.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`,
194
+ `model = AutoModel.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`
195
+ ].join("\n")
196
+ ];
197
+ }
198
+ };
199
+ var pyannote_audio_pipeline = (model) => [
200
+ `from pyannote.audio import Pipeline
201
+
202
+ pipeline = Pipeline.from_pretrained("${model.id}")
203
+
204
+ # inference on the whole file
205
+ pipeline("file.wav")
206
+
207
+ # inference on an excerpt
208
+ from pyannote.core import Segment
209
+ excerpt = Segment(start=2.0, end=5.0)
210
+
211
+ from pyannote.audio import Audio
212
+ waveform, sample_rate = Audio().crop("file.wav", excerpt)
213
+ pipeline({"waveform": waveform, "sample_rate": sample_rate})`
214
+ ];
215
+ var pyannote_audio_model = (model) => [
216
+ `from pyannote.audio import Model, Inference
217
+
218
+ model = Model.from_pretrained("${model.id}")
219
+ inference = Inference(model)
220
+
221
+ # inference on the whole file
222
+ inference("file.wav")
223
+
224
+ # inference on an excerpt
225
+ from pyannote.core import Segment
226
+ excerpt = Segment(start=2.0, end=5.0)
227
+ inference.crop("file.wav", excerpt)`
228
+ ];
229
+ var pyannote_audio = (model) => {
230
+ if (model.tags?.includes("pyannote-audio-pipeline")) {
231
+ return pyannote_audio_pipeline(model);
232
+ }
233
+ return pyannote_audio_model(model);
234
+ };
235
+ var tensorflowttsTextToMel = (model) => [
236
+ `from tensorflow_tts.inference import AutoProcessor, TFAutoModel
237
+
238
+ processor = AutoProcessor.from_pretrained("${model.id}")
239
+ model = TFAutoModel.from_pretrained("${model.id}")
240
+ `
241
+ ];
242
+ var tensorflowttsMelToWav = (model) => [
243
+ `from tensorflow_tts.inference import TFAutoModel
244
+
245
+ model = TFAutoModel.from_pretrained("${model.id}")
246
+ audios = model.inference(mels)
247
+ `
248
+ ];
249
+ var tensorflowttsUnknown = (model) => [
250
+ `from tensorflow_tts.inference import TFAutoModel
251
+
252
+ model = TFAutoModel.from_pretrained("${model.id}")
253
+ `
254
+ ];
255
+ var tensorflowtts = (model) => {
256
+ if (model.tags?.includes("text-to-mel")) {
257
+ return tensorflowttsTextToMel(model);
258
+ } else if (model.tags?.includes("mel-to-wav")) {
259
+ return tensorflowttsMelToWav(model);
260
+ }
261
+ return tensorflowttsUnknown(model);
262
+ };
263
+ var timm = (model) => [
264
+ `import timm
265
+
266
+ model = timm.create_model("hf_hub:${model.id}", pretrained=True)`
267
+ ];
268
+ var skopsPickle = (model, modelFile) => {
269
+ return [
270
+ `import joblib
271
+ from skops.hub_utils import download
272
+ download("${model.id}", "path_to_folder")
273
+ model = joblib.load(
274
+ "${modelFile}"
275
+ )
276
+ # only load pickle files from sources you trust
277
+ # read more about it here https://skops.readthedocs.io/en/stable/persistence.html`
278
+ ];
279
+ };
280
+ var skopsFormat = (model, modelFile) => {
281
+ return [
282
+ `from skops.hub_utils import download
283
+ from skops.io import load
284
+ download("${model.id}", "path_to_folder")
285
+ # make sure model file is in skops format
286
+ # if model is a pickle file, make sure it's from a source you trust
287
+ model = load("path_to_folder/${modelFile}")`
288
+ ];
289
+ };
290
+ var skopsJobLib = (model) => {
291
+ return [
292
+ `from huggingface_hub import hf_hub_download
293
+ import joblib
294
+ model = joblib.load(
295
+ hf_hub_download("${model.id}", "sklearn_model.joblib")
296
+ )
297
+ # only load pickle files from sources you trust
298
+ # read more about it here https://skops.readthedocs.io/en/stable/persistence.html`
299
+ ];
300
+ };
301
+ var sklearn = (model) => {
302
+ if (model.tags?.includes("skops")) {
303
+ const skopsmodelFile = model.config?.sklearn?.filename;
304
+ const skopssaveFormat = model.config?.sklearn?.model_format;
305
+ if (!skopsmodelFile) {
306
+ return [`# \u26A0\uFE0F Model filename not specified in config.json`];
307
+ }
308
+ if (skopssaveFormat === "pickle") {
309
+ return skopsPickle(model, skopsmodelFile);
310
+ } else {
311
+ return skopsFormat(model, skopsmodelFile);
312
+ }
313
+ } else {
314
+ return skopsJobLib(model);
315
+ }
316
+ };
317
+ var fastai = (model) => [
318
+ `from huggingface_hub import from_pretrained_fastai
319
+
320
+ learn = from_pretrained_fastai("${model.id}")`
321
+ ];
322
+ var sampleFactory = (model) => [
323
+ `python -m sample_factory.huggingface.load_from_hub -r ${model.id} -d ./train_dir`
324
+ ];
325
+ var sentenceTransformers = (model) => [
326
+ `from sentence_transformers import SentenceTransformer
327
+
328
+ model = SentenceTransformer("${model.id}")`
329
+ ];
330
+ var spacy = (model) => [
331
+ `!pip install https://huggingface.co/${model.id}/resolve/main/${nameWithoutNamespace(model.id)}-any-py3-none-any.whl
332
+
333
+ # Using spacy.load().
334
+ import spacy
335
+ nlp = spacy.load("${nameWithoutNamespace(model.id)}")
336
+
337
+ # Importing as module.
338
+ import ${nameWithoutNamespace(model.id)}
339
+ nlp = ${nameWithoutNamespace(model.id)}.load()`
340
+ ];
341
+ var span_marker = (model) => [
342
+ `from span_marker import SpanMarkerModel
343
+
344
+ model = SpanMarkerModel.from_pretrained("${model.id}")`
345
+ ];
346
+ var stanza = (model) => [
347
+ `import stanza
348
+
349
+ stanza.download("${nameWithoutNamespace(model.id).replace("stanza-", "")}")
350
+ nlp = stanza.Pipeline("${nameWithoutNamespace(model.id).replace("stanza-", "")}")`
351
+ ];
352
+ var speechBrainMethod = (speechbrainInterface) => {
353
+ switch (speechbrainInterface) {
354
+ case "EncoderClassifier":
355
+ return "classify_file";
356
+ case "EncoderDecoderASR":
357
+ case "EncoderASR":
358
+ return "transcribe_file";
359
+ case "SpectralMaskEnhancement":
360
+ return "enhance_file";
361
+ case "SepformerSeparation":
362
+ return "separate_file";
363
+ default:
364
+ return void 0;
365
+ }
366
+ };
367
+ var speechbrain = (model) => {
368
+ const speechbrainInterface = model.config?.speechbrain?.interface;
369
+ if (speechbrainInterface === void 0) {
370
+ return [`# interface not specified in config.json`];
371
+ }
372
+ const speechbrainMethod = speechBrainMethod(speechbrainInterface);
373
+ if (speechbrainMethod === void 0) {
374
+ return [`# interface in config.json invalid`];
375
+ }
376
+ return [
377
+ `from speechbrain.pretrained import ${speechbrainInterface}
378
+ model = ${speechbrainInterface}.from_hparams(
379
+ "${model.id}"
380
+ )
381
+ model.${speechbrainMethod}("file.wav")`
382
+ ];
383
+ };
384
+ var transformers = (model) => {
385
+ const info = model.transformersInfo;
386
+ if (!info) {
387
+ return [`# \u26A0\uFE0F Type of model unknown`];
388
+ }
389
+ const remote_code_snippet = info.custom_class ? ", trust_remote_code=True" : "";
390
+ let autoSnippet;
391
+ if (info.processor) {
392
+ const varName = info.processor === "AutoTokenizer" ? "tokenizer" : info.processor === "AutoFeatureExtractor" ? "extractor" : "processor";
393
+ autoSnippet = [
394
+ "# Load model directly",
395
+ `from transformers import ${info.processor}, ${info.auto_model}`,
396
+ "",
397
+ `${varName} = ${info.processor}.from_pretrained("${model.id}"` + remote_code_snippet + ")",
398
+ `model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")"
399
+ ].join("\n");
400
+ } else {
401
+ autoSnippet = [
402
+ "# Load model directly",
403
+ `from transformers import ${info.auto_model}`,
404
+ `model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")"
405
+ ].join("\n");
406
+ }
407
+ if (model.pipeline_tag) {
408
+ const pipelineSnippet = [
409
+ "# Use a pipeline as a high-level helper",
410
+ "from transformers import pipeline",
411
+ "",
412
+ `pipe = pipeline("${model.pipeline_tag}", model="${model.id}"` + remote_code_snippet + ")"
413
+ ].join("\n");
414
+ return [pipelineSnippet, autoSnippet];
415
+ }
416
+ return [autoSnippet];
417
+ };
418
+ var transformersJS = (model) => {
419
+ if (!model.pipeline_tag) {
420
+ return [`// \u26A0\uFE0F Unknown pipeline tag`];
421
+ }
422
+ const libName = "@xenova/transformers";
423
+ return [
424
+ `// npm i ${libName}
425
+ import { pipeline } from '${libName}';
426
+
427
+ // Allocate pipeline
428
+ const pipe = await pipeline('${model.pipeline_tag}', '${model.id}');`
429
+ ];
430
+ };
431
+ var peftTask = (peftTaskType) => {
432
+ switch (peftTaskType) {
433
+ case "CAUSAL_LM":
434
+ return "CausalLM";
435
+ case "SEQ_2_SEQ_LM":
436
+ return "Seq2SeqLM";
437
+ case "TOKEN_CLS":
438
+ return "TokenClassification";
439
+ case "SEQ_CLS":
440
+ return "SequenceClassification";
441
+ default:
442
+ return void 0;
443
+ }
444
+ };
445
+ var peft = (model) => {
446
+ const { base_model_name: peftBaseModel, task_type: peftTaskType } = model.config?.peft ?? {};
447
+ const pefttask = peftTask(peftTaskType);
448
+ if (!pefttask) {
449
+ return [`Task type is invalid.`];
450
+ }
451
+ if (!peftBaseModel) {
452
+ return [`Base model is not found.`];
453
+ }
454
+ return [
455
+ `from peft import PeftModel, PeftConfig
456
+ from transformers import AutoModelFor${pefttask}
457
+
458
+ config = PeftConfig.from_pretrained("${model.id}")
459
+ model = AutoModelFor${pefttask}.from_pretrained("${peftBaseModel}")
460
+ model = PeftModel.from_pretrained(model, "${model.id}")`
461
+ ];
462
+ };
463
+ var fasttext = (model) => [
464
+ `from huggingface_hub import hf_hub_download
465
+ import fasttext
466
+
467
+ model = fasttext.load_model(hf_hub_download("${model.id}", "model.bin"))`
468
+ ];
469
+ var stableBaselines3 = (model) => [
470
+ `from huggingface_sb3 import load_from_hub
471
+ checkpoint = load_from_hub(
472
+ repo_id="${model.id}",
473
+ filename="{MODEL FILENAME}.zip",
474
+ )`
475
+ ];
476
+ var nemoDomainResolver = (domain, model) => {
477
+ switch (domain) {
478
+ case "ASR":
479
+ return [
480
+ `import nemo.collections.asr as nemo_asr
481
+ asr_model = nemo_asr.models.ASRModel.from_pretrained("${model.id}")
482
+
483
+ transcriptions = asr_model.transcribe(["file.wav"])`
484
+ ];
485
+ default:
486
+ return void 0;
487
+ }
488
+ };
489
+ var mlAgents = (model) => [`mlagents-load-from-hf --repo-id="${model.id}" --local-dir="./downloads"`];
490
+ var nemo = (model) => {
491
+ let command = void 0;
492
+ if (model.tags?.includes("automatic-speech-recognition")) {
493
+ command = nemoDomainResolver("ASR", model);
494
+ }
495
+ return command ?? [`# tag did not correspond to a valid NeMo domain.`];
496
+ };
497
+ var pythae = (model) => [
498
+ `from pythae.models import AutoModel
499
+
500
+ model = AutoModel.load_from_hf_hub("${model.id}")`
501
+ ];
502
+ var MODEL_LIBRARIES_UI_ELEMENTS = {
503
+ "adapter-transformers": {
504
+ btnLabel: "Adapter Transformers",
505
+ repoName: "adapter-transformers",
506
+ repoUrl: "https://github.com/Adapter-Hub/adapter-transformers",
507
+ docsUrl: "https://huggingface.co/docs/hub/adapter-transformers",
508
+ snippets: adapter_transformers
509
+ },
510
+ allennlp: {
511
+ btnLabel: "AllenNLP",
512
+ repoName: "AllenNLP",
513
+ repoUrl: "https://github.com/allenai/allennlp",
514
+ docsUrl: "https://huggingface.co/docs/hub/allennlp",
515
+ snippets: allennlp
516
+ },
517
+ asteroid: {
518
+ btnLabel: "Asteroid",
519
+ repoName: "Asteroid",
520
+ repoUrl: "https://github.com/asteroid-team/asteroid",
521
+ docsUrl: "https://huggingface.co/docs/hub/asteroid",
522
+ snippets: asteroid
523
+ },
524
+ bertopic: {
525
+ btnLabel: "BERTopic",
526
+ repoName: "BERTopic",
527
+ repoUrl: "https://github.com/MaartenGr/BERTopic",
528
+ snippets: bertopic
529
+ },
530
+ diffusers: {
531
+ btnLabel: "Diffusers",
532
+ repoName: "\u{1F917}/diffusers",
533
+ repoUrl: "https://github.com/huggingface/diffusers",
534
+ docsUrl: "https://huggingface.co/docs/hub/diffusers",
535
+ snippets: diffusers
536
+ },
537
+ espnet: {
538
+ btnLabel: "ESPnet",
539
+ repoName: "ESPnet",
540
+ repoUrl: "https://github.com/espnet/espnet",
541
+ docsUrl: "https://huggingface.co/docs/hub/espnet",
542
+ snippets: espnet
543
+ },
544
+ fairseq: {
545
+ btnLabel: "Fairseq",
546
+ repoName: "fairseq",
547
+ repoUrl: "https://github.com/pytorch/fairseq",
548
+ snippets: fairseq
549
+ },
550
+ flair: {
551
+ btnLabel: "Flair",
552
+ repoName: "Flair",
553
+ repoUrl: "https://github.com/flairNLP/flair",
554
+ docsUrl: "https://huggingface.co/docs/hub/flair",
555
+ snippets: flair
556
+ },
557
+ keras: {
558
+ btnLabel: "Keras",
559
+ repoName: "Keras",
560
+ repoUrl: "https://github.com/keras-team/keras",
561
+ docsUrl: "https://huggingface.co/docs/hub/keras",
562
+ snippets: keras
563
+ },
564
+ nemo: {
565
+ btnLabel: "NeMo",
566
+ repoName: "NeMo",
567
+ repoUrl: "https://github.com/NVIDIA/NeMo",
568
+ snippets: nemo
569
+ },
570
+ open_clip: {
571
+ btnLabel: "OpenCLIP",
572
+ repoName: "OpenCLIP",
573
+ repoUrl: "https://github.com/mlfoundations/open_clip",
574
+ snippets: open_clip
575
+ },
576
+ paddlenlp: {
577
+ btnLabel: "paddlenlp",
578
+ repoName: "PaddleNLP",
579
+ repoUrl: "https://github.com/PaddlePaddle/PaddleNLP",
580
+ docsUrl: "https://huggingface.co/docs/hub/paddlenlp",
581
+ snippets: paddlenlp
582
+ },
583
+ peft: {
584
+ btnLabel: "PEFT",
585
+ repoName: "PEFT",
586
+ repoUrl: "https://github.com/huggingface/peft",
587
+ snippets: peft
588
+ },
589
+ "pyannote-audio": {
590
+ btnLabel: "pyannote.audio",
591
+ repoName: "pyannote-audio",
592
+ repoUrl: "https://github.com/pyannote/pyannote-audio",
593
+ snippets: pyannote_audio
594
+ },
595
+ "sentence-transformers": {
596
+ btnLabel: "sentence-transformers",
597
+ repoName: "sentence-transformers",
598
+ repoUrl: "https://github.com/UKPLab/sentence-transformers",
599
+ docsUrl: "https://huggingface.co/docs/hub/sentence-transformers",
600
+ snippets: sentenceTransformers
601
+ },
602
+ sklearn: {
603
+ btnLabel: "Scikit-learn",
604
+ repoName: "Scikit-learn",
605
+ repoUrl: "https://github.com/scikit-learn/scikit-learn",
606
+ snippets: sklearn
607
+ },
608
+ fastai: {
609
+ btnLabel: "fastai",
610
+ repoName: "fastai",
611
+ repoUrl: "https://github.com/fastai/fastai",
612
+ docsUrl: "https://huggingface.co/docs/hub/fastai",
613
+ snippets: fastai
614
+ },
615
+ spacy: {
616
+ btnLabel: "spaCy",
617
+ repoName: "spaCy",
618
+ repoUrl: "https://github.com/explosion/spaCy",
619
+ docsUrl: "https://huggingface.co/docs/hub/spacy",
620
+ snippets: spacy
621
+ },
622
+ "span-marker": {
623
+ btnLabel: "SpanMarker",
624
+ repoName: "SpanMarkerNER",
625
+ repoUrl: "https://github.com/tomaarsen/SpanMarkerNER",
626
+ docsUrl: "https://huggingface.co/docs/hub/span_marker",
627
+ snippets: span_marker
628
+ },
629
+ speechbrain: {
630
+ btnLabel: "speechbrain",
631
+ repoName: "speechbrain",
632
+ repoUrl: "https://github.com/speechbrain/speechbrain",
633
+ docsUrl: "https://huggingface.co/docs/hub/speechbrain",
634
+ snippets: speechbrain
635
+ },
636
+ stanza: {
637
+ btnLabel: "Stanza",
638
+ repoName: "stanza",
639
+ repoUrl: "https://github.com/stanfordnlp/stanza",
640
+ docsUrl: "https://huggingface.co/docs/hub/stanza",
641
+ snippets: stanza
642
+ },
643
+ tensorflowtts: {
644
+ btnLabel: "TensorFlowTTS",
645
+ repoName: "TensorFlowTTS",
646
+ repoUrl: "https://github.com/TensorSpeech/TensorFlowTTS",
647
+ snippets: tensorflowtts
648
+ },
649
+ timm: {
650
+ btnLabel: "timm",
651
+ repoName: "pytorch-image-models",
652
+ repoUrl: "https://github.com/rwightman/pytorch-image-models",
653
+ docsUrl: "https://huggingface.co/docs/hub/timm",
654
+ snippets: timm
655
+ },
656
+ transformers: {
657
+ btnLabel: "Transformers",
658
+ repoName: "\u{1F917}/transformers",
659
+ repoUrl: "https://github.com/huggingface/transformers",
660
+ docsUrl: "https://huggingface.co/docs/hub/transformers",
661
+ snippets: transformers
662
+ },
663
+ "transformers.js": {
664
+ btnLabel: "Transformers.js",
665
+ repoName: "transformers.js",
666
+ repoUrl: "https://github.com/xenova/transformers.js",
667
+ docsUrl: "https://huggingface.co/docs/hub/transformers-js",
668
+ snippets: transformersJS
669
+ },
670
+ fasttext: {
671
+ btnLabel: "fastText",
672
+ repoName: "fastText",
673
+ repoUrl: "https://fasttext.cc/",
674
+ snippets: fasttext
675
+ },
676
+ "sample-factory": {
677
+ btnLabel: "sample-factory",
678
+ repoName: "sample-factory",
679
+ repoUrl: "https://github.com/alex-petrenko/sample-factory",
680
+ docsUrl: "https://huggingface.co/docs/hub/sample-factory",
681
+ snippets: sampleFactory
682
+ },
683
+ "stable-baselines3": {
684
+ btnLabel: "stable-baselines3",
685
+ repoName: "stable-baselines3",
686
+ repoUrl: "https://github.com/huggingface/huggingface_sb3",
687
+ docsUrl: "https://huggingface.co/docs/hub/stable-baselines3",
688
+ snippets: stableBaselines3
689
+ },
690
+ "ml-agents": {
691
+ btnLabel: "ml-agents",
692
+ repoName: "ml-agents",
693
+ repoUrl: "https://github.com/huggingface/ml-agents",
694
+ docsUrl: "https://huggingface.co/docs/hub/ml-agents",
695
+ snippets: mlAgents
696
+ },
697
+ pythae: {
698
+ btnLabel: "pythae",
699
+ repoName: "pythae",
700
+ repoUrl: "https://github.com/clementchadebec/benchmark_VAE",
701
+ snippets: pythae
702
+ }
703
+ };
704
+
705
+ // src/default-widget-inputs.ts
706
+ var MAPPING_EN = /* @__PURE__ */ new Map([
707
+ ["text-classification", [`I like you. I love you`]],
708
+ [
709
+ "token-classification",
710
+ [
711
+ `My name is Wolfgang and I live in Berlin`,
712
+ `My name is Sarah and I live in London`,
713
+ `My name is Clara and I live in Berkeley, California.`
714
+ ]
715
+ ],
716
+ [
717
+ "table-question-answering",
718
+ [
719
+ {
720
+ text: `How many stars does the transformers repository have?`,
721
+ table: {
722
+ Repository: ["Transformers", "Datasets", "Tokenizers"],
723
+ Stars: [36542, 4512, 3934],
724
+ Contributors: [651, 77, 34],
725
+ "Programming language": ["Python", "Python", "Rust, Python and NodeJS"]
726
+ }
727
+ }
728
+ ]
729
+ ],
730
+ [
731
+ "question-answering",
732
+ [
733
+ {
734
+ text: `Where do I live?`,
735
+ context: `My name is Wolfgang and I live in Berlin`
736
+ },
737
+ {
738
+ text: `Where do I live?`,
739
+ context: `My name is Sarah and I live in London`
740
+ },
741
+ {
742
+ text: `What's my name?`,
743
+ context: `My name is Clara and I live in Berkeley.`
744
+ },
745
+ {
746
+ text: `Which name is also used to describe the Amazon rainforest in English?`,
747
+ context: `The Amazon rainforest (Portuguese: Floresta Amaz\xF4nica or Amaz\xF4nia; Spanish: Selva Amaz\xF3nica, Amazon\xEDa or usually Amazonia; French: For\xEAt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain "Amazonas" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species.`
748
+ }
749
+ ]
750
+ ],
751
+ [
752
+ "zero-shot-classification",
753
+ [
754
+ {
755
+ text: "I have a problem with my iphone that needs to be resolved asap!!",
756
+ candidate_labels: "urgent, not urgent, phone, tablet, computer",
757
+ multi_class: true
758
+ },
759
+ {
760
+ text: "Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.",
761
+ candidate_labels: "mobile, website, billing, account access",
762
+ multi_class: false
763
+ },
764
+ {
765
+ text: "A new model offers an explanation for how the Galilean satellites formed around the solar system\u2019s largest world. Konstantin Batygin did not set out to solve one of the solar system\u2019s most puzzling mysteries when he went for a run up a hill in Nice, France. Dr. Batygin, a Caltech researcher, best known for his contributions to the search for the solar system\u2019s missing \u201CPlanet Nine,\u201D spotted a beer bottle. At a steep, 20 degree grade, he wondered why it wasn\u2019t rolling down the hill. He realized there was a breeze at his back holding the bottle in place. Then he had a thought that would only pop into the mind of a theoretical astrophysicist: \u201COh! This is how Europa formed.\u201D Europa is one of Jupiter\u2019s four large Galilean moons. And in a paper published Monday in the Astrophysical Journal, Dr. Batygin and a co-author, Alessandro Morbidelli, a planetary scientist at the C\xF4te d\u2019Azur Observatory in France, present a theory explaining how some moons form around gas giants like Jupiter and Saturn, suggesting that millimeter-sized grains of hail produced during the solar system\u2019s formation became trapped around these massive worlds, taking shape one at a time into the potentially habitable moons we know today.",
766
+ candidate_labels: "space & cosmos, scientific discovery, microbiology, robots, archeology",
767
+ multi_class: true
768
+ }
769
+ ]
770
+ ],
771
+ ["translation", [`My name is Wolfgang and I live in Berlin`, `My name is Sarah and I live in London`]],
772
+ [
773
+ "summarization",
774
+ [
775
+ `The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct.`
776
+ ]
777
+ ],
778
+ [
779
+ "conversational",
780
+ [
781
+ `Hey my name is Julien! How are you?`,
782
+ `Hey my name is Thomas! How are you?`,
783
+ `Hey my name is Mariama! How are you?`,
784
+ `Hey my name is Clara! How are you?`,
785
+ `Hey my name is Julien! How are you?`,
786
+ `Hi.`
787
+ ]
788
+ ],
789
+ [
790
+ "text-generation",
791
+ [
792
+ `My name is Julien and I like to`,
793
+ `My name is Thomas and my main`,
794
+ `My name is Mariama, my favorite`,
795
+ `My name is Clara and I am`,
796
+ `My name is Lewis and I like to`,
797
+ `My name is Merve and my favorite`,
798
+ `My name is Teven and I am`,
799
+ `Once upon a time,`
800
+ ]
801
+ ],
802
+ ["fill-mask", [`Paris is the <mask> of France.`, `The goal of life is <mask>.`]],
803
+ [
804
+ "sentence-similarity",
805
+ [
806
+ {
807
+ source_sentence: "That is a happy person",
808
+ sentences: ["That is a happy dog", "That is a very happy person", "Today is a sunny day"]
809
+ }
810
+ ]
811
+ ]
812
+ ]);
813
+ var MAPPING_ZH = /* @__PURE__ */ new Map([
814
+ ["text-classification", [`\u6211\u559C\u6B22\u4F60\u3002 \u6211\u7231\u4F60`]],
815
+ ["token-classification", [`\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`, `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`, `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u4F4F\u5728\u52A0\u5DDE\u4F2F\u514B\u5229\u3002`]],
816
+ [
817
+ "question-answering",
818
+ [
819
+ {
820
+ text: `\u6211\u4F4F\u5728\u54EA\u91CC\uFF1F`,
821
+ context: `\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`
822
+ },
823
+ {
824
+ text: `\u6211\u4F4F\u5728\u54EA\u91CC\uFF1F`,
825
+ context: `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`
826
+ },
827
+ {
828
+ text: `\u6211\u7684\u540D\u5B57\u662F\u4EC0\u4E48\uFF1F`,
829
+ context: `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u4F4F\u5728\u4F2F\u514B\u5229\u3002`
830
+ }
831
+ ]
832
+ ],
833
+ ["translation", [`\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`, `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`]],
834
+ [
835
+ "zero-shot-classification",
836
+ [
837
+ {
838
+ text: "\u623F\u95F4\u5E72\u51C0\u660E\u4EAE\uFF0C\u975E\u5E38\u4E0D\u9519",
839
+ candidate_labels: "\u8FD9\u662F\u4E00\u6761\u5DEE\u8BC4, \u8FD9\u662F\u4E00\u6761\u597D\u8BC4"
840
+ }
841
+ ]
842
+ ],
843
+ [
844
+ "summarization",
845
+ [
846
+ `\u8BE5\u5854\u9AD8324\u7C73\uFF081063\u82F1\u5C3A\uFF09\uFF0C\u4E0E\u4E00\u5E6281\u5C42\u7684\u5EFA\u7B51\u7269\u4E00\u6837\u9AD8\uFF0C\u662F\u5DF4\u9ECE\u6700\u9AD8\u7684\u5EFA\u7B51\u7269\u3002 \u5B83\u7684\u5E95\u5EA7\u662F\u65B9\u5F62\u7684\uFF0C\u6BCF\u8FB9\u957F125\u7C73\uFF08410\u82F1\u5C3A\uFF09\u3002 \u5728\u5EFA\u9020\u8FC7\u7A0B\u4E2D\uFF0C\u827E\u83F2\u5C14\u94C1\u5854\u8D85\u8FC7\u4E86\u534E\u76DB\u987F\u7EAA\u5FF5\u7891\uFF0C\u6210\u4E3A\u4E16\u754C\u4E0A\u6700\u9AD8\u7684\u4EBA\u9020\u7ED3\u6784\uFF0C\u5B83\u4FDD\u6301\u4E8641\u5E74\u7684\u5934\u8854\uFF0C\u76F4\u52301930\u5E74\u7EBD\u7EA6\u5E02\u7684\u514B\u83B1\u65AF\u52D2\u5927\u697C\u7AE3\u5DE5\u3002\u8FD9\u662F\u7B2C\u4E00\u4E2A\u5230\u8FBE300\u7C73\u9AD8\u5EA6\u7684\u7ED3\u6784\u3002 \u7531\u4E8E1957\u5E74\u5728\u5854\u9876\u589E\u52A0\u4E86\u5E7F\u64AD\u5929\u7EBF\uFF0C\u56E0\u6B64\u5B83\u73B0\u5728\u6BD4\u514B\u83B1\u65AF\u52D2\u5927\u53A6\u9AD85.2\u7C73\uFF0817\u82F1\u5C3A\uFF09\u3002 \u9664\u53D1\u5C04\u5668\u5916\uFF0C\u827E\u83F2\u5C14\u94C1\u5854\u662F\u6CD5\u56FD\u7B2C\u4E8C\u9AD8\u7684\u72EC\u7ACB\u5F0F\u5EFA\u7B51\uFF0C\u4EC5\u6B21\u4E8E\u7C73\u52B3\u9AD8\u67B6\u6865\u3002`
847
+ ]
848
+ ],
849
+ [
850
+ "text-generation",
851
+ [`\u6211\u53EB\u6731\u5229\u5B89\uFF0C\u6211\u559C\u6B22`, `\u6211\u53EB\u6258\u9A6C\u65AF\uFF0C\u6211\u7684\u4E3B\u8981`, `\u6211\u53EB\u739B\u4E3D\u4E9A\uFF0C\u6211\u6700\u559C\u6B22\u7684`, `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u662F`, `\u4ECE\u524D\uFF0C`]
852
+ ],
853
+ ["fill-mask", [`\u5DF4\u9ECE\u662F<mask>\u56FD\u7684\u9996\u90FD\u3002`, `\u751F\u6D3B\u7684\u771F\u8C1B\u662F<mask>\u3002`]],
854
+ [
855
+ "sentence-similarity",
856
+ [
857
+ {
858
+ source_sentence: "\u90A3\u662F \u500B\u5FEB\u6A02\u7684\u4EBA",
859
+ sentences: ["\u90A3\u662F \u689D\u5FEB\u6A02\u7684\u72D7", "\u90A3\u662F \u500B\u975E\u5E38\u5E78\u798F\u7684\u4EBA", "\u4ECA\u5929\u662F\u6674\u5929"]
860
+ }
861
+ ]
862
+ ]
863
+ ]);
864
+ var MAPPING_FR = /* @__PURE__ */ new Map([
865
+ ["text-classification", [`Je t'appr\xE9cie beaucoup. Je t'aime.`]],
866
+ ["token-classification", [`Mon nom est Wolfgang et je vis \xE0 Berlin`]],
867
+ [
868
+ "question-answering",
869
+ [
870
+ {
871
+ text: `O\xF9 est-ce que je vis?`,
872
+ context: `Mon nom est Wolfgang et je vis \xE0 Berlin`
873
+ }
874
+ ]
875
+ ],
876
+ ["translation", [`Mon nom est Wolfgang et je vis \xE0 Berlin`]],
877
+ [
878
+ "summarization",
879
+ [
880
+ `La tour fait 324 m\xE8tres (1,063 pieds) de haut, environ la m\xEAme hauteur qu'un immeuble de 81 \xE9tages, et est la plus haute structure de Paris. Sa base est carr\xE9e, mesurant 125 m\xE8tres (410 pieds) sur chaque c\xF4t\xE9. Durant sa construction, la tour Eiffel surpassa le Washington Monument pour devenir la plus haute structure construite par l'homme dans le monde, un titre qu'elle conserva pendant 41 ans jusqu'\xE0 l'ach\xE8vement du Chrysler Building \xE0 New-York City en 1930. Ce fut la premi\xE8re structure \xE0 atteindre une hauteur de 300 m\xE8tres. Avec l'ajout d'une antenne de radiodiffusion au sommet de la tour Eiffel en 1957, celle-ci redevint plus haute que le Chrysler Building de 5,2 m\xE8tres (17 pieds). En excluant les transmetteurs, elle est la seconde plus haute stucture autoportante de France apr\xE8s le viaduc de Millau.`
881
+ ]
882
+ ],
883
+ ["text-generation", [`Mon nom est Julien et j'aime`, `Mon nom est Thomas et mon principal`, `Il \xE9tait une fois`]],
884
+ ["fill-mask", [`Paris est la <mask> de la France.`]],
885
+ [
886
+ "sentence-similarity",
887
+ [
888
+ {
889
+ source_sentence: "C'est une personne heureuse",
890
+ sentences: [
891
+ "C'est un chien heureux",
892
+ "C'est une personne tr\xE8s heureuse",
893
+ "Aujourd'hui est une journ\xE9e ensoleill\xE9e"
894
+ ]
895
+ }
896
+ ]
897
+ ]
898
+ ]);
899
+ var MAPPING_ES = /* @__PURE__ */ new Map([
900
+ ["text-classification", [`Te quiero. Te amo.`]],
901
+ ["token-classification", [`Me llamo Wolfgang y vivo en Berlin`]],
902
+ [
903
+ "question-answering",
904
+ [
905
+ {
906
+ text: `\xBFD\xF3nde vivo?`,
907
+ context: `Me llamo Wolfgang y vivo en Berlin`
908
+ },
909
+ {
910
+ text: `\xBFQui\xE9n invent\xF3 el submarino?`,
911
+ context: `Isaac Peral fue un murciano que invent\xF3 el submarino`
912
+ },
913
+ {
914
+ text: `\xBFCu\xE1ntas personas hablan espa\xF1ol?`,
915
+ context: `El espa\xF1ol es el segundo idioma m\xE1s hablado del mundo con m\xE1s de 442 millones de hablantes`
916
+ }
917
+ ]
918
+ ],
919
+ [
920
+ "translation",
921
+ [
922
+ `Me llamo Wolfgang y vivo en Berlin`,
923
+ `Los ingredientes de una tortilla de patatas son: huevos, patatas y cebolla`
924
+ ]
925
+ ],
926
+ [
927
+ "summarization",
928
+ [
929
+ `La torre tiene 324 metros (1.063 pies) de altura, aproximadamente la misma altura que un edificio de 81 pisos y la estructura m\xE1s alta de Par\xEDs. Su base es cuadrada, mide 125 metros (410 pies) a cada lado. Durante su construcci\xF3n, la Torre Eiffel super\xF3 al Washington Monument para convertirse en la estructura artificial m\xE1s alta del mundo, un t\xEDtulo que mantuvo durante 41 a\xF1os hasta que el Chrysler Building en la ciudad de Nueva York se termin\xF3 en 1930. Fue la primera estructura en llegar Una altura de 300 metros. Debido a la adici\xF3n de una antena de transmisi\xF3n en la parte superior de la torre en 1957, ahora es m\xE1s alta que el Chrysler Building en 5,2 metros (17 pies). Excluyendo los transmisores, la Torre Eiffel es la segunda estructura independiente m\xE1s alta de Francia despu\xE9s del Viaducto de Millau.`
930
+ ]
931
+ ],
932
+ [
933
+ "text-generation",
934
+ [
935
+ `Me llamo Julien y me gusta`,
936
+ `Me llamo Thomas y mi principal`,
937
+ `Me llamo Manuel y trabajo en`,
938
+ `\xC9rase una vez,`,
939
+ `Si t\xFA me dices ven, `
940
+ ]
941
+ ],
942
+ ["fill-mask", [`Mi nombre es <mask> y vivo en Nueva York.`, `El espa\xF1ol es un idioma muy <mask> en el mundo.`]],
943
+ [
944
+ "sentence-similarity",
945
+ [
946
+ {
947
+ source_sentence: "Esa es una persona feliz",
948
+ sentences: ["Ese es un perro feliz", "Esa es una persona muy feliz", "Hoy es un d\xEDa soleado"]
949
+ }
950
+ ]
951
+ ]
952
+ ]);
953
+ var MAPPING_RU = /* @__PURE__ */ new Map([
954
+ ["text-classification", [`\u0422\u044B \u043C\u043D\u0435 \u043D\u0440\u0430\u0432\u0438\u0448\u044C\u0441\u044F. \u042F \u0442\u0435\u0431\u044F \u043B\u044E\u0431\u043B\u044E`]],
955
+ ["token-classification", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`]],
956
+ [
957
+ "question-answering",
958
+ [
959
+ {
960
+ text: `\u0413\u0434\u0435 \u0436\u0438\u0432\u0443?`,
961
+ context: `\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`
962
+ }
963
+ ]
964
+ ],
965
+ ["translation", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`]],
966
+ [
967
+ "summarization",
968
+ [
969
+ `\u0412\u044B\u0441\u043E\u0442\u0430 \u0431\u0430\u0448\u043D\u0438 \u0441\u043E\u0441\u0442\u0430\u0432\u043B\u044F\u0435\u0442 324 \u043C\u0435\u0442\u0440\u0430 (1063 \u0444\u0443\u0442\u0430), \u043F\u0440\u0438\u043C\u0435\u0440\u043D\u043E \u0442\u0430\u043A\u0430\u044F \u0436\u0435 \u0432\u044B\u0441\u043E\u0442\u0430, \u043A\u0430\u043A \u0443 81-\u044D\u0442\u0430\u0436\u043D\u043E\u0433\u043E \u0437\u0434\u0430\u043D\u0438\u044F, \u0438 \u0441\u0430\u043C\u043E\u0435 \u0432\u044B\u0441\u043E\u043A\u043E\u0435 \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435 \u0432 \u041F\u0430\u0440\u0438\u0436\u0435. \u0415\u0433\u043E \u043E\u0441\u043D\u043E\u0432\u0430\u043D\u0438\u0435 \u043A\u0432\u0430\u0434\u0440\u0430\u0442\u043D\u043E, \u0440\u0430\u0437\u043C\u0435\u0440\u043E\u043C 125 \u043C\u0435\u0442\u0440\u043E\u0432 (410 \u0444\u0443\u0442\u043E\u0432) \u0441 \u043B\u044E\u0431\u043E\u0439 \u0441\u0442\u043E\u0440\u043E\u043D\u044B. \u0412\u043E \u0432\u0440\u0435\u043C\u044F \u0441\u0442\u0440\u043E\u0438\u0442\u0435\u043B\u044C\u0441\u0442\u0432\u0430 \u042D\u0439\u0444\u0435\u043B\u0435\u0432\u0430 \u0431\u0430\u0448\u043D\u044F \u043F\u0440\u0435\u0432\u0437\u043E\u0448\u043B\u0430 \u043C\u043E\u043D\u0443\u043C\u0435\u043D\u0442 \u0412\u0430\u0448\u0438\u043D\u0433\u0442\u043E\u043D\u0430, \u0441\u0442\u0430\u0432 \u0441\u0430\u043C\u044B\u043C \u0432\u044B\u0441\u043E\u043A\u0438\u043C \u0438\u0441\u043A\u0443\u0441\u0441\u0442\u0432\u0435\u043D\u043D\u044B\u043C \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435\u043C \u0432 \u043C\u0438\u0440\u0435, \u0438 \u044D\u0442\u043E\u0442 \u0442\u0438\u0442\u0443\u043B \u043E\u043D\u0430 \u0443\u0434\u0435\u0440\u0436\u0438\u0432\u0430\u043B\u0430 \u0432 \u0442\u0435\u0447\u0435\u043D\u0438\u0435 41 \u0433\u043E\u0434\u0430 \u0434\u043E \u0437\u0430\u0432\u0435\u0440\u0448\u0435\u043D\u0438\u044F \u0441\u0442\u0440\u043E\u0438\u0442\u0435\u043B\u044C\u0441\u0442\u0432\u043E \u0437\u0434\u0430\u043D\u0438\u044F \u041A\u0440\u0430\u0439\u0441\u043B\u0435\u0440 \u0432 \u041D\u044C\u044E-\u0419\u043E\u0440\u043A\u0435 \u0432 1930 \u0433\u043E\u0434\u0443. \u042D\u0442\u043E \u043F\u0435\u0440\u0432\u043E\u0435 \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435 \u043A\u043E\u0442\u043E\u0440\u043E\u0435 \u0434\u043E\u0441\u0442\u0438\u0433\u043B\u043E \u0432\u044B\u0441\u043E\u0442\u044B 300 \u043C\u0435\u0442\u0440\u043E\u0432. \u0418\u0437-\u0437\u0430 \u0434\u043E\u0431\u0430\u0432\u043B\u0435\u043D\u0438\u044F \u0432\u0435\u0449\u0430\u0442\u0435\u043B\u044C\u043D\u043E\u0439 \u0430\u043D\u0442\u0435\u043D\u043D\u044B \u043D\u0430 \u0432\u0435\u0440\u0448\u0438\u043D\u0435 \u0431\u0430\u0448\u043D\u0438 \u0432 1957 \u0433\u043E\u0434\u0443 \u043E\u043D\u0430 \u0441\u0435\u0439\u0447\u0430\u0441 \u0432\u044B\u0448\u0435 \u0437\u0434\u0430\u043D\u0438\u044F \u041A\u0440\u0430\u0439\u0441\u043B\u0435\u0440 \u043D\u0430 5,2 \u043C\u0435\u0442\u0440\u0430 (17 \u0444\u0443\u0442\u043E\u0432). \u0417\u0430 \u0438\u0441\u043A\u043B\u044E\u0447\u0435\u043D\u0438\u0435\u043C \u043F\u0435\u0440\u0435\u0434\u0430\u0442\u0447\u0438\u043A\u043E\u0432, \u042D\u0439\u0444\u0435\u043B\u0435\u0432\u0430 \u0431\u0430\u0448\u043D\u044F \u044F\u0432\u043B\u044F\u0435\u0442\u0441\u044F \u0432\u0442\u043E\u0440\u043E\u0439 \u0441\u0430\u043C\u043E\u0439 \u0432\u044B\u0441\u043E\u043A\u043E\u0439 \u043E\u0442\u0434\u0435\u043B\u044C\u043D\u043E \u0441\u0442\u043E\u044F\u0449\u0435\u0439 \u0441\u0442\u0440\u0443\u043A\u0442\u0443\u0440\u043E\u0439 \u0432\u043E \u0424\u0440\u0430\u043D\u0446\u0438\u0438 \u043F\u043E\u0441\u043B\u0435 \u0432\u0438\u0430\u0434\u0443\u043A\u0430 \u041C\u0438\u0439\u043E.`
970
+ ]
971
+ ],
972
+ ["text-generation", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0416\u044E\u043B\u044C\u0435\u043D \u0438`, `\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0422\u043E\u043C\u0430\u0441 \u0438 \u043C\u043E\u0439 \u043E\u0441\u043D\u043E\u0432\u043D\u043E\u0439`, `\u041E\u0434\u043D\u0430\u0436\u0434\u044B`]],
973
+ ["fill-mask", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 <mask> \u0438 \u044F \u0438\u043D\u0436\u0435\u043D\u0435\u0440 \u0436\u0438\u0432\u0443\u0449\u0438\u0439 \u0432 \u041D\u044C\u044E-\u0419\u043E\u0440\u043A\u0435.`]],
974
+ [
975
+ "sentence-similarity",
976
+ [
977
+ {
978
+ source_sentence: "\u042D\u0442\u043E \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u044B\u0439 \u0447\u0435\u043B\u043E\u0432\u0435\u043A",
979
+ sentences: ["\u042D\u0442\u043E \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u0430\u044F \u0441\u043E\u0431\u0430\u043A\u0430", "\u042D\u0442\u043E \u043E\u0447\u0435\u043D\u044C \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u044B\u0439 \u0447\u0435\u043B\u043E\u0432\u0435\u043A", "\u0421\u0435\u0433\u043E\u0434\u043D\u044F \u0441\u043E\u043B\u043D\u0435\u0447\u043D\u044B\u0439 \u0434\u0435\u043D\u044C"]
980
+ }
981
+ ]
982
+ ]
983
+ ]);
984
+ var MAPPING_UK = /* @__PURE__ */ new Map([
985
+ ["translation", [`\u041C\u0435\u043D\u0435 \u0437\u0432\u0430\u0442\u0438 \u0412\u043E\u043B\u044C\u0444\u0491\u0430\u043D\u0491 \u0456 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0456\u043D\u0456.`]],
986
+ ["fill-mask", [`\u041C\u0435\u043D\u0435 \u0437\u0432\u0430\u0442\u0438 <mask>.`]]
987
+ ]);
988
+ var MAPPING_IT = /* @__PURE__ */ new Map([
989
+ ["text-classification", [`Mi piaci. Ti amo`]],
990
+ [
991
+ "token-classification",
992
+ [
993
+ `Mi chiamo Wolfgang e vivo a Berlino`,
994
+ `Mi chiamo Sarah e vivo a Londra`,
995
+ `Mi chiamo Clara e vivo a Berkeley in California.`
996
+ ]
997
+ ],
998
+ [
999
+ "question-answering",
1000
+ [
1001
+ {
1002
+ text: `Dove vivo?`,
1003
+ context: `Mi chiamo Wolfgang e vivo a Berlino`
1004
+ },
1005
+ {
1006
+ text: `Dove vivo?`,
1007
+ context: `Mi chiamo Sarah e vivo a Londra`
1008
+ },
1009
+ {
1010
+ text: `Come mio chiamo?`,
1011
+ context: `Mi chiamo Clara e vivo a Berkeley.`
1012
+ }
1013
+ ]
1014
+ ],
1015
+ ["translation", [`Mi chiamo Wolfgang e vivo a Berlino`, `Mi chiamo Sarah e vivo a Londra`]],
1016
+ [
1017
+ "summarization",
1018
+ [
1019
+ `La torre degli Asinelli \xE8 una delle cosiddette due torri di Bologna, simbolo della citt\xE0, situate in piazza di porta Ravegnana, all'incrocio tra le antiche strade San Donato (ora via Zamboni), San Vitale, Maggiore e Castiglione. Eretta, secondo la tradizione, fra il 1109 e il 1119 dal nobile Gherardo Asinelli, la torre \xE8 alta 97,20 metri, pende verso ovest per 2,23 metri e presenta all'interno una scalinata composta da 498 gradini. Ancora non si pu\xF2 dire con certezza quando e da chi fu costruita la torre degli Asinelli. Si presume che la torre debba il proprio nome a Gherardo Asinelli, il nobile cavaliere di fazione ghibellina al quale se ne attribuisce la costruzione, iniziata secondo una consolidata tradizione l'11 ottobre 1109 e terminata dieci anni dopo, nel 1119.`
1020
+ ]
1021
+ ],
1022
+ [
1023
+ "text-generation",
1024
+ [
1025
+ `Mi chiamo Loreto e mi piace`,
1026
+ `Mi chiamo Thomas e il mio principale`,
1027
+ `Mi chiamo Marianna, la mia cosa preferita`,
1028
+ `Mi chiamo Clara e sono`,
1029
+ `C'era una volta`
1030
+ ]
1031
+ ],
1032
+ ["fill-mask", [`Roma \xE8 la <mask> d'Italia.`, `Lo scopo della vita \xE8 <mask>.`]],
1033
+ [
1034
+ "sentence-similarity",
1035
+ [
1036
+ {
1037
+ source_sentence: "Questa \xE8 una persona felice",
1038
+ sentences: ["Questo \xE8 un cane felice", "Questa \xE8 una persona molto felice", "Oggi \xE8 una giornata di sole"]
1039
+ }
1040
+ ]
1041
+ ]
1042
+ ]);
1043
+ var MAPPING_FA = /* @__PURE__ */ new Map([
1044
+ [
1045
+ "text-classification",
1046
+ [`\u067E\u0631\u0648\u0698\u0647 \u0628\u0647 \u0645\u0648\u0642\u0639 \u062A\u062D\u0648\u06CC\u0644 \u0634\u062F \u0648 \u0647\u0645\u0647 \u0686\u06CC\u0632 \u062E\u0648\u0628 \u0628\u0648\u062F.`, `\u0633\u06CC\u0628\u200C\u0632\u0645\u06CC\u0646\u06CC \u0628\u06CC\u200C\u06A9\u06CC\u0641\u06CC\u062A \u0628\u0648\u062F.`, `\u0642\u06CC\u0645\u062A \u0648 \u06A9\u06CC\u0641\u06CC\u062A \u0639\u0627\u0644\u06CC`, `\u062E\u0648\u0628 \u0646\u0628\u0648\u062F \u0627\u0635\u0644\u0627`]
1047
+ ],
1048
+ [
1049
+ "token-classification",
1050
+ [
1051
+ `\u0627\u06CC\u0646 \u0633\u0631\u06CC\u0627\u0644 \u0628\u0647 \u0635\u0648\u0631\u062A \u0631\u0633\u0645\u06CC \u062F\u0631 \u062A\u0627\u0631\u06CC\u062E \u062F\u0647\u0645 \u0645\u06CC \u06F2\u06F0\u06F1\u06F1 \u062A\u0648\u0633\u0637 \u0634\u0628\u06A9\u0647 \u0641\u0627\u06A9\u0633 \u0628\u0631\u0627\u06CC \u067E\u062E\u0634 \u0631\u0632\u0631\u0648 \u0634\u062F.`,
1052
+ `\u062F\u0641\u062A\u0631 \u0645\u0631\u06A9\u0632\u06CC \u0634\u0631\u06A9\u062A \u067E\u0627\u0631\u0633\u200C\u0645\u06CC\u0646\u0648 \u062F\u0631 \u0634\u0647\u0631 \u0627\u0631\u0627\u06A9 \u062F\u0631 \u0627\u0633\u062A\u0627\u0646 \u0645\u0631\u06A9\u0632\u06CC \u0642\u0631\u0627\u0631 \u062F\u0627\u0631\u062F.`,
1053
+ `\u0648\u06CC \u062F\u0631 \u0633\u0627\u0644 \u06F2\u06F0\u06F1\u06F3 \u062F\u0631\u06AF\u0630\u0634\u062A \u0648 \u0645\u0633\u0626\u0648\u0644 \u062E\u0627\u06A9\u0633\u067E\u0627\u0631\u06CC \u0648 \u0627\u0642\u0648\u0627\u0645\u0634 \u0628\u0631\u0627\u06CC \u0627\u0648 \u0645\u0631\u0627\u0633\u0645 \u06CC\u0627\u062F\u0628\u0648\u062F \u06AF\u0631\u0641\u062A\u0646\u062F.`
1054
+ ]
1055
+ ],
1056
+ [
1057
+ "question-answering",
1058
+ [
1059
+ {
1060
+ text: `\u0645\u0646 \u06A9\u062C\u0627 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645\u061F`,
1061
+ context: `\u0646\u0627\u0645 \u0645\u0646 \u067E\u0698\u0645\u0627\u0646 \u0627\u0633\u062A \u0648 \u062F\u0631 \u06AF\u0631\u06AF\u0627\u0646 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645.`
1062
+ },
1063
+ {
1064
+ text: `\u0646\u0627\u0645\u0645 \u0686\u06CC\u0633\u062A \u0648 \u06A9\u062C\u0627 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0646\u0645\u061F`,
1065
+ context: `\u0627\u0633\u0645\u0645 \u0633\u0627\u0631\u0627 \u0627\u0633\u062A \u0648 \u062F\u0631 \u0622\u0641\u0631\u06CC\u0642\u0627\u06CC \u062C\u0646\u0648\u0628\u06CC \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645.`
1066
+ },
1067
+ {
1068
+ text: `\u0646\u0627\u0645 \u0645\u0646 \u0686\u06CC\u0633\u062A\u061F`,
1069
+ context: `\u0645\u0646 \u0645\u0631\u06CC\u0645 \u0647\u0633\u062A\u0645 \u0648 \u062F\u0631 \u062A\u0628\u0631\u06CC\u0632 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0646\u0645.`
1070
+ },
1071
+ {
1072
+ text: `\u0628\u06CC\u0634\u062A\u0631\u06CC\u0646 \u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644 \u0622\u0645\u0627\u0632\u0648\u0646 \u062F\u0631 \u06A9\u062F\u0627\u0645 \u06A9\u0634\u0648\u0631 \u0627\u0633\u062A\u061F`,
1073
+ context: [
1074
+ "\u0622\u0645\u0627\u0632\u0648\u0646 \u0646\u0627\u0645 \u0628\u0632\u0631\u06AF\u200C\u062A\u0631\u06CC\u0646 \u062C\u0646\u06AF\u0644 \u0628\u0627\u0631\u0627\u0646\u06CC \u062C\u0647\u0627\u0646 \u0627\u0633\u062A \u06A9\u0647 \u062F\u0631 \u0634\u0645\u0627\u0644 \u0622\u0645\u0631\u06CC\u06A9\u0627\u06CC \u062C\u0646\u0648\u0628\u06CC \u0642\u0631\u0627\u0631 \u06AF\u0631\u0641\u062A\u0647 \u0648 \u0628\u06CC\u0634\u062A\u0631 \u0622\u0646 \u062F\u0631 \u062E\u0627\u06A9 \u0628\u0631\u0632\u06CC\u0644 \u0648 \u067E\u0631\u0648",
1075
+ "\u062C\u0627\u06CC \u062F\u0627\u0631\u062F. \u0628\u06CC\u0634 \u0627\u0632 \u0646\u06CC\u0645\u06CC \u0627\u0632 \u0647\u0645\u0647 \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0628\u0627\u0631\u0627\u0646\u06CC \u0628\u0627\u0642\u06CC\u200C\u0645\u0627\u0646\u062F\u0647 \u062F\u0631 \u062C\u0647\u0627\u0646 \u062F\u0631 \u0622\u0645\u0627\u0632\u0648\u0646 \u0642\u0631\u0627\u0631 \u062F\u0627\u0631\u062F.",
1076
+ "\u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0622\u0645\u0627\u0632\u0648\u0646 \u06F5\u066B\u06F5 \u0645\u06CC\u0644\u06CC\u0648\u0646 \u06A9\u06CC\u0644\u0648\u0645\u062A\u0631 \u0645\u0631\u0628\u0639 \u0627\u0633\u062A \u06A9\u0647 \u0628\u06CC\u0646 \u06F9 \u06A9\u0634\u0648\u0631 \u062A\u0642\u0633\u06CC\u0645 \u0634\u062F\u0647\u200C\u0627\u0633\u062A."
1077
+ ].join("\n")
1078
+ }
1079
+ ]
1080
+ ],
1081
+ [
1082
+ "translation",
1083
+ [
1084
+ "\u0628\u06CC\u0634\u062A\u0631 \u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0622\u0645\u0627\u0632\u0648\u0646 \u062F\u0631 \u062D\u0648\u0636\u0647 \u0622\u0628\u0631\u06CC\u0632 \u0631\u0648\u062F \u0622\u0645\u0627\u0632\u0648\u0646 \u0648 \u06F1\u06F1\u06F0\u06F0 \u0634\u0627\u062E\u0647 \u0622\u0646 \u0648\u0627\u0642\u0639 \u0634\u062F\u0647\u200C\u0627\u0633\u062A.",
1085
+ "\u0645\u0631\u062F\u0645\u0627\u0646 \u0646\u064E\u0628\u064E\u0637\u06CC \u0627\u0632 \u0647\u0632\u0627\u0631\u0647\u200C\u0647\u0627\u06CC \u06CC\u06A9\u0645 \u0648 \u062F\u0648\u0645 \u067E\u06CC\u0634 \u0627\u0632 \u0645\u06CC\u0644\u0627\u062F \u062F\u0631 \u0627\u06CC\u0646 \u0645\u0646\u0637\u0642\u0647 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0631\u062F\u0646\u062F."
1086
+ ]
1087
+ ],
1088
+ [
1089
+ "summarization",
1090
+ [
1091
+ [
1092
+ "\u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u062B\u0631 \u062D\u06A9\u06CC\u0645 \u0627\u0628\u0648\u0627\u0644\u0642\u0627\u0633\u0645 \u0641\u0631\u062F\u0648\u0633\u06CC \u062A\u0648\u0633\u06CC\u060C \u062D\u0645\u0627\u0633\u0647\u200C\u0627\u06CC \u0645\u0646\u0638\u0648\u0645\u060C \u0628\u0631 \u062D\u0633\u0628 \u062F\u0633\u062A \u0646\u0648\u0634\u062A\u0647\u200C\u0647\u0627\u06CC ",
1093
+ "\u0645\u0648\u062C\u0648\u062F \u062F\u0631\u0628\u0631\u06AF\u06CC\u0631\u0646\u062F\u0647 \u0646\u0632\u062F\u06CC\u06A9 \u0628\u0647 \u06F5\u06F0\u066C\u06F0\u06F0\u06F0 \u0628\u06CC\u062A \u062A\u0627 \u0646\u0632\u062F\u06CC\u06A9 \u0628\u0647 \u06F6\u06F1\u066C\u06F0\u06F0\u06F0 \u0628\u06CC\u062A \u0648 \u06CC\u06A9\u06CC \u0627\u0632 ",
1094
+ "\u0628\u0632\u0631\u06AF\u200C\u062A\u0631\u06CC\u0646 \u0648 \u0628\u0631\u062C\u0633\u062A\u0647\u200C\u062A\u0631\u06CC\u0646 \u0633\u0631\u0648\u062F\u0647\u200C\u0647\u0627\u06CC \u062D\u0645\u0627\u0633\u06CC \u062C\u0647\u0627\u0646 \u0627\u0633\u062A \u06A9\u0647 \u0633\u0631\u0627\u06CC\u0634 \u0622\u0646 \u062F\u0633\u062A\u200C\u0622\u0648\u0631\u062F\u0650 ",
1095
+ "\u062F\u0633\u062A\u200C\u06A9\u0645 \u0633\u06CC \u0633\u0627\u0644 \u06A9\u0627\u0631\u0650 \u067E\u06CC\u0648\u0633\u062A\u0647\u0654 \u0627\u06CC\u0646 \u0633\u062E\u0646\u200C\u0633\u0631\u0627\u06CC \u0646\u0627\u0645\u062F\u0627\u0631 \u0627\u06CC\u0631\u0627\u0646\u06CC \u0627\u0633\u062A. \u0645\u0648\u0636\u0648\u0639 \u0627\u06CC\u0646 \u0634\u0627\u0647\u06A9\u0627\u0631 \u0627\u062F\u0628\u06CC\u060C",
1096
+ " \u0627\u0641\u0633\u0627\u0646\u0647\u200C\u0647\u0627 \u0648 \u062A\u0627\u0631\u06CC\u062E \u0627\u06CC\u0631\u0627\u0646 \u0627\u0632 \u0622\u063A\u0627\u0632 \u062A\u0627 \u062D\u0645\u0644\u0647\u0654 \u0639\u0631\u0628\u200C\u0647\u0627 \u0628\u0647 \u0627\u06CC\u0631\u0627\u0646 \u062F\u0631 \u0633\u062F\u0647\u0654 \u0647\u0641\u062A\u0645 \u0645\u06CC\u0644\u0627\u062F\u06CC \u0627\u0633\u062A",
1097
+ " (\u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u0632 \u0633\u0647 \u0628\u062E\u0634 \u0627\u0633\u0637\u0648\u0631\u0647\u060C \u067E\u0647\u0644\u0648\u0627\u0646\u06CC \u0648 \u062A\u0627\u0631\u06CC\u062E\u06CC \u062A\u0634\u06A9\u06CC\u0644 \u0634\u062F\u0647\u200C\u0627\u0633\u062A) \u06A9\u0647 \u062F\u0631 \u0686\u0647\u0627\u0631",
1098
+ " \u062F\u0648\u062F\u0645\u0627\u0646 \u067E\u0627\u062F\u0634\u0627\u0647\u06CC\u0650 \u067E\u06CC\u0634\u062F\u0627\u062F\u06CC\u0627\u0646\u060C \u06A9\u06CC\u0627\u0646\u06CC\u0627\u0646\u060C \u0627\u0634\u06A9\u0627\u0646\u06CC\u0627\u0646 \u0648 \u0633\u0627\u0633\u0627\u0646\u06CC\u0627\u0646 \u06AF\u0646\u062C\u0627\u0646\u062F\u0647 \u0645\u06CC\u200C\u0634\u0648\u062F.",
1099
+ " \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0628\u0631 \u0648\u0632\u0646 \xAB\u0641\u064E\u0639\u0648\u0644\u064F\u0646 \u0641\u0639\u0648\u0644\u0646 \u0641\u0639\u0648\u0644\u0646 \u0641\u064E\u0639\u064E\u0644\u0652\xBB\u060C \u062F\u0631 \u0628\u062D\u0631\u0650 \u0645\u064F\u062A\u064E\u0642\u0627\u0631\u0650\u0628\u0650 \u0645\u062B\u0645\u064E\u0651\u0646\u0650 \u0645\u062D\u0630\u0648\u0641 \u0646\u06AF\u0627\u0634\u062A\u0647 \u0634\u062F\u0647\u200C\u0627\u0633\u062A.",
1100
+ "\u0647\u0646\u06AF\u0627\u0645\u06CC \u06A9\u0647 \u0632\u0628\u0627\u0646 \u062F\u0627\u0646\u0634 \u0648 \u0627\u062F\u0628\u06CC\u0627\u062A \u062F\u0631 \u0627\u06CC\u0631\u0627\u0646 \u0632\u0628\u0627\u0646 \u0639\u0631\u0628\u06CC \u0628\u0648\u062F\u060C \u0641\u0631\u062F\u0648\u0633\u06CC\u060C \u0628\u0627 \u0633\u0631\u0648\u062F\u0646 \u0634\u0627\u0647\u0646\u0627\u0645\u0647",
1101
+ " \u0628\u0627 \u0648\u06CC\u0698\u06AF\u06CC\u200C\u0647\u0627\u06CC \u0647\u062F\u0641\u200C\u0645\u0646\u062F\u06CC \u06A9\u0647 \u062F\u0627\u0634\u062A\u060C \u0632\u0628\u0627\u0646 \u067E\u0627\u0631\u0633\u06CC \u0631\u0627 \u0632\u0646\u062F\u0647 \u0648 \u067E\u0627\u06CC\u062F\u0627\u0631 \u06A9\u0631\u062F. \u06CC\u06A9\u06CC \u0627\u0632 ",
1102
+ " \u0628\u0646\u200C\u0645\u0627\u06CC\u0647\u200C\u0647\u0627\u06CC \u0645\u0647\u0645\u06CC \u06A9\u0647 \u0641\u0631\u062F\u0648\u0633\u06CC \u0628\u0631\u0627\u06CC \u0633\u0631\u0648\u062F\u0646 \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u0632 \u0622\u0646 \u0627\u0633\u062A\u0641\u0627\u062F\u0647 \u06A9\u0631\u062F\u060C",
1103
+ " \u0634\u0627\u0647\u0646\u0627\u0645\u0647\u0654 \u0627\u0628\u0648\u0645\u0646\u0635\u0648\u0631\u06CC \u0628\u0648\u062F. \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0646\u0641\u0648\u0630 \u0628\u0633\u06CC\u0627\u0631\u06CC \u062F\u0631 \u062C\u0647\u062A\u200C\u06AF\u06CC\u0631\u06CC ",
1104
+ " \u0641\u0631\u0647\u0646\u06AF \u0641\u0627\u0631\u0633\u06CC \u0648 \u0646\u06CC\u0632 \u0628\u0627\u0632\u062A\u0627\u0628\u200C\u0647\u0627\u06CC \u0634\u06A9\u0648\u0647\u200C\u0645\u0646\u062F\u06CC \u062F\u0631 \u0627\u062F\u0628\u06CC\u0627\u062A \u062C\u0647\u0627\u0646 \u062F\u0627\u0634\u062A\u0647\u200C\u0627\u0633\u062A \u0648 \u0634\u0627\u0639\u0631\u0627\u0646 ",
1105
+ " \u0628\u0632\u0631\u06AF\u06CC \u0645\u0627\u0646\u0646\u062F \u06AF\u0648\u062A\u0647 \u0648 \u0648\u06CC\u06A9\u062A\u0648\u0631 \u0647\u0648\u06AF\u0648 \u0627\u0632 \u0622\u0646 \u0628\u0647 \u0646\u06CC\u06A9\u06CC \u06CC\u0627\u062F \u06A9\u0631\u062F\u0647\u200C\u0627\u0646\u062F."
1106
+ ].join("\n")
1107
+ ]
1108
+ ],
1109
+ ["text-generation", ["\u0627\u0633\u0645 \u0645\u0646 \u0646\u0627\u0632\u0646\u06CC\u0646 \u0627\u0633\u062A \u0648 \u0645\u0646", "\u0631\u0648\u0632\u06CC \u0631\u0648\u0632\u06AF\u0627\u0631\u06CC"]],
1110
+ [
1111
+ "fill-mask",
1112
+ [
1113
+ `\u0632\u0646\u062F\u06AF\u06CC \u06CC\u06A9 \u0633\u0648\u0627\u0644 \u0627\u0633\u062A \u0648 \u0627\u06CC\u0646 \u06A9\u0647 \u0686\u06AF\u0648\u0646\u0647 <mask> \u06A9\u0646\u06CC\u0645 \u067E\u0627\u0633\u062E \u0627\u06CC\u0646 \u0633\u0648\u0627\u0644!`,
1114
+ `\u0632\u0646\u062F\u06AF\u06CC \u0627\u0632 \u0645\u0631\u06AF \u067E\u0631\u0633\u06CC\u062F: \u0686\u0631\u0627 \u0647\u0645\u0647 \u0645\u0646 \u0631\u0627 <mask> \u062F\u0627\u0631\u0646\u062F \u0627\u0645\u0627 \u0627\u0632 \u062A\u0648 \u0645\u062A\u0646\u0641\u0631\u0646\u062F\u061F`
1115
+ ]
1116
+ ]
1117
+ ]);
1118
+ var MAPPING_AR = /* @__PURE__ */ new Map([
1119
+ ["text-classification", [`\u0623\u062D\u0628\u0643. \u0623\u0647\u0648\u0627\u0643`]],
1120
+ [
1121
+ "token-classification",
1122
+ [`\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u0631\u0644\u064A\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0645\u064A \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0627\u0644\u0642\u062F\u0633 \u0641\u064A \u0641\u0644\u0633\u0637\u064A\u0646.`]
1123
+ ],
1124
+ [
1125
+ "question-answering",
1126
+ [
1127
+ {
1128
+ text: `\u0623\u064A\u0646 \u0623\u0633\u0643\u0646\u061F`,
1129
+ context: `\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u064A\u0631\u0648\u062A`
1130
+ },
1131
+ {
1132
+ text: `\u0623\u064A\u0646 \u0623\u0633\u0643\u0646\u061F`,
1133
+ context: `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`
1134
+ },
1135
+ {
1136
+ text: `\u0645\u0627 \u0627\u0633\u0645\u064A\u061F`,
1137
+ context: `\u0627\u0633\u0645\u064A \u0633\u0639\u064A\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u062D\u064A\u0641\u0627.`
1138
+ },
1139
+ {
1140
+ text: `\u0645\u0627 \u0644\u0642\u0628 \u062E\u0627\u0644\u062F \u0628\u0646 \u0627\u0644\u0648\u0644\u064A\u062F \u0628\u0627\u0644\u0639\u0631\u0628\u064A\u0629\u061F`,
1141
+ context: `\u062E\u0627\u0644\u062F \u0628\u0646 \u0627\u0644\u0648\u0644\u064A\u062F \u0645\u0646 \u0623\u0628\u0637\u0627\u0644 \u0648\u0642\u0627\u062F\u0629 \u0627\u0644\u0641\u062A\u062D \u0627\u0644\u0625\u0633\u0644\u0627\u0645\u064A \u0648\u0642\u062F \u062A\u062D\u062F\u062B\u062A \u0639\u0646\u0647 \u0627\u0644\u0644\u063A\u0627\u062A \u0627\u0644\u0625\u0646\u062C\u0644\u064A\u0632\u064A\u0629 \u0648\u0627\u0644\u0641\u0631\u0646\u0633\u064A\u0629 \u0648\u0627\u0644\u0625\u0633\u0628\u0627\u0646\u064A\u0629 \u0648\u0644\u0642\u0628 \u0628\u0633\u064A\u0641 \u0627\u0644\u0644\u0647 \u0627\u0644\u0645\u0633\u0644\u0648\u0644.`
1142
+ }
1143
+ ]
1144
+ ],
1145
+ ["translation", [`\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u0631\u0644\u064A\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`]],
1146
+ [
1147
+ "summarization",
1148
+ [
1149
+ `\u062A\u0642\u0639 \u0627\u0644\u0623\u0647\u0631\u0627\u0645\u0627\u062A \u0641\u064A \u0627\u0644\u062C\u064A\u0632\u0629 \u0642\u0631\u0628 \u0627\u0644\u0642\u0627\u0647\u0631\u0629 \u0641\u064A \u0645\u0635\u0631 \u0648\u0642\u062F \u0628\u0646\u064A\u062A \u0645\u0646\u0630 \u0639\u062F\u0629 \u0642\u0631\u0648\u0646\u060C \u0648\u0642\u064A\u0644 \u0625\u0646\u0647\u0627 \u0643\u0627\u0646\u062A \u0642\u0628\u0648\u0631\u0627 \u0644\u0644\u0641\u0631\u0627\u0639\u0646\u0629 \u0648\u062A\u0645 \u0628\u0646\u0627\u0624\u0647\u0627 \u0628\u0639\u0645\u0644\u064A\u0629 \u0647\u0646\u062F\u0633\u064A\u0629 \u0631\u0627\u0626\u0639\u0629 \u0648\u0627\u0633\u062A\u0642\u062F\u0645\u062A \u062D\u062C\u0627\u0631\u062A\u0647\u0627 \u0645\u0646 \u062C\u0628\u0644 \u0627\u0644\u0645\u0642\u0637\u0645 \u0648\u062A\u0645 \u0646\u0642\u0644\u0647\u0627 \u0628\u0627\u0644\u0633\u0641\u0646 \u0623\u0648 \u0639\u0644\u0649 \u0627\u0644\u0631\u0645\u0644\u060C \u0648\u0645\u0627 \u062A\u0632\u0627\u0644 \u0634\u0627\u0645\u062E\u0629 \u0648\u064A\u0642\u0635\u062F\u0647\u0627 \u0627\u0644\u0633\u064A\u0627\u062D \u0645\u0646 \u0643\u0627\u0641\u0629 \u0623\u0631\u062C\u0627\u0621 \u0627\u0644\u0645\u0639\u0645\u0648\u0631\u0629.`
1150
+ ]
1151
+ ],
1152
+ [
1153
+ "text-generation",
1154
+ [
1155
+ `\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u062D\u0628 \u0623\u0646`,
1156
+ `\u062F\u0639 \u0627\u0644\u0645\u0643\u0627\u0631\u0645 \u0644\u0627 \u062A\u0631\u062D\u0644 \u0644\u0628\u063A\u064A\u062A\u0647\u0627 - \u0648\u0627\u0642\u0639\u062F \u0641\u0625\u0646\u0643 \u0623\u0646\u062A \u0627\u0644\u0637\u0627\u0639\u0645 \u0627\u0644\u0643\u0627\u0633\u064A.`,
1157
+ `\u0644\u0645\u0627\u0630\u0627 \u0646\u062D\u0646 \u0647\u0646\u0627\u061F`,
1158
+ `\u0627\u0644\u0642\u062F\u0633 \u0645\u062F\u064A\u0646\u0629 \u062A\u0627\u0631\u064A\u062E\u064A\u0629\u060C \u0628\u0646\u0627\u0647\u0627 \u0627\u0644\u0643\u0646\u0639\u0627\u0646\u064A\u0648\u0646 \u0641\u064A`,
1159
+ `\u0643\u0627\u0646 \u064A\u0627 \u0645\u0627 \u0643\u0627\u0646 \u0641\u064A \u0642\u062F\u064A\u0645 \u0627\u0644\u0632\u0645\u0627\u0646`
1160
+ ]
1161
+ ],
1162
+ ["fill-mask", [`\u0628\u0627\u0631\u064A\u0633 <mask> \u0641\u0631\u0646\u0633\u0627.`, `\u0641\u0644\u0633\u0641\u0629 \u0627\u0644\u062D\u064A\u0627\u0629 \u0647\u064A <mask>.`]],
1163
+ [
1164
+ "sentence-similarity",
1165
+ [
1166
+ {
1167
+ source_sentence: "\u0647\u0630\u0627 \u0634\u062E\u0635 \u0633\u0639\u064A\u062F",
1168
+ sentences: ["\u0647\u0630\u0627 \u0643\u0644\u0628 \u0633\u0639\u064A\u062F", "\u0647\u0630\u0627 \u0634\u062E\u0635 \u0633\u0639\u064A\u062F \u062C\u062F\u0627", "\u0627\u0644\u064A\u0648\u0645 \u0647\u0648 \u064A\u0648\u0645 \u0645\u0634\u0645\u0633"]
1169
+ }
1170
+ ]
1171
+ ]
1172
+ ]);
1173
+ var MAPPING_BN = /* @__PURE__ */ new Map([
1174
+ ["text-classification", [`\u09AC\u09BE\u0999\u09BE\u09B2\u09BF\u09B0 \u0998\u09B0\u09C7 \u0998\u09B0\u09C7 \u0986\u099C \u09A8\u09AC\u09BE\u09A8\u09CD\u09A8 \u0989\u09CE\u09B8\u09AC\u0964`]],
1175
+ [
1176
+ "token-classification",
1177
+ [`\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u099C\u09BE\u09B9\u09BF\u09A6 \u098F\u09AC\u0982 \u0986\u09AE\u09BF \u09A2\u09BE\u0995\u09BE\u09DF \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`, `\u09A4\u09BF\u09A8\u09BF \u0997\u09C1\u0997\u09B2\u09C7 \u099A\u09BE\u0995\u09B0\u09C0 \u0995\u09B0\u09C7\u09A8\u0964`, `\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B8\u09C1\u09B8\u09CD\u09AE\u09BF\u09A4\u09BE \u098F\u09AC\u0982 \u0986\u09AE\u09BF \u0995\u09B2\u0995\u09BE\u09A4\u09BE\u09DF \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`]
1178
+ ],
1179
+ ["translation", [`\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u099C\u09BE\u09B9\u09BF\u09A6, \u0986\u09AE\u09BF \u09B0\u0982\u09AA\u09C1\u09B0\u09C7 \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`, `\u0986\u09AA\u09A8\u09BF \u0995\u09C0 \u0986\u099C\u0995\u09C7 \u09AC\u09BE\u09B8\u09BE\u09DF \u0986\u09B8\u09AC\u09C7\u09A8?`]],
1180
+ [
1181
+ "summarization",
1182
+ [
1183
+ `\u2018\u0987\u0995\u09CB\u09A8\u09AE\u09BF\u09B8\u09CD\u099F\u2019 \u09B2\u09BF\u0996\u09C7\u099B\u09C7, \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u099A\u09BE\u09B0 \u09AE\u09BE\u09B8 \u09B8\u09CD\u09A5\u09BE\u09DF\u09C0 \u09B9\u0993\u09DF\u09BE\u09B0 \u0996\u09AC\u09B0\u099F\u09BF \u09A6\u09C1\u0987 \u0995\u09BE\u09B0\u09A3\u09C7 \u0986\u09A8\u09A8\u09CD\u09A6\u09C7\u09B0\u0964 \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF \u09AF\u09A4 \u09A6\u09BF\u09A8 \u09AA\u09B0\u09CD\u09AF\u09A8\u09CD\u09A4 \u09B6\u09B0\u09C0\u09B0\u09C7 \u099F\u09BF\u0995\u09AC\u09C7, \u09A4\u09A4 \u09A6\u09BF\u09A8 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3 \u09A5\u09C7\u0995\u09C7 \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BF\u09A4 \u09A5\u09BE\u0995\u09BE \u09B8\u09AE\u09CD\u09AD\u09AC\u0964 \u0985\u09B0\u09CD\u09A5\u09BE\u09CE, \u098F\u09AE\u09A8 \u098F\u0995 \u099F\u09BF\u0995\u09BE\u09B0 \u09AA\u09CD\u09B0\u09DF\u09CB\u099C\u09A8 \u09B9\u09AC\u09C7, \u09AF\u09BE \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u0989\u09A4\u09CD\u09AA\u09BE\u09A6\u09A8\u0995\u09C7 \u09AA\u09CD\u09B0\u09B0\u09CB\u099A\u09BF\u09A4 \u0995\u09B0\u09A4\u09C7 \u09AA\u09BE\u09B0\u09C7 \u098F\u09AC\u0982 \u09A6\u09C0\u09B0\u09CD\u0998\u09B8\u09CD\u09A5\u09BE\u09DF\u09C0 \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BE \u09A6\u09BF\u09A4\u09C7 \u09AA\u09BE\u09B0\u09C7\u0964 \u098F\u0997\u09C1\u09B2\u09CB \u0996\u09C1\u0981\u099C\u09C7 \u09AC\u09C7\u09B0 \u0995\u09B0\u09BE\u0993 \u09B8\u09B9\u099C\u0964 \u098F\u099F\u09BF \u0986\u09AD\u09BE\u09B8 \u09A6\u09C7\u09DF, \u09AC\u09CD\u09AF\u09BE\u09AA\u0995 \u09B9\u09BE\u09B0\u09C7 \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3 \u09AB\u09B2\u09BE\u09AB\u09B2 \u09AE\u09CB\u099F\u09BE\u09AE\u09C1\u099F\u09BF \u09A8\u09BF\u09B0\u09CD\u09AD\u09C1\u09B2 \u09B9\u0993\u09DF\u09BE \u0989\u099A\u09BF\u09A4\u0964 \u09A6\u09CD\u09AC\u09BF\u09A4\u09C0\u09DF \u0986\u09B0\u09C7\u0995\u099F\u09BF \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B0 \u09A8\u09C7\u09A4\u09C3\u09A4\u09CD\u09AC \u09A6\u09BF\u09DF\u09C7\u099B\u09C7\u09A8 \u09AF\u09C1\u0995\u09CD\u09A4\u09B0\u09BE\u099C\u09CD\u09AF\u09C7\u09B0 \u09AE\u09C7\u09A1\u09BF\u0995\u09C7\u09B2 \u09B0\u09BF\u09B8\u09BE\u09B0\u09CD\u099A \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2\u09C7\u09B0 (\u098F\u09AE\u0986\u09B0\u09B8\u09BF) \u0987\u09AE\u09BF\u0989\u09A8\u09CB\u09B2\u099C\u09BF\u09B8\u09CD\u099F \u09A4\u09BE\u0993 \u09A6\u0982\u0964 \u09A4\u09BF\u09A8\u09BF \u099F\u09BF-\u09B8\u09C7\u09B2 \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3\u09C7 \u0995\u09BE\u099C \u0995\u09B0\u09C7\u099B\u09C7\u09A8\u0964 \u099F\u09BF-\u09B8\u09C7\u09B2 \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3\u09C7\u09B0 \u09AA\u09CD\u09B0\u0995\u09CD\u09B0\u09BF\u09DF\u09BE \u0985\u09AC\u09B6\u09CD\u09AF \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u09AE\u09A4\u09CB \u098F\u09A4 \u0986\u09B2\u09CB\u099A\u09BF\u09A4 \u09A8\u09DF\u0964 \u09A4\u09AC\u09C7 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3\u09C7\u09B0 \u09AC\u09BF\u09B0\u09C1\u09A6\u09CD\u09A7\u09C7 \u09B2\u09DC\u09BE\u0987 \u098F\u09AC\u0982 \u09A6\u09C0\u09B0\u09CD\u0998\u09AE\u09C7\u09DF\u09BE\u09A6\u09BF \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BE\u09DF \u09B8\u09AE\u09BE\u09A8 \u0997\u09C1\u09B0\u09C1\u09A4\u09CD\u09AC\u09AA\u09C2\u09B0\u09CD\u09A3 \u09AD\u09C2\u09AE\u09BF\u0995\u09BE \u09AA\u09BE\u09B2\u09A8 \u0995\u09B0\u09C7\u0964 \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B8\u0982\u0995\u09CD\u09B0\u09BE\u09A8\u09CD\u09A4 \u09A8\u09BF\u09AC\u09A8\u09CD\u09A7 \u09AA\u09CD\u09B0\u0995\u09BE\u09B6\u09BF\u09A4 \u09B9\u09DF\u09C7\u099B\u09C7 \u2018\u09A8\u09C7\u099A\u09BE\u09B0 \u0987\u09AE\u09BF\u0989\u09A8\u09CB\u09B2\u099C\u09BF\u2019 \u09B8\u09BE\u09AE\u09DF\u09BF\u0995\u09C0\u09A4\u09C7\u0964 \u09A4\u09BE\u0981\u09B0\u09BE \u09AC\u09B2\u099B\u09C7\u09A8, \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u0995\u09CB\u09AD\u09BF\u09A1-\u09E7\u09EF \u09AE\u09C3\u09A6\u09C1 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3\u09C7\u09B0 \u09B6\u09BF\u0995\u09BE\u09B0 \u09E8\u09EE \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09B0 \u09B0\u0995\u09CD\u09A4\u09C7\u09B0 \u09A8\u09AE\u09C1\u09A8\u09BE, \u09E7\u09EA \u099C\u09A8 \u0997\u09C1\u09B0\u09C1\u09A4\u09B0 \u0985\u09B8\u09C1\u09B8\u09CD\u09A5 \u0993 \u09E7\u09EC \u099C\u09A8 \u09B8\u09C1\u09B8\u09CD\u09A5 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09B0 \u09B0\u0995\u09CD\u09A4\u09C7\u09B0 \u09A8\u09AE\u09C1\u09A8\u09BE \u09AA\u09B0\u09C0\u0995\u09CD\u09B7\u09BE \u0995\u09B0\u09C7\u099B\u09C7\u09A8\u0964 \u0997\u09AC\u09C7\u09B7\u09A3\u09BE \u09A8\u09BF\u09AC\u09A8\u09CD\u09A7\u09C7 \u09AC\u09B2\u09BE \u09B9\u09DF, \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09BF\u09A4 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09A6\u09C7\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u099F\u09BF-\u09B8\u09C7\u09B2\u09C7\u09B0 \u09A4\u09C0\u09AC\u09CD\u09B0 \u09AA\u09CD\u09B0\u09A4\u09BF\u0995\u09CD\u09B0\u09BF\u09DF\u09BE \u09A4\u09BE\u0981\u09B0\u09BE \u09A6\u09C7\u0996\u09C7\u099B\u09C7\u09A8\u0964 \u098F \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u09AE\u09C3\u09A6\u09C1 \u0993 \u0997\u09C1\u09B0\u09C1\u09A4\u09B0 \u0985\u09B8\u09C1\u09B8\u09CD\u09A5 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09A6\u09C7\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u09AA\u09CD\u09B0\u09A4\u09BF\u0995\u09CD\u09B0\u09BF\u09DF\u09BE\u09B0 \u09AD\u09BF\u09A8\u09CD\u09A8\u09A4\u09BE \u09AA\u09BE\u0993\u09DF\u09BE \u0997\u09C7\u099B\u09C7\u0964`
1184
+ ]
1185
+ ],
1186
+ ["text-generation", [`\u0986\u09AE\u09BF \u09B0\u09A4\u09A8 \u098F\u09AC\u0982 \u0986\u09AE\u09BF`, `\u09A4\u09C1\u09AE\u09BF \u09AF\u09A6\u09BF \u099A\u09BE\u0993 \u09A4\u09AC\u09C7`, `\u09AE\u09BF\u09A5\u09BF\u09B2\u09BE \u0986\u099C\u0995\u09C7 \u09AC\u09A1\u09CD\u09A1`]],
1187
+ ["fill-mask", [`\u0986\u09AE\u09BF \u09AC\u09BE\u0982\u09B2\u09BE\u09DF <mask> \u0997\u09BE\u0987\u0964`, `\u0986\u09AE\u09BF <mask> \u0996\u09C1\u09AC \u09AD\u09BE\u09B2\u09CB\u09AC\u09BE\u09B8\u09BF\u0964 `]],
1188
+ [
1189
+ "question-answering",
1190
+ [
1191
+ {
1192
+ text: `\u09AA\u09CD\u09B0\u09A5\u09AE \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0995\u09CB\u09A5\u09BE\u09DF \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09DF ?`,
1193
+ context: `\u09AA\u09CD\u09B0\u09A5\u09AE \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AF\u09BC \u09E7\u09EF\u09EE\u09EA \u09B8\u09BE\u09B2\u09C7 \u09B8\u0982\u09AF\u09C1\u0995\u09CD\u09A4 \u0986\u09B0\u09AC \u0986\u09AE\u09BF\u09B0\u09BE\u09A4 \u098F\u09B0 \u09B6\u09BE\u09B0\u099C\u09BE\u09B9 \u09A4\u09C7 \u09AF\u09C7\u0996\u09BE\u09A8\u09C7 \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2\u09C7\u09B0 \u09AE\u09C2\u09B2 \u0985\u09AB\u09BF\u09B8 \u099B\u09BF\u09B2 (\u09E7\u09EF\u09EF\u09EB \u09AA\u09B0\u09CD\u09AF\u09A8\u09CD\u09A4)\u0964 \u09AD\u09BE\u09B0\u09A4 \u09B6\u09CD\u09B0\u09C0\u09B2\u0999\u09CD\u0995\u09BE\u09B0 \u09B8\u09BE\u09A5\u09C7 \u0986\u09A8\u09CD\u09A4\u09B0\u09BF\u0995\u09A4\u09BE\u09B9\u09C0\u09A8 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u09B8\u09AE\u09CD\u09AA\u09B0\u09CD\u0995\u09C7\u09B0 \u0995\u09BE\u09B0\u09A3\u09C7 \u09E7\u09EF\u09EE\u09EC \u09B8\u09BE\u09B2\u09C7\u09B0 \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u09AC\u09B0\u09CD\u099C\u09A8 \u0995\u09B0\u09C7\u0964 \u09E7\u09EF\u09EF\u09E9 \u09B8\u09BE\u09B2\u09C7 \u09AD\u09BE\u09B0\u09A4 \u0993 \u09AA\u09BE\u0995\u09BF\u09B8\u09CD\u09A4\u09BE\u09A8 \u098F\u09B0 \u09AE\u09A7\u09CD\u09AF\u09C7 \u09B0\u09BE\u099C\u09A8\u09C8\u09A4\u09BF\u0995 \u0985\u09B8\u09CD\u09A5\u09BF\u09B0\u09A4\u09BE\u09B0 \u0995\u09BE\u09B0\u09A3\u09C7 \u098F\u099F\u09BF \u09AC\u09BE\u09A4\u09BF\u09B2 \u09B9\u09AF\u09BC\u09C7 \u09AF\u09BE\u09AF\u09BC\u0964 \u09B6\u09CD\u09B0\u09C0\u09B2\u0999\u09CD\u0995\u09BE \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA \u09B6\u09C1\u09B0\u09C1 \u09A5\u09C7\u0995\u09C7 \u0985\u0982\u09B6 \u0997\u09CD\u09B0\u09B9\u09A3 \u0995\u09B0\u09C7 \u0986\u09B8\u099B\u09C7\u0964 \u0986\u09A8\u09CD\u09A4\u09B0\u09CD\u099C\u09BE\u09A4\u09BF\u0995 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2 \u09A8\u09BF\u09AF\u09BC\u09AE \u0995\u09B0\u09C7 \u09A6\u09BF\u09AF\u09BC\u09C7\u099B\u09C7 \u09AF\u09C7 \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA\u09C7\u09B0 \u09B8\u0995\u09B2 \u0996\u09C7\u09B2\u09BE \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AC\u09C7 \u0985\u09AB\u09BF\u09B8\u09BF\u09AF\u09BC\u09BE\u09B2 \u098F\u0995\u09A6\u09BF\u09A8\u09C7\u09B0 \u0986\u09A8\u09CD\u09A4\u09B0\u09CD\u099C\u09BE\u09A4\u09BF\u0995 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u09B9\u09BF\u09B8\u09C7\u09AC\u09C7\u0964 \u098F\u09B8\u09BF\u09B8\u09BF \u0998\u09CB\u09B7\u09A8\u09BE \u0985\u09A8\u09C1\u09AF\u09BE\u09AF\u09BC\u09C0 \u09AA\u09CD\u09B0\u09A4\u09BF \u09A6\u09C1\u0987 \u09AC\u099B\u09B0 \u09AA\u09B0 \u09AA\u09B0 \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AF\u09BC \u09E8\u09E6\u09E6\u09EE \u09B8\u09BE\u09B2 \u09A5\u09C7\u0995\u09C7\u0964`
1194
+ },
1195
+ {
1196
+ text: `\u09AD\u09BE\u09B0\u09A4\u09C0\u09AF\u09BC \u09AC\u09BE\u0999\u09BE\u09B2\u09BF \u0995\u09A5\u09BE\u09B8\u09BE\u09B9\u09BF\u09A4\u09CD\u09AF\u09BF\u0995 \u09AE\u09B9\u09BE\u09B6\u09CD\u09AC\u09C7\u09A4\u09BE \u09A6\u09C7\u09AC\u09C0\u09B0 \u09AE\u09C3\u09A4\u09CD\u09AF\u09C1 \u0995\u09AC\u09C7 \u09B9\u09DF ?`,
1197
+ context: `\u09E8\u09E6\u09E7\u09EC \u09B8\u09BE\u09B2\u09C7\u09B0 \u09E8\u09E9 \u099C\u09C1\u09B2\u09BE\u0987 \u09B9\u09C3\u09A6\u09B0\u09CB\u0997\u09C7 \u0986\u0995\u09CD\u09B0\u09BE\u09A8\u09CD\u09A4 \u09B9\u09AF\u09BC\u09C7 \u09AE\u09B9\u09BE\u09B6\u09CD\u09AC\u09C7\u09A4\u09BE \u09A6\u09C7\u09AC\u09C0 \u0995\u09B2\u0995\u09BE\u09A4\u09BE\u09B0 \u09AC\u09C7\u09B2 \u09AD\u09BF\u0989 \u0995\u09CD\u09B2\u09BF\u09A8\u09BF\u0995\u09C7 \u09AD\u09B0\u09CD\u09A4\u09BF \u09B9\u09A8\u0964 \u09B8\u09C7\u0987 \u09AC\u099B\u09B0\u0987 \u09E8\u09EE \u099C\u09C1\u09B2\u09BE\u0987 \u098F\u0995\u09BE\u09A7\u09BF\u0995 \u0985\u0999\u09CD\u0997 \u09AC\u09BF\u0995\u09B2 \u09B9\u09AF\u09BC\u09C7 \u09A4\u09BE\u0981\u09B0 \u09AE\u09C3\u09A4\u09CD\u09AF\u09C1 \u0998\u099F\u09C7\u0964 \u09A4\u09BF\u09A8\u09BF \u09AE\u09A7\u09C1\u09AE\u09C7\u09B9, \u09B8\u09C7\u09AA\u09CD\u099F\u09BF\u09B8\u09C7\u09AE\u09BF\u09AF\u09BC\u09BE \u0993 \u09AE\u09C2\u09A4\u09CD\u09B0 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3 \u09B0\u09CB\u0997\u09C7\u0993 \u09AD\u09C1\u0997\u099B\u09BF\u09B2\u09C7\u09A8\u0964`
1198
+ },
1199
+ {
1200
+ text: `\u09AE\u09BE\u09B8\u09CD\u099F\u09BE\u09B0\u09A6\u09BE \u09B8\u09C2\u09B0\u09CD\u09AF\u0995\u09C1\u09AE\u09BE\u09B0 \u09B8\u09C7\u09A8\u09C7\u09B0 \u09AC\u09BE\u09AC\u09BE\u09B0 \u09A8\u09BE\u09AE \u0995\u09C0 \u099B\u09BF\u09B2 ?`,
1201
+ context: `\u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u09E7\u09EE\u09EF\u09EA \u09B8\u09BE\u09B2\u09C7\u09B0 \u09E8\u09E8 \u09AE\u09BE\u09B0\u09CD\u099A \u099A\u099F\u09CD\u099F\u0997\u09CD\u09B0\u09BE\u09AE\u09C7\u09B0 \u09B0\u09BE\u0989\u099C\u09BE\u09A8 \u09A5\u09BE\u09A8\u09BE\u09B0 \u09A8\u09CB\u09AF\u09BC\u09BE\u09AA\u09BE\u09A1\u09BC\u09BE\u09AF\u09BC \u0985\u09B0\u09CD\u09A5\u09A8\u09C8\u09A4\u09BF\u0995 \u09AD\u09BE\u09AC\u09C7 \u0985\u09B8\u09CD\u09AC\u099A\u09CD\u099B\u09B2 \u09AA\u09B0\u09BF\u09AC\u09BE\u09B0\u09C7 \u099C\u09A8\u09CD\u09AE\u0997\u09CD\u09B0\u09B9\u09A3 \u0995\u09B0\u09C7\u09A8\u0964 \u09A4\u09BE\u0981\u09B0 \u09AA\u09BF\u09A4\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B0\u09BE\u099C\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8 \u098F\u09AC\u0982 \u09AE\u09BE\u09A4\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B6\u09B6\u09C0 \u09AC\u09BE\u09B2\u09BE \u09B8\u09C7\u09A8\u0964 \u09B0\u09BE\u099C\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8\u09C7\u09B0 \u09A6\u09C1\u0987 \u099B\u09C7\u09B2\u09C7 \u0986\u09B0 \u099A\u09BE\u09B0 \u09AE\u09C7\u09AF\u09BC\u09C7\u0964 \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u09A4\u09BE\u0981\u09A6\u09C7\u09B0 \u09AA\u09B0\u09BF\u09AC\u09BE\u09B0\u09C7\u09B0 \u099A\u09A4\u09C1\u09B0\u09CD\u09A5 \u09B8\u09A8\u09CD\u09A4\u09BE\u09A8\u0964 \u09A6\u09C1\u0987 \u099B\u09C7\u09B2\u09C7\u09B0 \u09A8\u09BE\u09AE \u09B8\u09C2\u09B0\u09CD\u09AF \u0993 \u0995\u09AE\u09B2\u0964 \u099A\u09BE\u09B0 \u09AE\u09C7\u09AF\u09BC\u09C7\u09B0 \u09A8\u09BE\u09AE \u09AC\u09B0\u09A6\u09BE\u09B8\u09C1\u09A8\u09CD\u09A6\u09B0\u09C0, \u09B8\u09BE\u09AC\u09BF\u09A4\u09CD\u09B0\u09C0, \u09AD\u09BE\u09A8\u09C1\u09AE\u09A4\u09C0 \u0993 \u09AA\u09CD\u09B0\u09AE\u09BF\u09B2\u09BE\u0964 \u09B6\u09C8\u09B6\u09AC\u09C7 \u09AA\u09BF\u09A4\u09BE \u09AE\u09BE\u09A4\u09BE\u0995\u09C7 \u09B9\u09BE\u09B0\u09BE\u09A8\u09CB \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u0995\u09BE\u0995\u09BE \u0997\u09CC\u09B0\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8\u09C7\u09B0 \u0995\u09BE\u099B\u09C7 \u09AE\u09BE\u09A8\u09C1\u09B7 \u09B9\u09AF\u09BC\u09C7\u099B\u09C7\u09A8\u0964 \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u099B\u09C7\u09B2\u09C7\u09AC\u09C7\u09B2\u09BE \u09A5\u09C7\u0995\u09C7\u0987 \u0996\u09C1\u09AC \u09AE\u09A8\u09CB\u09AF\u09CB\u0997\u09C0 \u09AD\u09BE\u09B2 \u099B\u09BE\u09A4\u09CD\u09B0 \u099B\u09BF\u09B2\u09C7\u09A8 \u098F\u09AC\u0982 \u09A7\u09B0\u09CD\u09AE\u09AD\u09BE\u09AC\u09BE\u09AA\u09A8\u09CD\u09A8 \u0997\u09AE\u09CD\u09AD\u09C0\u09B0 \u09AA\u09CD\u09B0\u0995\u09C3\u09A4\u09BF\u09B0 \u099B\u09BF\u09B2\u09C7\u09A8\u0964`
1202
+ }
1203
+ ]
1204
+ ],
1205
+ [
1206
+ "sentence-similarity",
1207
+ [
1208
+ {
1209
+ source_sentence: "\u09B8\u09C7 \u098F\u0995\u099C\u09A8 \u09B8\u09C1\u0996\u09C0 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF",
1210
+ sentences: ["\u09B8\u09C7 \u09B9\u09CD\u09AF\u09BE\u09AA\u09BF \u0995\u09C1\u0995\u09C1\u09B0", "\u09B8\u09C7 \u0996\u09C1\u09AC \u09B8\u09C1\u0996\u09C0 \u09AE\u09BE\u09A8\u09C1\u09B7", "\u0986\u099C \u098F\u0995\u099F\u09BF \u09B0\u09CC\u09A6\u09CD\u09B0\u09CB\u099C\u09CD\u099C\u09CD\u09AC\u09B2 \u09A6\u09BF\u09A8"]
1211
+ }
1212
+ ]
1213
+ ]
1214
+ ]);
1215
+ var MAPPING_MN = /* @__PURE__ */ new Map([
1216
+ ["text-classification", [`\u0411\u0438 \u0447\u0430\u043C\u0434 \u0445\u0430\u0439\u0440\u0442\u0430\u0439`]],
1217
+ [
1218
+ "token-classification",
1219
+ [
1220
+ `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`,
1221
+ `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`,
1222
+ `\u041C\u0430\u043D\u0430\u0439 \u0443\u043B\u0441 \u0442\u0430\u0432\u0430\u043D \u0445\u043E\u0448\u0443\u0443 \u043C\u0430\u043B\u0442\u0430\u0439.`
1223
+ ]
1224
+ ],
1225
+ [
1226
+ "question-answering",
1227
+ [
1228
+ {
1229
+ text: `\u0422\u0430 \u0445\u0430\u0430\u043D\u0430 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433 \u0432\u044D?`,
1230
+ context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`
1231
+ },
1232
+ {
1233
+ text: `\u0422\u0430\u043D\u044B\u0433 \u0445\u044D\u043D \u0433\u044D\u0434\u044D\u0433 \u0432\u044D?`,
1234
+ context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`
1235
+ },
1236
+ {
1237
+ text: `\u041C\u0438\u043D\u0438\u0439 \u043D\u044D\u0440\u0438\u0439\u0433 \u0445\u044D\u043D \u0433\u044D\u0434\u044D\u0433 \u0432\u044D?`,
1238
+ context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`
1239
+ }
1240
+ ]
1241
+ ],
1242
+ ["translation", [`\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`, `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`]],
1243
+ [
1244
+ "summarization",
1245
+ [
1246
+ `\u041C\u043E\u043D\u0433\u043E\u043B \u0423\u043B\u0441 (1992 \u043E\u043D\u043E\u043E\u0441 \u0445\u043E\u0439\u0448) \u2014 \u0434\u043E\u0440\u043D\u043E \u0431\u043E\u043B\u043E\u043D \u0442\u04E9\u0432 \u0410\u0437\u0438\u0434 \u043E\u0440\u0448\u0434\u043E\u0433 \u0431\u04AF\u0440\u044D\u043D \u044D\u0440\u0445\u0442 \u0443\u043B\u0441. \u0425\u043E\u0439\u0434 \u0442\u0430\u043B\u0430\u0430\u0440\u0430\u0430 \u041E\u0440\u043E\u0441, \u0431\u0443\u0441\u0430\u0434 \u0442\u0430\u043B\u0430\u0430\u0440\u0430\u0430 \u0425\u044F\u0442\u0430\u0434 \u0443\u043B\u0441\u0442\u0430\u0439 \u0445\u0438\u043B\u043B\u044D\u0434\u044D\u0433 \u0434\u0430\u043B\u0430\u0439\u0434 \u0433\u0430\u0440\u0446\u0433\u04AF\u0439 \u043E\u0440\u043E\u043D. \u041D\u0438\u0439\u0441\u043B\u044D\u043B \u2014 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440 \u0445\u043E\u0442. \u0410\u043B\u0442\u0430\u0439\u043D \u043D\u0443\u0440\u0443\u0443\u043D\u0430\u0430\u0441 \u0425\u044F\u043D\u0433\u0430\u043D, \u0421\u043E\u0451\u043D\u043E\u043E\u0441 \u0413\u043E\u0432\u044C \u0445\u04AF\u0440\u0441\u044D\u043D 1 \u0441\u0430\u044F 566 \u043C\u044F\u043D\u0433\u0430\u043D \u043A\u043C2 \u0443\u0443\u0434\u0430\u043C \u043D\u0443\u0442\u0430\u0433\u0442\u0430\u0439, \u0434\u044D\u043B\u0445\u0438\u0439\u0434 \u043D\u0443\u0442\u0430\u0433 \u0434\u044D\u0432\u0441\u0433\u044D\u0440\u0438\u0439\u043D \u0445\u044D\u043C\u0436\u044D\u044D\u0433\u044D\u044D\u0440 19-\u0440\u0442 \u0436\u0430\u0433\u0441\u0434\u0430\u0433. 2015 \u043E\u043D\u044B \u044D\u0445\u044D\u043D\u0434 \u041C\u043E\u043D\u0433\u043E\u043B \u0423\u043B\u0441\u044B\u043D \u0445\u04AF\u043D \u0430\u043C 3 \u0441\u0430\u044F \u0445\u04AF\u0440\u0441\u044D\u043D (135-\u0440 \u043E\u043B\u043E\u043D). \u04AE\u043D\u0434\u0441\u044D\u043D\u0434\u044D\u044D \u043C\u043E\u043D\u0433\u043E\u043B \u04AF\u043D\u0434\u044D\u0441\u0442\u044D\u043D (95 \u0445\u0443\u0432\u044C), \u043C\u04E9\u043D \u0445\u0430\u0441\u0430\u0433, \u0442\u0443\u0432\u0430 \u0445\u04AF\u043D \u0431\u0430\u0439\u043D\u0430. 16-\u0440 \u0437\u0443\u0443\u043D\u0430\u0430\u0441 \u0445\u043E\u0439\u0448 \u0431\u0443\u0434\u0434\u044B\u043D \u0448\u0430\u0448\u0438\u043D, 20-\u0440 \u0437\u0443\u0443\u043D\u0430\u0430\u0441 \u0448\u0430\u0448\u0438\u043D\u0433\u04AF\u0439 \u0431\u0430\u0439\u0434\u0430\u043B \u0434\u044D\u043B\u0433\u044D\u0440\u0441\u044D\u043D \u0431\u0430 \u0430\u043B\u0431\u0430\u043D \u0445\u044D\u0440\u044D\u0433\u0442 \u043C\u043E\u043D\u0433\u043E\u043B \u0445\u044D\u043B\u044D\u044D\u0440 \u0445\u0430\u0440\u0438\u043B\u0446\u0430\u043D\u0430.`
1247
+ ]
1248
+ ],
1249
+ [
1250
+ "text-generation",
1251
+ [`\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438`, `\u0425\u0430\u043C\u0433\u0438\u0439\u043D \u0441\u0430\u0439\u043D \u0434\u0443\u0443\u0447\u0438\u043D \u0431\u043E\u043B`, `\u041C\u0438\u043D\u0438\u0439 \u0434\u0443\u0440\u0442\u0430\u0439 \u0445\u0430\u043C\u0442\u043B\u0430\u0433 \u0431\u043E\u043B`, `\u042D\u0440\u0442 \u0443\u0440\u044C\u0434\u044B\u043D \u0446\u0430\u0433\u0442`]
1252
+ ],
1253
+ ["fill-mask", [`\u041C\u043E\u043D\u0433\u043E\u043B \u0443\u043B\u0441\u044B\u043D <mask> \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440 \u0445\u043E\u0442\u043E\u043E\u0441 \u044F\u0440\u044C\u0436 \u0431\u0430\u0439\u043D\u0430.`, `\u041C\u0438\u043D\u0438\u0439 \u0430\u043C\u044C\u0434\u0440\u0430\u043B\u044B\u043D \u0437\u043E\u0440\u0438\u043B\u0433\u043E \u0431\u043E\u043B <mask>.`]],
1254
+ [
1255
+ "automatic-speech-recognition",
1256
+ [
1257
+ {
1258
+ label: `Common Voice Train Example`,
1259
+ src: `https://cdn-media.huggingface.co/common_voice/train/common_voice_mn_18577472.wav`
1260
+ },
1261
+ {
1262
+ label: `Common Voice Test Example`,
1263
+ src: `https://cdn-media.huggingface.co/common_voice/test/common_voice_mn_18577346.wav`
1264
+ }
1265
+ ]
1266
+ ],
1267
+ [
1268
+ "text-to-speech",
1269
+ [
1270
+ `\u0411\u0438 \u041C\u043E\u043D\u0433\u043E\u043B \u0443\u043B\u0441\u044B\u043D \u0438\u0440\u0433\u044D\u043D.`,
1271
+ `\u042D\u043D\u044D\u0445\u04AF\u04AF \u0436\u0438\u0448\u044D\u044D \u043D\u044C \u0446\u0430\u0430\u043D\u0430\u0430 \u044F\u043C\u0430\u0440 \u0447 \u0443\u0442\u0433\u0430 \u0430\u0433\u0443\u0443\u043B\u0430\u0430\u0433\u04AF\u0439 \u0431\u043E\u043B\u043D\u043E`,
1272
+ `\u0421\u0430\u0440 \u0448\u0438\u043D\u044D\u0434\u044D\u044D \u0441\u0430\u0439\u0445\u0430\u043D \u0448\u0438\u043D\u044D\u043B\u044D\u0436 \u0431\u0430\u0439\u043D\u0430 \u0443\u0443?`
1273
+ ]
1274
+ ],
1275
+ [
1276
+ "sentence-similarity",
1277
+ [
1278
+ {
1279
+ source_sentence: "\u042D\u043D\u044D \u0431\u043E\u043B \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u0445\u04AF\u043D \u044E\u043C",
1280
+ sentences: ["\u042D\u043D\u044D \u0431\u043E\u043B \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u043D\u043E\u0445\u043E\u0439 \u044E\u043C", "\u042D\u043D\u044D \u0431\u043E\u043B \u043C\u0430\u0448 \u0438\u0445 \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u0445\u04AF\u043D \u044E\u043C", "\u04E8\u043D\u04E9\u04E9\u0434\u04E9\u0440 \u043D\u0430\u0440\u043B\u0430\u0433 \u04E9\u0434\u04E9\u0440 \u0431\u0430\u0439\u043D\u0430"]
1281
+ }
1282
+ ]
1283
+ ]
1284
+ ]);
1285
+ var MAPPING_SI = /* @__PURE__ */ new Map([
1286
+ ["translation", [`\u0DC3\u0DD2\u0D82\u0DC4\u0DBD \u0D89\u0DAD\u0DCF \u0D85\u0DBD\u0D82\u0D9A\u0DCF\u0DBB \u0DB7\u0DCF\u0DC2\u0DCF\u0DC0\u0D9A\u0DD2.`, `\u0DB8\u0DD9\u0DB8 \u0DAD\u0DCF\u0D9A\u0DCA\u0DC2\u0DAB\u0DBA \u0DB7\u0DCF\u0DC0\u0DD2\u0DAD\u0DCF \u0D9A\u0DBB\u0DB1 \u0D94\u0DB6\u0DA7 \u0DC3\u0DCA\u0DAD\u0DD6\u0DAD\u0DD2\u0DBA\u0DD2.`]],
1287
+ ["fill-mask", [`\u0DB8\u0DB8 \u0D9C\u0DD9\u0DAF\u0DBB <mask>.`, `<mask> \u0D89\u0D9C\u0DD9\u0DB1\u0DD3\u0DB8\u0DA7 \u0D9C\u0DD2\u0DBA\u0DCF\u0DBA.`]]
1288
+ ]);
1289
+ var MAPPING_DE = /* @__PURE__ */ new Map([
1290
+ [
1291
+ "question-answering",
1292
+ [
1293
+ {
1294
+ text: `Wo wohne ich?`,
1295
+ context: `Mein Name ist Wolfgang und ich lebe in Berlin`
1296
+ },
1297
+ {
1298
+ text: `Welcher Name wird auch verwendet, um den Amazonas-Regenwald auf Englisch zu beschreiben?`,
1299
+ context: `Der Amazonas-Regenwald, auf Englisch auch als Amazonien oder Amazonas-Dschungel bekannt, ist ein feuchter Laubwald, der den gr\xF6\xDFten Teil des Amazonas-Beckens S\xFCdamerikas bedeckt. Dieses Becken umfasst 7.000.000 Quadratkilometer (2.700.000 Quadratmeilen), von denen 5.500.000 Quadratkilometer (2.100.000 Quadratmeilen) vom Regenwald bedeckt sind. Diese Region umfasst Gebiete von neun Nationen. Der gr\xF6\xDFte Teil des Waldes befindet sich in Brasilien mit 60% des Regenwaldes, gefolgt von Peru mit 13%, Kolumbien mit 10% und geringen Mengen in Venezuela, Ecuador, Bolivien, Guyana, Suriname und Franz\xF6sisch-Guayana. Staaten oder Abteilungen in vier Nationen enthalten "Amazonas" in ihren Namen. Der Amazonas repr\xE4sentiert mehr als die H\xE4lfte der verbleibenden Regenw\xE4lder des Planeten und umfasst den gr\xF6\xDFten und artenreichsten tropischen Regenwald der Welt mit gesch\xE4tzten 390 Milliarden Einzelb\xE4umen, die in 16.000 Arten unterteilt sind.`
1300
+ }
1301
+ ]
1302
+ ],
1303
+ [
1304
+ "sentence-similarity",
1305
+ [
1306
+ {
1307
+ source_sentence: "Das ist eine gl\xFCckliche Person",
1308
+ sentences: [
1309
+ "Das ist ein gl\xFCcklicher Hund",
1310
+ "Das ist eine sehr gl\xFCckliche Person",
1311
+ "Heute ist ein sonniger Tag"
1312
+ ]
1313
+ }
1314
+ ]
1315
+ ]
1316
+ ]);
1317
+ var MAPPING_DV = /* @__PURE__ */ new Map([
1318
+ ["text-classification", [`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078E\u07A6\u0794\u07A7\u0788\u07AD. \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078D\u07AF\u0784\u07A8\u0788\u07AD`]],
1319
+ [
1320
+ "token-classification",
1321
+ [
1322
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`,
1323
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`,
1324
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0787\u07A8\u079D\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u078A\u07AD\u078B\u07AB\u060C \u0787\u07A6\u0787\u07B0\u0791\u07AB\u078E\u07A6`
1325
+ ]
1326
+ ],
1327
+ [
1328
+ "question-answering",
1329
+ [
1330
+ {
1331
+ text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u078C\u07A7\u0786\u07AA\u061F`,
1332
+ context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`
1333
+ },
1334
+ {
1335
+ text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u078C\u07A7\u0786\u07AA\u061F`,
1336
+ context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`
1337
+ },
1338
+ {
1339
+ text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0786\u07AE\u0784\u07A7\u061F`,
1340
+ context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0787\u07A8\u079D\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u078A\u07AD\u078B\u07AB\u078E\u07A6`
1341
+ },
1342
+ {
1343
+ text: `\u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0790\u07A8\u078A\u07A6\u0786\u07AE\u0781\u07B0\u078B\u07A8\u0782\u07AA\u0789\u07A6\u0781\u07B0 \u0787\u07A8\u0782\u078E\u07A8\u0783\u07AD\u0790\u07A8 \u0784\u07A6\u0780\u07AA\u0782\u07B0 \u0784\u07AD\u0782\u07AA\u0782\u07B0\u0786\u07AA\u0783\u07A7\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u0782\u07A6\u0789\u07AC\u0787\u07B0\u061F`,
1344
+ context: `\u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 (\u0795\u07AF\u0797\u07AA\u0796\u07A9\u0792\u07B0: \u078A\u07B0\u078D\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07A7 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0786\u07A7 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0787\u07A7\u061B \u0790\u07B0\u0795\u07AC\u0782\u07A8\u079D\u07B0: \u0790\u07AC\u078D\u07B0\u0788\u07A7 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0786\u07A7, \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0787\u07A7 \u0782\u07AB\u0782\u07A9 \u0787\u07A7\u0782\u07B0\u0789\u07AA\u0786\u07AE\u0781\u07B0 \u0787\u07AC\u0789\u07A6\u0792\u07AF\u0782\u07A8\u0787\u07A7\u061B \u078A\u07B0\u0783\u07AC\u0782\u07B0\u0797\u07B0: \u078A\u07AE\u0783\u07AD \u0787\u07AC\u0789\u07AC\u0792\u07AE\u0782\u07A8\u0787\u07AC\u0782\u07B0\u061B \u0791\u07A6\u0797\u07B0: \u0787\u07AC\u0789\u07AC\u0792\u07AF\u0782\u07B0\u0783\u07AD\u078E\u07AC\u0788\u07A6\u0787\u07AA\u0791\u07B0)\u060C \u0787\u07A8\u078E\u07A8\u0783\u07AD\u0790\u07A8 \u0784\u07A6\u0780\u07AA\u0782\u07B0 \u0784\u07AA\u0782\u07A7 \u0787\u07AC\u0789\u07AC\u0792\u07AF\u0782\u07A8\u0787\u07A7 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u078B\u07A6 \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0796\u07A6\u0782\u07B0\u078E\u07A6\u078D\u07B0 \u0787\u07A6\u0786\u07A9, \u0790\u07A6\u0787\u07AA\u078C\u07AA \u0787\u07AC\u0789\u07AC\u0783\u07A8\u0786\u07A7\u078E\u07AC \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0784\u07AD\u0790\u07A8\u0782\u07B0 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07AC \u0784\u07AE\u0791\u07AA\u0784\u07A6\u0787\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07A8\u0789\u07AC\u0782\u07AD \u0789\u07AE\u0787\u07A8\u0790\u07B0\u0793\u07B0 \u0784\u07AE\u0783\u07AF\u0791\u07B0\u078D\u07A9\u078A\u07B0 \u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07AC\u0787\u07AC\u0786\u07AC\u0788\u07AC. \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0784\u07AD\u0790\u07A8\u0782\u07B0 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07AC \u0784\u07AE\u0791\u07AA \u0789\u07A8\u0782\u07A6\u0786\u07A9 7 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0786\u07A8\u078D\u07AF\u0789\u07A9\u0793\u07A6\u0783 (2.7 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0789\u07A6\u0787\u07A8\u078D\u07B0(. \u0789\u07A9\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 5.5 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0786\u07A8\u078D\u07AF\u0789\u07A9\u0793\u07A6\u0783 (2.1 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0789\u07A6\u0787\u07A8\u078D\u07B0) \u0787\u07A6\u0786\u07A9 \u0789\u07A8 \u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07AC\u0788\u07AC. \u0789\u07A8 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07A6\u0787\u07A8 9 \u078E\u07A6\u0787\u07AA\u0789\u07A6\u0786\u07A6\u0781\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07A7 \u0793\u07AC\u0783\u07A8\u0793\u07A6\u0783\u07A9 \u0780\u07A8\u0789\u07AC\u0782\u07AC\u0787\u07AC\u0788\u07AC. 60% \u0787\u07A7\u0787\u07A8\u0787\u07AC\u0786\u07AC \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0784\u07AE\u0791\u07AA \u0784\u07A6\u0787\u07AC\u0787\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07A6\u0782\u07A9 \u0784\u07B0\u0783\u07AC\u0792\u07A8\u078D\u07B0\u0787\u07A6\u0781\u07AC\u0788\u07AC. \u0787\u07AD\u078E\u07AC \u078A\u07A6\u0780\u07AA\u078C\u07AA\u0782\u07B0 13% \u0787\u07A7\u0787\u07AC\u0786\u07AA \u0795\u07AC\u0783\u07AB \u0787\u07A7\u0787\u07A8 10% \u0787\u07A7\u0787\u07AC\u0786\u07AA \u0786\u07AE\u078D\u07A6\u0789\u07B0\u0784\u07A8\u0787\u07A7 \u0787\u07A6\u078B\u07A8 \u0786\u07AA\u0791\u07A6 \u0784\u07A6\u0787\u07AC\u0787\u07B0 \u0780\u07A8\u0789\u07AC\u0782\u07AD \u078E\u07AE\u078C\u07AA\u0782\u07B0 \u0788\u07AC\u0782\u07AC\u0792\u07AA\u0787\u07AC\u078D\u07A7, \u0787\u07AC\u0786\u07B0\u0787\u07A6\u0791\u07AF, \u0784\u07AE\u078D\u07A8\u0788\u07A8\u0787\u07A7, \u078E\u07AA\u0794\u07A7\u0782\u07A7, \u0790\u07AA\u0783\u07A8\u0782\u07A7\u0789\u07B0 \u0787\u07A6\u078B\u07A8 \u078A\u07B0\u0783\u07AC\u0782\u07B0\u0797\u07B0 \u078E\u07B0\u0787\u07A7\u0782\u07A7 \u0787\u07A6\u0781\u07B0 \u0788\u07AC\u0790\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07A9\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 4 \u078E\u07A6\u0787\u07AA\u0789\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8 "\u0787\u07AC\u0789\u07AC\u0792\u07AE\u0782\u07A7\u0790\u07B0" \u0780\u07A8\u0789\u07A6\u0782\u07A6\u0787\u07A8\u078E\u07AC\u0782\u07B0 \u0790\u07B0\u0793\u07AD\u0793\u07B0 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u0791\u07A8\u0795\u07A7\u0793\u07B0\u0789\u07A6\u0782\u07B0\u0793\u07B0 \u0787\u07A6\u0786\u07A6\u0781\u07B0 \u0782\u07A6\u0782\u07B0\u078B\u07A9\u078A\u07A6\u0787\u07A8\u0788\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07AA\u0785\u07A8 \u078B\u07AA\u0782\u07A8\u0794\u07AD\u078E\u07A6\u0787\u07A8 \u0784\u07A7\u0786\u07A9 \u0780\u07AA\u0783\u07A8 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 \u078B\u07AC\u0784\u07A6\u0787\u07A8\u0786\u07AA\u0785\u07A6 \u0787\u07AC\u0787\u07B0\u0784\u07A6\u0794\u07A6\u0781\u07B0\u0788\u07AA\u0783\u07AC\u0784\u07AE\u0791\u07AA\u0788\u07A6\u0783\u07AC\u0787\u07B0 \u0787\u07AC\u0789\u07AD\u0792\u07AE\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0780\u07A8\u0787\u07B0\u0790\u07A7\u0786\u07AA\u0783\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07A8\u0787\u07A9 \u0789\u07AA\u0785\u07A8 \u078B\u07AA\u0782\u07A8\u0794\u07AC\u0787\u07A8\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AE \u0784\u07AE\u0791\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0784\u07A6\u0787\u07AE\u0791\u07A6\u0787\u07A8\u0788\u07A6\u0783\u0790\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0793\u07B0\u0783\u07AC\u0786\u07B0\u0793\u07AC\u0788\u07AC. \u078D\u07A6\u078A\u07A7\u0786\u07AA\u0783\u07AC\u0788\u07AD \u078E\u07AE\u078C\u07AA\u0782\u07B0 16 \u0780\u07A7\u0790\u07B0 \u0790\u07B0\u0795\u07A9\u079D\u07A9\u0790\u07B0\u0787\u07A6\u0781\u07B0 \u0784\u07AC\u0780\u07A8\u078E\u07AC\u0782\u07B0\u0788\u07A7 390 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0788\u07A6\u0787\u07B0\u078C\u07A6\u0783\u07AA\u078E\u07AC \u078E\u07A6\u0790\u07B0 \u0789\u07A8\u078C\u07A7\u078E\u07A6\u0787\u07A8 \u0780\u07A8\u0789\u07AC\u0782\u07AC\u0787\u07AC\u0788\u07AC`
1345
+ }
1346
+ ]
1347
+ ],
1348
+ [
1349
+ "translation",
1350
+ [
1351
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`,
1352
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`
1353
+ ]
1354
+ ],
1355
+ [
1356
+ "summarization",
1357
+ [
1358
+ `\u0793\u07A6\u0788\u07A6\u0783\u07AA\u078E\u07AC \u0787\u07AA\u0790\u07B0\u0789\u07A8\u0782\u07A6\u0786\u07A9 324 \u0789\u07A9\u0793\u07A6\u0783\u07AA\u060C \u0787\u07AC\u0787\u07A9 \u078E\u07A7\u078C\u07B0\u078E\u07A6\u0782\u0791\u07A6\u0786\u07A6\u0781\u07B0 81 \u0784\u07AA\u0783\u07A9\u078E\u07AC \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07A6\u0786\u07A7\u0787\u07A8 \u0787\u07AC\u0787\u07B0\u0788\u07A6\u0783\u07AC\u0788\u07AC. \u0787\u07AC\u0787\u07A9 \u0795\u07AC\u0783\u07A8\u0790\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07AA\u0783\u07A8 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07AC\u0788\u07AC. \u0787\u07AD\u078E\u07AC \u0780\u07A6\u078C\u07A6\u0783\u07AC\u0790\u07B0\u0786\u07A6\u0782\u07A6\u0781\u07B0 \u0780\u07AA\u0783\u07A8 \u0784\u07AA\u0791\u07AA\u078E\u07AC \u078B\u07A8\u078E\u07AA\u0789\u07A8\u0782\u07A6\u0786\u07A9 \u0786\u07AE\u0782\u07B0\u0789\u07AC \u078A\u07A6\u0783\u07A7\u078C\u07A6\u0786\u07AA\u0782\u07B0 125 \u0789\u07A9\u0793\u07A6\u0783\u07AC\u0788\u07AC. (410 \u078A\u07AB\u0793\u07AA) \u0787\u07A6\u0787\u07A8\u078A\u07A8\u078D\u07B0 \u0793\u07A6\u0788\u07A6\u0783\u07AA \u0784\u07A8\u0782\u07A7\u0786\u07AA\u0783\u07A8 \u0787\u07A8\u0783\u07AA\u060C \u0788\u07AE\u079D\u07A8\u0782\u07B0\u078E\u07B0\u0793\u07A6\u0782\u07B0 \u0789\u07AE\u0782\u07A8\u0787\u07AA\u0789\u07AC\u0782\u07B0\u0793\u07B0\u078E\u07AC \u0787\u07AA\u0790\u07B0\u0789\u07A8\u0782\u07B0 \u078A\u07A6\u0780\u07A6\u0782\u07A6\u0787\u07A6\u0785\u07A7 \u078E\u07AE\u0790\u07B0\u060C \u078B\u07AA\u0782\u07A8\u0794\u07AD\u078E\u07A6\u0787\u07A8 \u0789\u07A9\u0780\u07AA\u0782\u07B0 \u0787\u07AA\u078A\u07AC\u0787\u07B0\u078B\u07A8 \u078C\u07A6\u0782\u07B0\u078C\u07A6\u0782\u07AA\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u078C\u07A6\u0782\u07AA\u078E\u07AC \u078D\u07A6\u078E\u07A6\u0784\u07AA \u078D\u07A8\u0784\u07AA\u0782\u07AC\u0788\u07AC. \u0787\u07A6\u078B\u07A8 1930 \u078E\u07A6\u0787\u07A8 \u0782\u07A8\u0787\u07AA \u0794\u07AF\u0786\u07B0\u078E\u07AC \u0786\u07B0\u0783\u07A6\u0787\u07A8\u0790\u07B0\u078D\u07A6\u0783 \u0784\u07A8\u078D\u07B0\u0791\u07A8\u0782\u07B0\u078E\u07B0 \u0784\u07A8\u0782\u07A7\u0786\u07AA\u0783\u07AA\u0789\u07A7\u0787\u07A8 \u0780\u07A6\u0789\u07A6\u0787\u07A6\u0781\u07B0 41 \u0787\u07A6\u0780\u07A6\u0783\u07AA \u0788\u07A6\u0782\u07B0\u078B\u07AC\u0782\u07B0 \u0789\u07A8\u078D\u07A6\u078E\u07A6\u0784\u07AA \u0780\u07A8\u078A\u07AC\u0780\u07AC\u0787\u07B0\u0793\u07A8\u0787\u07AC\u0788\u07AC. \u0789\u07A8\u0787\u07A9 300 \u0789\u07A9\u0793\u07A6\u0783\u07A6\u0781\u07B0 \u0788\u07AA\u0783\u07AC \u0787\u07AA\u0790\u07B0\u0786\u07AE\u0781\u07B0 \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07B0\u0786\u07AA\u0783\u07AC\u0788\u07AA\u0782\u07AA \u078A\u07AA\u0783\u07A6\u078C\u07A6\u0789\u07A6 \u078C\u07A6\u0782\u07AC\u0788\u07AC. 1957 \u078E\u07A6\u0787\u07A8 \u0793\u07A6\u0788\u07A6\u0783\u07AA\u078E\u07AC \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0789\u07A6\u078C\u07A9\u078E\u07A6\u0787\u07A8 \u0780\u07A6\u0783\u07AA\u0786\u07AA\u0783\u07AC\u0788\u07AA\u0782\u07AA \u0784\u07B0\u0783\u07AF\u0791\u07B0\u0786\u07A7\u0790\u07B0\u0793\u07A8\u0782\u07B0\u078E \u0787\u07AD\u0783\u07A8\u0787\u07A6\u078D\u07B0\u078E\u07AC \u0790\u07A6\u0784\u07A6\u0784\u07AA\u0782\u07B0 \u0789\u07A8\u0780\u07A7\u0783\u07AA \u0789\u07A8 \u0793\u07A6\u0788\u07A6\u0783\u07AA \u0786\u07B0\u0783\u07A6\u0787\u07A8\u0790\u07B0\u078D\u07A6\u0783 \u0784\u07A8\u078D\u07B0\u0791\u07A8\u0782\u07B0\u078E\u0787\u07A6\u0781\u07B0 \u0788\u07AA\u0783\u07AC 5.2 \u0789\u07A9\u0793\u07A6\u0783 (17 \u078A\u07AB\u0793\u07AA) \u0787\u07AA\u0780\u07AC\u0788\u07AC. \u0789\u07A8 \u0793\u07B0\u0783\u07A7\u0782\u07B0\u0790\u07B0\u0789\u07A8\u0793\u07A6\u0783\u07AA \u0782\u07AA\u078D\u07A7\u060C \u0787\u07A6\u0787\u07A8\u078A\u07A8\u078D\u07B0 \u0793\u07A6\u0788\u07A6\u0783\u07A6\u0786\u07A9\u060C \u0789\u07A8\u078D\u07A7\u0787\u07AA \u0788\u07A8\u0787\u07A7\u0791\u07A6\u0786\u07B0\u0793\u07A6\u0781\u07B0 \u078A\u07A6\u0780\u07AA \u078A\u07B0\u0783\u07A7\u0782\u07B0\u0790\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07AA\u0783\u07A8 2 \u0788\u07A6\u0782\u07A6\u0787\u07A6\u0781\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u078A\u07B0\u0783\u07A9\u0790\u07B0\u0793\u07AD\u0782\u07B0\u0791\u07A8\u0782\u07B0\u078E \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07AC\u0788\u07AC`
1359
+ ]
1360
+ ],
1361
+ [
1362
+ "text-generation",
1363
+ [
1364
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0794\u07AB\u0790\u07AA\u078A\u07B0 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0789\u07A6\u0787\u07A8\u078E\u07A6\u0782\u0791\u07AA`,
1365
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0789\u07A6\u0783\u07A8\u0787\u07A6\u0789\u07B0\u060C \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u078E\u07A6\u0794\u07A7\u0788\u07A7`,
1366
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u078A\u07A7\u078C\u07AA\u0789\u07A6\u078C\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0`,
1367
+ `\u060C\u0787\u07AC\u0787\u07B0 \u0792\u07A6\u0789\u07A7\u0782\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8`
1368
+ ]
1369
+ ],
1370
+ ["fill-mask", [`.<mask> \u0789\u07A7\u078D\u07AC \u0787\u07A6\u0786\u07A9 \u078B\u07A8\u0788\u07AC\u0780\u07A8\u0783\u07A7\u0787\u07B0\u0796\u07AD\u078E\u07AC`, `\u078E\u07A6\u0783\u07AA\u078B\u07A8\u0794\u07A6\u0787\u07A6\u0786\u07A9 \u078B\u07A8\u0788\u07AC\u0780\u07A8\u0782\u07B0\u078E\u07AC \u0789\u07AC\u078B\u07AA\u078E\u07A6\u0787\u07A8 <mask> \u0786\u07AC\u0787\u07AA\u0789\u07AC\u0787\u07B0.`]]
1371
+ ]);
1372
+ var MAPPING_DEFAULT_WIDGET = /* @__PURE__ */ new Map([
1373
+ ["en", MAPPING_EN],
1374
+ ["zh", MAPPING_ZH],
1375
+ ["fr", MAPPING_FR],
1376
+ ["es", MAPPING_ES],
1377
+ ["ru", MAPPING_RU],
1378
+ ["uk", MAPPING_UK],
1379
+ ["it", MAPPING_IT],
1380
+ ["fa", MAPPING_FA],
1381
+ ["ar", MAPPING_AR],
1382
+ ["bn", MAPPING_BN],
1383
+ ["mn", MAPPING_MN],
1384
+ ["si", MAPPING_SI],
1385
+ ["de", MAPPING_DE],
1386
+ ["dv", MAPPING_DV]
1387
+ ]);
1388
+
1
1389
  // src/pipelines.ts
2
1390
  var MODALITIES = ["cv", "nlp", "audio", "tabular", "multimodal", "rl", "other"];
3
1391
  var MODALITY_LABELS = {
@@ -378,6 +1766,11 @@ var PIPELINE_DATA = {
378
1766
  modality: "cv",
379
1767
  color: "indigo"
380
1768
  },
1769
+ "image-to-video": {
1770
+ name: "Image-to-Video",
1771
+ modality: "multimodal",
1772
+ color: "indigo"
1773
+ },
381
1774
  "unconditional-image-generation": {
382
1775
  name: "Unconditional Image Generation",
383
1776
  modality: "cv",
@@ -546,6 +1939,16 @@ var PIPELINE_DATA = {
546
1939
  modality: "multimodal",
547
1940
  color: "green"
548
1941
  },
1942
+ "mask-generation": {
1943
+ name: "Mask Generation",
1944
+ modality: "cv",
1945
+ color: "indigo"
1946
+ },
1947
+ "zero-shot-object-detection": {
1948
+ name: "Zero-Shot Object Detection",
1949
+ modality: "cv",
1950
+ color: "yellow"
1951
+ },
549
1952
  other: {
550
1953
  name: "Other",
551
1954
  modality: "other",
@@ -558,7 +1961,7 @@ var PIPELINE_TYPES = Object.keys(PIPELINE_DATA);
558
1961
  var SUBTASK_TYPES = Object.values(PIPELINE_DATA).flatMap((data) => "subtasks" in data ? data.subtasks : []).map((s) => s.type);
559
1962
  var PIPELINE_TYPES_SET = new Set(PIPELINE_TYPES);
560
1963
 
561
- // src/audio-classification/data.ts
1964
+ // src/tasks/audio-classification/data.ts
562
1965
  var taskData = {
563
1966
  datasets: [
564
1967
  {
@@ -623,8 +2026,8 @@ var taskData = {
623
2026
  ],
624
2027
  spaces: [
625
2028
  {
626
- description: "An application that can predict the language spoken in a given audio.",
627
- id: "akhaliq/Speechbrain-audio-classification"
2029
+ description: "An application that can classify music into different genre.",
2030
+ id: "kurianbenoy/audioclassification"
628
2031
  }
629
2032
  ],
630
2033
  summary: "Audio classification is the task of assigning a label or class to a given audio. It can be used for recognizing which command a user is giving or the emotion of a statement, as well as identifying a speaker.",
@@ -633,7 +2036,7 @@ var taskData = {
633
2036
  };
634
2037
  var data_default = taskData;
635
2038
 
636
- // src/audio-to-audio/data.ts
2039
+ // src/tasks/audio-to-audio/data.ts
637
2040
  var taskData2 = {
638
2041
  datasets: [
639
2042
  {
@@ -695,7 +2098,7 @@ var taskData2 = {
695
2098
  };
696
2099
  var data_default2 = taskData2;
697
2100
 
698
- // src/automatic-speech-recognition/data.ts
2101
+ // src/tasks/automatic-speech-recognition/data.ts
699
2102
  var taskData3 = {
700
2103
  datasets: [
701
2104
  {
@@ -740,7 +2143,7 @@ var taskData3 = {
740
2143
  models: [
741
2144
  {
742
2145
  description: "A powerful ASR model by OpenAI.",
743
- id: "openai/whisper-large-v2"
2146
+ id: "openai/whisper-large-v3"
744
2147
  },
745
2148
  {
746
2149
  description: "A good generic ASR model by MetaAI.",
@@ -754,24 +2157,24 @@ var taskData3 = {
754
2157
  spaces: [
755
2158
  {
756
2159
  description: "A powerful general-purpose speech recognition application.",
757
- id: "openai/whisper"
2160
+ id: "hf-audio/whisper-large-v3"
758
2161
  },
759
2162
  {
760
2163
  description: "Fastest speech recognition application.",
761
2164
  id: "sanchit-gandhi/whisper-jax"
762
2165
  },
763
2166
  {
764
- description: "An application that transcribes speeches in YouTube videos.",
765
- id: "jeffistyping/Youtube-Whisperer"
2167
+ description: "A high quality speech and text translation model by Meta.",
2168
+ id: "facebook/seamless_m4t"
766
2169
  }
767
2170
  ],
768
2171
  summary: "Automatic Speech Recognition (ASR), also known as Speech to Text (STT), is the task of transcribing a given audio to text. It has many applications, such as voice user interfaces.",
769
- widgetModels: ["openai/whisper-large-v2"],
2172
+ widgetModels: ["openai/whisper-large-v3"],
770
2173
  youtubeId: "TksaY_FDgnk"
771
2174
  };
772
2175
  var data_default3 = taskData3;
773
2176
 
774
- // src/conversational/data.ts
2177
+ // src/tasks/conversational/data.ts
775
2178
  var taskData4 = {
776
2179
  datasets: [
777
2180
  {
@@ -831,7 +2234,7 @@ var taskData4 = {
831
2234
  };
832
2235
  var data_default4 = taskData4;
833
2236
 
834
- // src/document-question-answering/data.ts
2237
+ // src/tasks/document-question-answering/data.ts
835
2238
  var taskData5 = {
836
2239
  datasets: [
837
2240
  {
@@ -896,7 +2299,7 @@ var taskData5 = {
896
2299
  };
897
2300
  var data_default5 = taskData5;
898
2301
 
899
- // src/feature-extraction/data.ts
2302
+ // src/tasks/feature-extraction/data.ts
900
2303
  var taskData6 = {
901
2304
  datasets: [
902
2305
  {
@@ -925,12 +2328,7 @@ var taskData6 = {
925
2328
  }
926
2329
  ]
927
2330
  },
928
- metrics: [
929
- {
930
- description: "",
931
- id: ""
932
- }
933
- ],
2331
+ metrics: [],
934
2332
  models: [
935
2333
  {
936
2334
  description: "A powerful feature extraction model for natural language processing tasks.",
@@ -947,7 +2345,7 @@ var taskData6 = {
947
2345
  };
948
2346
  var data_default6 = taskData6;
949
2347
 
950
- // src/fill-mask/data.ts
2348
+ // src/tasks/fill-mask/data.ts
951
2349
  var taskData7 = {
952
2350
  datasets: [
953
2351
  {
@@ -1022,7 +2420,7 @@ var taskData7 = {
1022
2420
  };
1023
2421
  var data_default7 = taskData7;
1024
2422
 
1025
- // src/image-classification/data.ts
2423
+ // src/tasks/image-classification/data.ts
1026
2424
  var taskData8 = {
1027
2425
  datasets: [
1028
2426
  {
@@ -1108,7 +2506,7 @@ var taskData8 = {
1108
2506
  };
1109
2507
  var data_default8 = taskData8;
1110
2508
 
1111
- // src/image-to-image/data.ts
2509
+ // src/tasks/image-to-image/data.ts
1112
2510
  var taskData9 = {
1113
2511
  datasets: [
1114
2512
  {
@@ -1203,7 +2601,7 @@ var taskData9 = {
1203
2601
  };
1204
2602
  var data_default9 = taskData9;
1205
2603
 
1206
- // src/image-to-text/data.ts
2604
+ // src/tasks/image-to-text/data.ts
1207
2605
  var taskData10 = {
1208
2606
  datasets: [
1209
2607
  {
@@ -1287,7 +2685,7 @@ var taskData10 = {
1287
2685
  };
1288
2686
  var data_default10 = taskData10;
1289
2687
 
1290
- // src/image-segmentation/data.ts
2688
+ // src/tasks/image-segmentation/data.ts
1291
2689
  var taskData11 = {
1292
2690
  datasets: [
1293
2691
  {
@@ -1382,7 +2780,7 @@ var taskData11 = {
1382
2780
  };
1383
2781
  var data_default11 = taskData11;
1384
2782
 
1385
- // src/object-detection/data.ts
2783
+ // src/tasks/object-detection/data.ts
1386
2784
  var taskData12 = {
1387
2785
  datasets: [
1388
2786
  {
@@ -1454,7 +2852,7 @@ var taskData12 = {
1454
2852
  };
1455
2853
  var data_default12 = taskData12;
1456
2854
 
1457
- // src/depth-estimation/data.ts
2855
+ // src/tasks/depth-estimation/data.ts
1458
2856
  var taskData13 = {
1459
2857
  datasets: [
1460
2858
  {
@@ -1505,7 +2903,7 @@ var taskData13 = {
1505
2903
  };
1506
2904
  var data_default13 = taskData13;
1507
2905
 
1508
- // src/placeholder/data.ts
2906
+ // src/tasks/placeholder/data.ts
1509
2907
  var taskData14 = {
1510
2908
  datasets: [],
1511
2909
  demo: {
@@ -1522,7 +2920,7 @@ var taskData14 = {
1522
2920
  };
1523
2921
  var data_default14 = taskData14;
1524
2922
 
1525
- // src/reinforcement-learning/data.ts
2923
+ // src/tasks/reinforcement-learning/data.ts
1526
2924
  var taskData15 = {
1527
2925
  datasets: [
1528
2926
  {
@@ -1591,7 +2989,7 @@ var taskData15 = {
1591
2989
  };
1592
2990
  var data_default15 = taskData15;
1593
2991
 
1594
- // src/question-answering/data.ts
2992
+ // src/tasks/question-answering/data.ts
1595
2993
  var taskData16 = {
1596
2994
  datasets: [
1597
2995
  {
@@ -1658,7 +3056,7 @@ var taskData16 = {
1658
3056
  };
1659
3057
  var data_default16 = taskData16;
1660
3058
 
1661
- // src/sentence-similarity/data.ts
3059
+ // src/tasks/sentence-similarity/data.ts
1662
3060
  var taskData17 = {
1663
3061
  datasets: [
1664
3062
  {
@@ -1753,7 +3151,7 @@ var taskData17 = {
1753
3151
  };
1754
3152
  var data_default17 = taskData17;
1755
3153
 
1756
- // src/summarization/data.ts
3154
+ // src/tasks/summarization/data.ts
1757
3155
  var taskData18 = {
1758
3156
  datasets: [
1759
3157
  {
@@ -1821,7 +3219,7 @@ var taskData18 = {
1821
3219
  };
1822
3220
  var data_default18 = taskData18;
1823
3221
 
1824
- // src/table-question-answering/data.ts
3222
+ // src/tasks/table-question-answering/data.ts
1825
3223
  var taskData19 = {
1826
3224
  datasets: [
1827
3225
  {
@@ -1875,7 +3273,7 @@ var taskData19 = {
1875
3273
  };
1876
3274
  var data_default19 = taskData19;
1877
3275
 
1878
- // src/tabular-classification/data.ts
3276
+ // src/tasks/tabular-classification/data.ts
1879
3277
  var taskData20 = {
1880
3278
  datasets: [
1881
3279
  {
@@ -1942,7 +3340,7 @@ var taskData20 = {
1942
3340
  };
1943
3341
  var data_default20 = taskData20;
1944
3342
 
1945
- // src/tabular-regression/data.ts
3343
+ // src/tasks/tabular-regression/data.ts
1946
3344
  var taskData21 = {
1947
3345
  datasets: [
1948
3346
  {
@@ -1997,7 +3395,7 @@ var taskData21 = {
1997
3395
  };
1998
3396
  var data_default21 = taskData21;
1999
3397
 
2000
- // src/text-to-image/data.ts
3398
+ // src/tasks/text-to-image/data.ts
2001
3399
  var taskData22 = {
2002
3400
  datasets: [
2003
3401
  {
@@ -2084,7 +3482,7 @@ var taskData22 = {
2084
3482
  };
2085
3483
  var data_default22 = taskData22;
2086
3484
 
2087
- // src/text-to-speech/data.ts
3485
+ // src/tasks/text-to-speech/data.ts
2088
3486
  var taskData23 = {
2089
3487
  datasets: [
2090
3488
  {
@@ -2137,8 +3535,8 @@ var taskData23 = {
2137
3535
  id: "suno/bark"
2138
3536
  },
2139
3537
  {
2140
- description: "An application that contains multiple speech synthesis models for various languages and accents.",
2141
- id: "coqui/CoquiTTS"
3538
+ description: "XTTS is a Voice generation model that lets you clone voices into different languages.",
3539
+ id: "coqui/xtts"
2142
3540
  },
2143
3541
  {
2144
3542
  description: "An application that synthesizes speech for various speaker types.",
@@ -2146,12 +3544,12 @@ var taskData23 = {
2146
3544
  }
2147
3545
  ],
2148
3546
  summary: "Text-to-Speech (TTS) is the task of generating natural sounding speech given text input. TTS models can be extended to have a single model that generates speech for multiple speakers and multiple languages.",
2149
- widgetModels: ["microsoft/speecht5_tts"],
3547
+ widgetModels: ["suno/bark"],
2150
3548
  youtubeId: "NW62DpzJ274"
2151
3549
  };
2152
3550
  var data_default23 = taskData23;
2153
3551
 
2154
- // src/token-classification/data.ts
3552
+ // src/tasks/token-classification/data.ts
2155
3553
  var taskData24 = {
2156
3554
  datasets: [
2157
3555
  {
@@ -2230,7 +3628,7 @@ var taskData24 = {
2230
3628
  };
2231
3629
  var data_default24 = taskData24;
2232
3630
 
2233
- // src/translation/data.ts
3631
+ // src/tasks/translation/data.ts
2234
3632
  var taskData25 = {
2235
3633
  datasets: [
2236
3634
  {
@@ -2294,7 +3692,7 @@ var taskData25 = {
2294
3692
  };
2295
3693
  var data_default25 = taskData25;
2296
3694
 
2297
- // src/text-classification/data.ts
3695
+ // src/tasks/text-classification/data.ts
2298
3696
  var taskData26 = {
2299
3697
  datasets: [
2300
3698
  {
@@ -2382,7 +3780,7 @@ var taskData26 = {
2382
3780
  };
2383
3781
  var data_default26 = taskData26;
2384
3782
 
2385
- // src/text-generation/data.ts
3783
+ // src/tasks/text-generation/data.ts
2386
3784
  var taskData27 = {
2387
3785
  datasets: [
2388
3786
  {
@@ -2497,12 +3895,12 @@ var taskData27 = {
2497
3895
  }
2498
3896
  ],
2499
3897
  summary: "Generating text is the task of producing new text. These models can, for example, fill in incomplete text or paraphrase.",
2500
- widgetModels: ["tiiuae/falcon-7b-instruct"],
3898
+ widgetModels: ["HuggingFaceH4/zephyr-7b-beta"],
2501
3899
  youtubeId: "Vpjb1lu0MDk"
2502
3900
  };
2503
3901
  var data_default27 = taskData27;
2504
3902
 
2505
- // src/text-to-video/data.ts
3903
+ // src/tasks/text-to-video/data.ts
2506
3904
  var taskData28 = {
2507
3905
  datasets: [
2508
3906
  {
@@ -2597,7 +3995,7 @@ var taskData28 = {
2597
3995
  };
2598
3996
  var data_default28 = taskData28;
2599
3997
 
2600
- // src/unconditional-image-generation/data.ts
3998
+ // src/tasks/unconditional-image-generation/data.ts
2601
3999
  var taskData29 = {
2602
4000
  datasets: [
2603
4001
  {
@@ -2662,7 +4060,7 @@ var taskData29 = {
2662
4060
  };
2663
4061
  var data_default29 = taskData29;
2664
4062
 
2665
- // src/video-classification/data.ts
4063
+ // src/tasks/video-classification/data.ts
2666
4064
  var taskData30 = {
2667
4065
  datasets: [
2668
4066
  {
@@ -2744,7 +4142,7 @@ var taskData30 = {
2744
4142
  };
2745
4143
  var data_default30 = taskData30;
2746
4144
 
2747
- // src/visual-question-answering/data.ts
4145
+ // src/tasks/visual-question-answering/data.ts
2748
4146
  var taskData31 = {
2749
4147
  datasets: [
2750
4148
  {
@@ -2833,7 +4231,7 @@ var taskData31 = {
2833
4231
  };
2834
4232
  var data_default31 = taskData31;
2835
4233
 
2836
- // src/zero-shot-classification/data.ts
4234
+ // src/tasks/zero-shot-classification/data.ts
2837
4235
  var taskData32 = {
2838
4236
  datasets: [
2839
4237
  {
@@ -2895,7 +4293,7 @@ var taskData32 = {
2895
4293
  };
2896
4294
  var data_default32 = taskData32;
2897
4295
 
2898
- // src/zero-shot-image-classification/data.ts
4296
+ // src/tasks/zero-shot-image-classification/data.ts
2899
4297
  var taskData33 = {
2900
4298
  datasets: [
2901
4299
  {
@@ -2968,7 +4366,7 @@ var taskData33 = {
2968
4366
  };
2969
4367
  var data_default33 = taskData33;
2970
4368
 
2971
- // src/const.ts
4369
+ // src/tasks/index.ts
2972
4370
  var TASKS_MODEL_LIBRARIES = {
2973
4371
  "audio-classification": ["speechbrain", "transformers"],
2974
4372
  "audio-to-audio": ["asteroid", "speechbrain"],
@@ -2981,9 +4379,11 @@ var TASKS_MODEL_LIBRARIES = {
2981
4379
  "graph-ml": ["transformers"],
2982
4380
  "image-classification": ["keras", "timm", "transformers", "transformers.js"],
2983
4381
  "image-segmentation": ["transformers", "transformers.js"],
2984
- "image-to-image": [],
4382
+ "image-to-image": ["diffusers"],
2985
4383
  "image-to-text": ["transformers.js"],
2986
- "video-classification": [],
4384
+ "image-to-video": ["diffusers"],
4385
+ "video-classification": ["transformers"],
4386
+ "mask-generation": ["transformers"],
2987
4387
  "multiple-choice": ["transformers"],
2988
4388
  "object-detection": ["transformers", "transformers.js"],
2989
4389
  other: [],
@@ -3000,10 +4400,10 @@ var TASKS_MODEL_LIBRARIES = {
3000
4400
  "text-classification": ["adapter-transformers", "spacy", "transformers", "transformers.js"],
3001
4401
  "text-generation": ["transformers", "transformers.js"],
3002
4402
  "text-retrieval": [],
3003
- "text-to-image": [],
4403
+ "text-to-image": ["diffusers"],
3004
4404
  "text-to-speech": ["espnet", "tensorflowtts", "transformers"],
3005
4405
  "text-to-audio": ["transformers"],
3006
- "text-to-video": [],
4406
+ "text-to-video": ["diffusers"],
3007
4407
  "text2text-generation": ["transformers", "transformers.js"],
3008
4408
  "time-series-forecasting": [],
3009
4409
  "token-classification": [
@@ -3016,14 +4416,21 @@ var TASKS_MODEL_LIBRARIES = {
3016
4416
  "transformers.js"
3017
4417
  ],
3018
4418
  translation: ["transformers", "transformers.js"],
3019
- "unconditional-image-generation": [],
3020
- "visual-question-answering": [],
4419
+ "unconditional-image-generation": ["diffusers"],
4420
+ "visual-question-answering": ["transformers"],
3021
4421
  "voice-activity-detection": [],
3022
4422
  "zero-shot-classification": ["transformers", "transformers.js"],
3023
- "zero-shot-image-classification": ["transformers.js"]
4423
+ "zero-shot-image-classification": ["transformers", "transformers.js"],
4424
+ "zero-shot-object-detection": ["transformers"]
3024
4425
  };
3025
-
3026
- // src/tasksData.ts
4426
+ function getData(type, partialTaskData = data_default14) {
4427
+ return {
4428
+ ...partialTaskData,
4429
+ id: type,
4430
+ label: PIPELINE_DATA[type].name,
4431
+ libraries: TASKS_MODEL_LIBRARIES[type]
4432
+ };
4433
+ }
3027
4434
  var TASKS_DATA = {
3028
4435
  "audio-classification": getData("audio-classification", data_default),
3029
4436
  "audio-to-audio": getData("audio-to-audio", data_default2),
@@ -3038,6 +4445,8 @@ var TASKS_DATA = {
3038
4445
  "image-segmentation": getData("image-segmentation", data_default11),
3039
4446
  "image-to-image": getData("image-to-image", data_default9),
3040
4447
  "image-to-text": getData("image-to-text", data_default10),
4448
+ "image-to-video": void 0,
4449
+ "mask-generation": getData("mask-generation", data_default14),
3041
4450
  "multiple-choice": void 0,
3042
4451
  "object-detection": getData("object-detection", data_default12),
3043
4452
  "video-classification": getData("video-classification", data_default30),
@@ -3067,18 +4476,11 @@ var TASKS_DATA = {
3067
4476
  "visual-question-answering": getData("visual-question-answering", data_default31),
3068
4477
  "voice-activity-detection": void 0,
3069
4478
  "zero-shot-classification": getData("zero-shot-classification", data_default32),
3070
- "zero-shot-image-classification": getData("zero-shot-image-classification", data_default33)
4479
+ "zero-shot-image-classification": getData("zero-shot-image-classification", data_default33),
4480
+ "zero-shot-object-detection": getData("zero-shot-object-detection", data_default14)
3071
4481
  };
3072
- function getData(type, partialTaskData = data_default14) {
3073
- return {
3074
- ...partialTaskData,
3075
- id: type,
3076
- label: PIPELINE_DATA[type].name,
3077
- libraries: TASKS_MODEL_LIBRARIES[type]
3078
- };
3079
- }
3080
4482
 
3081
- // src/modelLibraries.ts
4483
+ // src/model-libraries.ts
3082
4484
  var ModelLibrary = /* @__PURE__ */ ((ModelLibrary2) => {
3083
4485
  ModelLibrary2["adapter-transformers"] = "Adapter Transformers";
3084
4486
  ModelLibrary2["allennlp"] = "allenNLP";
@@ -3119,6 +4521,17 @@ var ALL_DISPLAY_MODEL_LIBRARY_KEYS = Object.keys(ModelLibrary).filter(
3119
4521
  (k) => !["doctr", "k2", "mindspore", "tensorflowtts"].includes(k)
3120
4522
  );
3121
4523
 
4524
+ // src/model-data.ts
4525
+ var InferenceDisplayability = /* @__PURE__ */ ((InferenceDisplayability2) => {
4526
+ InferenceDisplayability2["Yes"] = "Yes";
4527
+ InferenceDisplayability2["ExplicitOptOut"] = "ExplicitOptOut";
4528
+ InferenceDisplayability2["CustomCode"] = "CustomCode";
4529
+ InferenceDisplayability2["LibraryNotDetected"] = "LibraryNotDetected";
4530
+ InferenceDisplayability2["PipelineNotDetected"] = "PipelineNotDetected";
4531
+ InferenceDisplayability2["PipelineLibraryPairNotSupported"] = "PipelineLibraryPairNotSupported";
4532
+ return InferenceDisplayability2;
4533
+ })(InferenceDisplayability || {});
4534
+
3122
4535
  // src/tags.ts
3123
4536
  var TAG_NFAA_CONTENT = "not-for-all-audiences";
3124
4537
  var OTHER_TAGS_SUGGESTIONS = [
@@ -3135,10 +4548,429 @@ var OTHER_TAGS_SUGGESTIONS = [
3135
4548
  ];
3136
4549
  var TAG_TEXT_GENERATION_INFERENCE = "text-generation-inference";
3137
4550
  var TAG_CUSTOM_CODE = "custom_code";
4551
+
4552
+ // src/snippets/index.ts
4553
+ var snippets_exports = {};
4554
+ __export(snippets_exports, {
4555
+ curl: () => curl_exports,
4556
+ inputs: () => inputs_exports,
4557
+ js: () => js_exports,
4558
+ python: () => python_exports
4559
+ });
4560
+
4561
+ // src/snippets/inputs.ts
4562
+ var inputs_exports = {};
4563
+ __export(inputs_exports, {
4564
+ getModelInputSnippet: () => getModelInputSnippet
4565
+ });
4566
+ var inputsZeroShotClassification = () => `"Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!"`;
4567
+ var inputsTranslation = () => `"\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435"`;
4568
+ var inputsSummarization = () => `"The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct."`;
4569
+ var inputsConversational = () => `{
4570
+ "past_user_inputs": ["Which movie is the best ?"],
4571
+ "generated_responses": ["It is Die Hard for sure."],
4572
+ "text": "Can you explain why ?"
4573
+ }`;
4574
+ var inputsTableQuestionAnswering = () => `{
4575
+ "query": "How many stars does the transformers repository have?",
4576
+ "table": {
4577
+ "Repository": ["Transformers", "Datasets", "Tokenizers"],
4578
+ "Stars": ["36542", "4512", "3934"],
4579
+ "Contributors": ["651", "77", "34"],
4580
+ "Programming language": [
4581
+ "Python",
4582
+ "Python",
4583
+ "Rust, Python and NodeJS"
4584
+ ]
4585
+ }
4586
+ }`;
4587
+ var inputsQuestionAnswering = () => `{
4588
+ "question": "What is my name?",
4589
+ "context": "My name is Clara and I live in Berkeley."
4590
+ }`;
4591
+ var inputsTextClassification = () => `"I like you. I love you"`;
4592
+ var inputsTokenClassification = () => `"My name is Sarah Jessica Parker but you can call me Jessica"`;
4593
+ var inputsTextGeneration = () => `"Can you please let us know more details about your "`;
4594
+ var inputsText2TextGeneration = () => `"The answer to the universe is"`;
4595
+ var inputsFillMask = (model) => `"The answer to the universe is ${model.mask_token}."`;
4596
+ var inputsSentenceSimilarity = () => `{
4597
+ "source_sentence": "That is a happy person",
4598
+ "sentences": [
4599
+ "That is a happy dog",
4600
+ "That is a very happy person",
4601
+ "Today is a sunny day"
4602
+ ]
4603
+ }`;
4604
+ var inputsFeatureExtraction = () => `"Today is a sunny day and I will get some ice cream."`;
4605
+ var inputsImageClassification = () => `"cats.jpg"`;
4606
+ var inputsImageToText = () => `"cats.jpg"`;
4607
+ var inputsImageSegmentation = () => `"cats.jpg"`;
4608
+ var inputsObjectDetection = () => `"cats.jpg"`;
4609
+ var inputsAudioToAudio = () => `"sample1.flac"`;
4610
+ var inputsAudioClassification = () => `"sample1.flac"`;
4611
+ var inputsTextToImage = () => `"Astronaut riding a horse"`;
4612
+ var inputsTextToSpeech = () => `"The answer to the universe is 42"`;
4613
+ var inputsTextToAudio = () => `"liquid drum and bass, atmospheric synths, airy sounds"`;
4614
+ var inputsAutomaticSpeechRecognition = () => `"sample1.flac"`;
4615
+ var modelInputSnippets = {
4616
+ "audio-to-audio": inputsAudioToAudio,
4617
+ "audio-classification": inputsAudioClassification,
4618
+ "automatic-speech-recognition": inputsAutomaticSpeechRecognition,
4619
+ conversational: inputsConversational,
4620
+ "feature-extraction": inputsFeatureExtraction,
4621
+ "fill-mask": inputsFillMask,
4622
+ "image-classification": inputsImageClassification,
4623
+ "image-to-text": inputsImageToText,
4624
+ "image-segmentation": inputsImageSegmentation,
4625
+ "object-detection": inputsObjectDetection,
4626
+ "question-answering": inputsQuestionAnswering,
4627
+ "sentence-similarity": inputsSentenceSimilarity,
4628
+ summarization: inputsSummarization,
4629
+ "table-question-answering": inputsTableQuestionAnswering,
4630
+ "text-classification": inputsTextClassification,
4631
+ "text-generation": inputsTextGeneration,
4632
+ "text-to-image": inputsTextToImage,
4633
+ "text-to-speech": inputsTextToSpeech,
4634
+ "text-to-audio": inputsTextToAudio,
4635
+ "text2text-generation": inputsText2TextGeneration,
4636
+ "token-classification": inputsTokenClassification,
4637
+ translation: inputsTranslation,
4638
+ "zero-shot-classification": inputsZeroShotClassification
4639
+ };
4640
+ function getModelInputSnippet(model, noWrap = false, noQuotes = false) {
4641
+ if (model.pipeline_tag) {
4642
+ const inputs = modelInputSnippets[model.pipeline_tag];
4643
+ if (inputs) {
4644
+ let result = inputs(model);
4645
+ if (noWrap) {
4646
+ result = result.replace(/(?:(?:\r?\n|\r)\t*)|\t+/g, " ");
4647
+ }
4648
+ if (noQuotes) {
4649
+ const REGEX_QUOTES = /^"(.+)"$/s;
4650
+ const match = result.match(REGEX_QUOTES);
4651
+ result = match ? match[1] : result;
4652
+ }
4653
+ return result;
4654
+ }
4655
+ }
4656
+ return "No input example has been defined for this model task.";
4657
+ }
4658
+
4659
+ // src/snippets/curl.ts
4660
+ var curl_exports = {};
4661
+ __export(curl_exports, {
4662
+ curlSnippets: () => curlSnippets,
4663
+ getCurlInferenceSnippet: () => getCurlInferenceSnippet,
4664
+ hasCurlInferenceSnippet: () => hasCurlInferenceSnippet,
4665
+ snippetBasic: () => snippetBasic,
4666
+ snippetFile: () => snippetFile,
4667
+ snippetZeroShotClassification: () => snippetZeroShotClassification
4668
+ });
4669
+ var snippetBasic = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
4670
+ -X POST \\
4671
+ -d '{"inputs": ${getModelInputSnippet(model, true)}}' \\
4672
+ -H 'Content-Type: application/json' \\
4673
+ -H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
4674
+ `;
4675
+ var snippetZeroShotClassification = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
4676
+ -X POST \\
4677
+ -d '{"inputs": ${getModelInputSnippet(model, true)}, "parameters": {"candidate_labels": ["refund", "legal", "faq"]}}' \\
4678
+ -H 'Content-Type: application/json' \\
4679
+ -H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
4680
+ `;
4681
+ var snippetFile = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
4682
+ -X POST \\
4683
+ --data-binary '@${getModelInputSnippet(model, true, true)}' \\
4684
+ -H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
4685
+ `;
4686
+ var curlSnippets = {
4687
+ // Same order as in js/src/lib/interfaces/Types.ts
4688
+ "text-classification": snippetBasic,
4689
+ "token-classification": snippetBasic,
4690
+ "table-question-answering": snippetBasic,
4691
+ "question-answering": snippetBasic,
4692
+ "zero-shot-classification": snippetZeroShotClassification,
4693
+ translation: snippetBasic,
4694
+ summarization: snippetBasic,
4695
+ conversational: snippetBasic,
4696
+ "feature-extraction": snippetBasic,
4697
+ "text-generation": snippetBasic,
4698
+ "text2text-generation": snippetBasic,
4699
+ "fill-mask": snippetBasic,
4700
+ "sentence-similarity": snippetBasic,
4701
+ "automatic-speech-recognition": snippetFile,
4702
+ "text-to-image": snippetBasic,
4703
+ "text-to-speech": snippetBasic,
4704
+ "text-to-audio": snippetBasic,
4705
+ "audio-to-audio": snippetFile,
4706
+ "audio-classification": snippetFile,
4707
+ "image-classification": snippetFile,
4708
+ "image-to-text": snippetFile,
4709
+ "object-detection": snippetFile,
4710
+ "image-segmentation": snippetFile
4711
+ };
4712
+ function getCurlInferenceSnippet(model, accessToken) {
4713
+ return model.pipeline_tag && model.pipeline_tag in curlSnippets ? curlSnippets[model.pipeline_tag]?.(model, accessToken) ?? "" : "";
4714
+ }
4715
+ function hasCurlInferenceSnippet(model) {
4716
+ return !!model.pipeline_tag && model.pipeline_tag in curlSnippets;
4717
+ }
4718
+
4719
+ // src/snippets/python.ts
4720
+ var python_exports = {};
4721
+ __export(python_exports, {
4722
+ getPythonInferenceSnippet: () => getPythonInferenceSnippet,
4723
+ hasPythonInferenceSnippet: () => hasPythonInferenceSnippet,
4724
+ pythonSnippets: () => pythonSnippets,
4725
+ snippetBasic: () => snippetBasic2,
4726
+ snippetFile: () => snippetFile2,
4727
+ snippetTextToAudio: () => snippetTextToAudio,
4728
+ snippetTextToImage: () => snippetTextToImage,
4729
+ snippetZeroShotClassification: () => snippetZeroShotClassification2
4730
+ });
4731
+ var snippetZeroShotClassification2 = (model) => `def query(payload):
4732
+ response = requests.post(API_URL, headers=headers, json=payload)
4733
+ return response.json()
4734
+
4735
+ output = query({
4736
+ "inputs": ${getModelInputSnippet(model)},
4737
+ "parameters": {"candidate_labels": ["refund", "legal", "faq"]},
4738
+ })`;
4739
+ var snippetBasic2 = (model) => `def query(payload):
4740
+ response = requests.post(API_URL, headers=headers, json=payload)
4741
+ return response.json()
4742
+
4743
+ output = query({
4744
+ "inputs": ${getModelInputSnippet(model)},
4745
+ })`;
4746
+ var snippetFile2 = (model) => `def query(filename):
4747
+ with open(filename, "rb") as f:
4748
+ data = f.read()
4749
+ response = requests.post(API_URL, headers=headers, data=data)
4750
+ return response.json()
4751
+
4752
+ output = query(${getModelInputSnippet(model)})`;
4753
+ var snippetTextToImage = (model) => `def query(payload):
4754
+ response = requests.post(API_URL, headers=headers, json=payload)
4755
+ return response.content
4756
+ image_bytes = query({
4757
+ "inputs": ${getModelInputSnippet(model)},
4758
+ })
4759
+ # You can access the image with PIL.Image for example
4760
+ import io
4761
+ from PIL import Image
4762
+ image = Image.open(io.BytesIO(image_bytes))`;
4763
+ var snippetTextToAudio = (model) => {
4764
+ if (model.library_name === "transformers") {
4765
+ return `def query(payload):
4766
+ response = requests.post(API_URL, headers=headers, json=payload)
4767
+ return response.content
4768
+
4769
+ audio_bytes = query({
4770
+ "inputs": ${getModelInputSnippet(model)},
4771
+ })
4772
+ # You can access the audio with IPython.display for example
4773
+ from IPython.display import Audio
4774
+ Audio(audio_bytes)`;
4775
+ } else {
4776
+ return `def query(payload):
4777
+ response = requests.post(API_URL, headers=headers, json=payload)
4778
+ return response.json()
4779
+
4780
+ audio, sampling_rate = query({
4781
+ "inputs": ${getModelInputSnippet(model)},
4782
+ })
4783
+ # You can access the audio with IPython.display for example
4784
+ from IPython.display import Audio
4785
+ Audio(audio, rate=sampling_rate)`;
4786
+ }
4787
+ };
4788
+ var pythonSnippets = {
4789
+ // Same order as in js/src/lib/interfaces/Types.ts
4790
+ "text-classification": snippetBasic2,
4791
+ "token-classification": snippetBasic2,
4792
+ "table-question-answering": snippetBasic2,
4793
+ "question-answering": snippetBasic2,
4794
+ "zero-shot-classification": snippetZeroShotClassification2,
4795
+ translation: snippetBasic2,
4796
+ summarization: snippetBasic2,
4797
+ conversational: snippetBasic2,
4798
+ "feature-extraction": snippetBasic2,
4799
+ "text-generation": snippetBasic2,
4800
+ "text2text-generation": snippetBasic2,
4801
+ "fill-mask": snippetBasic2,
4802
+ "sentence-similarity": snippetBasic2,
4803
+ "automatic-speech-recognition": snippetFile2,
4804
+ "text-to-image": snippetTextToImage,
4805
+ "text-to-speech": snippetTextToAudio,
4806
+ "text-to-audio": snippetTextToAudio,
4807
+ "audio-to-audio": snippetFile2,
4808
+ "audio-classification": snippetFile2,
4809
+ "image-classification": snippetFile2,
4810
+ "image-to-text": snippetFile2,
4811
+ "object-detection": snippetFile2,
4812
+ "image-segmentation": snippetFile2
4813
+ };
4814
+ function getPythonInferenceSnippet(model, accessToken) {
4815
+ const body = model.pipeline_tag && model.pipeline_tag in pythonSnippets ? pythonSnippets[model.pipeline_tag]?.(model) ?? "" : "";
4816
+ return `import requests
4817
+
4818
+ API_URL = "https://api-inference.huggingface.co/models/${model.id}"
4819
+ headers = {"Authorization": ${accessToken ? `"Bearer ${accessToken}"` : `f"Bearer {API_TOKEN}"`}}
4820
+
4821
+ ${body}`;
4822
+ }
4823
+ function hasPythonInferenceSnippet(model) {
4824
+ return !!model.pipeline_tag && model.pipeline_tag in pythonSnippets;
4825
+ }
4826
+
4827
+ // src/snippets/js.ts
4828
+ var js_exports = {};
4829
+ __export(js_exports, {
4830
+ getJsInferenceSnippet: () => getJsInferenceSnippet,
4831
+ hasJsInferenceSnippet: () => hasJsInferenceSnippet,
4832
+ jsSnippets: () => jsSnippets,
4833
+ snippetBasic: () => snippetBasic3,
4834
+ snippetFile: () => snippetFile3,
4835
+ snippetTextToAudio: () => snippetTextToAudio2,
4836
+ snippetTextToImage: () => snippetTextToImage2,
4837
+ snippetZeroShotClassification: () => snippetZeroShotClassification3
4838
+ });
4839
+ var snippetBasic3 = (model, accessToken) => `async function query(data) {
4840
+ const response = await fetch(
4841
+ "https://api-inference.huggingface.co/models/${model.id}",
4842
+ {
4843
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4844
+ method: "POST",
4845
+ body: JSON.stringify(data),
4846
+ }
4847
+ );
4848
+ const result = await response.json();
4849
+ return result;
4850
+ }
4851
+
4852
+ query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
4853
+ console.log(JSON.stringify(response));
4854
+ });`;
4855
+ var snippetZeroShotClassification3 = (model, accessToken) => `async function query(data) {
4856
+ const response = await fetch(
4857
+ "https://api-inference.huggingface.co/models/${model.id}",
4858
+ {
4859
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4860
+ method: "POST",
4861
+ body: JSON.stringify(data),
4862
+ }
4863
+ );
4864
+ const result = await response.json();
4865
+ return result;
4866
+ }
4867
+
4868
+ query({"inputs": ${getModelInputSnippet(
4869
+ model
4870
+ )}, "parameters": {"candidate_labels": ["refund", "legal", "faq"]}}).then((response) => {
4871
+ console.log(JSON.stringify(response));
4872
+ });`;
4873
+ var snippetTextToImage2 = (model, accessToken) => `async function query(data) {
4874
+ const response = await fetch(
4875
+ "https://api-inference.huggingface.co/models/${model.id}",
4876
+ {
4877
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4878
+ method: "POST",
4879
+ body: JSON.stringify(data),
4880
+ }
4881
+ );
4882
+ const result = await response.blob();
4883
+ return result;
4884
+ }
4885
+ query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
4886
+ // Use image
4887
+ });`;
4888
+ var snippetTextToAudio2 = (model, accessToken) => {
4889
+ const commonSnippet = `async function query(data) {
4890
+ const response = await fetch(
4891
+ "https://api-inference.huggingface.co/models/${model.id}",
4892
+ {
4893
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4894
+ method: "POST",
4895
+ body: JSON.stringify(data),
4896
+ }
4897
+ );`;
4898
+ if (model.library_name === "transformers") {
4899
+ return commonSnippet + `
4900
+ const result = await response.blob();
4901
+ return result;
4902
+ }
4903
+ query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
4904
+ // Returns a byte object of the Audio wavform. Use it directly!
4905
+ });`;
4906
+ } else {
4907
+ return commonSnippet + `
4908
+ const result = await response.json();
4909
+ return result;
4910
+ }
4911
+
4912
+ query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
4913
+ console.log(JSON.stringify(response));
4914
+ });`;
4915
+ }
4916
+ };
4917
+ var snippetFile3 = (model, accessToken) => `async function query(filename) {
4918
+ const data = fs.readFileSync(filename);
4919
+ const response = await fetch(
4920
+ "https://api-inference.huggingface.co/models/${model.id}",
4921
+ {
4922
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4923
+ method: "POST",
4924
+ body: data,
4925
+ }
4926
+ );
4927
+ const result = await response.json();
4928
+ return result;
4929
+ }
4930
+
4931
+ query(${getModelInputSnippet(model)}).then((response) => {
4932
+ console.log(JSON.stringify(response));
4933
+ });`;
4934
+ var jsSnippets = {
4935
+ // Same order as in js/src/lib/interfaces/Types.ts
4936
+ "text-classification": snippetBasic3,
4937
+ "token-classification": snippetBasic3,
4938
+ "table-question-answering": snippetBasic3,
4939
+ "question-answering": snippetBasic3,
4940
+ "zero-shot-classification": snippetZeroShotClassification3,
4941
+ translation: snippetBasic3,
4942
+ summarization: snippetBasic3,
4943
+ conversational: snippetBasic3,
4944
+ "feature-extraction": snippetBasic3,
4945
+ "text-generation": snippetBasic3,
4946
+ "text2text-generation": snippetBasic3,
4947
+ "fill-mask": snippetBasic3,
4948
+ "sentence-similarity": snippetBasic3,
4949
+ "automatic-speech-recognition": snippetFile3,
4950
+ "text-to-image": snippetTextToImage2,
4951
+ "text-to-speech": snippetTextToAudio2,
4952
+ "text-to-audio": snippetTextToAudio2,
4953
+ "audio-to-audio": snippetFile3,
4954
+ "audio-classification": snippetFile3,
4955
+ "image-classification": snippetFile3,
4956
+ "image-to-text": snippetFile3,
4957
+ "object-detection": snippetFile3,
4958
+ "image-segmentation": snippetFile3
4959
+ };
4960
+ function getJsInferenceSnippet(model, accessToken) {
4961
+ return model.pipeline_tag && model.pipeline_tag in jsSnippets ? jsSnippets[model.pipeline_tag]?.(model, accessToken) ?? "" : "";
4962
+ }
4963
+ function hasJsInferenceSnippet(model) {
4964
+ return !!model.pipeline_tag && model.pipeline_tag in jsSnippets;
4965
+ }
3138
4966
  export {
3139
4967
  ALL_DISPLAY_MODEL_LIBRARY_KEYS,
4968
+ InferenceDisplayability,
4969
+ LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS,
4970
+ MAPPING_DEFAULT_WIDGET,
3140
4971
  MODALITIES,
3141
4972
  MODALITY_LABELS,
4973
+ MODEL_LIBRARIES_UI_ELEMENTS,
3142
4974
  ModelLibrary,
3143
4975
  OTHER_TAGS_SUGGESTIONS,
3144
4976
  PIPELINE_DATA,
@@ -3148,5 +4980,7 @@ export {
3148
4980
  TAG_CUSTOM_CODE,
3149
4981
  TAG_NFAA_CONTENT,
3150
4982
  TAG_TEXT_GENERATION_INFERENCE,
3151
- TASKS_DATA
4983
+ TASKS_DATA,
4984
+ TASKS_MODEL_LIBRARIES,
4985
+ snippets_exports as snippets
3152
4986
  };